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La metabolomica es una subarea de la biologia de sistemas que
tiene como objetivo el estudio de las moléculas de pequefio tamafio
(normalmente < 1,000 Da) producidas por los procesos metabdlicos que
concurren en una célula. Desde finales del siglo anterior la metabolémica
con un enfoque no dirigido se ha empleado con éxito en diferentes
aplicaciones, como el descubrimiento de biomarcadores, el descubrimiento
de dianas terapeuticas, la medicina personalizada o simplemente conocer
los mecanismos bioldgicos del organismo estudiado. Al tratarse de estudios
no dirigidos, la investigacion trata de obtener tanta informacion como sea
posible para cubrir el mayor nimero de metabolitos presentes, siendo esta

fase clave en el éxito de la investigacion.

El nimero de metabolitos extraidos y posteriormente identificados
con cierto nivel de confianza puede definirse como cobertura de metabolitos
o “metabolite coverage”. Esta fase de identificacion de metabolitos es
actualmente el principal cuello de botella en los andlisis metabolémicos,
puesto que la informacién obtenida analiticamente requiere de una extensa
cantidad de trabajo y conocimiento para permitir obtener identificaciones
con éxito. Las fases de separacion y deteccion proporcionan valiosa
informacion que puede ser utilizada de forma automatica por herramientas
software. Por otra parte, existen actualmente un gran numero de fuentes
de datos de metabolémica que proporcionan una correlacion entre la sefal

analitica y la identificacion del compuesto.

El objetivo de esta tesis es la creacion de una herramienta software
gue permita la consulta simultanea a las bases de datos metabolomicas
mas relevantes existentes para ofrecerles a los investigadores la posibilidad
de obtener datos de ellas a partir de una uUnica consulta. Esta consulta
simultanea va a permitir el acceso a mas informacion tanto en profundidad,
puesto que los investigadores podran acceder a la informacién
complementaria sobre metabolitos contenidos en distintas bases de datos,
como en amplitud, pues hay un gran nimero de compuestos que se

encuentran en una Unica base de datos. Los investigadores que no
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consultan dicha base de datos estan reduciendo el conjunto de metabolitos
sobre los que estan realizando el proceso de identificacion, y aumentando

el potencial nUmero de metabolitos sin identificar en sus experimentos.

Ademas, la herramienta debe explotar la informacion analitica y no
analitica para facilitar la anotacion e identificacion de metabolitos, ampliar
la cobertura de metabolitos en los estudios y reducir el nimero de
identificaciones erréneas que pueden conducir a interpretaciones

bioldgicas erréneas.

La herramienta creada se denomina CEU Mass Mediator (CMM).
Actualmente contiene 332,665 compuestos experimentales provenientes
de las fuentes de datos HMDB (Human Metabolome Database), KEGG,
LipidMaps (LIPID Metabolites and Pathways Strategy), Metlin y una libreria
propia creada en el Centro de Excelencia de Metabolémica y Bioanalisis
(CEMBIO) y 681,198 compuestos generados mediante aproximaciones
computacionales (in-silico) provenientes de HMDB y MINE (Metabolic In
silico Network Expansion Databases). CMM permite la consulta simultanea
a estas bases de datos desde una misma interfaz y en una Unica consulta
a partir de las m/z y, opcionalmente, el tiempo de retencion (RT) y la
agrupacion de picos obtenidos mediante el agrupamiento de sefales
provenientes de un mismo metabolito primario como son los isétopos, los
aductos, las moléculas con multiple carga, los multimeros o los fragmentos,

llamado en esta tesis Composite Spectrum (CS).

El sistema experto utilizando informacién de MS?

CMM permite aplicar diferentes filtros a los investigadores para
mejorar el proceso de filtrado y la eficiencia de las reglas. CMM permite
restringir la basqueda en funcién de los elementos presentes, con tres
posibilidades: CHNOPS, CHNOPS+CI y todos los elementos, permitiendo
incluir o excluir en las busquedas compuestos que contengan deuterio.

CMM permite también restringir la basqueda a lipidos, e incluir o excluir
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péptidos en la busqueda, asi como los potenciales aductos formados en

modo positivo o negativo.

CMM utiliza esta informacion por su sistema experto (CMM-ES)
basado en 122 reglas para puntuar estas anotaciones basandose en la
probabilidad de los tipos de compuestos de formar un determinado aducto
(puntuacion y,), la presencia o ausencia de aductos esperados para un
determinado tipo de compuestos y la relacién entre estos aductos entre
diferentes sefales (puntuacion y,) y el orden de elucion segun la
hidrofobicidad en lipidos pertenecientes a una misma clase, ya que tienen
la misma estructura y solo diferen en la longitud de la cadena de los acidos
grasos y su nivel de saturacién, medido en el numero de dobles enlaces
(puntuacion y;). Estas tres puntuaciones estan integradas en una
puntuacion general que se calcula segun la siguiente media gedmetrica:

Zi3=1 w; * Iny;
X=exp\—~<3 ..

i=1 Wi

donde w; es el peso de cada puntuaciéon, w; = 1, w, =1y w3 € [0, 2].
wsdepende del del nimero de reglas aplicadas para el orden de elucién, ya
que el numero es variable y cuanto mayor numero de anotaciones
provenientes de otras sefiales, mayor es la evidencia que proporcionan.
CMM tiene en cuenta el modificador utilizado en la fase movil para la
formacién de aductos, puesto que la presencia del NHs va a modificar los
potenciales aductos formados.

Un ejemplo de las reglas de ionizacion seria la probabilidad de los
monoglicéridos (MG) de formar determinado tipo de aductos. Los MG son
dificilmente detectados en modo de ionizacidbn negativa, y en modo de
ionizacion positiva el aducto [M+H]* es comunmente formado, al igual que
el [M+NH4]* si se utiliza amonio como modificador en la fase movil. El
aducto [M+Na]* se puede formar, pero siempre con una intensidad menor
qgue el [M+H]*. Las reglas de orden de elucion se aplicarian en el caso de

dos sefales (S1,S2) con un RT(RTs1, RTs2) y RTsi>RTs2 y dos anotaciones
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putativas (APs1, APs2). Si APs1 se corresponde con un MG(20:0) y APs2 con
un MG(22:0), si el andlisis se ha realizado mediante fase reversa (RP por
sus siglas eninglés, Reversed-Phase), hay una evidencia negativa en estas
dos anotaciones, puesto que el compuesto MG(22:0) deberia eluir méas
tarde que el compuesto MG(20:0), y estas anotaciones tendran una
puntuacion baja. Sin embargo, si RTsi<RTsz, entonces la evidencia acerca
de las dos sefales S1 y S2 perteneciendo a los metabolitos MG(20:0) y
MG(22:0) respectivamente es positiva y la puntuacion de ambas
anotaciones sera incrementada. CMM permite incluir en la busqueda
sefales no significativas tras hacer el estudio estadistico entre dos o0 mas
grupos de estudio. Estas sefiales que no tienen una significancia
estadistica pueden no ser u(tiles como biomarcadores, pero aportan
evidencia para la anotacion e identificacion de sefiales de las significativas,
gue son potencialmente biomarcadores y el objetivo principal del estudio.

CMM utiliza la evidencia y no muestra las anotaciones de ellas al usuario.

Una herramienta semi-automatica para la
identificacion de oxPCs

Por otro lado, CMM ofrece un servicio para la identificacion de
glicerofosfocolinas oxidadas (0xPCs). Los oxPCs estan siendo estudiados
recientemente como biomarcadores relevantes en los mecanismos de la
salud y de la enfermedad. Debido a ello, la identificacion de los mismos en
los experimentos metabolémicos resulta de especial interés, y la aparicion
de herramientas que permitan anotarlas y estudiar su funcién biologica es
un gran avance. CMM utiliza la informacion analitica de experimentos
realizados mediante cromatografia liquida, ionizacion por electrospray y
deteccidn por espectrometria de masas (LC-ESI-MS). Integra conocimiento
de la fragmentacién producida por los oxPCs e incluye compuestos
derivados de los lipidos oxidados no presentes en otras bases de datos.
Basandose en este conocimiento analitico, CMM compara el espectro

experimental introducido por el usuario con el presente en la base de datos



20 | Design, validation and implementation of a software tool for metabolites annotation and identification

y obtenido en el andlisis de los estandares y el usuario puede de esta forma

identificar si el espectro corresponde a un oxPC.

Una herramienta que utiliza informacion no analitica

CMM permite la agrupaciébn de compuestos para la posterior
interpretacion bioldgica. Una vez el usuario ha filtrado, anotado e
identificado su lista de sefales, esta puede ser introducida al servicio de
analisis de pathways para agruparlas en funcién de los pathways donde
estan presentes. CMM ordena estos pathways en base al numero de
compuestos de cada pathway presentes en el experimento y la relevancia
de estos compuestos dentro del pathway. La relevancia de los compuestos
identificados dentro del pathway, medida como el nimero de pathways en

los que un compuesto esta presente.

Una herramienta de busqueda con informacion de
MS/MS

CMM ofrece también un servicio de busqueda con informacion
proveniente de MS/MS para soportar la identificacién de metabolitos con
un nivel de confianza mayor. Esta busqueda esta basada en la similitud del
espectro experimental y la libreria de espectros experimentales e in-silico
obtenida de la base de datos HMDB.

Ademés, CMM ofrece una funcionalidad Unica, como es una interfaz
para calcular la calidad de un espectro MS/MS para su posterior
identificacion. Las condiciones experimentales son clave a la hora de
obtener un espectro claro e interpretable que habilite una identificacién con
un mayor nivel de confianza. Un espectro con gran cantidad de ruido y una
intensidad baja no va a permitir distinguir los picos provenientes de un
metabolito con la contaminacién presente en el espectrémetro, lo que
puede llevar a identificaciones erroneas Yy, en consecuencia, a
interpretaciones biolégicas equivocadas. CMM puntia los espectros
experimentales en funcién de la intensidad de la sefial en MS! y MS/MS, all

nivel de ruido presente, al nUmero de escaneos realizados para el analisis
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de MS/MS y/o el nUmero de muestras utilizadas para obtener el espectro
de MS/MS (la correspondencia de sefiales en diferentes analisis reduce el
efecto de las contaminaciones), la presencia de mas de un metabolito en la
celda de colision para el analisis de MS/MS y el crosstalk, un fenémeno que
se produce cuando en la celda de colisién o en el espectrometro de masas

aun hay iones provenientes del anterior analisis.

Una API REST para el acceso ala herramienta

Todos los servicios de CMM se ofrecen tanto a usuarios sin
conocimiento informéatico a través de una pagina web, como a
desarrolladores que quieran utilizar los servicios a través de una interfaz de
programacion de aplicaciones (API) de transferencia de estado
representacional (REST). Esta segunda opcidn es muy util para integrar
CMM en otras herramientas, para facilitar el uso dentro de workflows o para
el acceso a través de otras interfaces. Actualmente CMM esta integrada en
la base de datos metabolémica con mayor niumero de citas: HMDB. Los
usuarios de HMDB pueden realizar consultas a CMM desde su interfaz y
explotar las funcionalidades de CMM previamente explicadas, reduciendo
la curva de aprendizaje necesaria para utilizar una nueva herramienta. Este

servicio esta disponible en http://www.hmdb.ca/spectra/ms_cmm/search.

CMM también esté accesible a través de un paquete de R disponible
en el CRAN (Comprehensive R Archive Network). Los usuarios que estén
habituados a trabajar con R también pueden utilizar todas las
funcionalidades desde sus programas de R. Este paguete esta accesible

en https://rdrr.io/github/lzyacht/cmmr/.

CMM es una aplicacion J2EE (Java 2 Platforms, Enterprise Edition)
de codigo abierto cuyo cbdigo esta disponible en

https://github.com/albertogilf/ceuMassMediator 'y actualmente esta

desplegada en un servidor Apache TomEE 7.0.2 y cuya base de datos esta
alojado en un servidor MySQL Server 5.7.24. La aplicacion puede ser

accedida desde cualquier navegador en la direccién


http://www.hmdb.ca/spectra/ms_cmm/search
https://rdrr.io/github/lzyacht/cmmr/
https://github.com/albertogilf/ceuMassMediator
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http://ceumass.eps.uspceu.es/ o a través de los diferentes servicios en su

REST API http://ceumass.eps.uspceu.es/mediator/api/v3. CMM actualiza la

informacion de los compuestos de las bases de datos integradas

aproximadamente cada 6 meses.

Organizacion del documento

En el primer capitulo se ha realizado una revisién de los recursos y
fuentes de datos disponibles para la identificacion de metabolitos utilizando
electrospray como fuente de ionizacién. La informacién contenida en estos
recursos es en muchas ocasiones complementaria y el nivel de
solapamiento de metabolitos presentes en las bases de datos se puede
calificar como bajo, por lo que los investigadores deben consultar diferentes
recursos para ampliar la cobertura de metabolitos en los estudios
metaboldmicos. El segundo capitulo presenta la primera version de CMM.
En él se desarrolla una aproximacién heuristica para la anotacion de
metabolitos a partir de informacién proveniente de MS? y del tiempo de
retencion obtenido en la separacion previa, ya sea mediante cromatografia
liguida o electroforesis capilar. El capitulo tercero supone un paso adelante
en la estrategia, ya que integra conocimiento propio del CEMBIO, no solo
obtenido de fuentes de datos externas. En él se describe la obtencion de
conocimiento analitico acerca de glicerofosfocolinas oxidadas y la creacion
de un método semi automatico para su deteccion e identificacion utilizando
el tiempo de retencion y la informacion de MS! y MS?. El capitulo cuarto
describe las actualizaciones llevadas a cabo en CMM. Se han incorporado
nuevos servicios progresivamente para dar soporte a la identificacion de
metabolitos tales como un medidor de calidad del espectro para
informacién proveniente de MS?, la incorporaciéon de informacién referente
a ontologia y taxonomia, y el soporte de identificacion a partir de
informacién proveniente de MS?. Todos los servicios presentes en CMM y
desarrollados durante esta tesis estan disponibles a través de una API
REST para facilitar el acceso automatico y la comunicacion con otras

herramientas.


http://ceumass.eps.uspceu.es/
http://ceumass.eps.uspceu.es/mediator/api/v3
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Los metabolitos son los productos y los responsables de la situacion
final de un sistema biolégico. La correcta y completa identificacion de los
metabolitos va a resultar en una mayor informacion para la interpretacion
biolégica. En consecuencia, se remarca la necesidad de combinar
informacion analitica y no analitica para obtener un nivel de confianza
mayor en la identificacion de metabolitos, asi como la utilidad de
proporcionar herramientas de software a los investigadores para facilitarles

el éxito en sus experimentos.
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Metabolomics is a subarea of the systems biology devoted to the
study of the small size molecules (usually < 1,000 Da) produced by the
metabolic processes happening in a cell. Since the end of the previous
century untargeted metabolomics has been successfully applied to different
domains such as biomarker discovery, therapeutical targets discovery,
personalized medicine or providing knowledge about organisms and
mechanisms of health and disease. Untargeted metabolomics, by nature,
aims to obtain as much information as possible to maximize the number of
detected and identified metabolites, being the metabolite identification vital

in the final success of the studies.

The number of extracted metabolites and subsequently identified
with certain confidence level can be defined as “metabolite coverage”. The
identification is the main bottleneck in metabolomic studies since the
analytical information acquired requires a high amount of work and
knowledge to be successfully exploited. On the one hand, separation and
detection provide a valuable information that can be exploited in an
automatic way by software tools. On the other hand, currently there are a
large number of metabolomic data sources containing information about the
metabolites they store. Both information coming from the analyses and the
data sources can be used to provide a higher confidence level in the

metabolite identification.

The final goal of this thesis is the design, validation and
implementation of a software tool that allows the simultaneous query over
different metabolomic databases to offer the researchers the possibility of
retrieving data from them in a single step. This simultaneous query will allow
the access to more data both in depth, since they will be able to access the
complementary information stored in distinct databases about metabolites
contained in more than one database, and width, since there are a high
number of compounds only present in a single database, with the

consequent risk for the researchers of skipping metabolites during the
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annotation and identification process, thus potentially increasing the

number of unknows in the experiment.

Furthermore, the tool should exploit the analytical and non-analytical
information to aid during the metabolite annotation and identification,
therefore increasing the metabolite coverage in the metabolomic studies
and reducing the number of misidentifications that lead to potential wrong

biological interpretations.

The first chapter reviews the available resources and data sources
for the metabolite identification using Electrospray as ionization technique.
The information contained in those resources is often complementary and
the metabolite overlap is low. Therefore, the researchers should query
different resources to boost the metabolite coverage in their studies. The
second chapter introduces the first version of the software tool performed in
this thesis: CEU Mass Mediator (CMM). The tool develops a heuristic
approach for metabolite annotation from information coming from MS* and
the RT or MT obtained in the chromatographic or electrophoretic separation.
The third chapter presents the acquisition of analytical knowledge from
oxidized glycerophosphocholines and the creation of a semi-automated
approach for their detection and identification using the RT and information
obtained in MS* and MS? analysis. The fourth chapter describes the updates
performed in CMM. New services have been gradually incorporated such
as a spectral quality assessment, the incorporation of ontology and
taxonomy information, and the support of MS? searches. All the services
presentin CMM are available through a REST API to facilitate the automatic

access and the communication with other software tools.

The metabolites are the end products and the responsible of the
biological systems status. The correctness and completeness of metabolite
identification result in a higher amount of information for the subsequent
biological interpretation. Consequently, we remark the necessity of
combining analytical and non-analytical information to obtain and provide a

higher confidence level in the metabolite identification, as well as the utility
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of the software tools in helping researchers to successfully conduct their

experiments.
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1.1 Introduction to Metabolomics

Systems biology is an integrative discipline that requires the
contribution of different fields such as chemistry, biology, computer science,
physics or mathematics to unravel the insights of the complex living
organisms by integrating quantitative assessments with mathematical
models.! The state of an organism is a dynamic and constantly evolving
phenomenon resulting from multi-interactions between internal and external
factors.? The internal factors are defined as the levels of an organism
function including genes, transcripts, proteins and metabolites. Changes in
this multivariate homeostasis can lead to disorders or diseases. These
multi-interactions between different factors result in a phenotype response
that should be investigated holistically, considering the relationships
between different molecules.? Although systems biology pursues a holistic
approach, it starts by reducing the organism into sub-components in order
to understand their structure and functions and then, the behaviour and
interactions between components can be studied. To achieve a general and
deep understanding of the full biological system, all its sub-components
should be studied. In the -omics field, these sub-components can be
summarized in genomics, transcriptomics, proteomics and metabolomics,*
and the integration of all these fields yields a full picture about the biological
system that is known as multi-omics. The multi-omics approach provides a
more holistic molecular perspective compared to the traditional

approaches.®

Metabolomics is the last -omic science in the -omics cascade. It
studies the intermediate and end-products of the metabolism, allowing
scientists to observe and track subtle changes in the organism.®’ Thus, it is
considered as the omic that best reflects the phenotype response,®10
generating a high volume of information about the organism and being

currently one of the fastest growing research areas.

Metabolomics started to be treated as an independent area in the

90’s. In that moment, Jeremy Nicholson et al. defined the field as “a
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measurement of the dynamic multiparametric metabolic response of living
system to pathophysiological stimuli or genetic modification”.!! Olivier Fiehn
defined metabolomics in 2002 as “a comprehensive and quantitative
analysis of all metabolites in a system”.2 Metabolomics has been used in
different applications such as discovery of biomarkers'?15 providing
knowledge about mechanisms of disease!®!®, discovery of therapeutical

targets'®-2% or personalized medicine.?>%*

There are two approaches to integrate the -omics sciences. On the
one hand, a top-down data reduction strategy based on the genes and
transcripts to predict the phenotypic changes, which is achieved using
targeted proteomic and metabolomic analyses. On the other hand, a bottom
up data reduction strategy, using targeted or untargeted metabolomics as

starting point to guide the other -omics sciences (see Figure 1).°

Genomics

Transcriptomics Transcriptomics

U

Proteomics Proteomics

{1
Metabolomics

Phenotypes

Figure 1 Data reduction integration approaches in -omics sciences: top

down and bottom up.

Targeted analyses differ from untargeted analyses in the existence
of a prior hypothesis which enables researchers to create a list of

metabolites of interest that need to be quantified. Therefore, the number of
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metabolites to be measured is higher in untargeted approaches than in
targeted ones. Although the low coverage of the metabolome compared to
the genome, transcriptome and proteome may limit and difficult the
biological interpretation of the final results, untargeted analyses (bottom up
approaches) enable the discovery of unexpected changes, and often in

earlier states, than proteomics, transcriptomics or genomics analyses.

Untargeted approaches are especially interesting in cases where
targeted approaches are not successful, i.e., if the experimental hypothesis
turned out not to be right. These situations are not uncommon since living
organisms have a high complexity that hinders the control of all the variables
involved. The metabolites present in an organism include the endogenous
molecules; the xenobiome, consisting of compounds derived from sources
outside the organism;?>2¢ the nutribiome, resulting from food-derived
xenobiotics,?”?8 and the gut microbiome, formed by the molecules produced
by bacteria living in the organism.2°3° To maximize the information obtained
from the sample in untargeted approaches, the experiment should be
performed optimizing the metabolite coverage. This term can be defined as
(1) the number of metabolites present in a sample, (2) the number of
metabolites separated and detected by analytical methods, or (3) the
number of identified metabolites. In this dissertation the metabolite
coverage will refer to the number of metabolites identified with a confidence
level 3 or higher (see Table 1).

The impressive success of genomics and proteomics is not easy to
repeat in the field of metabolomics because of the problematic nature of
metabolites themselves: the enormous physiochemical diversity, the broad
ranges of concentrations, and the large and yet undetermined size of the
metabolome. Combined, these issues constitute the source of many
challenges along the metabolomic workflow, being particularly important the
undetermined size of the metabolome, which refers to the complete set of

metabolites present in an organism.
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Confidence Description

Matching requirement

level

Level O Unequivocal 3D structure, Determination of 3D structure following
including full stereochemistry.  natural product guidelines.

Level 1 Confident 2D structure, using At least two orthogonal characteristics,
reference standard or full 2D such as MS/MS fragmentation pattern,
structure elucidation. RT or CCS.

Level 2 Probable  structure using At least two orthogonal characteristics
literature data and/or matching and evidences for excluding
fragmentation spectra and/or the rest of candidates.
knowledge over the RT.

Level 3 Possible structure, isomers or More than one candidate, only one
class. characteristic matched is required for

supporting the proposed candidate.

Level 4 Unknown. Detectable feature in a sample.

RT: retention time, CSS: collision cross section

Table 1 Updated confidence levels proposed by the Metabolomics Society
(2017).

1.2 The Metabolomic workflow

The metabolomic workflow starts with a biological question that
requires a cascade of sequential stages to be answered, including
experimental design, data

sample preparation, data acquisition,

preprocessing and statistical analysis, identification and biological
interpretation, and a final hypothesis generation. Biological samples are
treated to extract their “crude” metabolite content, removing interferences
and nonrelevant elements such as genes, proteins, or salts. The
measurement of the extracted metabolites can be performed by two
different analytical techniques: Nuclear Magentic Resonance (NMR) Mass
Spectrometry (MS) approaches. NMR provide information about the spectra

to be subsequentally interpreted. The MS approaches are carried out via
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direct analysis (shotgun metabolomics)3' or by separation prior to the
analysis, which uses either liquid, gas or ion chromatographic (LC, GC or
IC respectively) or capillar electrophoretic (CE) principles. Detection is
performed using MS methods that provide information about chemical shift
or mass to charge (m/z) ratio, respectively (see Figure 2 illustrating the MS
metabolomic workflow). From a historical point of view, the use of NMR has
a long tradition; however, due to its superb sensitivity and high resolution,3?
MS has more recently dominated the metabolomic field, especially when
the amount of material for the experiment and the funding is limited.3® The
data obtained is then preprocessed and analyzed to ideally identify the
compounds present in the sample and proceed with the biological
interpretation.

1.2.1 Data acquisition

The success of metabolomics depends on the metabolite coverage.
A vital stage for broadening the metabolite coverage is the data acquisition,
which depends on the capabilities of the equipment used. The more
powerful separation techniques combined with more sophisticated
analyzers and more sensitive detectors increase the quality and the quantity
of the data obtained.343> Considering the size and the diversity of the
metabolome, the samples should be analyzed using different experimental
techniguesto increase the metabolite coverage, since a single experimental
technique cannot separate and detect all the metabolites present in the
sample.®® Multi-platform analyses increase the metabolite coverage
because the separation techniques and the different solvents are focused
on separating different types of molecules. For example, the ionic and polar
compounds are well separated using CE or IC, the volatile compounds can
be well detected using GC, while LC provides separation for the broadest
range of metabolites depending on the mobile phases, modifiers, columns

and parameters used.

For the data acquisition, MS requires the ionization of molecules prior

to their measurement using ionization techniques such as electron
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ionization (EI) or electrospray (ESI), among others. Depending on the type
of mass analyzer used, spectrometric measurements can provide either
nominal (quadrupole (Q), triple quadrupole (QQQ), ion trap (IT)) or accurate
(time of flight (TOF), QTOF, OrbiTrap) monoisotopic mass. However, in

untargeted studies, only high accuracy mass spectrometers are used since
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the nominal mass hinders considerably the identification of the metabolites

corresponding to the signals acquired.

For the data acquisition, MS requires the ionization of molecules prior
to their measurement using ionization techniques such as electron
ionization (EI) or electrospray (ESI), among others. Depending on the type
of mass analyzer used, spectrometric measurements can provide either
nominal (quadrupole (Q), triple quadrupole (QQQ), ion trap (IT)) or accurate
(time of flight (TOF), QTOF, OrbiTrap) monoisotopic mass. However, in
untargeted studies, only high accuracy mass spectrometers are used since
the nominal mass hinders considerably the identification of the metabolites

corresponding to the signals acquired.

1.2.2 Data preprocessing and statistical analysis

The information obtained must be converted from spectra and
chromatograms/electropherograms to a three-dimensional matrix
consisting of mass (m/z or monoisotopic mass), chromatographic time
(retention time -RT- for LC and GC, migration time -MT- for CE), and
intensity or abundance. Each peak in the three-dimensional matrix is called
feature. This matrix is often subjected to statistical analysis to compare the
metabolite content between different conditions, e.g., control and case. This
leads to the selection of compounds causing the observed phenotypic
changes. These initially anonymous signals are then assigned to actual
metabolites in order to allocate them to the corresponding metabolic
pathways.

There are a number of software tools for the data preprocessing®’:3®
using different algorithms but they all share a similar purpose.?3%-44 All of
them translate the raw data into features corresponding to the previously
explained three-dimensional matrix. Some of them process the co-eluting
signals to group them based on different transformations suffered by the
primal metabolite (adducts, charges, neutral loses), adding a fourth

dimension to the matrix.
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The data preprocessing includes the filtration considering the
analytical and biological aspects of the data. It aims to reduce the matrix
complexity by removing unreliable or previously known non-related
signals.*>46 Furthermore, it is recommended to perform a data normalization
consisting in the application of several operations to reduce the analytical
or biological variation arising from drifts in the sample analyses. These drifts

can be successfully controlled using internal standards (IS).

Ideally, during this process the monoisotopic mass is calculated
based on the ionization products (IPs) such as isotopes (C'?, C3, H?, H?,
etc.), adducts ([M+H]*, [M+NHa4]*, [M-H]", [M+CI]", etc.), multimers ([2M+H]*,
[2M+Na]*, [2M-H], etc.), multiple charge adducts ([M+2H]?*, [M+H+Na]?*,
[M-2H]?%, etc.) and/or neutral loss fragments ([M+H-H20]*, [M-H-H20J, etc.).
These signals can be grouped into a single pseudospectrum to calculate
the monoisotopic mass. The relationship between different IPs can be
established based on the peak shape criteria and the correlation analysis.*’
However, this grouping carried out by the software tools sometimes fails, or
it is not possible to detect due to analytical conditions.*® This data
preprocessing is very important since it will reduce the chance of obtaining
false positive annotations. The impact of data preprocessing and ion
annotation in the identification process can be very large, since it has been
reported that up to 90% of high-quality signals detected using LC/MS might

correspond to contaminants, artefacts, or IPs.9

When the metabolomic study is devoted to the comparison between
two different groups, e.g. case and control, a statistical analysis to reveal
significant changes between these groups is performed. Some examples of
statistical test performed are univariate (Student’s t-test, Mann Whitney U-
test or ANOVA) or multivariate analysis (Principal Component Analysis -
PCA-, Discriminant Function Analysis -DFA-). The statistical analysis
permits researchers to devote their efforts to the analysis of the metabolites

with an intensity significantly different between the groups, since they are
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prone to being biomarkers or indicatives of a difference to be studied for

understanding these significant differences.

1.2.3 Metabolite identification and confidence levels

Once the metabolomic study has unveiled a list of features, they must
be identified to provide a biological meaning. Metabolite identification plays
a vital role within the metabolomic workflow. This stage aims to find an
identifier (structure, database id, name) for each feature since the features
by themselves cannot be analyzed under a biological point of view. Only if
researchers truly identify them, the biological meaning can be elucidated.
Therefore, the final outcome of the metabolomic experiments strongly

depends on the identification process.*®

The metabolomic community agrees that the identification is
essential to convert analytical data into meaningful biological knowledge.>°
However, metabolite identification is one of the most challenging stages in
metabolomics, being often the main bottleneck in the entire workflow.>t A
low identification rate hinders biological interpretation of the experiment due
to many pieces of the puzzle being missing. A significant misidentification
rate could lead to inconsistent analysis of the results and even to wrong
biological interpretations.>?

Regardless the technique employed to separate our samples prior to
the mass spectrometer (GC, LC or CE), there are several classifications of
confidence levels for the identification of metabolites.3® The most popular is
the one proposed by the Metabolomics Standards Initiative (MSI), a
consortium formed in 2005 to provide the metabolomic community with a
set of standards and protocols to improve the quality of the metabolomic
studies.®® It includes five different confidence levels (see Table 1) for the

identification of each compound derived from metabolomic experiments.5455

A number of tools exist to annotate the metabolites with different
confidence levels.*®> Commonly, the first step in metabolite identification

is the assignment of a unique or a set of putative metabolite candidates to
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the m/z values obtained by MS?! (see Table 1, confidence level 3). The
confidence level 3 will be referred to as annotation from now on in this
dissertation. Then, further analysis using Multi-Stage Mass Spectrometry
(MS") or exploiting information from other (orthogonal) sources, such as
collision cross section (CCS) ion mobility, RT from GC or LC analysis or MT
for CE data, is carried out.*® This additional information enables researchers
to apply their chemistry knowledge to support or refute the identifications,
and to possibly achieve confidence level 2 (see Table 1 and Figure 3 A).
Confidence level 2 or higher will be referred to as identification from now
on in this dissertation. The highest confident levels (level 0 and 1) require
the analysis of an authentic standard to compare its properties obtained
under identical analytical conditions to those of the identified feature.
Achieving these confidence levels is hindered by the availability of authentic

standards and the funding.?

Different and/or complementary confidence levels than those of the
Metabolomics Standard Initiative have been proposed. Schrimpe-Rutledge
et al. proposed a framework (see Figure 3 B) that split the confidence levels
based on the knowledge about molecular formula (level 4), tentative
structure based on MS?! database match (level 3), putative identification
using fragmentation patterns and orthogonal information such as RT or CCS
(level 2) and the validated identification using authentic standards (level
1).57 Although nowadays the spectrometers are extremely accurate, for the
majority of the features acquired there is no possibility yet to calculate a
unique molecular formula based on the “seven golden rules”,%® Lewis or
Senior chemical rules, and hydrogen/carbon ratio or elemental ratio
probabilities.>® Therefore the level 4 is not achieved for all the features

obtained in a metabolomic experiment.

Sumner et al. proposed a system with a quantitative scoring and an
alphanumeric coding system to gauge the confidence of our peers (see
Figure 3 C). This solution expands the reported confidence levels by

including more detailed information about how the researchers can achieve
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a particular level of confidence depending on the analytical technique, the

mass accuracy, the resolution, the elution time or the MS" analysis.®°

The most recent proposal includes a confidence scale and an ID
score.®t The confidence level assigned to a metabolite identification
includes a number, a letter and another number. The first number
corresponds to one of the four main categories: identified using authentic
standards (level 1), putatively annotated using m/z matching and MS/MS
fragmentation (level 2), putatively characterized by its IPs to a chemical
class assignment (level 3) and unknowns (level 4). The letter indicates the
chromatographic characteristics based on relative retention time (RRT), and
the last number reflects the number of IPs encountered between the feature
of interest and the authentic standard or information from the database (see
Figure 3 D).

1.3 Current challenges in metabolite identification

There are major differences for the metabolite identification workflow
depending on the analytical technique employed. GC/MS is usually
equipped with EI as ionization source. El provokes a high and reproducible
fragmentation of the molecules, and the Kovats retention indices (RISs) are
easily calculated once the retention times have been obtained.%?
Furthermore, GC/MS often measures derivatized forms (analytes) instead
of primary metabolites. Therefore, there are well and known established
methods for the GC/MS metabolite identification.®3%> GC/MS databases
contain information about monoisotopic mass, fragmentation patterns and
Kovats RI. Some of the most popular GC/MS databases are NIST, Wiley,
the Fiehn Library, Mass bank or the MassBank of North America (MoNA).

However, CE and LC separation techniques are less reproducible,
which yields a substantively different workflow for metabolite identification.
The assignment of m/z values to a set of annotations is performed by
guerying accessible databases, which ideally makes this process very

accurate and efficient (confidence level 3).6¢
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Currently, there are a considerable number of databases either
exclusively devoted to metabolomics or easily applicable to metabolomic
data. However, the vast amount of data repositories and the low overlap
requires also manual querying and integration of the results from different
sources.®’ Data sources can be specific for certain types of compounds; this
is the case for the Human Metabolome Database (HMDB),% which covers
the human metabolome, the (LIPID Metabolites and Pathways Strategy,
(LipidMaps)®® and LipidBank’, which contain only lipids, the Universal
Natural Product Database (UNPD) devoted to primary and secondary plant
metabolites,”* or the Milk Composition Database (MCDB) made up by
compounds present in milk. Other sources, such as Metlin,”? KEGG,”®
MassBank’* or mzCloud, contain all kind of compounds. To overcome the
lack of experimentally detected compounds forming the metabolome, some
databases have incorporated in-silico generated compounds, like
MyCompoundld,” HMDB or the Metabolic In Silico Network Expansion
Databases (MINEs),’”® using general biotransformations of previously
detected compounds.’” The current databases differ in size, search modes,
available adducts to search or mass searching tolerance. That has caused
the emergence of a number of software tools offering a common interface
to query multiple databases, with some of them providing additional
processing features unavailable in the original databases.”® "9

The long list of software tools with different and complementary
purposes illustrates the importance of Workflows to integrate them, allowing
the researchers to use a common interface and consequently, saving time
and incrementing the visibility of the tools integrated there. They also allow
researchers to save and share their data, increasing the reproducibility and
the collaboration between different laboratories. Some examples of
integrative workflows are Taverna,® KNIME,8! Workflow4Metabolomics®? or
GNPS.8 The decoupling between the software tools and the platforms
where they were developed eases their integration.
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1.3.1 Use of fragmentation obtained by MS"

Despite all the available information, further work is usually needed
to accept or reject the annotations retrieved from the databases. The
chromatographic data and fragmentation pattern are the two characteristics
most commonly used to possibly achieve confidence level 2. Mass
spectrometers allow the researches to isolate the compounds within a
specified elution time and m/z range in a collision cell for a further analysis,
usually applying a voltage to acquire the fragmentation pattern. Then, a
comparison between the fragmentation pattern obtained with a reference
spectrum can be calculated, either from a database or to the one obtained
from an authentic standard (if available), as well as structural elucidation to
provide meaningful to each IP. The most common method is to compare
them against MS/MS libraries, that provide different methods for the
fragmentation matching: e.g. “peak counting”, that counts the number of
matching peaks, or the dot product, that processes a two-dimensional
comparison based on the m/z and intensities. This method is widely applied,

with an arithmetic or geometric mean to calculate the final matching score.

This strategy can be applied a number of times coupling the output
from the first collision cell to another collision cell where a new voltage can
be applied to a specific IP or to all IPs produced in the first collision cell (MS"
analysis, where n > 2, also called tandem MS), obtaining a fragmentation
tree that might be useful to distinguish between compounds with similar
structures and fragmentation patterns. In any case, the co-elution of
compounds when isolating them in the collision cell hampers the
identification, since the spectrometer will acquire the fragmentation of
different compounds and it is difficult to distinguish which ones correspond
to each precursor ion. To overcome the lack of available standards, and
therefore experimentally spectra of compounds in the existing databases,
there are a number of tools that predict the fragmentation pattern based on
the compound structure. There are substantial differences between the
approaches that the tools use to predict the spectra: heuristic approaches,*

8 machine learning,2® quantum chemistry8®°° or combinatorial
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approaches®%4, Despite the added value that in-silico prediction tools for
molecules fragmentation provide, they are not as precise as the
experimental ones. Most of them have a high recall but low precision i.e.,
they produce more IPs than those actually observed experimentally.

A second problem that can arise in the future regarding in-silico
spectra is the generation of millions of highly similar structures, which could
lead to the generation of millions of highly similar spectra, hindering the
unequivocal identification of compounds through the fragmentation
pattern.>* Although the MS/MS and MS" provides structural information and
often it is enough to reach confidence level 2 for the putative annotations,
sometimes there is not enough evidence to determine a unique structure
and therefore achieve identification. If there is not enough evidence for the
identification of an unequivocal compound, the presence or absence of
particular chemical groups provides valuable insight into the membership of
a molecule within a specific chemical class, providing a higher confidence
level than those features only annotated through m/z match, but not fully
achieving the level 2. Then, research has to focus on orthogonal
characteristics such as ion mobility, CCS or RT.>®

1.3.2 Use of analytical information

Chromatography and CE offer additional information about the
metabolite structure through the RT and the MT, respectively. They can be
used as orthogonal filters during the metabolite identification. However, the
number of databases containing RT and/or MT information is certainly low.
The high number of different separation columns and possible combinations
of solvent buffers and chromatographic conditions to separate the
metabolites makes the RT highly variable. Therefore, the RT value has a
very low reproducibility between different laboratories. Furthermore, minor
changes in analytical conditions can alter it. There are models to predict RT,
but they are restricted to very specific conditions.®>°8 The lack of large and
diverse training sets difficults the generation of robust retention prediction
models for metabolite identification since the success of the RT modelling
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depends on it. As consequence, the RT from LC can be used to reject false
positive identifications rather than to confirm the true positive ones when
there are not authentic standards available to reach confidence level 1 in
the identification.

In GC, retention is a function of the boiling point of the molecule and
its interactions with the column film. RT can be predicted using Quantitative
Structure Retention Relationships (QSRR) considering the overall structural
properties or additive retention contribution of individual chemical
substructures. In practice, instead of absolute values of RT, they are
converted into system-independent constants using Kovats RI for
isothermal conditions, linear RI for ramped temperatures,®® and Lee RI.1%0
RI changes with the column and temperature program, but they can be
easily converted using known software tools like iMatch2.1%! The databases
for GC/MS (NIST, Wiley, the Fiehn Library, MoNA or MINE) contain the
Kovats Rl and the researchers can perform the identification using

orthogonal information based on m/z and Kovats RI.

CE uses electrophoretic principles to separate molecules, therefore
MT is used instead of RT. The MT represents the time that a molecule
spends in the migration from the sample inlet to the detector. The
reproducibility in CE is lower than in GC and LC, but knowing the exact
analytical conditions, there are software tools to predict the MT of a
particular molecule from the structure of the cations%? or to calculate the
effective mobility of the molecules knowing the MT and the analytical
conditions.1%3 Specific databases can be created and used for the
metabolite identification based on the collected MT or the relative MT (RMT)
regarding a background electrolyte, usually methionine sulfone or
paracetamol. The number of software tools for metabolite identification in
CE is still low due to the low number of databases containing experimental
information obtained through CE and the lower number of users applying

this technique.
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1.3.3 Use of non-analytical information

The non-analytical information can be also used to support or refute
the putative annotations. Applying the same principle as for the use of
chromatographic and electrophoretic information, it is easier to discard
some identifications rather than to confirm them between different isomers
with similar pathway information. For example, if the matrix obtained was
acquired from a human sample, there is a high evidence that plant
metabolites are not likely to be a true positive annotation. Analogously,
knowing the connectivity and dependency between metabolites present in
a pathway can be used as an additional source of positive or negative
evidence to support or reject a putative annotation. Some software tools use

already this information from pathways.104-106

1.4 Research objectives

The final objective of this research is the creation of a software tool
to help the metabolomic community to overcome the main challenges
previously explained. It is important to highlight that each analytical
technique faces different challenges regarding the identification of
compounds. Metabolite annotation using GC-EI-MS is relatively well
established, but the metabolite coverage of this technique is the lowest
compared to LC-ESI-MS and CE-ESI-MS. CE-ESI-MS has a higher
metabolite coverage than GC-EI-MS, but the identification process may be
difficult due to the low number of databases containing experimental
information obtained by this technique and the MT shifts. Also, in CE-ESI-
MS there is a limited capability of using tandem MS to obtain fragmentation
patterns. LC-ESI-MS has the highest coverage due to the high number of
experimental setups available. It is the technique where metabolite
identification is most challenging. The high number of experimental
conditions makes the RT very variable, and there are not general prediction
methods yet. Hence, most of the times the annotation starts with the single
information of the m/z obtained through MS analysis and identification is

performed with a high amount of manual work applying analytical and
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biological knowledge. Given this variability among analytical techniques, the
tool must be versatile to accomplish the needs of the different experimental

techniques used.

Although metabolite identification will never have perfect precision
and recall, it is important that systematic solutions arise to help researchers
during this process, without undermining the researchers’ experience during
the final metabolite identification. The more information is exploited, the
more precise the identification will be, and a higher confidence level will be
reached. Moreover, the greater number of software tools are available to
support exploiting this information, the higher metabolite coverage will be
achieved, and a better standardization of the annotation process will be
possible, while the misidentifications will be reduced. This thesis was born
from the hypothesis that the metabolomic applications can be improved in
terms of exploiting analytical and non-analytical information, such as
chromatography, IPs patterns and biological knowledge, and providing a
proper explanation to the putative annotations. The chromatographic
information is directly related to the polarity of the compounds; therefore,
the RT and MT provide vital information for identification. The structure of
the molecules determines the possible IPs formed in the ionization source,
while the nature of the organism studied offers insights about the
compounds there analyzed. The main goal of the tool developed in this
thesis, CMM, is to exploit as much as possible the analytical and
nonanalytical information available to support the researcher in the

metabolite identification process.
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Untargeted Metabolomics is a useful and powerful tool to approach
the biological systems. The success of untargeted metabolomics is closely
connected to metabolite identification. Reducing the false positives and
increasing the true positives and true negatives provides a more accurate
and complete picture for the subsequent biological interpretation. A larger
metabolite coverage helps establishing relationships, while the

misidentifications lead to wrong conclusions.

Metabolite identification is probably the most significant and
persistent challenge in untargeted metabolomics. Regardless the
confidence level required, this task is generally very slow and tedious. The
first step in this task is the metabolite annotation, the assignation of putative
structures to the already processed data matrix containing the features.
Publicly available databases such as MassBank, KomicMarket, HMDB,
Metlin, KEGG, LipidMaps or MINE contain metabolites that enable
researchers to retrieve the putative candidates for the features. However,
they only cover a fraction of the full metabolome, since a large portion of it
IS yet to be discovered. Moreover, the databases have a low overlap among
them since they are devoted to different purposes and/or target metabolites.

The main goal of this dissertation is the creation of a software tool to
support researchers in metabolite annotation and identification: CEU Mass
Mediator (CMM). This tool aims to exploit as much analytical and non-
analytical information as possible, both coming from the CEMBIO and from

external sources. In particular, it aims to develop the next features:

o A single interface to query simultaneously distinct databases,
with the automatic unification of compounds coming from

them.

o A MS! annotation expert-system using information coming
from RT, from experimental IPs formed by lipid class and
relationships between signals coeluting in LC-ESI-MS
experiments. The RT information has not been used before
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for such purpose by other tools. Additionally, it will provide
optional filters to restrict the putative annotations returned for

a given query.

o A semi-automated service for the annotation and

identification of oxidized glycerophosphocholines (oxPCs).

o A MS/MS search service comparing the experimental
fragmentation with the ones available in the data sources and

scoring the putative annotations returned as result of a query.

o A spectral quality controller to guide the researchers about
how good is the MS/MS data obtained in an experiment with

the purpose of metabolite annotation.

o A Representational State Transfer (REST) Application
Programming Interface (API) to access the previously
described services to facilitate integration the communication

with other tools.

Although CMM intends to complement the tools already available for
the metabolite annotation and identification, it also aims to be a self-
contained tool to provide a better user experience. Therefore, it will provide
services already available in other tools when this duplicity makes sense for
the overall functionality of the tool; i.e., to avoid the need for the users of
using a different tool and interface for each step in the metabolite
identification process. The final target user is both the analytical chemist
with low knowledge about computer science that shall use the tool through
its web interface, and the developer that is interested in integrating CMM in
their tools or workflows through its REST API. According to these

assumptions, the tool will be:

o Open-source, to increase the potential audience and to

involve people from the metabolomic community.



62 | Design, validation and implementation of a software tool for metabolites annotation and identification

o Accessible from a simple web interface, to avoid the need of

computer science/programming knowledge to work with it.

o Accessible from a REST API, to provide automatic
mechanisms to communicate with scripts, other tools or being

integrated in metabolomic workflows.

To fulfill these requirements, the state of the art should be deeply
studied to provide innovative and efficient solutions in the metabolite
annotation and identification. Chapter one reviews the ESI-MS-based
databases for untargeted metabolomics. A separation between GC/MS
databases and general-purpose databases should be done, since GC/MS
databases usually contain information about Kovats RI. This data helps
significantly during the identification process because it provides an
orthogonal filter. In LC/MS and CE/MS, the RT and MT respectively are far

less reproducible, therefore their use as an orthogonal filter is not trivial.

To increase the metabolite coverage when using LC or CE, the
researchers usually need to access, retrieve, merge and filter the results
from different databases manually, investing a large amount of time in this
process (see level 3 in Table 1). Once they have merged the putative
annotations retrieved from the databases, it is time to discard or confirm
them applying analytical, biological and chemical knowledge. One strategy
consists in the application of analytical and nonanalytical knowledge about
compounds. For example, if the experiment has been run using a Reversed-
Phase (RP) column, the non-polar analytes are retained more than polar
ones by the separation column. Therefore, a putative annotation of a feature
with a high RT pointing to a polar compound can be discarded because the
polar compounds are the ones eluting first. Meanwhile, biological
knowledge can also be applied to discard compounds. For example, if a
human sample is being analyzed and a putative annotation corresponds to
a plant metabolite, there is a strong evidence pointing towards discarding

the putative annotation.
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Chapter two describes the software tool developed in this thesis:
CMM. This first revision of the tool (CMM 2.0) provided researchers with a
metabolite annotation tool using information coming from MS?! analyses
(confidence level 3). It integrates and unifies experimental compounds from
HMDB, KEGG, Lipidmaps and Metlin and in-silico predicted compounds
from MINE. In addition, CMM 2.0 scores the putative annotations which
matched the query parameters based on ionization, adduct relation and RT

rules developed in Drools, a business rules management system for Java.

Lipidomics is a newly emerged discipline within the -omics sciences
that studies cellular lipids on a large scale. Within lipidomics, the biological
role of oxidized glycerophosphocholines (oxPCs) is a current topic of
research contributing to the understanding of health and disease. The
identification of oxidized lipids is one of the challenges in the metabolite
identification due to the low presence of them in the general databases.
However, a systematic approach to identifying the oxPCs can be extracted
from experimental knowledge. The chromatographic characteristics and the
spectral information from MS? provide very useful information for the

identification of oxPCs.

Chapter three outlines a proposal for the identification of oxPCs in
untargeted metabolomics. It requires the insertion of the oxPCs into the
CMM database to subsequently create a systematic approach for the
recognition, annotation and identification of oxPCs. This approach uses
information from the fragmentation obtained by MS? analyses for both long
chain and short chain oxidations; the hydrophilicity of the new oxPCs; and
the experimental knowledge about adduct formation. It incorporates a list of
IPs and neutral losses of PC(16:0/20:4) known as PAPC. The presence of
these compounds potentially increases the true putative annotations and

decreases the false putative annotations.

The confidence level during the metabolite annotation can be raised
comparing the experimental fragmentation spectra of the features with the

spectra available in the databases. A current challenge in Metabolomics is
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to improve the quality of the MS? spectra obtained in the data acquirement
and the data preprocessing. Nevertheless, the time and the funding to
perform metabolomic experiments are limited, and the low availability of
authentic standards often hinders the metabolite identification process in
untargeted approaches. Consequently, a systematic method to evaluate the
spectral quality obtained could permit researchers to focus on the most
promising features with identification purposes, since a high-quality
spectrum is paramount to increase true positive identifications and a low-

quality spectrum can lead to false positive identifications.

A spectral quality controller, among other new functionalities, is
described in chapter four, a major update in CMM: CMM 3.0. Besides that,
the integrated data sources had grown qualitative and quantitatively since
the release of CMM 2.0 (see chapter two), therefore an update of the
information coming from them was performed. Due to the availability of the
fragmentation spectra in the publicly available databases, a new service for
the metabolite identification consisting in a MS/MS search was added; this
service allow researchers to possible achieve a confidence level 2 in the
putative annotations previously obtained by MS*. It also provides a service
to identify the oxPCs based on the approach presented in chapter three.
In parallel, CMM 3.0 provides the users with a RESTful API that
encapsulates its services, allowing the integration within automated
workflows or within other software tools without the necessity of using the
CMM web interface. This chapter presents the integration of CMM 3.0 into
HMDB.

Finally, in the last chapter of this thesis, a summary of all the
contributions made is presented, conclusions are drawn and possible lines

of future work to extend the functionality of CMM are presented.
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Differentiating signals to make biological
sense — A guide through databases for
MS-based non-targeted metabolomics

Metabolite identification is one of the most challenging steps in metabolomics studies
and reflects one of the greatest bottlenecks in the entire workflow. The success of this
step determines the success of the entire research, therefore the quality at which anno-
tations are given requires special attention. A variety of tools and resources are available
to aid metabolite identification or annotation, offering different and often complementary
functionalities. In preparation for this article, almost 50 databases were reviewed, from
which 17 were selected for discussion, chosen for their online ESI-MS functionality. The
general characteristics and functions of each database is discussed in turn, considering
the advantages and limitations of each along with recommendations for optimal use of
each tool, as derived from experiences encountered at the Centre for Metabolomics and
Bioanalysis (CEMBIO) in Madrid. These databases were evaluated considering their utility
in non-targeted metabolomics, including aspects such as identifier assignment, structural
assignment and interpretation of results.
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1 Introduction

The importance of metabolomics and its utility is still in-
creasing, both in terms of the range of applications and their
frequency. Among the different applications, non-targeted
metabolomics plays a vital role, revealing new and unexpected
findings that can lead to further research in a particular di-
rection [1-4]. However, the success of this approach highly
depends on the possibility to understand and interpret the
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lion; Workbench, UCSD metabolomics workbench
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information hidden within a complex metabolomics dataset.
Most metabolomics studies are based on ESI-MS [5-7], usu-
ally with a preceding separation step such as LC, tending to
measure the ratio of mass to charge (m/z) and abundance of
each ion that originate from chromatographically separated
molecules. After data pre-processing and statistical analysis,
a list of discriminating signals between sample groups can be
obtained [8]. However, to understand the nature of this sepa-
ration and its cause, masses must be annotated with metabo-
lite identifications, which can be mapped onto biochemical
pathways to understand their origins. Metabolite identifica-
tion is influenced by a range of factors, which should be taken
into consideration from the initial experimental design to the
interpretation of results (Fig. 1).

Toannotate measured masses with metabolite identifiers
(IDs), a data source is needed for comparison. One solution
would be to use an in-house library based on the authen-
tic standards analysed under particular conditions. In this
way, at least two independent and orthogonal characteristics
(e.g. mass and retention time) could be used for compari-
son, providing first, the highest level of identification con-
fidence according to MSI (Metabolomics Standards Initia-
tive) guidelines [9]. This method is rather restrictive though,
since only commercially available metabolites can be intro-
duced to the library and used for annotation. New strategies

& % ;
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Figure 1. Different aspects of metabolite identification in the metabolomics workflow.

utilising online accessible databases that contain a large array
ofinformation have emerged to mitigate this shortfall[10-15].
Cross comparison of experimental data to databases can be
performed using only one characteristic (mass) (second level
of confidence for MSI), which highlights a limitation com-
pared to using in-house libraries. Nevertheless, the amount
of information provided is huge, covering different subclasses
and including not only endogenous metabolites, but also sub-
stances originating from the microbiome, diet, plants, or sup-
plementation. Therefore, the coverage of annotations across
the data is much more promising. Furthermore, in silico pre-
dicted compounds are now available, considering biological
modifications of known metabolites that may occur under
particular conditions [16]. This somehow responds to the
clear need to open metabolomics research to consider new
or previously unidentified metabolites. Moreover, databases
are continuously growing due to the contribution of many
researchers.

In 2011, Fiehn et al. divided databases into two
categories, making a clear distinction between pathway-
and compound-centric databases [17]. In this review,
only compound-centric databases are examined, omitting
databases such as KEGG (www.genome.jp/kegg), Reactome
(www.reactome.org) and Wikipathways (wikipathways.org).
Additionally, only online, open-access databases are included,
omitting commercial resources. Finally, only ESI-MS dedi-
cated resources allowing exact mass searching are assessed.
Following these restrictions, 17 data sources were selected
for review from a total of 47 considered. For a comprehensive
list of those rejected, refer to Supporting Information
Table 1. Data sources covered in this article are as follows:
BioCyc Database Collection (BioCyc) (biocyc.org), Ceu
mass mediator (CeuMM) (ceumass.eps.uspceu.es), Com-
pound Structure Identification:FingerID (CSI:FingerID)
(www.csi-fingerid.org), Human Metabolome Database
(HMDB) (www.hmdb.ca), Kazusa Omics Data Market
(KomicMarket)  (webs2.kazusa.or.jp/komicmarket/index.
php), LipidBank (lipidbank.jp), LIPID Metabolites and Path-
ways Strategy (LipidMaps) (www.lipidmaps.org), MAGMa
(www.emetabolomics.org/magma), MassBank (www.mass
bank.jp), MassTRIX (masstrix3.helmholtz-muenchen.de/

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

masstrix3/), MetFrag (msbi.ipb-halle.de/MetFragBeta),
METLIN (metlin.scripps.edu), Metabolic In Silico Network
Expansion Databases (MINE) (minedatabase.mcs.anl.gov),
MycompoundID  (www.mycompoundid.org), MzCloud
(www.mzcloud.org), MZedDB (maltese.dbs.aber.ac.uk:
8888/hrmet/search /addsearch0.php) and UCSD metabolo-
mics workbench (Workbench) (www.metabolomicswork
bench.org). The number of compounds contained in each is
depicted in Fig. 2. Figure 3 illustrates the number of citations
of each data source in google scholar, while information on
the initial release data and latest updates for each are given
in Supporting Information Table 2. All information given on
each database is true as of 15 January 2017. It is important
to highlight that this review was constructed based not only
on literature research, but also on usage and revision of
databases at the Centre for Metabolomics and Bioanalysis
(CEMBIO), Madrid.

Of the data sources reviewed, BioCyc, HMDB, Komic-
Market, LipidBank, LipidMaps, MassBank, METLIN, Mz-
Cloudand Workbench are considered databases sensu stricto.
All the other online tools reviewed are mediators that use the
information provided by databases: CeuMM, CSI:FingerID,
MAGMa, MassTRIX, MetFrag, MINE and MZedDB. Detailed
information on the sources used by each database and medi-
ator is stated in Supporting Information Table 3. Both types
of online tool are very important for the metabolomics so-
ciety and both require continued improvement. Different
databases focus on different types of molecules, therefore
it is recommended to use a combination of resources for op-
timal coverage. In this way, mediators are advantageous since
they perform searches across different sources through a sin-
gle interface. However, not all mediators offer multi-source
usage. For example MAGMa, MetFrag and MINE permit the
use of only one source at once. MassTRIX on the other hand
searches KEGG, HMDBand LipidMapstogether or separately
(as defined by the user) and CeuMM permits the search be-
tween all combinations of HMDB, KEGG, LipidMaps, Metlin
and MINE as required. Within this review, the general char-
acteristics of each of the data sources are detailed, followed
by a discussion of functionality to compare and contrast the
advantages and limitations of each for different aspects.

www.electrophoresis-journal.com
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2 General characterisation
This section contains a short description of each

database/mediator. Functionalities, advantages and limita-
tions of each database are detailed in Table 1.

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

BioCyc [18], developed by SRI International (Menlo
Park, CA), is a collection of curated databases for different
organisms. Databases are organised according to the level of
manual updates they have received. Tier-1 databases such as
EcoCyc (for E. coli) and HumanCyc are highly curated, while
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Table 1. Online tool characteristics.

General 2245

Online tool Functionalities Strong points Weak points
BioCyc - ID assignment - Organism selection - Limit for batch searches based on URL
- Structure search - Information about possible reactions of length
- Data interpretation®! compound - Only neutral mass search
- Literature references - Subscription model (not freely available)
- Ontology search - Limited information in exported file by
- Multi-conditions search default®
- Customisable results
CeuMM - ID assignment - Unlimited search in batch mode - No structure available
- Multi-adduct - NoAPI
- Chemical alphabet
- Possibility to choose data source
CSl:Fingerld - MS" spectral search - Chemical alphabet - Fixed relative error
(fragmentation tree - Limited number of adducts
based on molecular - Positive ionisation mode only
formula prediction) - No mass of compounds in results
- No exporting option
- No API
HMDB - ID assignment - Batch mode (700 masses at once) - No compound name in exported results
- MS?search - Comprehensive characterisation of - No exporting option for MS? search
- Structure search metabolites - No API

Data interpretation®!

KomicMarket ID assignment

ID assignment
- Data interpretation®!

LipidBank

1D assignment
Structural assignment
- Data interpretation®’

LipidMaps

MAGMa - MS" spectral search
(fragmentation tree
based on substructure

prediction)

'

High-quality real and predicted spectra

- Multi-adduct

Multi-conditions search
Spectra comparison
Very user-friendly

Easy comparison with other studies

- Filter by species (only three)

Filter by analytical method

- Filter by sample type

'

Retention time information for some
compounds

Hierarchical organisation

Biological activity, physical properties,
spectral data, organism and references
available

Hierarchical organisation
Physicochemical properties, spectral data
and references available

Ontology search

MS? library for standards

Substructure search
Tolerance in Da + ppm

.

Single search

Single adduct

Limited number of adducts

No name or formula assigned for most
compounds

No exporting option

No API

Single search

No monoisotopic mass

Query only from average neutral mass
Out-of-date front-end technology and
design

No exporting option

No API

Single search

Neutral mass

Fixed absolute error

MS? spectra only for single collision
energy

- No adduct search

No API

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Online tool Functionalities Strong points Weak points
MassBank - 1D assignment - Filter by analytical method - Batch mode only under request for MS'
- MS" search - Molecular formula generator - Neutral mass
- Structural assignment - Repository for contributors - No unification about experimental
- Package view for multi-hits comparison in conditions
MS" search - No exporting option
- NoAPI
MassTRIX - ID assignment - Unlimited search in batch mode - Fixed relative or absolute error
- Data interpretation® - Organism selection - Limited list of adducts
- No direct data query, queue jobs system
- No exporting option
- NoAPI
MetFrag - MS" insilico - Well-structured downloaded files for - Single adduct
explanation (based on explanation of fragments
structure
fragmentation)
METLIN - ID assignment - Batch mode (500 masses at once) - Confusing Ms? spectra (differences in
- MS? search - Multi-adduct real/predicted and/or energy collision)
- |D assignment for - Optionto include/remove drugs, peptides - No possibility to exclude predicted spectra
isotope labelling and toxicants for MS? search
- Fragment search - Information on where compounds can be - No exporting option
- Neutral loss search purchased as standards - NoAPI
- Spectra comparison - Problems with access (often banned)
MINE - 1D assignment - Unlimited search in batch mode - No clear indication and distinction
- Structural assignment - Multi-adduct between real and predicted compounds
- Data interpretation®! - Multi-conditions search - No possibility to limit search to only real or
- Information about possible reactions of predicted results in the on-line version
compounds
- Possibility to choose data source
MyCompoundID - ID assignment - Unlimited search in batch mode for MS' - Single adduct
- MS$? search - Batch search for MS? search (100 spectra - Limited list of adducts
- ID assignment for atonce) - Exporting option only available for one
isotope labelling - Detailed information about MS? peaks mass at a time
explained from library - NoAPI
- Deisotope function for MS?
MzCloud - ID assignment - Compound filter (see list 1in Supporting - No adduct search (Only [M + H}*+,
- MS" search Information) [M—H]-)
- Structural assignment - Contributor repository - No exporting option
- Fragment search - NoAPI
- Data interpretation?! - Builtin Microsoft Silverlight (technology
deprecated by Microsoft)
MZedDB - ID assignment - Mutti-adduct - Single search
- Chemical alphabet - No exporting option
- Molecular formula generator - NoAPI
- Possibility to choose data source
- Adduct/neutral loss rules
(Continued)
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.el ph j l.com
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Table 1. Continued

General 2247

Online tool Functionalities Strong points Weak points
WorkBench - ID assignment - Unlimited search in batch mode - Single adduct
- Structural assignment - - Ontology search - Only absolute error
Data interpretation®! - Repository for contributors - No exporting option

- Possibility to choose data source

a) Organism selection, information about reactions and pathways information.
b) Only information about mass, compound name and chemical formula without any link for further researching.

c) Detailed description and references.
d) Pathway analysis.
e) Information about possible reactions.

f) Three options: virtual database of lipids, a reference set of metabolites and Metabolomics Workbench Metabolite Database (database
collected from multiple repositories: LIPID MAPS, ChEBI, HMDB, BMRB, PubChem and KEGG).

most BioCyc databases (Tier 2 and 3) have been com-
putationally derived. These databases are particularly
applicable to organism-specific metabolite identification and
metabolic reconstructions using the pathway search.

CeuMM (ceumass.eps.uspceu.es), a collaborative devel-
opment from the CEMBIO and the Bioengineering Labora-
tory of Polytechnic Faculty at Universidad CEU San Pablo
Spain, is a tool that performs an automated search across ex-
ternal data sources (HMDB, KEGG, LipidMaps, METLIN and
MINE) and provides possible identifications for a given mass
(unifying similar hits given from more than one database into
a single hit).

CSI:Finger D[19]is a database specific for multi-stage MS
(MS") identification. It supports further research on peaks
unidentified at the MS level. Itisa collaborative development
between Friedrich Schiller University, Germany and Helsinki
Institute for Information Technology at Aalto University,
Finland, that combines fragmentation tree computation and
machine learning to improve both the total percentage of
identified molecules and the precision of identification.

HMDB [20] is a database devoted to human metabolism
developed with support from the Canadian Institutes of
Health Research, Alberta Innovates—Health Solutions and
The Metabolomics Innovation Centre. For each data entry,
information is given on the chemical, biological and clini-
cal characteristics as well as references to the literature in-
cluding reported disease associations, related enzymes and
transporters in addition to links to external databases such as
KEGG.

KomicMarket is a database of metabolite annotations
from MS peaks detected in metabolomics studies. It comes
from the project “Development of Fundamental Technologies
for Controlling the Material Production Process of Plants”
supported by the New Energy and Industrial Technology De-
velopment Organisation, Japan.

LipidBank [21] is the official database of the Japanese
Conference on the Biochemistry of Lipids. This database is
devoted to neutral lipids. It covers several different classes and
all molecular information is manually curated and approved
by experts in lipid research. Each entry includes a lipid name,
molecular structure, spectral information and literature
references.

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

LipidMaps [22] is funded by a large-scale collaborative
research grant (Glue Grant) from the NIH National In-
stitute of General Medical Sciences. Its aim is to provide
identification and quantitation of mammalian lipids, includ-
ing the quantification of changes in response to perturba-
tion. LipidMaps Proteome Database is also included in this
resource.

MAGMa [23] is an annotation tool developed within the
eMetabolomics project, funded by the Netherlands eScience
Center at Wageningen University in collaboration with the
Netherlands Metabolomics Centre. MS" data can be uploaded
as a hierarchical tree of fragment peaks, based on m/z or
chemical formulae and candidate molecules are automati-
cally retrieved from PubChem, KEGG or HMDB. A matching
score is calculated based on the quality of explanation of the
fragment peaks.

MassBank [24] is a public repository of mass spectral
data based on sharing identifications and structure elucida-
tions of chemical compounds detected by mass spectrome-
try. MassBank is accessible through two domains: Japanese
(http://massbank.jp) and European (http://massbank.eu)
(NORMAN MassBank). The tool is deployed in both domains,
but some functions are only provided in the Japanese one.

MassTRIX [25, 26] is an online tool for the annotation of
high precision mass spectrometry data. Results are displayed
on organism-specific KEGG pathway mapsand any additional
genomic or transcriptomic information can be added. The
tool was developed at the Helmholtz Zentrum Miinchen in a
collaboration between Philippe Schmitt-Kopplin and Karsten
Suhre.

MetFrag [27,28] is a tool designed for in silico fragmen-
tation data for computer assisted identification of metabolite
mass spectra using general chemical rules based on standard
reactions. Its development is concentrated around Leibniz
Institute of Plant Biochemistry and Eawag: Swiss Federal In-
stitute for Aquatic Science and Technology. It is currently
available through two web pages: MetFrag Web 2010 and
the updated MetFrag Web beta. A search can be performed
against the listed databases or from a fully customised file,
allowing the use of the in silico fragmentation function on
users own compounds. It provides a score based on the algo-
rithms implemented.

www.electrophoresis-journal.com
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METLIN [29] is a trademark of the Scripps Research
Institute, which develops and applies mass spectrometry-
based technologies for understanding metabolism. It in-
cludes cloud-based data processing informatics (XCMS), and
nanostructure imaging MS (NIMS). With almost 1,000,000
real compound entries (not from prediction), this is one of
the largest databases available. Entries in METLIN include
metabolites, lipids, steroids, plant and bacterial metabolites,
small peptides and exogenous drug metabolites and toxicants.
IsoMETLIN-A module for isotope-based metabolomics is
also included.

MINE [16] taps into data sources such as KEGG, Eco-
Cyc, YMDB and Chemical Damage, generating theoretically
possible metabolites based on known entities. It does this us-
ing an algorithm called the Biochemical Network Integrated
Computational Explorer and expert-curated reaction rules
based on the Enzyme Commission classification system.
The tool comes from collaboration between several re-
search centres including Northwestern University, Argonne
National Laboratory, West Coast Metabolomics Center,
University of California and Davis and King Abdulaziz
University.

MycompoundID [30, 31] is a web-based resource devel-
oped at the University of Alberta for identification of com-
pounds based on chemical properties including accurate
mass. Different searches are possible including MS, MS?,
PEP searches of unlabelled and dimethyl labelled peptides,
and chemical isotope labelled MS data. Searches are per-
formed across an evidence-based metabolome library that
consists of 8,021 known human endogenous metabolites and
their predicted metabolic products, including 375,809 com-
pounds from one metabolic reaction and 10,583,901 from two
reactions. In silico predicted compounds are generated from
HMDB entries.

MzCloud (www.mzcloud.org) is a trademark of High-
Chem LLC from Slovakia. It is an advanced database of high-
resolution MS" spectra acquired under different conditions
that are filtered, recalibrated and arranged into spectral trees.
Identification is possible through the Precursor Ion Finger-
printing (PIF) tool that can expand on compounds that are
already listed in the database to new metabolites, identified
based on substructure information through the comparison
of product ion spectra of structurally related compounds. It
is also a repository for databases of contributors.

MZedDB [32] is a database for metabolite signal annota-
tion developed by the Aberystwyth University High Resolu-
tion Mass Spectrometry Laboratory. Itis largely derived from
established repositories (aracyc, dico, HMDB, KEGG, Imdb,
mammal, metacyc, plant, ricecyc) and performs automated,
high throughput analysis of data derived from soft ionisa-
tion. It is possible to apply rules about adduct formation and
neutral losses to prove or discard certain hits. Also, a molec-
ular formula generator is available for identifying molecules
based on chemical formulae.

Workbench [33], developed within the Metabolomics Pro-
gram’s Data Repository and Coordinating Center and spon-
sored by the Common Fund of the National Institutes of
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Health, serves as a national and international repository for
metabolomics data and metadata, providing analysis tools
and access to metabolite standards, protocols, tutorials and
training material. MS search for ID assignment is possi-
ble using three types of database: a virtual database of lipid
classes, a reference set of metabolites and the Metabolomics
Workbench Metabolite database (combination of compounds
from LipidMaps, ChEBI, HMDB, BMRB, PubChem and
KEGG). The Human Metabolome Gene/Protein Database is
also available.

3 Functionality

There are some key considerations that determine the ap-
plicability of different data sources in the metabolomics
workflow. One key consideration is whether or not the re-
source is freely available (which can differ between academia
and industry). Table 2 presents information on the licence
and data usage policies for different databases. Additionally,
only some tools offer the possibility to save searches or ex-
port results that is particularly useful in large-scale or multi-
platform studies with a huge number of masses requiring
annotation. A summary of these characteristics including the
exact information that can be exported using different tools
is given in Supporting Information Table 4. Some online
tools provide Application Programming Interfaces (APIs).
An APl is a common language for communication between
different computer systems. APIs enable search automation
and integration into workflows of third-party metabolomics
tools. Galaxy Workflow4metabolomics is an example of a
tool where many other external metabolomics tools can be
integrated through their APIs [34]. Some databases do not
provide APIs (Table 2) and others are now out of service (e.g.
METLIN’s API has been out of service since 2011 due to se-
curity issues). APIs may be developed in different paradigms
and representational state transfer is one example for con-
structing web services [35, 36]. Representational state trans-
fer architecture leads to a stateless model where resources
can be accessed through primitive methods such as GET or
POST. Online tools that implement this API usually provide
resources independently and are not used as methods for per-
forming queries based on experimental masses. APIs can be
developed for a specific programming language as shown in
Table 2.

Another consideration is how user-friendly each resource
is. Of course each resource can be more or less useful for a
particular purpose and the assessment of each can be highly
subjective, however, to provide a guide of the main practical
aspects of each data source, Table 3 summarises design fea-
tures, asynchronicity (lack of need for a full page reload every
time the user performs an action), login requirements and
ease of familiarisation for each source.

Due to the range of tools available, global characterisa-
tion is challenging without separating them by functionality.
Functionality will therefore be discussed under the following
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Table 2. Features available in each database.

General 2249

Feature description Databases
Source Database BC,HM, KM, LB, LM, MB?, ME, MZC, WB
Mediator CMM, CF, MG, MT, MF, MI, MY, MZD, WB
Ms® M§? CF, HM, KM, LM, MG, MB, MF, ME, MY, MZC
Mms" CF, MG, MB, MZC
Real spectra HM, KM, LM, MB, ME, MY, MZC
Predicted spectra CF, HM, MG, MF, ME, MY, MZC
Search mode for MS Single KM, LB, LM, MG, MB®!, MF, MZC, MZD
Batch BCe/, CMM, HM (700), MT, ME (500), MI, MY, WB
Search mode for MS? Single CF, HM, MG, MF, ME
Batch MB, MY (100), MZC
Adducts? Single KM, MY, WB
Multi CMM, CF, HM, MT, MF, ME, MI, MZD
Neutral BC, LB, LM, MG, MB, MZC
Last update®! 0-1year BC, CMM, CF, HM, LM, MG, MB, MF, ME, MI, MZC, WB
1-3 years My
>3 years KM, LB, MT, MZD
Licensing Open CMM, LM (BSD), MG (Apache), MF (GNU), MI (CC 4.0)
Proprietary BC, KM, LB, MT, ME, MZC, MZD, WB
Not specified/depends on contributor CF, HM, MB, MY, MZ
Usage of data Free (non-commercial) CMM, CF, HM, KM, LM, MG, MF, ME, MI, MZC, MZD, WB
Free (all purposes) MG
Fee BC (except EcoCyc and MetaCyc)
Not specified/depends on contributor LB, MB, MY
Export formats?! csv, xls, tsv BC, CMM, HM, LM, MG, MF, MI, MY"
sdf LM, MG, MF,
HTML (only) CF, KM, LB, MB, MT, ME, MZC, MZD, WB
API Representational state transfer BC,LM, WB
WebService BC, KM, MI
Other programming languages BC (Python, Perl, Java, and Lisp), LM (PHP), MF (R), MI {Python,
JavaScript, Perl)
None CMM, CF, HM, LB, MG, MB, MT, ME, MY, MZC, MZD
Search options Mass BC, CMM, CF, HM, KM, LB®!, LM, MG, MB, MT, MF, ME, MI, MY,
MZzC, MzD, WB
Formula BC, CF, HM, KM, LB, LM, MG, MB, MF, ME, MI, MZD, WB
Name BC, HM, KM, LB, LM, MB, ME, MI, MZC, MZD, WB
1D BC, HM, KM, LB, LM, MF, ME, MI
Ontology BC,LM, WB
Substructure/subformula BC, HM, LM, MB, MI, MZC
Origin of compound?’ BC, LB, MT
Chemical alphabet CMM, CF, MZD
Nature of compound"! HM!, ME!
Join several conditions BC, CMM, CF, HM, LB, LM, MB, MT, MF, ME", MI’, MZD, WB
Tolerance ppm BC, CMM, CF (25-15), MF, ME, MZD
Da LM (0.01-100), MB, WB (0.0005-1)
Both HM, KM (0-1 Da, 0-100 ppm), MG, MT (0.001-1 Da, 0.1-3 ppm), Ml

(0-15 mDa, 0-15 ppm), MY, MZC

a) Data repository. Data comes from contributors.

b) Batch mode available only by mail request.

c) Number of input masses limited by URL length.

d) Details available in Supporting Information Tables 1, 2 and 3.
e) Only average mass.

f) Peak by peak

g) Distinguished by organism, for example human, mice, E. coli, etc.
h) The type of compound, for example toxins, drug, exogenous, etc.

i) Only available for single search.
j) Distinction for drugs, peptides and toxicant.

BC: BioCyc Database Collection (BioCyc); CMM: Ceu Mass mediator; CF: Compound Structure Identification:FingerlD (CSI:FingerID);
HM: Human Metabolome Database (HMDB); KM: Kazusa Omics Data Market (KomicMarket); LB: LipidBank; LM: LIPID Metabolites and
Pathways Strategy (LipidMaps); MG: MAGMa; MB: MassBank; MT: MassTRIX; MF: MetFrag; ME: METLIN; MI: Metabolic In Silico
Network Expansion Databases (MINE); MY: MycompoundID; MZC: MzCloud; MZD: MZedDB; WB: UCSD metabolomics workbench

(Workbench).
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Table 3. User-friendliness of the tools.
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Easiness for

Design Asynchronous Login
techniques mandatory familiarisation
BioCyc
CeuMM
CSl:FingerlD
HMDB

KomicMarket
LipidBank
LipidMaps
MAGMa
MassBank
MassTRIX
MetFrag
METLIN
MINE
MycompoundID
MzCloud
MZedDB

(CExHCE X ORI X RONORON X I x NONCRC RS
(3 Ex ExExEx MOExExExEx ExExExExExPx QS

Workbench

r
a) Locking users out when multiple consecutive searches are performed

classifications: (i) ID assignment, (i) structural assign-
ment and (iii) data interpretation. ID assignment involves
annotation of peaks with known metabolites. Structural
assignment includes MS" information used for structural
confirmation or elucidation by matching structural simi-
larity to known compounds on the MS or MS" level. Data
interpretation covers any information useful to understand
and interpret results including pathway analysis, literature
search, depiction of metabolites and their classification.

3.1 ID assignment

ID assignment relates the exact mass of a compound de-
tected to the exact mass of a known metabolite in a database
(with a given tolerance suitable for the instrument used in
data acquisition). It is the only option when there is no
more than MS level data available and therefore no struc-
tural elucidation can be performed [37]. Of the data sources
discussed in this review, the following are suitable for ID as-
signment: BioCyc, CeuMM, HMDB, LipidMaps, MassBank,
MassTRIX, METLIN, MINE, MycompoundID, MZedDB and
Metabolomics Workbench. The remainder of this section
discusses the features that are deemed as relevant for the
ID assignment task; all these features are summarised in
Table 2.

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

3.1.1 Tolerance

In non-targeted metabolomics, identification power is deter-
mined by the mass accuracy of the data; databases can provide
high precision when masses are recorded to four or more dec-
imals. Databases offer the possibility to set a tolerance either
in absolute (Da or mDa) or relative (part per million [ppm])
terms (Table 2). The majority of databases give absolute free-
dom to establish the tolerance, while MassTRIX, LipidMaps
and Workbench define set ranges of tolerance. Each mea-
surement, regardless of the power of the instrumentation,
comes with some inaccuracy. For this reason, it is necessary
to establish an appropriate tolerance for each dataset. A good
way to decide the tolerance is to assess the error on an in-
ternal standard or well-known compound. Choosing whether
the tolerance should be absolute or relative is also important.
For example, a relative error of 10 ppm on a low molecu-
lar weight compound such as choline (MW = 104.1075 Da)
would be in the range £0.0020 Da, while for PC (21:0/22:6)
(MW = 875.6404 Da), 10 ppm would be in the range +0.0176
Da.

3.1.2 Search mode

Animportant aspectto evaluate databasesiswhether searches
can be performed by batch (multiple masses can be submitted
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simultaneously) or only single searches are permitted. Manu-
ally querying hits mass by mass can be tedious and repetitive
if not impractical.

3.1.3 Adducts

During the process of ionisation using ESI, adducts that al-
ter the detected mass of the metabolite can be formed [38].
Working in positive mode, the most common adduct forma-
tions are as follows: [M + HJ*, [M + Na]*, [M + NH.J*
and [M + H - H,0J]* and in negative mode: [M — H]-,
[M + HCOOJ", M + ClIJ- and [M — H — H,0]~ [39]. A great
deal of time can be saved with the option of searching multiple
adducts and multimers simultaneously [32]. This is of partic-
ular importance for datasets obtained using high sensitivity
equipment, where different adducts are detected, even those
with very low abundance. This plays an even more relevant
role when multi-signals originating from a single molecule
are not combined into single values during data reprocess-
ing. On inspection of the data sources, three types of search
can be distinguished: neutral mass search only, m/z search
for a single adduct and m/z for multi-adducts. Information
on the search mode for each database is presented in Table 2
and a detailed list of possible adducts is given in Support-
ing Information Table 5. Lipids are best identified by their
m/z and applying knowledge about possible ionisation and
adduct formations in order to select adequate hits. By order-
ing these possible hits by retention time, different adducts
corresponding to the same molecule can easily be identified.
Moreover, this method allows the identification of mis-
assignments considering the chemical properties and elution
order. It is important though, when selecting possible adducts
for ID assignment, only to allow those expected to minimise
the risk of mis-assignment. Small molecules and acids should
be also searched considering possible in-source fragmenta-
tion with the most common neutral loss of water [40, 41].
Some databases, for example MZedDB, offer the option to se-
lect multi-adducts following a list of defined rules regarding
adduct formation [39] (putative ionisation product tab). These
rules were established considering aspects such as the num-
ber of particular elements or chemical groups in a molecule
(-OH, -COOH, -NH,, etc.), the number of electrons or charges
and information on non-covalently bound products and
solvents.

Although there are no online tools that can combine
metabolic features split by multi-adducts, some tools (e.g.
METLIN) do offer the option to calculate the mass of differ-
ent adducts, multimers and charges for any given compound.
Similar options are also offered in LipidBank, LipidMaps and
Metabolomics Workbench where m/z value is given for sin-
gle adduct. In MZedDB, even when there is no compound
listed for an exact mass in the database, the generated chem-
ical formula can be used to predict m/z values for different
adducts (adduct manipulation tab).

The possibility for batch searching and searching consid-
ering multi-adducts are of vital importance when considering
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the usefulness of a resource. Figure 4 depicts these functions
for the different data sources considered in this review.

3.1.4 Exporting options

The purpose of ID assignment can be to provide a quick pu-
tative hit for detected masses, or to generate a longer list of
options thatcan be later used in ID confirmation by MS™ anal-
ysis. Regardless of the purpose, the list of hits should be easily
exportable. Most of the databases offer the possibility to save
search results in a chosen format, for example csv, xIs or sdf.
KomicMarket, LipidBank, MassBank, MassTRIX, METLIN,
MzCloud, MZedDB and Workbench do not offer automatic
data download options for MS searches, thus results must
be manually copied from the webpage. Workbench offers the
option to save results but only one compound at a time which
can render it ineffective for larger datasets.

3.1.5 Filters

The number of hits for any given search mass can be
quite high. Careful filtration of this list to reduce the num-
ber of plausible hits is required. This filtration is generally
performed manually, however CeuMM, CSI:FingerID and
MZedDB offer functions to aid this process by restricting
hits based on chemical alphabet (a list of elements selected
based on expectation in given samples) or by restricting or
including halogens and metals in the hits based on expecta-
tion. LipidMaps, BioCyc and Workbench offer the alternative
option of allowing selection of expected compound classes
(e.g. lipids, carnitines, amino acids), and excluding all other
hits in order to filter the number of matches. LipidMaps, by
definition, searches only lipids and related compounds, how-
ever it is possible to restrict the search to a particular class,
category, or chemical composition in the ontology section
(e.g. considering number of carbons, double bonds, rings or
particular functional groups). MzCloud offers a useful list
of filter categories (see list 1 in Supporting Information ) to
aid both MS and MS" searches. One relevant possibility is to
exclude some compounds from it, an option also present in
METLIN. Since most databases were constructed consider-
ing utility in human studies [15], the option to restrict certain
types of compound can be particularly useful when using
databases for different (model) organisms with a more con-
trolled metabolome [42]. Such options are possible in BioCyc,
LipidBank and MassTRIX, where the former two use different
data sources based on the restrictions and the latter highlights
more plausible hits by organism selection in the output.

3.1.6 In silico compounds
Since ID assignment is restricted to available database en-

tries, many experimental masses can be left unannotated
after a search. As a solution to this, some databases now
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include the option to predict compounds in silico with
the aid of chemical rules or restrictions. Expansion of the
known metabolome can be performed using as an exam-
ple the Biochemical Network Integrated Computational Ex-
plorer framework (computational framework for predictive
biodegradation) with hand-curated reaction rules generalised
from chemical theory and literature [16]. LipidMaps and
Workbench include a virtual database of lipids created by
combining head groups with acyl/alkyl chains, including
glycerophospholipids, glycerolipids, sphingolipids, acyl car-
nitines, acyl CoAs, cholesteryl esters and wax esters. Alsoa list
of virtual fatty acids (OH:hydroxyl, Ke:keto(oxo), Ep:epoxy, cy-
clo:ring) and cardiolipins is available. Two mediators: MINE
and MycompoundID are open for all types of metabolites, not
only lipids, and consider some biotransformation reactions
that are known to commonly occur. MycompoundID takes
the approach of searching one or two chemical transforma-
tions over compounds from HMDB. For example alanine
- methylalanine (positively changed in mass), or sphinga-
nine and dehydrosphinganine (negatively changed in mass).
The list of possible biotransformations includes 76 positions
and is based on literature revision [31]. A similar function
is present in MINE, however in contrast to MycompoundID,
the search cannot be restricted to just real or predicted com-
pounds and therefore the list of hits is longer and mixed.
CeuMM searches the MINE database, restricting the hits to
generated compounds only. This is based on API services
provided by MINE, but not accessible from MINE’s online
service itself.

3.2 Structural assignment

While for some purposes putative identification is suffi-
cient, the majority of researchers require a more defined ap-
proach to metabolite identification, especially where poten-
tial biomarkers are being proposed. MS" data are required
for this purpose to confirm hits by comparison of a com-
pounds fragmentation pattern relative to MS” (usually MS?)
spectra in databases, or better still to the fragmentation pat-
tern of the authentic standard analysed under the same ex-
perimental conditions. Among the databases discussed in
this review, ten offer functions related to the use of MS?

Electrophoresis 2017, 38, 2242-2256

spectra: CSI:FingerID, HMDB, KomicMarket, LipidMaps,
MAGMa, MassBank, MetFrag, METLIN, MycompoundID
and MzCloud.

3.2.1M8?

When comparing experimental fragmentation to spectral re-
sources in databases, itisvital to consider the instrumentation
and parameters used in data acquisition, since fragmentation
can be highly dependent on both these aspects. For this rea-
son, HMDB, LipidMaps, MassBank and MzCloud are partic-
ularly useful given the amount of information available with
spectra. The type of mass analyser, tolerance for precursor
and product ions, collision energy and ion mode are partic-
ularly relevant. A list of experimental m/z values (product
ions with or without precursor) and corresponding abun-
dances are used to search and compare against relevant spec-
tra in the databases. Depending on the database, the upload
of this information can vary, but once uploaded the matching
process is similar. Careful experimental design considering
the options available in databases can significantly improve
the efficiency of metabolite annotation using fragmentation
comparison. For example, data are usually acquired using
fixed collision energies of 10, 20 and 40 eV; therefore it is
sensible to collect data on an unknown compound using one
of these thresholds. When data are acquired using a slope for
collision energy determination (particularly relevant for very
fragile compounds) several different spectra available in the
databases should be checked to improve the likelihood of a
good match.

LipidMaps and KomicMarket are the only two databases
covered that do not contain the option to search against MS?
spectra. Furthermore, the MS? spectra that are present in
these databases are often limited by single ion mode or col-
lision energy. However, these databases do offer alternative
useful information. LipidMaps has valuable information on
possible ionisation and fragmentation, while KomicMarket
contains a huge number of unannotated compounds with
information on extraction, measurement and detection in-
cluding example MS? spectra for many entries. HMDB and
METLIN in contrast to other MS’ databases allow deter-
mination of collision energy in the search parameters. Of

Single

BioCyc CeuMassMediator KomicMarket
MyCompoundID HMDB LipidBank
Metabolomics MassTRIX LipidMaps
Workbench METLIN MassBank
MINE MZCloud

Figure 4. Classification of online tools for per-

forming MS searches based on their features.
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the databases with MS? search-match functionality, all ex-
cept HMDB, MAGMa, MassBank and MzCloud, offer the
possibility to determine adducts. Most databases use mirror
graphs (HMDB, METLIN, MassBank) to display experimen-
tal and database spectral matches, or present the query and
library spectra together with the difference spectrum show-
ing exactly which peaks do not match (MzCloud). MassBank
offers the very useful option of visualisingand comparing sev-
eral spectra at once, with options to change various display
settings.

Anotherway to evaluate the MS? match efficiency is using
a score (particularly advantageous when considering multi-
ple hits). HMDB, MAGMa, MassBank, MetFrag, METLIN,
MycompoundID and MzCloud all generate scores for this
purpose. HMDB presents three scores: Fit, RFit and purity
[43]. Fit is calculated comparing the library spectrum to the
acquired oneand RFitis the opposite. MycompoundID gener-
ates scores for fit in explaining product ions. MzCloud gener-
ates three scores that correspond to different algorithms use-
ful for structure explanation (HighChem HighRes, Opt.Data
Product and NIST[modified]).

3.2.2Ms"

MS" (n > 2) data can be particularly useful to determine
the exact identification of a metabolite that has strong struc-
tural similarities with other compounds, often encompassing
vastly different biological function. Differences can be as
small as a position of a double bond or functional group.
Specific analysers are required to generate such data (ion
trap, Fourier transform ion cyclotron resonance or orbitrap)
and data must later be organised into structural trees illus-
trating the fragmentation patterns. CSI:FingerID, MassBank
MzCloud and MAGMa contain the relevant information to
identify molecules in this way. MzCloud supplies a wide vari-
ety of filters and options for MS" searching. Identification can
be performed in compound mode through tree search or in
substructure mode for subtree search. In MzCloud, spectral
comparison at any MS level can be performed on filtered or
recalibrated spectra, where results can be additionally filtered
based on compound or spectrum (ionisation mode, mass
analyser, ion activation, collision energy, etc.). The possibil-
ity to assign substructures or explain neutral losses is most
useful, making MzCloud highly valuable for use with MS"
data. CSI:FingerID and MAGMa follow a different strategy for
identification. Fragmentation trees are computed and used to
predict the molecular structure fingerprint using a machine
learning approach, which can later be searched against struc-
tures in PubChem (CSI:FingerID) and/or KEGG or HMDB
(MAGMa).

3.2.3 Predicted MS?

Although new entries are continually made to MS* spec-
tral libraries, the number of available standards is restricted
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and therefore the databases will never be complete. To over-
come this, fragmentation prediction can be especially use-
ful. Predicted MS’ spectra are available in HMDB, Met-
Frag, METLIN, MycompoundID and MzCloud. Differences
in the algorithms used in each do lead to (often relevant)
differences in the result and therefore careful analysis is re-
quired while using these functions. HMDB and METLIN
predict spectra using Competitive Fragmentation Modelling
for Metabolites Identification (CFM-ID), a method that learns
and generates models of collision-induced dissociation (CID)
fragmentation from data (cfmid.wishartlab.com/). In single-
energy CFM (SE-CFM) [44], ESI-MS? fragmentation is mod-
elled as a stochastic, homogeneous, Markov process involv-
ing state transitions between charged fragments. MetFrag
obtains a candidate list from compound libraries based on
the precursor mass, subsequently ranked by the agreement
between measured and in silico predicted fragments [28]. It
is a combinatorial fragmentor using the bond disconnection,
top-down approach, starting with an entire molecular graph
and removing each bond successively. MzCloud, in contrast
to other databases, uses Mass Frontier (Thermo Scientific™)
for the prediction of fragments, applying general fragmenta-
tion rules for more than a hundred thousand mechanisms,
published in peer-reviewed journals.

Among other databases offering spectral prediction,
CSI:FingerID, MAGMa and MetFrag do not contain real spec-
tra. In MetFrag, searches are performed in two steps: first
a database search is employed to find possible candidates
corresponding to a particular parent ion and second
product ions are explained. MetFusion (msbi.ipb-halle.
de/MetFusion/), an extension of MetFrag, combines infor-
mation from GPD, MassBank or METLIN with candidates
generated in MetFrag [11]. CSI:FingerID combines fragmen-
tation tree computation and machine learning to increase
the number of MS? spectra available [14]. Support vector ma-
chines are employed for directly predicting a chemical finger-
print that is used to search for the metabolite with the clos-
est match. MAGMa annotates hierarchical spectral trees ob-
tained from multistage MS" experiments. It performs queries
using a selected source to explain fragments and score and
rank candidate substructure matches.

3.2.4 Structure search

Structure searches using MS? data can be used in three
modes: similarity, substructure and exact, whereby parts of
the structure can be matched to find candidates with sim-
ilar structures or candidates containing the observed struc-
tures as a substructure. Structure search options are avail-
able in HMDB, LipidMaps, MzCloud, MassBank, BioCycand
MINE (details given in Table 4). The method for structure
search is similar for most, except BioCyc where queries are
performed through four different input options (chemical
formula, SMILES, InChI key or InChl string) rather than
through uploading or drawing the structure. HMBD and
MINE database compute a similarity threshold which can be
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Table 4. Features for structure search.

Electrophoresis 2017, 38, 2242-2256

Data source Software Search mode Filter
BioCyc - Substructure Exact
HMDB MarvinJS, Similarity Substructure Exact - Similarity threshold
ChemAxon - Molecular weight (range)
LipidMaps GGA Ketcher Substructure Exact - Al
- Curated records only
- Computationally generated records only
MassBank Not stated Substructure - Search in MassBank
- Search in KNApSAck
MINE MarvinJS, Similarity Substructure Exact - Similarity threshold
ChemAxon
MzCloud Not stated Substructure Identity - Filter compounds

- Search in compound
Search in precursor
- Ignore charges
Ignore radicals
- Ignore adducts
- Ignore isotopes

used to filter out non-relevant candidates. It is also possible
in HMDB to make a search from a pre-selected compound.
In this way structures need not be drawn, instead particular
metabolites can be selected and their structures used in the
search. MzCloud offers the widest selection of filters, where a
search can be restricted to certain compounds or precursors
and several aspects of the structure can be ignored including
charges, radicals, adducts and isotopes.

3.2.5 Additional functions

METLIN contains a very useful function for identification of
unknowns: it allows searching by a list of fragments or neutral
losses ignoring the precursor ion. This is particularly applica-
ble when in-source fragmentation is high and the precursor
ion is not present in the dataset. A similar assessment of frag-
ments and neutral losses can be made in MassBank through
the option “prediction” when working in the Japanese do-
main, although the precursor ion must also be present.
MyCopmoundID contains a useful feature called “deisotope”.
This can be used to perform a search using only the first
isotope, excluding all other natural isotopic peaks to avoid
false matching. Moreover, this data source has the option
to restrict candidate matches by filters including min/max
precursor mass, intensity or score of fit. Useful tools are
available within some of the data sources to explain unidenti-
fied fragments by predicting formulae from m/z. MassBank
performs this based on data from Keio and Riken ESI-QTOF-
MS?, generating a list of possible formulae from the database
given a suitable tolerance, that can be restricted to particular
elements.

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

3.3 Data interpretation

Metabolite annotation, performed on either MS or MS? levels
can lead to a long list of possible candidates. If there is no
possibility to obtain additional information about the struc-
ture, other mechanisms must be employed to exclude certain
hits. Physical and chemical properties, origin, or biological
role can be useful considerations for this. Some data sources
offer clear advantages over others to assist the user in this
regard.

3.3.1 Pathways

As already stated, pathway-centric databases are excluded
from this review, however some of the databases considered
do contain pathway related functions worth mentioning.
Pathway information is available in BioCyc, CeuMM, HMDB,
MassTRIX, MINE and Workbench. HMDB pathway infor-
mation is based on its sister platform Small Molecule Path-
way Database SMPDB (smpdb.ca/). All SMPDB pathways
include information on the relevant organs, subcellular com-
partments, protein complex cofactors, protein complex loca-
tions, metabolite locations, chemical structures and protein
complex quaternary structures, which might be particularly
important for multi-omics studies. BioCyc also uses its own
pathways that are built and curated based on evidence from
the literature. CeuMM, MassTRIX, MINE and Workbench
use KEGG (http://www.genome.jp/kegg/) pathway informa-
tion. In addition to KEGG, workbench uses HMDB/SMPDB
information. CeuMM has the option to upload a list of
metabolite KEGG identifiers and identify involved pathways
ordered by number of hits.

l.com
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3.3.2 Description and classification

HMDB provides a great deal of information about each
metabolite entry. This information is stored in a “metabo-
card” that details the taxonomy, ontology, physical, chemi-
cal and biological properties, spectra, expected physiological
concentrations, literature references and appropriate links.
LipidBank also contains very useful information for data in-
terpretation, including genetic, bioactivity and metabolic data
in addition to literature references, and Workbench provides
literature references too. Supporting Information Table 6 de-
tails the information provided in each data source.

Classification approaches can be used to help filter or in-
terpret hits given in databases using a forest or tree approach,
for which taxonomy and ontology can be useful [45]. These
data are available in BioCyc and HMDB for all metabolites
and in LipidMaps and Workbench for lipids only, calling on
LipidMaps whose nomenclature is the recognised standard
for lipid classification. BioCyc includes additional useful in-
formation including metabolic reactions in which metabo-
lites are involved or information on their presence or abun-
dance in culture medium, for example. This is particularly
useful when considering the plausibility of a metabolite as
a statistically significant feature of a study and can also be
useful in the experimental design stage to choose certain ex-
perimental conditions if there are particular metabolites of
interest that may be affected by that. Similarly, MINE pro-
vides information about enzymes and products of reactions
in which metabolites are involved.

Workbench contains information about previous projects
and research where particular metabolites were already
found. The highly detailed data include a further descrip-
tion of project, samples used, conditions applied and treat-
ments and analytical conditions employed. Even measured
abundances for particular masses across all the samples are
stated.

4 Conclusions

Data analysis is a critical, but often an under-considered as-
pect of metabolomics research. In general, close to 50% of
features detected in a non-targeted metabolomics study are
unidentified compounds, leading to an important loss of in-
formation. Moreover, if features are mis-identified, data are
wrongly interpreted and false conclusions are drawn onto
which new experiments can be proposed. It is therefore vi-
tal to get this step right and be aware of the advantages and
limitations of the tools at our disposal. As discussed, there
is a range of different open access resources, with different
characteristics that have been critically reviewed here. On-line
tools will benefit from the input of a broad spectrum of scien-
tists interested in metabolomics. However, the community
as a whole should contribute to establish rules about data
collected using different extraction protocols and analytical
methods.

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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CEU Mass Mediator (CMM) is an on-line tool for aiding researchers when performing metabolite annota-
tion. Its database is comprised 0f 279,318 real compounds integrated from several metabolomic databases
including Human Metabolome Database (HMDB), KEGG and LipidMaps and 672,042 simulated com-
pounds from MINE. In addition, CMM scores the annotations which matched the query parameters using
122 rules based on expert knowledge. This knowledge, obtained from the Centre for Metabolomics and
Bioanalysis (CEMBIO) and from a literature review, enables CMM expert system to automatically extract
evidence to support or refute the annotations by checking relationships among them. CMM is the first
metabolite annotation tool that uses a knowledge-driven approach to provide support to the researcher.
This allows to focus on the most plausible annotations, thus saving time and minimizing mistakes.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Metabolites are small molecules being end or intermediate
products of the metabolism. Metabolomics, along with other
‘omics’, leads the research in biomarker discovery for diseases,
generating fundamental insights into cellular biochemistry and
clues related to pathogenesis [1]. The concentration of metabolites
is a resultant of internal and external factors; therefore, it pro-
vides a very broad picture about the general status of an organism.
Among the different platforms employed to perform metabolomics,
electro-spray ionization high accuracy mass spectrometry (ESI-MS)
is one of the most frequently used, providing high accurate mass
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MassBank; MZ, MZedDB; MG, monoradylglycerol; PA, glycerophosphates; PC, phos-
phocholine; PE, phosphoethanolamine; Pl, phosphoinositol; PG, phosphoglycerol;
PS, phosphoserine; RT, retention time; SM, phosphosphingolipid; ST, sterol (choles-
terol ester); TG, triradylglycerol.
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measurements of molecularions for a very wide range of metabolite
concentrations.

Untargeted metabolomics aims to find metabolic changes
occurring between compared groups (for example, control and
experimental) without previous hypothesis. This discovery based
approach may lead to new and/or unexpected findings. How-
ever, this great advantage exacerbates the biggest bottleneck of
metabolomics: the identification and annotation process [2]. These
processes vary significantly between GC-MS based metabolomics
and liquid phase separation based metabolomics (LC-MS and
CE-MS). Most aspects discussed in this publication refer to the sec-
ond group. Annotation is often performed by researchers, who must
search for experimental masses (EMs) in different metabolomic
databases, and manually integrate and filter the results [3].

In recent years, several tools have been developed to support
metabolite identification and annotation [1,4-6]. However, most of
them are devoted to MS" data. Although comparative MS" analysis
is necessary for identification, MS! annotation still plays a promi-
nent role in metabolomics studies. This is particularly important
for pilot studies where unambiguous identification is not crucial
or when the amount of available sample is not sufficient for MS"
analysis.

The size of the metabolomic databases has greatly increased in
the last years [7], thereby incrementing the likelihood of the tar-
get compound being among the query results, but also rising the
number of non-relevant compounds returned. Consequently, the
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already tedious task of filtering the query results is even more time-
consuming. This is especially true when the analysis involves lipids
because there are many isomeric and isobaric compounds.

The filtering task can be guided by the researchers’ knowledge
about the chemical properties of the compounds and the experi-
mental set-up. Such filtering is performed manually and it is highly
affected by the level of experience of the researcher, making it
time consuming and prone to errors. Therefore, there is interest in
the standardization and automation of this step. In this task, there
are different types of information which can be used to support a
proper annotation: information related to the analytical aspects of
the measurement, to the data re-processing and to the databases
themselves. This includes both separation and detection since most
metabolomics studies are performed on hyphenated set-ups [8,9].
We shall present the main ones here.

1.1. Chromatographic order of elution

Retention time (RT) reflects the time that a particular molecule
spends inside a column being retained by the stationary phase.
This time depends on the mechanisms of retention, column geom-
etry and temperature, instrument dwell volume, mobile phase,
modifier and gradient. In the case of reversed phase chromatog-
raphy, the most common, polar molecules have low interaction
with the non-polar bed, therefore they elute very early. On the
other hand, non-polar molecules will be retained for longer, elut-
ing later. Although the flexibility of LC and the possibility to modify
many experimental parameters (mobile phase, gradient, modifiers,
flow, temperature, type of column, its length and its diameter)
make this technique very powerful, they also prevent obtaining
a reproducible RT. This is probably why, to the best of our knowl-
edge, there is only one proposal for metabolite annotation where
the dynamic RT prediction based on the chromatographic linear
solvent strength for RP-LC data used to support steroid identifi-
cation [10]. The behavior of molecules inside a chromatographic
column under some particular chemical conditions is well defined,
especially for compounds belonging to the same class [8]. In con-
sequence, although absolute RT is very difficult to predict (even
though itis notimpossible [ 11-13]), prediction of the relative order
of elution is feasible for certain compounds belonging to the same
chemical class which are analyzed under the same analytical con-
ditions. This can be a valuable aid in the analytical process.

1.2. lonization and adduct formation

The majority of the molecules are ionized by simple protona-
tion [M+H]* in positive ionization mode or deprotonation [M—H]|~
in negative mode. Some compounds, due to their structure, cannot
form such adducts and can be ionized only by formation of other
adducts [ 14]. For example, phosphoinositols (PIs) cannot be ionized
by protonation [M+H]*, therefore they are not detectable in positive
mode, unless gaining sodium [M+Na]* or potassium [M+K]*. Phos-
phocholines (PCs) are never ionized by deprotonation ([M—H] ).
Consequently, toionize them, aformate or acetate adductis needed.
Although the majority of molecules are ionizable in both polarity
modes, some of them only form positive ions and others only form
negative ions.

A list of possible, impossible and/or preferred ions for dis-
tinct compound types can be established, as well as relationships
between the expected intensities of the different ions. For exam-
ple, PCs can be ionized in positive mode by protonation [M+H]*,
but they can also be ionized with sodium [M+Na]* and potassium
[M+K]*. However, the main signal is [M+H]" and all others have a
lower intensity. Hence, a putative annotation for [PC+Na|* can be
right only if the signal corresponding to [PC+H]" is also present,
otherwise it is a misassignment. This knowledge about ionization

and adduct formation can be used to support the annotation pro-
cess. A different approach to represent this knowledge was already
implemented in MZedDB (MZ) [15]. Adduct formation rules based
on the structure of the molecule are applied to reject some puta-
tive annotations from ChemSpider and PubChem. Unfortunately,
this very useful functionality is highly limited by the tool support-
ing a single mass in the search and by the lack of updates in the tool
(the last update was in 2009).

1.3. Relative intensity of the composite spectrum signals

The same molecule can be ionized in several ways, leading to the
formation of various signals: different adducts, dimers, multiple
charges, etc. [16]. During data reprocessing, acquired chromato-
graphic and spectrometric data is combined to represent each
measured compound in three dimensions: mass, RT and inten-
sity. Theoretically, all co-eluting signals corresponding to the same
molecule should be clustered by the reprocessing software into a
single set called feature. The composite spectrum (CS) is made up
of all the signals that arise from the same feature. An example of a
CS is given in supplementary file S1.

Generally, many multi-signals are correctly clustered together
to produce a single CS but others are split in separate fea-
tures. For this reason twofold data checking should be performed:
researchers have to look into the features with the same elution
time to check if they correspond to signals arising from the same
feature.

1.4. Retrieval of multiple putative annotations from the databases

To improve the possibility of obtaining a match, frequently
the features are searched over several databases. Consequently,
putative annotations obtained from different databases have to be
merged. Merging is challenging because often the same compound
is named in a slightly different way in different databases, thus it
is difficult to perform unification without the adequate experience
and it consumes a lot of time. Moreover, the features and knowledge
present in each database differs: some of them represent biolog-
ical roles (e.g. KEGG) while others contain characteristics about
the chemical structure and properties (e.g. LipidMaps) [17]. These
databases often are complementary and the metabolomic com-
munity needs to work in increasing the interoperability between
them.

Furthermore, each database reports results in diverse manners
and this aspect has to be considered when merging annotations.
Due to that, the use of mediators to perform searches across differ-
ent libraries/databases is gaining momentum. Some of them offer
the possibility of querying a single database at the same time (MINE
[18]). Others present to the user all the retrieved annotations,
including duplicates for the same compounds present in different
databases (Masstrix [ 19]). Ideally, mediators should present anno-
tations unified to the user, such as Metabolomics Workbench [20].
However, the total number of compounds available in this tool is
relatively low [7] and it is not specified exactly how the compounds
were unified.

Unification of the information present across databases is a good
solution for the aforementioned issues [17]. Two main approaches
can be followed: unify compounds based on their structure or unify
them based on expert knowledge. The first approach requires the
standardization of the representation of the structures, based on
which unification can be performed, to avoid the compound map-
ping based on expert knowledge. Although neither approach is
perfect, the first method is less prone to errors and it may be auto-
mated. The IUPAC International Chemical Identifier (InChl) is one
of the structures which can be used for performing the unifica-
tion of compounds. The InChl is the worldwide chemical structure
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representation standard for linking information on chemical sub-
stances from multiple databases and sources [21]. It is developed
under the patronage of IUPAC, the International Union of Pure and
Applied Chemistry, with principal contributions from NIST (the U.S.
National Institute of Standards and Technology [22]) and the InChl
Trust [23]. It is non-proprietary and Open Source.

The InChl is a structure-based chemical identifier; i.e., it is
derived from the structural formula of the molecule. In contrast to
the authority-assigned identifiers like CAS, EC Numbers, CID from
PubChem, etc., anyone is able to produce the InChl for a given struc-
ture using the available tools [22] or the public algorithm [21].
Formats accepted to generate the InChl are Mol files (*.mol) or the
concatenated Mol files (*.sdf). The InChl is also unique: the same
InChl always corresponds to the same substance, making it per-
fect to achieve compound unification through different databases.
Although it has several limitations (it cannot represent polymers,
markush structures and non-traditional organic stereochemistry,
and the identifier generated for large structures such as proteins is
hard to handle) they do not concern metabolite compounds. The
InChl Trust version 1.04 provides a Hash algorithm to generate an
InChl Key, whose length is always 27 characters, making the iden-
tifier easier to handle. It is unique, just as the InChl is. Therefore,
the InChl Key generated from standard InChl (version 1.0) is an
ideal identifier for metabolite compound unification with the goal
of performing MS searches over the unified compounds due to its
uniqueness and non-proprietary license [24].

CMM is an on-line tool for aiding researchers to per-
form metabolite annotation that simultaneously queries multiple
metabolomic databases; hence it can be used for simple, non-
assisted metabolite annotation. Furthermore, it can score putative
annotations by applying expert knowledge regarding ionization,
adduct formation and chromatographic order of elution with the
aim to stream researcher’s attention to the most plausible anno-
tations. On this regard, it is important to highlight that CMM is
particularly devoted to reversed phase-liquid chromatography-
electro spray ionization-mass spectrometry (RP-LC-ESI-MS) data.
However, general functionalities can be applied for any ESI-MS
data, although enhanced scoring and filtering works only for RP-
LC-ESI-MS.

First, the methods used to overcome limitations in the field are
presented. Then, results of using CMM to annotate two data sets
made up by 45 and 30 metabolites whose identity was previously
confirmed are presented. These results are compared with other
four tools: HMDB, Metlin, MassBank (MB) and MZedDB. Finally, the
results obtained are commented and conclusions are drawn.

2. Methods

Statistical techniques play animportant role in metabolite anno-
tation, for example, when looking for correlations among the
different signals arising from the same feature to group them [25].
But once these statistical techniques have been applied, a lot of
manual work remains for the researcher (see Section 1).

In computer science an expert system is a software that provides
support to perform a task, being the software not based primar-
ily on statistical techniques, but on knowledge obtained from an
expert in the domain of the application. To the best of our knowl-
edge, no current metabolite annotation tool uses this approach.
CMM is an expert system for metabolite annotation which knowl-
edge was obtained from the CEMBIO members and from a literature
review [8,16,26-28]. Its goals are to avoid potential mistakes that
non-experienced researchers may make and saving time during the
annotation process. CMM uses 2 different criteria applied to a set
of 16 classes of compounds and 1 criteria to check the relationships
between different features and detect automatically adducts. Over-

all it uses 122 rules to represent this knowledge. In the following
sections we will present what types of rules it uses.

2.1. Chromatographic order of elution

RTs for some types of compounds can be compared. This is espe-
cially interesting for lipids belonging to the same class since their
backbones are the same, and it is based on two relationships: length
of the carbon chain and degree of unsaturation (number of double
bonds) [8]. A longer chain increments molecule hydrophobicity, so
the lipid will be retained longer in a RP column. On the other hand,
double bonds increase polarity of lipids, therefore reducing RT.

We shall represent by PX a given lipid type and denote by capital
letters the number of carbons of each chain, and by lower case let-
ters the number of double bonds. We shall represent by PX (A:a/B:b)
a lipid of the class PX that has a chain of A carbons with a dou-
ble bonds, and another chain of B carbons with b double bonds.
The chromatographic order of elution of two lipids PX(A:a/B:b) and
PX(C:c/D:d) can be calculated as:
if (A+B<C+D) and then RT  of

PX(A:a/B:b)<PX(C:c/D:d)
ii. if  (a+b>c+d) and
PX(A:a/B:b)<PX(C:c[/D:d)
else, no elution order can be inferred.

(a+b=c+d)

(A+B=C+D) then RT of

iii.

The first rule means that if the number of double bonds is the
same for two lipids of the same class, the one with longer chains
will have a higher RT. The second rule represents that if the length
of the chains is the same for two lipids of the same class, the
one with the least number of double bonds will have a higher RT.
For example, RT of lysophosphoglycerol LPG(18:0) must be greater
than RT of LPG(16:0); and RT of LPG(18:0) must be greater than RT
of LPG(18:2). In CMM this knowledge about the chromatographic
order of elution is represented as a set of rules which is applied after
the ionization and adduct formation rules, which will be presented
in the following subsections.

2.2. lonization and adduct formation

The tendency to form an adduct depends on the lipid class, ion-
ization mode and mobile phase modifier used [8]. For example,
PCsin negative mode primarily form [M+HCOO]~ or [M+CH3COO]~
depending on the modifier used (HCOOH or CH3COOH); they
may also form [M+Cl]~ with lower intensity; but they never
form [M-H]~ or [M—-H-H3O0]" [14]. These rules are applied
to such lipid classes as: fatty acid (FA), phosphocholine (PC),
lysophosphocholine (LPC), phosphoethanolamine (PE), lysophos-
phoethanolamine (LPE), phosphoinositol (PI), phosphoglycerol
(PG), lysophosphoglycerol (LPG), phosphoserine (PS), lysophos-
phoserine (LPS), glycerophosphates (PA), monoradylglycerol (MG),
diradylglycerol (DG), triradylglycerol (TG), ceramide (CER), phos-
phosphingolipid (SM) and cholesterol ester (ST) according to the
LipidMaps classification. Detailed information about all knowledge
applied in CMM related to ionization and adduct formation can be
found in supplementary file S2.

2.3. Relative intensity of the composite spectrum signals

Data reprocessing errors may lead to the splitting of ions cor-
responding to the same molecule into separate features. CMM
performs an automatic search for detecting the adduct based on the
CS by checking the relationships between signals grouped together.
But it also checks if different features truly correspond to the same
one by analyzing EMs with the same elution time and checking if
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they correspond to the expected adducts depending on the ioniza-
tion mode.

Typically, in a metabolomic study focused on biomarkers, the
only metabolites of interest for the researcher are those which have
statistically significant different intensities between control and
experimental groups, while the peaks which have not a significant
change are ignored. However, useful information for the annota-
tion of statistically significant compounds can be obtained from
both statistically significant and non-significant compounds. For
example, the adducts [M+H]", [M+Na]* and [M+K]* usually follow
the intensity pattern ([M+H]* > [M+Na]* > [M+K]") [8,16,27].

Information extracted from statistically non-significant EMs can
be used to gather evidence regarding: adduct formation ( x,) and RT
order ( x3). Sometimes saturation of [M+H]* (as the most abundant
signal) might occur. This results in the same abundance obtained
for control and experimental groups (considering that saturation
occurs among all samples), although the abundance of the metabo-
lite M was altered between them. In this scenario, statistically
significant differences may be obtained for the adducts [M+NaJ*
and [M+K]*, but not for [M+H]*. Therefore, if only statistically sig-
nificant compounds are inspected, the typical intensity pattern
[M+H]* > [M+Na]* > [M+K]* would not be seen. However, if the
researcher reviews statistically non-significant compounds, if the
adduct [M+H]" is not present, evidence pointing to the refutation of
the annotation M would have been found; and if present, evidence
supporting the annotation would have been found. For example,
PE may form an [M+Na]" adduct, but only when an [M+H]" adduct
is also formed. In this example, the abundance of [M+H]* should
be higher than the of [M+Na]*. If an EM (738.5044 Da) correspond-
ing to the [M+Na]* adduct of PE(34:2) is present, but the adduct
[M+H]* (716.5225 Da) is not present in the whole data matrix, CMM
decreases the score of the annotation of PE(34:2) for 738.5044 Da
as [M+Na]*.In CMM this knowledge is represented by a set of rules
looking into the intensities of different features which potentially
arose from the same compound.

In a similar way, when extracting evidence to support or refute
an annotation based on lipid RTs, data from statistically non-
significant lipids is often useful: their chromatographic behavior is
still the same and it can be used to compare RT between different
annotations (see Section 2.1).

To the best of our knowledge, no other compound annotation
tool uses data extracted from statistically non-significant com-
pounds to aid in the annotation of the statistically significant ones.
Consequently, researchers have to apply this knowledge manually.
CMM, even though it only returns and scores statistically significant
compounds, uses data extracted from non-significant compounds
(if provided) to enhance the scoring of the statistically significant
ones.

2.4. Putative annotation scoring

CMM scores the putative annotations using 122 rules divided in
three main types: ionization and adduct formation (¢, -applicable
to lipids-, see Section 2.2), relationships between different signals
corresponding to the same compound ( x,, see Section 2.3) and RT
order (x3 -applicable to lipids-, see Section 2.1). CMM calculates
a score for each of these three rule types (x1, x2. x3, respectively)
and then it integrates them by computing their weighted geometric
mean:

3
Z,’_,] ;- In Xi (l)
T

where w; is the weight of each score. w; =1, w2 =1and w3 € [0,
2]. w3 depends on the number of rules applied for lipid elution
order. This is the only rule type that can be triggered several times

X = exp

for the same annotation, depending on how many other lipids could
be used for the RT comparison. The more rules have been triggered,
the more evidence supporting or refuting the annotation would
have been gathered, the higher weight this evidence should have
in the final score. Internally all x; € [0, 1], where O corresponds
to a completely refuted annotation, 1 to an annotation for which
all the possible evidence is available and it is positive, and 0.5
with an annotation for which there is no evidence (neither refut-
ing nor supporting) but the annotation’s mass matches the query
parameters. However, scores are multiplied by 2 in the user inter-
face because, according to our experience, scores in the range [0,2]
where 1 means no evidence has been found supporting or refuting
the annotation, 2 means that all possibly available positive evidence
has been found, and 0 means that all possibly available negative
evidence has been found, are more intuitive for the user.

2.5. Retrieval of multiple putative annotations from the databases

CMM integrates different metabolomics databases: 279,318
real compounds from HMDB [29], KEGG [30] (pathway centric
resource), LipidMaps [31] and other sources and 672,042 simulated
compounds from MINE [18]. MINE database contains simulated
compounds created based on chemical transformations of known
compounds. Although they are theoretically possible compounds,
they have not yet been observed in real samples. CMM updates
from the original data sources are scheduled every 6 months.

CMM unifies compounds from different sources based on the
InChl. Compounds retrieved from other sources cannot be unified
since its structure was not available in a parsable format (InChl, Mol
files or SDF files) in the databases from which they were obtained
and therefore it is not possible to calculate their InChl. Although
the InChl based compound unification has been performed before
[32,33], no tool was found for performing MS searches over the
compounds unified by their InChl.

The unification has been performed using the InChl Key, which is
generated by hashing the InChl. Due to its fixed length, the InChl key
is computationally easier to manage. The InChl was obtained using
the InChl Trust software [23]. Both InChI and InChl key are stored in
atextfield in the MySQL database. For the sources which do not pro-
vide this information, a manual checking has been performed and it
is continuously being improved whenever duplication is detected
by CMM users. It consists on a visual identification of the structure,
amanual generation of the InChl with adrawing structure software,
and the final unification if the InChl generated is the same as the
one of other compound.

2.6. Query parameters

CMM allows the user to configure query parameters based on
different criteria. In this section the complete interface of batch
advanced search mode is described (Fig. 1 shows different input
data and query options of CMM and Fig. 2 illustrates the user inter-
face). The web interface allows the user to upload.csv,.xls or.xIsx
files with the statistically significant experimental masses, RTs and
composite spectra, as well as with the statistically non-significant
compounds. It is also possible to copy and paste this data directly
into the form of the web interface (see Fig. 2).

The available fields for the query parameters are:

1. Statistically Significant Experimental Masses (EMs): Masses
identified as different among the experimental groups during
statistical analysis.

2. Statistically Significant Retention Times (RTs): The units used
do not matter since RTs are used for checking relationships
between different putative annotations. The RTs introduced
here correspond to the experimental masses introduced in field
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Fig. 1. Outline of the input data and query parameters of CMM.

1 in the same order. Even if RTs were not used for support-
ing annotations, they will be automatically reported for all the
annotations, simplifying further revision since RTs do not have
to be added manually.

. Statistically Significant Composite Spectra (CSs): Spectra cre-

ated by the summation of all co-eluting m/z ions that are
related, including isotopes, adducts and dimers formed by the
same compound.

CMM automatically detects the target experimental mass and
adduct calculating differences between the m/z listed in the CS.
This avoids the need of manually calculate which adduct corre-
sponds to each feature. The goal of this step is the identification
of the true mass of the compound M that generated all the sig-
nals in the CS. If this detection is successful, only the mass of M
will be searched in the database, ignoring the rest of the masses’
alterations.

The CSs introduced here correspond to the experimental

masses introduced in field 1 in the same order.
All Experimental Masses (All EMs): All masses (statistically
significant and non-significant) found in a particular data
set. Statistically non-significant masses provide evidence for
supporting or refuting the putative annotations but are not
returned among the results of the query.

. All Retention Times (All RTs): The RTs introduced here corre-

spond to the experimental masses introduced in field 4 in the
same order.
All Composite Spectra (All CSs): The CSs introduced here cor-
respond to the experimental masses introduced in field 4 in the
same order.

. Tolerance: Tolerance allowed for the putative annotations

regarding the statistically significant EM defined as relative
(ppm) or absolute (mDa) value.

Chemical Alphabet: Possible elements of the putative anno-
tations. This option restricts the returned annotations to only
those fulfilling the chosen option. The available options are
CHNOPS, CHNOPS + Cl, and all elements.

. Modifiers: Mobile phase modifier used. Depending on this

modifier, the adduct formation may change. They are con-
sidered in the adduct formation rules (see Section 2.2).
Options available are: NH3, HCOOH, CH;COOH, HCOONH,, and
CH3COONH4.

10.

11.

Databases: Search is performed against databases selected by
the user: HMDB, KEGG, LipidMaps, Metlin and/or MINE.
Metabolites: Types of metabolites to search. The user can fil-
ter the results based on the metabolite type. It may be used
for excluding peptides, looking only for lipids or performing a
query over all types of metabolites. CMM considers as lipids the
compounds present in LipidMaps.

. Masses mode: The user introduces the EM as neutral or m/z.

Neutral mass search offers three possibilities: true neutral mass
search or positive/negative mass search. The second and third
options are available considering the fact that often the neutral
mass obtained during data re-processing does not correspond
to [M+H]* or [M—H]~. This is because these ions are used as
default ones by many reprocessing software when only a sin-
gle adduct is detected. However, some compounds, due to their
chemical properties, do not form such ions. Consequently, the
neutral mass assigned by the software is wrong. To overcome
this, when choosing the option positive or negative for neutral
mass mode, CMM turns the neutral mass to m/z and performs
searches across the databases using this m/z instead of the neu-
tral mass.

. lonization mode: The user indicates whether the masses were

obtained in positive or negative mode. Depending on the ion-
ization mode, the possible adducts differ.

. Adducts: The possible adducts formed during the ionization

process. The user may choose between different adducts in neg-
ative or positive mode ([M+H]", [M+2H]?*, [M+Na]*, [M+K]*,
[M+NH4]*, [M+H—H0]*, [M+H+NH4]*, [M+H-HCOONal*,
[2M+H]*, [2M+Na]*, [2M+H-H,0[*, [M+3H]?*, [M+2H+Na]**,
[M+H+2K]?*,  [M+H+2Na]**, [M+3Na]**, [M+H+Na]*,
[M+H+K]2*, [M+ACN+2H]?*, [M+2Na]?*, [M+2ACN+2H]**,
[M+3ACN+2H|2*, [M+CH30H+H]*, [M+ACN+H]*, [M+2Na—H]*,
[M+IsoProp+H]*, [M+ACN+H]*, [M+2K—H]*, [M+DMSO+H]*,
[M+2ACN+H]*, [M+IsoProp+Na+H]*, [2M+NH4]*, [2M+K]*,
[2M+ACN+H]*, [2M+ACN+Nal*, in positive mode and [M-H]~,
[M+Cl]~, [M+FA-H]~, [M—H—H,0]~, [M—H-HCOONa]~ and
[2M—-H]~, [M-3H]*—, [M—2H]2—, [M+Na—2H]~, [M+K—2H]~,
[M+Hac—H]~,  [M+Br]-, [M+TFA-H]-, [2M+FA-H],
[2M+Hac—H]~, [3M—H]~, in negative mode). All the pos-
sible alterations of the mass of the original metabolite (M)
given by the selected adducts will be considered. Supplemen-
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(*) Mandatory fields

Experimental Masses (*): [1] Retention Times: [2] Composite Spectra: [3]

All Experimental Masses: [4] All Retention Times: [5] All Composite Spectra: [6]

Tolerance (*)
ppm mDa

Chemical Alphabet (*)

Databases (*):

All except MINE

Kegg

HMDB

LipidMaps

Metlin

MINE (Only In Silico Compounds)

Metabolites (*)

All except peptides
Only lipids
Allincluding peptides

Input Masses Mode (*): [12] lonization Mode (*): [13] Adducts (*): [14]

M

miz Masses Positive Mode

Negative Mode

Fig. 2. Batch advanced search interface.

tary file S3 shows the full list of adducts and the calculations 1. Simple Search: it allows the user to query a single mass withinan

performed by CMM. established tolerance with basic choices of databases, metabolite
types, masses mode, ionization mode and adducts.
2.7. Search modes 2. Batch Search: it allows the user to query a batch of masses
within an established tolerance with basic choices of databases,
CMM provides researchers with different types of search, metabolite types, masses mode, ionization mode and adducts.
depending on what information they want to use for performing 3. Advanced Search: it allows the user to query a single mass
the metabolite annotation and depending on whether they want within an established tolerance with the next parameters: RT,
to look for multiple compounds or just one. The following search CS, chemical alphabet, modifiers, databases, metabolite types,

modes are available: masses mode, ionization mode and adducts. As the user only
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Fig. 3. Knowledge system of CMM.

introduces a single mass, the RT is not used to trigger rules. CS is
used to automatically detect the adduct. RT and CS are optional
parameters.

4. Batch Advanced Search: it allows the user to query a batch of
masses within an established tolerance with the next param-
eters: RT, CS, statistically non-significant experimental masses
and its corresponding RT and CS, chemical alphabet, modifiers,
databases, metabolite types, masses mode, ionization mode and
adducts. CS is used to automatically detect the adduct.

5. Browse Search: it allows the user to search for metabolites based
on their name and/or formula. The compounds are previously
unified and the target databases as well as the type of metabolites
can be filtered.

2.8. Implementation details

CMM web application uses the library PrimeFaces 6.1 for the
presentation layer. The core of the application is written in Java2EE
and uses an inference engine implemented using JBoss Drools [34].
To simplify the acquisition and revision of the knowledge, we use
spreadsheets for the representation of the rules. Knowledge is split
in different spreadsheets depending on the type of rules. They are
applied sequentially: ionization rules depending on the propensity
of a particular adduct formation due to the lipid class, then rela-
tionships between different adducts pertaining to the same primal
metabolite and finally rules over the RT based on the length and sat-
uration level of lipids (see Fig. 3). supplementary file S2 contains all
the rules. Nowadays the maximum number of features processed
by CMM is limited to 250 due to limitations in the computational
resources available in the server.

The web application is an open-source project publicly available
on Github (https://github.com/albertogilf/ceuMassMediator). The
web application server used for deploying the Java2EE project is
Apache TomEE version plume 7.0.1. The Database server used is
MySql Server 5.7.16. Bash and SQL scripts are used to load data
into the database. This software runs on a virtual Debian machine
running under GNU/Linux. The virtual machine has 8 GB of memory
and an Intel Xeon X5690 processor with 6 cores and a 3.46 GHz
frequency.

2.9. LC-MS conditions to acquire the validation data

To illustrate the functionality of CMM, two data sets were
used. The first data set (DS1) contains 45 experimental masses
(plasma samples) previously identified by MS/MS or usage of

commercially available standards (Sigma-Aldrich, Fluka Analyti-
cal). The list of these compounds is shown in supplementary file
S4. These 45 experimental masses correspond to 36 compounds.
Plasma samples were prepared by simple deproteinization with
cold methanol/ethanol (1/1) mixture [35]. Standards were pre-
pared in methanol with concentrations between 2 and 10 ppm. To
obtain this data, samples were analyzed by a HPLC system (1200
series, Agilent Technologies) connected to an Agilent QTOF (6520)
MS detector. Samples (10 p.L) were applied to a reversed-phase col-
umn (Discovery HS C18 150 2.1 mm, 3 m; Supelco) with a guard
column (Discovery HS C18 20 2.1 mm, 3 wm; Supelco). Chromato-
graphic conditions were the same as described previously [35]. Data
was collected in positive and negative ESI ion modes in separate
runs on a QTOF operated in the mass range from m/z 50 to 1000
with an acquisition rate of 1 scan per second. The capillary voltage
was set to 3000V for positive and 4000V for negative ionization
mode; the nebulizer gas flow rate was 10.5L/min. Accurate mass
measurements were obtained by means of an automated calibrant
delivery system using a dual-nebulizer ESI source that continuously
introduces a calibrating solution.

The second data set (DS2) contains 30 experimental masses
(plasma samples) previously identified with commercially avail-
able standards (Alpha Aesar, Sigma-Aldrich, Fluka Analytical). The
list of these compounds is shown in supplementary file S4. These
30 experimental masses correspond to 30 compounds. To obtain
this data samples were analyzed by a capillary electrophoresis
(CE) system (7100 Agilent Technologies) connected to an Agilent
TOF (6224) MS detector. Samples were applied to a fused-silica
capillary (100 cm x 50 pm; Agilent) under 15 mbars for 30s. Elec-
trophoretic separation occurs applying voltage of 30 kV under the
current of 20 pA. Data were collected in positive ESI ion mode in
separate ranges on a TOF operating in the mass range from m/z
50 to 1000 with an acquisition rate of 1 scan per second. The cap-
illary voltage was set to 3500V; the nebulizer gas flow rate was
10.0 L/min.

3. Results and discussion

In this section we will first present the results of compound uni-
fication based on the InChl Key. Then we will show the results of two
queries: the first one performed with 45 experimental masses cor-
responding to 36 lipidic and non-lipidic compounds analyzed under
LC-MS (DS1); and the second one performed with 30 experimen-
tal masses corresponding to 30 non-lipidic compounds analyzed
under CE-MS (DS2).
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Table 1
Query parameters for DS1 and DS2 in HMDB, Metlin, MB, MZ and CMM comparison.

Query parameter HMDB Metlin MassBank MZedDB CMM

Experimental masses 45 &30

Retention times N/A 45 &30

Composite spectra N/A 45 &30

Statistically non-significant masses N/A 0

Tolerance allowed 10ppm 0.01Da 10ppm

Chemical alphabet N/A CHNOPS

Modifier used N/A None

Databases to search HMDB Metlin MB all’ KEGG, LipidMaps,

HMDB &Metlin
Restrictions N/A Remove peptides, Instrument type: ESI Apply adduct Remove peptides
drugs and toxicants formation rules
lonization mode Positive mode
Adducts to search [M+H]", [M+Na]*, [M+K]*, [M+NH4]", N/A [M+H]", [M+Na]*, [M+K]", [M#NH4]",
[M+H-H,O* & [M+2HJ2* [M+H-H,0[* & [M+2H]?*
HMDB KEGG Table 2
Putative annotations by CMM in each query processing step (DS1).
Step Putative Precision  Recall
annotations

Before unification 2462 1.83% 100%
Before automatic adduct detection 1367 3.29% 100%
Before applying knowledge for scoring 905 4.97% 100%
Before manual unification of isomers 869 5.18% 100%
After manual unification of isomers 255 17.65% 100%

LipidMaps

Fig. 4. Venn diagram with the results of compound unification.

Although the user only sees the final results, to show the use-
fulness of the different strategies used in CMM to improve the
annotations (compound unification, ionization and adduct forma-
tion rules, adduct abundance rules and elution order rules) we shall
analyze the results of each query step by step. These results will be
compared with the results of a querying Metlin, HDMB, MassBank
and MZedDB with the same experimental masses.

3.1. Compound unification

Fig. 4 is a Venn diagram which shows the results of compound
unification for the databases KEGG, LipidMaps and HMDB per-
formed based on the InChl. Percentages shown are calculated over
the maximum number of compounds which could overlap (consid-
ering only compounds from the databases that provide structure
information): 120,781. Compounds from other sources are not
included in Fig. 4.

Although the percentages of unified compounds may not seem
high, they correspond to the compounds most commonly present
in biological samples. Furthermore, when evaluating the results of
the unification it is necessary to bear in mind that the InChl of
two compounds varies if the position or type of a bond differs.

Table 3
Scores assigned by CMM to the real compound annotation (DS1).

Score range Number of right annotations

[0-0.5) 0
[0.5-1) 0
[1-1.5) 1
[1.5-2] 28
No rules applied 16

Therefore, all the isomers of a compound have different InChl. If
different databases contain compounds with a single difference in
the position or type of a bond, they are different compounds, and
consequently they are not unified. Thus, the number of compounds
overlapped among the databases is not high. While is true that dur-
ing the annotation process is impossible to distinguish between
such compounds, they might be differentiated in a subsequent MS"
analysis. For this reason, stereoisomeric annotations have to be kept
as different entries. The small number of overlapped metabolites
may also be explained by the fact that LipidMaps is exclusively
devoted to lipids. Therefore, it does not cover the majority of small
polar compounds present in the other databases.

3.2. Knowledge-based putative annotation scoring

A comparison of CMM results when searching for DS1 and DS2
with HMDB, Metlin, MassBank and MZedDB was performed. The
first two databases were selected because they are the most sim-
ilar in terms of functionality to CMM. Batch searches are allowed
based on the m/z value of the features. MassBank [36] is a public
data repository where users can upload their experimental data
and the tool provides a database service for the identification of
metabolites. MZedDB is a tool for filtering putative ionization prod-
ucts based on the structure of the putative annotations. The list of
putative annotations is searched across the databases: aracyc, dico,
HMDB, KEGG, LipidMaps, mammal, metacyc, plant and ricecyc. The
last update of the data from these data sources was in 2009. The
data sets were tested in HMDB, Metlin, MassBank and MZedDB and
CMM with the query parameters shown in Table 1.
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Fig. 5. lllustration of precision and recall measurements. Precision shows how many selected metabolites are relevant while recall shows how many relevant metabolites

are selected.

Tables 2 and 3 summarize the results for DS1. When search-
ing for the 45 masses a list of 2462 putative annotations was
obtained from all the databases integrated in CMM (except MINE),
which clearly illustrates the need for automatic filtering. Of the
initial 2462 putative annotations, 1095 had been unified based
on the InChl and by the manual checking process. After unifica-
tion, 1367 (55.52% of the total) still remained, but CMM automatic
adduct detection filtered out 463 additional annotations, leaving
905 (36.76% of the total). The last step performed by CMM is the
application of the scoring rules. After the scoring step 36 putative
annotations were marked with a score below 1.0, which means
that the rules found some evidence pointing to that annotation

being incorrect. The researcher still has to handle 869 (35.30%
of the total) putative annotations, but it is important to notice
that most of them correspond to different isomers of the same
compound, which are not distinguishable using only MS! (e.g.
PC(18:1/16:1) and PC(18:0/16:2)). Taking into account the differ-
ent isomers corresponding to the same lipid class, the number of
putative annotations retrieved decreases to 255 for the 45 initial
experimental masses.

An average of 35.4 putative annotations for each input mass
were filtered out. An average of 19.31 putative annotations per
experimental mass were returned. 13.64 putative annotations of
the 19.31 returned correspond to different isomers of the same
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Table 4

Putative annotations by CMM in each query processing step (DS2).
Step Putative annotations  Precision Recall
Before unification 1112 2.7% 100%
Before automatic adduct detection 707 424% 100%
After automatic adduct detection 581 5.16% 100%

compound. If a manual unification of putative annotations which
corresponds to isomers was performed, CMM would have returned
an average of 5.67 putative annotations per experimental mass.

The precision, calculated as the ratio between true positive
annotations and true positive +false positive annotations [37] (see
Fig. 5), of the search before CMM applied any knowledge was
1.83%. Once CMM expert system applied all the knowledge (see
Fig. 3) precision rose to 5.18%, i.e., nearly 2/3 of the initial putative
annotations had been rejected. Furthermore, a manual unifica-
tion of isomers for the putative annotations returned, increased
precision to 17.65%. Recall, calculated as the ratio between true
positive annotations and true positive + false negative annotations
(see Fig. 5), remained at 100% at all times (see Table 2). This helps
decreasing the time researchers spend in metabolite annotation
considering they do not have to manually inspect and reject all
annotations discarded by CMM.

Table 3 shows the range of the score obtained for the proper
annotations corresponding to the 45 experimental masses of the
query. CMM provides a high score (>1.5) for 28 of them; that means
evidence has been found suggesting that these annotations are cor-
rect. For one of them, CMM has found some evidence supporting
the annotation, whose score was 1.26. For the 16 remaining masses
no evidence could be found, neither supporting nor refuting the
annotation.

The example described in this section can be executed in CMM
from the “Advanced batch search” page, using the option “Load
demo data”. CMM permits exporting the results in two different
ways:

1 HTML: on-line, in the web interface of CMM. In this case the
results are split in different pages. Each page contains a table
with the annotations for one experimental mass.

2 Excel: An excel file with the complete set of results can be down-
loaded. All the elements of the HTML results are present in the
generated file and, additionally, the InChl key of each putative
annotation. Supplementary file S5 shows the results in the down-
loaded excel file of the DS1 used in this section.

Table 4 illustrates the results step by step for DS2. The list
of 30 experimental masses corresponding to 30 non-lipidic com-
pounds returns a list of 1112 putative annotations when looking
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independently in the databases integrated by CMM. However,
after unification, the list decreases until 707, rising the precision
from 2.7% to 4.24%. The automatic adduct search based on CS or
relationships between features decreases the number of putative
annotations to 581 and increases the precision until 5.16%. Recall
remained at 100% during all the steps. An average of 19.36 putative
annotations was returned by CMM. An average of 13.5 putative
annotations were filtered by unification and 4.2 were filtered by
automatic adduct detection search. At this moment, no elution
order or adduct formation rules are applied over putative anno-
tations which do not correspond to lipids. The only type of rules
applied corresponds to the adduct relationships. No manual uni-
fication is performed between non-lipidic compounds since they
do not share a common backbone, as it often happens with lipidic
compounds.

Table 5 shows the putative annotations obtained in the MS-
based metabolite annotation tools HMDB, Metlin, MassBank,
MZedDB and CMM for DS1. Precision in HMDB (14.18% and 18.59%
without and with manual unification of isomers, respectively) is
higher than in Metlin (4.01% and 11.08%, respectively) and CMM
(5.18% and 17.65%, respectively), but 8 of the 45 right annotations
were not returned by HMDB. Therefore, for this database these fea-
tures will remain as unknowns, unless the researcher also queries
other databases. As a consequence, recall in HMDB (82.22%) is
lower than the one of Metlin (100%) and CMM (100%). Precision in
MZedDB is 5.46% and 15.57% respectively, and its recall is 73.3%.
12 of the features would not be annotated if this database was
used. In MassBank the precision is the highest (34.38%), but only
11 compounds were right annotated, thus the recall is the lowest
(24.44%).

Table 6 shows the putative annotations obtained in HMDB,
Metlin, MassBank, MZedDB and CMM for DS2. It is important to
notice that the recall of the databases for DS2 (100%) for HMDB and
CMM and 96.67% in Metlin, MassBank and MZedDB) is really high.
This is due to the compounds analyzed, which are well-known non-
lipidic compounds. Precision in MassBank (29.59%) is the highest
among the databases compared.

4. Conclusions

A knowledge-based metabolite annotation tool (CMM) has been
built. It aids researchers in the metabolite annotation process.
It unifies compounds from different sources based on the InChl
whenever possible, and with a continuous manual unification over
compounds from sources that do not provide structure infor-
mation enough to calculate the InChl. By considering different
databases for the MS search, CMM decreases the chances of miss-
ing a right annotation for the experimental masses introduced. This

Table 5
Results in HMDB, Metlin, MB, MZ and CMM for DS1.
Putative annotations HMDB Metlin MassBank MZedDB CMM
Correct annotation 37 45 11 33 45
Total 261 1121 32 604 869
Manual isomer unification 199 406 32 212 255
Precision 14.18%(37/261) 4.01%(45/1,121) 34.38% (11/32) 5.46% (33/604) 5.18% (45/869)
Precision with isomer unification 18.59% (37/199) 11.08% (45/406) 34.38% (11/32) 15.57% (33/212) 17.65% (45/255)
Recall 82.22% (37/45) 100% (45/45) 24.4%(11/45) 73.3% (33/45) 100% (45/45)
Table 6
Results in HMDB, Metlin, MB, MZ and CMM for DS2.
Putative annotations HMDB Metlin MassBank MZedDB CMM
Correct annotation 30 29 29 29 30
Total 340 571 98 436 581
Precision 8.82% (30/340) 5.08% (29/571) 29.59% (29/98) 6.65% (29/436) 5.16% (30/581)
Recall 100%% (30/30) 96.67% (29/30) 96.67% (29/30) 96.67% (29/30) 100% (30/30)
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is very important given the small overlap of metabolites between
databases.

Having a large number of compounds in the database increases
the possibility of finding the right annotation. However, it increases
significantly the time needed for filtering the returned annota-
tions. Using CMM this time is reduced, first by unification of
compounds from different sources based on the InChl, and second
by the automatic application of expert knowledge. CMM repre-
sents researchers’ knowledge as different types of rules which are
sequentially applied over the previously unified compounds. The
rules available in CMM are related to ionization and adduct for-
mation, relationships between different signals corresponding to
the same feature and RT order; i.e., they are the type of rules that
experienced researchers apply manually in the annotation process.
Based on them, CMM filters and scores the putative annotations and
allows the researchers to focus on the most plausible annotations.
This approach is not only useful for MS!, but also as a first filter
when MS" data is available.

CMM has been compared with four of the most popular tools for
MS! searches: HMDB, Metlin, MassBank and MZedDB. The results
of this comparison shows that the precision was higher in com-
parison to Metlin while the same recall was obtained. Regarding
HMDB, the recall was higher in CMM than HMDB, since there are
compounds on the data set that are not present in HMDB. Precision
in HMDB is higher than in CMM. MZedDB's precision was a little
higher than CMM and Metlin for DS2, but the lack of updates since
2009 makes that the compounds included in the original databases
since then will not be available in this tool. Recall and precision for
DS1 were lower than HMDB, Metlin and CMM. MassBank, as a pub-
licrepository data, has spectra data uploaded by the users. The tool
has been designed for identification with MS" data than for annota-
tion of compounds with MS! data. The information provided may
be useful for users when working in similar experimental condi-
tions than the information available there. The recall for DS1 was
the lowest and most of the features would remained as unknown,
concretely 34 of 45.

Summarizing, CMM searches over several databases at once,
obtaining a large list of putative annotations. Subsequently, the
putative annotations are filtered and scored based on expert knowl-
edge to guide researchers through the list of results. This makes
CMM a unique tool in the field of metabolites annotation for
metabolomics MS-data, since it is based on researchers’ knowl-
edge instead of statistical approaches. According to our experience
using CMM internally at CEMBIO for two years, thanks to the auto-
matic scoring provided by CMM the time of manual filtering of
metabolites is substantially reduced, allowing the researcher to
focus on the most relevant (higher scored) annotations. CMM is
publicly available on http://ceumass.eps.uspceu.es. CMM is easily
extensible to incorporate new expert knowledge to score/refute
metabolite annotations by creating new spreadsheets containing
the new rules.

The authors will welcome any feedback or suggestions related
to CMM functionality, such as new rules to incorporate in the tool,
that could improve the scoring performed by CMM.
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1. Relative intensity of the composite spectrum signals

This section explains how to create the Composite Spectrum (CS) based on
different signals arising from the same feature. The next list. where 2 is m/z, y
is the intensity, z is the charge, and s is the adduct and/or the isotope, shows
different signals arising from the same feature corresponding to glutamic acid.

“7002.5" z=*1" s=*“2M+H"
y="845.9" z="1" s="“2M+H+1"
iii. x="297.1184" “161.8" z="1" s="2M+H+2"
iv. x=148.0610" y=“100212.0" z="1" s=“M+H"
v. x=%149.0640" y=“6052.8" z="1" s="“M+H+1"
vi. x="150.0655" y="972.1" z=*1" s="M+H+2"
vii. x="186.0169 “1822.0”7 z=1" s="M+K”
viii. x=%170.0492" y=“67582.0" z="1" s="“M+Na”
ix. x=%171.0460" y="4075.2" z=*1" s=*M+Na+1”
x. x="172.0474" y="655.5" z="1" s="“M+Na+2"
xi. x="74.5339" y="192535.0" z="2" s=“M+2H"
xil. x=%75.0354" y=“11667.6" z="2" s=“M+2H+1"
xiii. x=%75.5361" y="1867.6" z="2" s="“M+2H+2"

i x=%295.1136"
ii. x=%296.1166"

This list can be represented as the following CS:
(295.1136,7002.5), (296.1166,845.9), 297.1184,161.8), (148.0610,100212.0),
(149.0640,6052.8), (150.0655.972.1), (186.0169,1822.0), (170.0492,67582.0),
(171.0460,4075.2), (172.0474,655.5), (74.5339,417.192535.0), (75.0354,11667.6),
(75.5361,1867.6), where the first number corresponds to the m/z and the second
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to the intensity. Each pair of values contains one signal, being either a particular
s adduct or its isotope(s).

Nevertheless, this clustering process sometimes fails and ions are split into
separate features. For example, our feature extraction software groups the next
data coming from the same feature (corresponding to Palmitoyl-L-carnitine)
into the following two features:

w1 (400.3432, 307034.88), (401.34576, 73205.016), (402.3504, 15871.166),
(403.35446, 2379.5325), (404.3498, 525.92053)
ii. (422.32336, 1562.7301), (423.3237, 564.0795), (424.33255, 292.2923)
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S| 2: information about ionization and adduct formation rules using NH3 in the mobile phase modifiers

group adduct formation
of lipid maps nomenclature flag . .
lipids positive adducts negative adducts
M+H, M+H-H20, M+H-
Category: Fatty Acyls [FA] expected *h, M O, M+ M-H
2H20
M+N ly if M+H i
FA Main class: Fatty Acids and Conjugates [FAO1] possible *ha (%TJZA) s M-H-H20
Category: Glycerophospholipids [GP] expected M+H M+HCOO//
gofy: Blycerophospholip P M+CH3C00
. . . . M+Na, M+K (only if
Main class: Glycerophosphocholines [GP01] possible M-+H is found) M+Cl
PC Class: Diacylglycerophosphocholines [GP0101], 1-alkyl,2-
acylglycerophosphocholines [GP0102], 1-acyl,2-alkylglycerophosphocholines
[GP0108], 1-(1Z-alkenyl),2-acylglycerophosphocholines [GP0103], 1-acyl,2- M+H-H20 M-H, M-H-H20
(1z-alkenyl)-glycerophosphocholines [GP0109],
Dialkylglycerophosphocholines [GP0104]
) - M+HCOO//
Category: Glycerophospholipids [GP] expected M+H, M+H-H20 M+CH3COO0
. . . M+Na, M+K (only if
: 1 - M-H-H2
LPC Main class: Glycerophosphocholines [GP01] possible M-+H is found) M+Cl-, M-H-H20
Class: Monoacylglycerophosphocholines [GP0105],
Monoalkylglycerophosphocholines [GP0106], 1Z- N/A M-H
alkenylglycerophosphocholines [GP0107]
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- M-H, M+HCOO //
Category: Glycerophospholipids [GP] expected M+H M+CH3COO0
Main class: Glycerophosphoethanolamines [GP02] possible M+|\';lf|'_|l\£:|;l(;z|)y i M+Cl
PE Diacylglycerophosphoethanolamines [GP0201], 1-alkyl,2-
acylglycerophosphoethanolamines [GP0202], 1-acyl,2-
alkylglycerophosphoethanolamines [GP0208], 1-(1Z-alkenyl),2- M+H-H20 M-H-H20
acylglycerophosphoethanolamines [GP0203],
Dialkylglycerophosphoethanolamines [GP0204]
- M-H, M+HCOO //
Category: Glycerophospholipids [GP] expected M+H M+CH3COO0
M+Na, M+K, (only if
LPE Main class: Glycerophosphoethanolamines [GP02] possible M+H is found) M+H- M+Cl, M-H-H20
H20
Class: Monoacylglycerophosphoethanolamines [GP0205],
Monoalkylglycerophosphoethanolamines [GP0206], 1Z- N/A N/A
alkenylglycerophosphoethanolamines [GP0207]
Category: Glycerophospholipids [GP] expected N/A M-H
Main class: Glycerophosphoinositols [GP06] possible M+Na, M+K N/A
Pl Class: Diacylglycerophosphoinositols [GP0601], 1-alkyl,2-
acylglycerophosphoinositols [GP0602], 1-(1Z-alkenyl),2-
acylglycer\(l)pg)f\mlosphzinosﬁtols [GPOGOg], Diaijlgly(cerophosézloinositols M+H, M+H-H20 N/A
[GP0604]
- M-H, M+HCOO //
Category: Glycerophospholipids [GP] expected M+CH3COO0
PG Main class: Glycerophosphoglycerols [GP04] possible not expected M+Cl
Class: Diacylglycerophosphoglycerols [GP0401], 1-alkyl,2- M-H-H20
acylglycerophosphoglycerols [GP0402], 1-acyl,2-alkylglycerophosphoglycerols
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[GP0411], 1-(1Z-alkenyl),2-acylglycerophosphoglycerols [GP0403],
Dialkylglycerophosphoglycerols [GP0404]
_ N M-H, M+HCOO//
Category: Glycerophospholipids [GP] expected M+H M4+CH3COO0
. ) . . M+Na, M+K (only if
PS Main class: Glycerophosphoserines [GP03] possible M-+H is found) M+Cl
Class: Diacylglycerophosphoserines [GP0301], 1-alkyl,2-
acylglycerophosphoserines [GP0302], 1-(1Z-alkenyl),2- M+H-H20 N/A
acylglycerophosphoserines [GP0303], Dialkylglycerophosphoserines [GP0304]
. - M-H, M+HCOO //
Category: Glycerophospholipids [GP] expected M+H, M+H-H20 M+CH3COO0
. _ . . M+Na, M+K (only if
LPS Main class: Glycerophosphoserines [GP03] possible M-+H is found) M+Cl
Class: Monoacylglycerophosphoserines [GP0305],
Monoalkylglycerophosphoserines [GP0306], 1Z- N/A N/A
alkenylglycerophosphoserines [GP0307]
_ . M-H, M+HCOO //
Category: Glycerophospholipids [GP] expected M+CH3COO0
PA . Main class: Glycerophosphates [GP10] possible not expected M+Cl
Class: Diacylglycerophosphates [GP1001], 1-alkyl,2-acylglycerophosphates
[GP1002], 1-(1Z-alkenyl),2-acylglycerophosphates [GP1003], N/A
Dialkylglycerophosphates [GP1004]
Category: Glycerolipids [GL] expected M+H
MG Main class: Monoradylglycerols [GLO1] possible M+Na not expected
M+NH4
DG Category: Glycerolipids [GL] expected N/A not expected
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Main class: Diradylglycerols [GL02] possible M+Na
M+NH4, M+H
Category: Glycerolipids [GL] expected N/A
16 Main class: Triradylglycerols [GLO3] possible M+Na not expected
M+NH4, M+H
) . . M-H, M+HCOO //
Category: Sphingolipids [SP] expected M+H M+CH3COO0
CER Main class: Ceramides [SP02] possible M+Na (only if M+H is M+Cl
found)
Category: Sphingolipids [SP] expected M+H M+HCOO //
gory: SPNINEOTI . M+CH3C00
SM Main class: Phosphosphingolipids [SP03] possible M+Na, M+K M+Cl
N/A M-H
Category: Sterol Lipids [ST] expected M+H, M+H-H20
. ) . M+Na (only if M+H is
CE Main class: Sterols [STO1] possible found) not expected
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S| 2: information about ionization and adduct formation rules not using NH3 in the mobile phase modifiers

group adduct formation
of lipid maps nomenclature flag . .
lipids positive adducts negative adducts
M+H, M+H-H20, M+H-
Category: Fatty Acyls [FA] expected *h, M O, M+ M-H
2H20
M+N ly if M+H i
FA Main class: Fatty Acids and Conjugates [FAO1] possible *ha (%TJZA) s M-H-H20
Category: Glycerophospholipids [GP] expected M+H M+HCOO//
gofy: Blycerophospholip P M+CH3C00
. . . . M+Na, M+K (only if
Main class: Glycerophosphocholines [GP01] possible M-+H is found) M+Cl-
PC Class: Diacylglycerophosphocholines [GP0101], 1-alkyl,2-
acylglycerophosphocholines [GP0102], 1-acyl,2-alkylglycerophosphocholines
[GP0108], 1-(1Z-alkenyl),2-acylglycerophosphocholines [GP0103], 1-acyl,2- M+H-H20 M-H, M-H-H20
(1z-alkenyl)-glycerophosphocholines [GP0109],
Dialkylglycerophosphocholines [GP0104]
) - M+HCOO //
Category: Glycerophospholipids [GP] expected M+H, M+H-H20 M+CH3COO-
. . . M+Na, M+K (only if
: 1 - M-H-H2
LPC Main class: Glycerophosphocholines [GP01] possible M-+H is found) M+Cl-, M-H-H20
Class: Monoacylglycerophosphocholines [GP0105],
Monoalkylglycerophosphocholines [GP0106], 1Z- N/A M-H
alkenylglycerophosphocholines [GP0107]




105 | Chapter 2: Knowledge-based metabolite annotation tool: CEU Mass Mediator

- M-H, M+HCOO //
Category: Glycerophospholipids [GP] expected M+H M+CH3COO0
Main class: Glycerophosphoethanolamines [GP02] possible M+|\';lf|'_|l\£:|;l(;z|)y i M+Cl
PE Diacylglycerophosphoethanolamines [GP0201], 1-alkyl,2-
acylglycerophosphoethanolamines [GP0202], 1-acyl,2-
alkylglycerophosphoethanolamines [GP0208], 1-(1Z-alkenyl),2- M+H-H20 M-H-H20
acylglycerophosphoethanolamines [GP0203],
Dialkylglycerophosphoethanolamines [GP0204]
- M-H, M+HCOO //
Category: Glycerophospholipids [GP] expected M+H M+CH3COO0
M+Na, M+K, (only if
LPE Main class: Glycerophosphoethanolamines [GP02] possible M+H is found) M+H- M+Cl, M-H-H20
H20
Class: Monoacylglycerophosphoethanolamines [GP0205],
Monoalkylglycerophosphoethanolamines [GP0206], 1Z- N/A N/A
alkenylglycerophosphoethanolamines [GP0207]
Category: Glycerophospholipids [GP] expected N/A M-H
Main class: Glycerophosphoinositols [GP06] possible M+Na, M+K N/A
Pl Class: Diacylglycerophosphoinositols [GP0601], 1-alkyl,2-
acylglycerophosphoinositols [GP0602], 1-(1Z-alkenyl),2-
acylglycer\(l)pg)f\mlosphzinosﬁtols [GPOGOg], Diaijlgly(cerophosézloinositols M+H, M+H-H20 N/A
[GP0604]
- M-H, M+HCOO //
Category: Glycerophospholipids [GP] expected M+CH3COO0
PG Main class: Glycerophosphoglycerols [GP04] possible not expected M+Cl
Class: Diacylglycerophosphoglycerols [GP0401], 1-alkyl,2- M-H-H20
acylglycerophosphoglycerols [GP0402], 1-acyl,2-alkylglycerophosphoglycerols
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[GP0411], 1-(1Z-alkenyl),2-acylglycerophosphoglycerols [GP0403],
Dialkylglycerophosphoglycerols [GP0404]
_ N M-H, M+HCOO//
Category: Glycerophospholipids [GP] expected M+H M4+CH3COO0
. ) . . M+Na, M+K (only if
PS Main class: Glycerophosphoserines [GP03] possible M-+H is found) M+Cl
Class: Diacylglycerophosphoserines [GP0301], 1-alkyl,2-
acylglycerophosphoserines [GP0302], 1-(1Z-alkenyl),2- M+H-H20 N/A
acylglycerophosphoserines [GP0303], Dialkylglycerophosphoserines [GP0304]
. - M-H, M+HCOO //
Category: Glycerophospholipids [GP] expected M+H, M+H-H20 M+CH3COO0
. ) . . M+Na, M+K (only if
LPS Main class: Glycerophosphoserines [GP03] possible M-+H is found) M+Cl
Class: Monoacylglycerophosphoserines [GP0305],
Monoalkylglycerophosphoserines [GP0306], 1Z- N/A N/A
alkenylglycerophosphoserines [GP0307]
_ . M-H, M+HCOO //
Category: Glycerophospholipids [GP] expected M+CH3COO0
PA . Main class: Glycerophosphates [GP10] possible not expected M+Cl
Class: Diacylglycerophosphates [GP1001], 1-alkyl,2-acylglycerophosphates
[GP1002], 1-(1Z-alkenyl),2-acylglycerophosphates [GP1003], N/A
Dialkylglycerophosphates [GP1004]
Category: Glycerolipids [GL] expected M+H, M+NH4
MG Main class: Monoradylglycerols [GLO1] possible M+Na not expected
N/A
DG Category: Glycerolipids [GL] expected M NH4 not expected
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Main class: Diradylglycerols [GL02] possible M+Na
M+H
Category: Glycerolipids [GL] expected M+NH4
16 Main class: Triradylglycerols [GLO3] possible M+Na not expected
M+H
) . . M-H, M+HCOO //
Category: Sphingolipids [SP] expected M+H M+CH3COO0
CER Main class: Ceramides [SP02] possible M+Na (only if M+H is M+Cl
found)
Category: Sphingolipids [SP] expected M+H M+HCOO //
gOMY: SPINgOTIP s M+CH3C00
SM Main class: Phosphosphingolipids [SP03] possible M+Na, M+K M+Cl
N/A M-H
Category: Sterol Lipids [ST] expected M+NH4
M+H, M+H-H20, M+Na
i : 1 i ! /
CE Main class: Sterols [STO1] possible (only if M+H is found) not expected
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Acronyms NL neutral loss
OGIT oral glucose test tolerance

CE collision energy OV-PC (1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-
CID collision induced dissociation phosphocholine)
CMM CEU Mass Mediator oxPAPC  oxidized PAPC
Cyc-0xPC cyclized-oxidized glycerophosphocholine oxPC oxidized glycerophosphocholine
DDA data dependent analysis oxPL oxidized glycerophospholipid
DIA data independent analysis PA glycerophosphate

GemB-PC (1-palmitoyl-2-(4,4-dihydroxypentanoyl)-sn-
glycero-3-phosphocholine)

G-PC (1-palmitoyl-2-glutaryl-sn-glycero-3-
phosphocholine)

HbA1c glycated hemoglobin

HILIC hydrophilic interaction liquid chromatography

HOdiA-PC 1-palmitoyl-2-(7-carboxy-5-hydroxyhept-6-enoyl)-
sn-glycero-3-phosphocholine

HOOA-PC 1-palmitoyl-2-(5-hydroxy-8-oxooct-6-enoyl)-sn-
glycero-3-phosphocholine

IT ion trap

KOdiA-PC 1-palmitoyl-2-(7-carboxy-5-oxohept-6-enoyl)-sn-
glycero-3-phosphocholine

KOOA-PC 1-palmitoyl-2-(5,8-dioxooct-6-enoyl)-sn-glycero-3-
phosphocholine

LCh-0xPC long chain-oxidized glycerophosphocholine

LC-MS liquid chromatography-mass spectrometry

MS/MS  tandem mass spectrometry

PAPC 1-palmitoyl-2-arachidonoyl-sn-glycero-3-
phosphocholine

PC glycerophosphocholine

PE glycerophosphoethanolamine

PG glycerophosphoglycerol

PGPC 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine

PI glycerophosphoinositol

PL glycerophospholipid

POVPC 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-
phosphocholine

PS glycerophosphoserine

PUFA polyunsaturated fatty acid

Q quadrupole

QQQ triple quadrupole

RP reverse phase chromatography

RT retention time

SCh-oxPC short chain-oxidized glycerophosphocholine
T2DM Type 2 Diabetes Mellitus

1. Introduction

The status of an organism is governed by the activity of the cells
building it, which balance biochemical reactions to maintain ho-
meostasis. One of the crucial balances is ‘redox homeostasis’, which
consists of the in vivo regulation of oxidative and reductive meta-
bolism. Oxidation is one of the most commonly occurring reactions
in a living system.

Among many endogenous oxidation processes, lipid peroxida-
tion plays a vital role. Due to their widespread presence in all hu-
man cells, lipids are highly affected by oxidative stress. Oxidized
lipids are involved in many important processes such as energy
production through B-oxidation [1,2], signaling through eicosa-
noids [3,4] or uncontrolled oxidative degradation provoked by free
radicals [5,6]. Therefore, not only intact lipids, but also their
oxidized forms represent some of the most important features of
mammalian biochemistry.

Currently, attention is being paid to the oxidation of glycer-
ophospholipid (PLs) as intermediate products of oxidation. The
work presented herein focuses on oxidized phosphocholines
(oxPCs), therefore all subsequent statements and observations
concern only to this particular class of oxidized phospholipids
(oxPLs). Furthermore, among different types of oxPCs only two
classes are covered (Fig. 1). They include: i) mildly oxygenated PC
(class I oxPC), later called long chain-oxidized PC (LCh-oxPC), which
are the products of the oxygen addition to the PC's unsaturated
chain [7]. This includes oxidation via formation of hydroxyl -OH,
dihydroxyl -(OH);, peroxyl -OOH fatty acids as well as keto- and
epoxy fatty acids; ii) oxidatively truncated PC (class Il oxPC) later
called short chain oxidized PC (SCh-oxPC) which occur as a result of
fragmenting the oxidized chain of the PC after its previous

oxidation [8]. These compounds generally present a semialdehyde
(t»-CHO-SCh-0xPAPC) or dicarboxylic (w-COOH-SCh-0xPAPC) chain
in place of the unsaturated chain. Class IIl of cyclized oxPCs (cyc-
oxPCs) and IV of oxidatively N-modified PCs [9] are not included in
this publication.

Different classes of oxPC have different biological implications
and therefore a proper identification and understanding of oxida-
tion is crucial [9—13]. Considering the fact that the role of oxPC in
health and disease is still not fully discovered, their analysis via
non-targeted metabolomics seems to be fully justified.

OxPLs, especially oxPCs, have already been described in detail.
However, the majority of the publications either refers to their
biological properties and implication in health and disease states
[7,11,13,14] or describes the mechanism of their formation [8,11].
Other publications have been devoted to the measurement of 0xPC
by means of LC-ESI-MS although only a few of them focused on the
identification [15-17]. Current knowledge has been limited to low
accuracy mass analyzers such as single quadrupole (Q), triple
quadrupole (QQQ) or ion trap (IT).

This knowledge was significantly extended in 2015 with the
work of Sala and colleagues [ 18], who analyzed oxPC using HILIC
chromatography connected with a linear ion trap-Orbitrap mass
spectrometer. They provided a large amount of information on MS
level (accurate mass) and tandem mass spectrometry (MS/MS)
level however the last was only as nominal mass. Very recently,
significant advancements came from the work by Ni and colleagues
[19], who proposed a software called LPPtiger for prediction and
identification of oxPLs. It covers glycerophosphocholine (PC),
glycerophosphoethanolamine (PE), glycerophosphoserine (PS),
glycerophosphoglycerol (PG), and glycerophosphates (PA) and their
lyso-forms, oxygen addition products (LCh-ox) and oxidative
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Fig. 1. Four classes of oxidation products of PCs based on PAPC as an example. Colored boxes mark classes considered in publication. Cyc-0xPAPC means cylised oxPC.

cleavage products (SCh-ox). The identification is performed based
on the information from the negative ionization mode through five
partial scores, based on data dependent analysis (DDA) fragmen-
tation spectra.

Although oxidation has been described quite broadly, still the
number of oxPLs in metabolomics databases is limited. Further-
more, the number of oxPLs found in databases exclusively devoted
to lipids, such as LipidBlast [20] (none), LipidMaps [21] (26 lipids),
LipidBank [22] (none) or LipidHome [23] (none) is minor (state for
May 25th 2018). This point is crucial for global analysis, such as non-
targeted metabolomics, where metabolites are measured
anonymously.

Identification starts with the annotation of signals querying
databases through the experimental masses; thus the power of
identification is among other parameters a function of mass accu-
racy [24]. The confirmation of the annotations can be achieved by
the analysis of authentic standards. Nevertheless, due to their often
limited availability and/or high price, this strategy may be chal-
lenging [25]. As an alternative, MS/MS can be used. MS/MS spectra
of PLs are relatively easy to interpret since they follow known
fragmentation patterns that have already been described in detail.
A range of independent studies has been performed using different
mass analyzers that help in defining a list of product ions and
neutral losses (NLes) undoubtedly confirming the presence of a
particular PL [26—28].

In general, each spectrum can be divided into three character-
istic regions [26] including: i) low mass region with product ions of
head group; ii) mid-mass region with fatty acids and fatty acids-
related signals and iii) high-mass region of NLes indicating the
ionization (adduct formation) (see Fig. 1S panels A and B, supple-
mentary material). However, in the case of many spectra, product
ions corresponding to the fatty acids are not explicable. Further-
more, some NLes cannot be explained by the presence of adducts
such as sodium or potassium (Fig. 1S panels C and D, supplemen-
tary material) [26].

To explain these unknown signals, a profound study of many
spectra from biological samples, including samples of patients with
newly diagnosed type 2 diabetes mellitus (T2DM), was performed.
Diabetes was chosen since it is well established that high hyper-
glycemia causes strong oxidative stress leading to the formation
(among other oxidation products) of 0xPCs [29,30]. The aim of this
work is to perform global characterization of oxPCs for LC-MS
analysis and their recognition in MS/MS spectra. This is particu-
larly important for data independent analysis (DIA), since most of
the existing solutions correspond to the DDA [19].

2. Materials and methods
2.1. Chemical and reagents

Ultrapure water, used to prepare all the aqueous solutions, was
obtained “in-house” from a Milli-Direct16 system (Millipore, Bill-
erica, MA, USA). LC-MS grade acetonitrile was purchased from
Honeywell (Sigma-Aldrich Chemie GmbH, Steinheim, Germany)
and Fisher (Fisher Scientific, Loughborough, UK). Analytical grade
formic acid was purchased from Fluka Analytical (Sigma-Aldrich
Chemie GmbH, Steinheim, Germany) and the analytical standard
was a mixture of oxidized PAPCs (0xPAPCs) purchased from Avanti
(Avanti Polar Lipids, Inc. AL, USA).

2.2. Analytical set-up

Analyses were performed using a 6550 iFunnel ESI-Q-TOF
(Agilent Technologies, Germany) coupled to a 1290 Infinity
UHPLC systems (Agilent Technologies, Germany), employed with a
degasser, binary pump and thermostated autosampler. During all
analyses two reference compounds were used: m/z 121.0509
(protonated purine) and m/z 922.0098 (protonated hexakis (1H,1H,
3H-tetrafluoropropoxy)phosphazine (HP-921)) for positive ioniza-
tion mode and my/z 112.9856 (proton abstracted trifluoroacetic acid
anion) and m/z 966.0007 (formate adduct of HP-921) for negative
ionization mode. These masses were continuously infused to the
system to allow internal constant mass correction during data
acquisition.

2.3. Metabolic fingerprinting with LC-MS

2.3.1. Sampling and sample preparation

The study was performed on a standard mixture of oxPAPCs and
a pool of plasma obtained from patients with newly diagnosed
T2DM. Participants of this study were selected from the cohort
1000PLUS (Polish Longitudinal University Study) run by the
Department of Endocrinology, Diabetology and Internal Medicine,
Medical University of Bialystok in Poland. Written informed con-
sent from all participants involved in the study was obtained. TZ2DM
was defined based on oral glucose test tolerance (OGIT) and/or
glycated hemoglobin, according to the American Diabetes Associ-
ation's criteria. Diabetes was recognized when fasting plasma
glucose was >126 mg/dL, or 2-h plasma glucose in the OGIT
=200 mg/dL, or glycated hemoglobin (HbA1c) > 6.5%. The study
was approved by the Local Ethics Committee at the Medical
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University of Bialystok (R-1-002/290/2008/2009 and R-1-002/35/
2009). Detailed information about participants is provided in the
supplementary material (Table 1S, supplementary material).

The standard of oxPAPCs was prepared by dissolving 500 pg in
1 mL of methanol. Blood samples were taken in a fasting state,
EDTA anti-coagulated blood was centrifuged at 1000 x g for
10 min at 4°C. A plasma pool was prepared by mixing small, equal
volumes of all samples and was stored in aliquots at —80 “C until
the day of analysis. Plasma samples were prepared using a cold
methanol:ethanol (1:1, v/v) extraction method, which has been
successfully employed for plasma metabolic fingerprinting [31].

2.3.2. Samples analysis

Extracted plasma samples (0.5 uL) were injected onto a Zorbax
Extended-C18 Rapid Resolution (2.1 x 50 mm, 1.8 pm) column
(Agilent Technologies) thermostated at 60°C. Metabolites were
eluted using a 0.6 mLmin ! flow rate with solvent A: water with
0.1% formic acid, and solvent B: acetonitrile with 0.1% formic acid.
The gradient started from 5% B for the first min, to 80% B by 7.0 min,
then to 100% by 11.5 min, and returned to starting conditions in
0.5 min, allowing re-equilibration until 15.0 min.

Data were collected in ESI positive (+) and negative (—) ioni-
zation modes in separate runs on a Q-TOF operated in the range
from m/z 100 to 1000 for MS analysis, and m/z 40 to 1000 for MS/MS
analysis. The scan rate of 1.5 scans per second was used in positive
mode and 1.0 in negative mode, for both MS and MS/MS data
acquisition.

The nozzle voltage was set to 1000V and the capillary voltage
was set to 3000 V and —4000 V for positive and negative ionization
modes respectively. The drying gas was heated up to 250°C and
flowed at a rate of 12 Lmin~". To enhance ionization of non-polar
molecules, additional heating was applied using sheath gas, heat-
ed up to 370 °C with a flow of 11 Lmin~.

For the MS/MS analysis, experiments were re-run under iden-
tical chromatographic conditions to the primary analysis. The ions
were targeted for collision induced dissociation (CID) fragmenta-
tion, based on the previously determined accurate mass and
retention time in MS, using a narrow isolation width (approx.
1.3 Da).

To ensure comparable fragmentation patterns, a fixed collision
energy (CE) was used, applying 20 and 40 eV to all targeted ions for
low and high collision energies respectively. The collision cell gas
flow was set to 18 psig.

Summarizing, each sample was analyzed 6 times: once in pos-
itive and negative ionization mode, and twice on MS/MS level for
two collision energies in positive and negative ionization mode.

2.3.3. Data treatment and identification

The identification of lipids was achieved by manual MS/MS
spectral interpretation and product ion structural elucidation using
MetFrag (https://msbi.ipb-halle.de/MetFragBeta [32]). The eluci-
dation was performed using. sdf files for each oxPC generated by
conversion of. mol files (obtained using ChemSketch (ACD Labs/
ChemSketch, 2015.2.5)) through Online SMILES Translator and
Structure File Generator (https://cactus.nci.nih.gov/translate/). All
the structures presented here were drawn using ChemSketch,

The spectra were processed using the target MS/MS search op-
tion in Mass Hunter Qualitative software (Agilent, B.07.00) and
exported to. csv files. The algorithm applied creates a list of all
targeted precursor ion my/z values into a data file and subsequently
extracts the respective chromatogram of the MS/MS product ion
data. The background (matrix related) ions were subtracted by
averaging spectra at the start and end of the peak.

3. Results and discussion

The origin of this work was structural elucidation of MS/MS
spectra of PCs from human plasma samples. Though spectra were
correctly assigned representing PCs as a class, identification of the
exact lipids with particular compositions of fatty acids remained
ambiguous due to additional unexplained product ions. This leads
to the hypothesis that some of the observed PCs may have under-
gone modifications affecting their structure and leading to the
formation of additional ions. Since peroxidation represents one of
the most common modifications, an investigation was launched
into the oxidization of PCs. Analyses include plasma from T2DM
individual, authentic standards analyzed both independently and
spiked into a plasma extract to observe the matrix effect and to
avoid misidentifications.

Within this publication, experimental data were obtained for
PC(16:0/20:4), known as PAPC, and its oxidation products. All
measurements and analyses were performed applying a general
method for global plasma analysis on a standard containing a mix
of PAPC oxidation products [33]. PAPC and its oxidation products
were selected to represent PC, which is one of the most abundant
phospholipid classes in the human body and arachidonic acid
which is biologically important for cellular signaling. However,
established rules and observations can be extrapolated for any
other fatty acid composition making up a PC.

3.1. General considerations for recognition of oxidation of PC

Retention time (RT) of PCs in reverse phase (RP) chromatog-
raphy is quite predictable either comparing PCs to other PLs (based
on the polarity of head group) or among PCs (based on the length of
fatty acid chains and unsaturation level), at least in case of relative
elution order [34]. Therefore, any abnormalities in the RT behavior
can be used to “track” modifications of PCs. The majority of the
developed methodologies have employed RP rather than HILIC
chromatography. Although there are some interesting publications
about HILIC oxPC identification [18], the main argument against
HILIC chromatography is the readily ionization of PC with sodium,
which is often more abundant than the protonated form [16]
adding additional complications to the identification in comparison
to RP.

In RP, ionization and adduct formation often provide important
insight about the class of PL a candidate belongs to [35]. For
example, glycerophosphatidylinositols are not ionized in positive
mode, unless formed as sodium or potassium adducts [34]. On the
other hand, native (non-oxidized) PCs never undergo deprotona-
tion in negative ionization mode, therefore they must form another
type of adduct to be charged, for example formate, acetate or
chloride [27].

PCs form specific product ions in MS/MS due to their specific
structure. These ions have been described at length; therefore, the
presence of any unusual signal should not be ignored since it may
indicate crucial changes or modifications of native PC. Common
signals to oxPC are discussed herein; for information about the
identification of canonical PC signals, refer to publications of God-
zien et al. [26], Pi et al. [27] and Colsch et al. [28]. Below some
characteristics are discussed in more detail. They cover mutable
features such as RT and CE, as well as characteristics resulting from
inherent properties of oxPCs such as shift in m/z of fatty acids,
adducts, NLes and fragments formation.

3.1.1. Retention time

Although RT is a characteristic highly related to the applied
conditions, there are some general considerations worth
mentioning. All types of oxidation affect RT: in RP they elute earlier
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Fig. 2. Extracted ion chromatograms (EIC) for oxPAPC in positive ionization mode for ions [M-H]*. Panel A: PAPC and two LCh-oxPAPC. Panel B: PAPC and SCh-oxPAPC. Panel C:
zoomed chromatograms from panel B. PAPC: 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine; HOdiA-PC: 1-palmitoyl-2-(7-carboxy-5-hydroxyhept-6-enoyl)-sn-glycero-
3-phosphocholine; KOdiA-PC: 1-palmitoyl-2-{ 7-carboxy-5-oxohept-6-enoyl)-sn-glycero-3-phosphocholine; PGPC: 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine; POVPC: 1-
palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine; HOOA-PC: 1-palmitoyl-2-(5-hydroxy-8-oxooct-6-enoyl)-sn-glycero-3-phosphocholine; KOOA-PC: 1-palmitoyl-2-(5,8-

dioxooct-6-enoyl)-sn-glycero-3-phosphocholine.

due to the increased hydrophilicity with the introduction of the
oxygen to the fatty acid. The extent of this change differs for each
class of oxPC. Compared to PAPC, the LCh-oxPAPC shows a slight
shift of RT, in this case oscillating around 1.5—2 min (Fig. 2, panel A),
which is higher in the SCh-oxPC increasing to approximately
4-5 min (Fig. 2, panel B). More particularly, the SCh-oxPAPCs show
an uncommonly low RT for PC considering the size and lip-
ophilicity. These absolute changes can also be expressed as relative
values through comparison to RT of PAPC. In this way, observed
change is 10—20% for LCh-oxPAPC and 50—60% for SCh-oxPC.

3.1.2. Adduct formation

Some of the SCh-oxPCs gain a terminal carboxylic group on the
truncated chain (»-COOH-SCh-oxPC) which allows their deproto-
nation, leading to the identification of v-COOH-SCh-oxPC (Fig. 2S,
supplementary material). Furthermore, «w-COOH-SCh-oxPC lacks
the formation of the formate adduct [M + HCOO]|™ what provides
additional evidence to support its identification. Chloride adducts

are possible with this compound, though the signal is much lower
than in the non-oxidized form of the same lipid.

3.1.3. Collision energy

Although behavior of PCs in the collision cell is quite conser-
vative and vendor related differences in acquisition do not signifi-
cantly affect obtained MS/MS spectra, still some differences can be
observed, and therefore this feature is considered as a mutable one.
PCs give good quality spectra across several CEs applied (usually 10,
20 and 40 eV). It is important to highlight that even with high en-
ergies (30—40eV), MS/MS spectra are still informative and the
molecule is not over-fragmented. However, as illustrated in Fig. 3
(panels A and B), for LCh-oxPCs informative NLes are completely
missed as CE increases. The absence of these signals completely
precludes the diagnosis of oxidation. A similar situation can be
observed for spectra of SCh-oxPC, where enhanced fragmentation
energy increases the degree of fragmentation, though data quality
is acceptable (Fig. 3, panels C and D). Panels E and F correspond to
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Fig. 3. Examples of MS/MS spectra acquired with different collision energies and their impact on degree of fragmentation. Panels A and B: Spectra for PC(16:0{20:4(00H)) in 20eV
and 40eV respectively (positive ionization mode); Panels C and D: PC(16:0/8:1(CHO)) in 20eV and 40eV respectively (negative ionization mode); Panels E and F: PC(16:0/epox-

yAzIsoP) in 20eV and 40eV respectively (negative ionization mode).

the cyc-oxPC, which although are not discussed in this publication,
were intentionally brought up at this point. It is to illustrate their
very different behavior at enhanced CEs causing over-
fragmentation of the molecule and producing very noisy spectra.
Such spectra are not suitable for the annotation process due to the
low quality and lack of trustful structural information. However,
this drastic change in the fragmentation degree between different
CEs can be considered as an evidence about PC oxidation.

3.1.4. Shift in m/z of fatty acid
The exact composition of fatty acids can be easily established
based on the MS/MS spectrum acquired in the negative ionization
mode. The mid-mass region contains signals corresponding to the
deprotonated fatty acid or demethylated lyso-form containing a
particular fatty acid as well. However, sometimes one of the fatty
acids is either unidentified or missing in the mid-mass region and
each of these cases corresponds to a different type of oxidation:
LCh-oxPC and SCh-oxPC, respectively. Fig. 4 illustrates the impact of
oxidation on fatty acid for LCh-oxPC (panel A) and SCh-oxPC (panel
B).
LCh-oxPCs are modified by the addition of the oxidation agent to
the fatty acid, causing an increase in mass (e.g. 279.2330 Da for
native fatty acid 18:2 is increased to 295.2274 Da for 18:2-OH).
Consequently, oxidized fatty acids tend to remain unidentified
while searching them across databases, though they may be iden-
tified manually by calculating the mass difference. To automatize
this step a new functionality has been developed in CMM, as

described in section 3.2. SCh-oxPC is associated with a chain
shortening with oxidation, significantly reducing the mass of the
fatty acid compared with the expected one (e.g. 303.2330Da for
native fatty acid 20:4 is reduced to 115.0400 Da for 5:0(CHO)). As a
consequence, m/z of fatty acid is in a low-mass region and often is
confused with head-related product ions or artefacts.

3.1.5. Neutral loss of water

Another important characteristic that can be used to identify
oxPCs is the NL of water. NL of water is very important in the
annotation of oxPCs therefore is discussed apart from other NLes.
Although water loss is the most common one in MS/MS spectra, PCs
normally do not lose water. However, after oxidation, one of the
fatty acyl chains may present a hydroxyl group as a substituent of
the carbon chain. The loss of water appears differently depending
on the ESI modality used. As shown in panel A of Fig. 3S (supple-
mentary material), the loss (18.0105 Da) is clearly visible in the high
mass region of spectrum for positive ionization mode. In negative
ionization mode water loss is more relevant in the mid-mass region
of fatty acids (Fig. 3S panel B and C, supplementary material).

3.1.6. Product ions and other neutral losses

NLes and product ions for the confirmation of a particular
oxidation are summarized in Table 1. The table defines the differ-
ence in the mass due to the oxidation as well as expected NLes and
product ions. As can be seen for LCh-0xPC and SCh-oxPC, diagnostic
NLes are observed in different polarities. To help with an
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Fig. 4. Impact of oxidation on the fatty acid signal in MS/MS spectra obtained negative ionization mode. Panel A: LCh-0XPC: Example of an MS/MS spectrum of PC(16:0/18:2(0OH})
(spectrum from plasma sample) and change in the oxidized fatty acid (marked with green) in comparison to the expected non-oxidized one (marked with red). Panel B: SCh-0xPC:
Example of an MS/MS spectrum of PC(16:0/5:0{CHO)) (spectrum from standard) and change in the oxidized fatty acid (green) in comparison to the expected non-oxidized one (red).
The second non-oxidized fatty acid is shown in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 1
List of diagnostic NLes and product ions for recognition of oxidation type.
oxidation Am*® NL fragment
type
LCh-oxPC
-OH +15.9949 POS: [M+H]*- H,0 —18.0108 Da NEG: [R-H] - H,0 and [R-H] - H,0 - CO, -18.0108 Da
and -62.0216 Da
-OH —OH +31.9898 POS: [M+H]'- H>0 and [M+H]| - 2H,0 —18.0108 Da and —36.0216 Da NEG: [R-H| - H;0 and [R-H] - 2H,0 —18.0108 Da
and -36.0216 Da
-O0H +31.9898 POS: [M+H]™- H,0 and [M+H]"- OOH -18.0108 Da and —34.0049 Da NEG: [R-H] - H,0 —18.0108 Da
Sch-oxPC
-CHO +13.9793 NEG: [M + HCOO] - HCOO ™ [M + HCOO| - HCOOCH3; [M + HCOO|™-N(CH3); - -
HCOO -46.0049 Da, —60.0222 Da and —105.0779 Da
-COOH +29.9742 NEG: [M — H] - N(CH3)3—59.0734 Da -

*Am — difference in the mass between non-oxidized and oxidized form. POS: positive ionization mode; NEG: negative ionization mode.

assignment of the composition of the fatty acid and type of
oxidation, a special functionality was implemented in CMM (sec-

tion 3.2).

3.1.6.1. Product ions of LCh-oxPC. In case of LCh-oxPC, all diagnostic
signals are related to the presence of a particular oxidizing “agent”

incorporated into the fatty acid chain. LCh-oxPCs produce more
characteristic fragments in positive than in negative ionization
mode to distinguish the type of oxidation developed. A typical MS/
MS spectrum of LCh-oxPC contains “canonical” product ions related
to the head group but also important NL which clearly determine
the type of oxidation. Since these NLes are detectable using only
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lower collision energies, a multiple CEs MS/MS spectra acquisition
is recommended. The presence of a hydroxyl group is recognized by
water loss (18.0108 Da), while hydroperoxyl is recognized by an
additional loss of hydrogen peroxide (34.0055 Da) (Table 1). PAPC-
OOH and PAPC-OH-OH are isomers, meaning that they have the
same monoisotopic mass and very similar structure. For this reason,
special chromatographic conditions are necessary to fully separate
these two compounds, though they can be easily distinguished
through MS/MS spectra. PAPC-OOH presents a loss of water and
hydrogen peroxide, while PAPC-OH-OH exhibits a double loss of
water (18.0108 and 36.0216 Da) (Table 1). Therefore, in positive
ionization mode, NLes allow a clear assignment of the type of
oxidation. In negative ionization mode this is not so clear and de-
pends on the overall quality of the spectrum and the precursor ion
abundance. PAPC-OH might show a water loss signal from the fatty
acid instead from the precursor ion. Therefore, a water loss should
be searched for in the mid-, not high-mass region. For high abun-
dant spectra three subsequent signals might be observed: a
deprotonated oxidized fatty acid [R-HJ", a signal corresponding to
water loss from a fatty acid [R-H-H;0] (18.0108 Da) and a subse-
quent loss of the entire carboxyl group as CO; from a dehydrated
fatty acid moiety [R-H-H,0-CO;]" (62.0006 Da) (Table 1). For PAPC-
OOH and PAPC-OH-OH, a deprotonated oxidized fatty acid [R-H]
and a signal water loss from it [R-H-H,O] (18.0108 Da) are
observed (Table 1). For PAPC-OH-OH another signal corresponding
to a second loss of water is observed [R-H-2H20] (36.0216 Da)
(Table 1). Most importantly, the expected loss of hydroperoxide is
not found.

3.1.6.2. Product ions of SCh-oxPC. Recognition of SCh-oxPC is based
on the loss of trimethylamine observed in negative ionization mode
(Table 1). This loss (59.0734 Da) has already been reported as an
indication of PCs ionization with sodium or potassium in positive
mode, but not in negative mode [26]. In this way, the same NL can
be used in different polarities to diagnose either differences in the
ionization (positive mode) or SCh-oxPC (negative mode) without a
risk of false positive identification. SCh-oxPCs produce many frag-
mentation products in the mid- and low-mass region, which are
related to the fragmentation of already truncated fatty acid chain.
Discussed parameters and characteristics are briefly summarized in
Table 2, while detailed list of product ions of 0xPAPCs are listed in
Table 2S (supplementary material).

The range of products originating from arachidonyl-oxidized-
chain cleavage is wide. The fragmentation of the hydroperoxyl-
PAPC via Hock rearrangement causes a shortening in the
arachidonyl-chain and generates a plethora of different products
[12]. Generally, these chains are dicarboxylic acids (w-COOH-SCh-
oxPAPC) or semialdehydes (w-CHO-SCh-oxPAPC), which are un-
saturated and contain hydroxyl groups that depend on the PUFA
chain's cleavage site and the oxidation extent [7]. As discussed in
section 3.1.2, a distinction between w-CHO-SCh-oxPAPC and w-
COOH-SCh-0xPAPC (which is originated from the oxidation of the

first one), can be achieved considering the differences in adducts
formed.

The dicarboxylic acid esterified to the PC gains a methy! group
from the trimethylamine moiety when it is subjected to CID. This
causes the signal [R + CH3-H] of the methylated chain to appear in
the spectra of w-COOH-SCh-oxPAPC [36]. Although such signals
have also been observed for »-CHO-SCh-oxPAPC, the abundance
ratio between the [R-H]" and [R + CHs-H]" of the relative fatty acyl
chain signals were different (Fig. 4S, panels A and B, supplementary
material). The [R + CH3-H] signal in the t-COOH-SCh-oxPAPC
spectrum was approximately 10-fold higher in abundance
compared to the [R-H|" one, which most times was undis-
tinguishable from the noise. At the same time, in the case of w-
CHO-SCh-oxPAPC, the signal [R-H]” was the dominating one in this
region.

3.2. Semi-automated identification of oxidation of PC

CEU Mass Mediator (http://ceumass.eps.uspceu.es/mediator/) is
an online tool for annotation of metabolites in non-targeted MS-
based metabolomics [ 34]. Being a database mediator, (a tool which
integrates different databases), CMM searches the experimental
masses in KEGG (http://www.genome.jp/kegg/), HMDB (http://
www.hmdb.ca/), LipidMaps (http://www.lipidmaps.org/) and
MINE (http://minedatabase.mcs.anl.gov/#/home), adding up to
340,834 real compounds 672,042 simulated molecules. Until
recently, CMM had been used only for annotation at MS level,
supporting a knowledge-based approach for the filtration and the
scoring of the candidates proposed by the databases. In this work
CMM has been extended to incorporate a service for identification
of oxidized fatty acids and their precursor ion on MS/MS level.

3.2.1. Information about oxidation products of
glycerophosphocholines

Information about oxidation products of PCs was added
(Table 3S, supplementary material). It was done to expand the
limited number of oxPCs currently listed in databases. The data
incorporated contain accurate monoisotopic masses, chemical
formulae, as well as systematic and common names of the studied
compounds. This database is continuously updated with new
oxidation products found in biological experiments.

3.2.2. In-house library for fatty acid

An in-house library for fatty acid chains including short and long
chains was created: this list covers fatty acids from C3:0 till C36:6
with all intermediate degrees of chain length and unsaturation. It
includes the name, the monoisotopic mass and the formula of the
fatty acids. The name is given as CX:Y, where X indicates the
number of carbons in chain and Y specifies the number of double
bonds.

A new service for the recognition of oxidized fatty acids and
annotation of oxPCs was added within CMM. The knowledge used

Table 2
Summary of different diagnostic parameters for the recognition of oxidation of PC.
Diagnostic parameter LCh-oxPAPC SCh-oxPAPC
RT shift low shift great shift
fatty acyl chain shift little shift to the right (an increase in mass) great shift to the left (a decrease of mass)
NL of water always detectable in pos not always detectable in neg usually not detected®

adduct formation
in negative mode
collision energy

only [M + HCOO| or [M+Cl|"

no change in the fragmentation lack of NL for higher energies

only [M + HCOOJ or [M+Cl] for =-COOH-SCh-oxPAPC [M — H[" or [M-+CI|

no change in the fragmentation lack of NL for higher energies

*It has been detected for HOOA-PC, KOOA-PC, HOdiA-PC and KOdiA-PC.
pos: positive ionization mode; neg: negative ionization mode.



118 | Design, validation and implementation of a software tool for metabolites annotation and identification

366 A. Gil de la Fuente et al. / Analytica Chimica Acta 1037 (2018) 358—368

was firstly hypothesized based on the fragmentation patterns
observed in biological samples and then confirmed by means of
authentic standards. The annotation service assumes that an un-
identified (for LCh-oxPC) or missing (for SCh-oxPC) fatty acid from
the mid-mass region of a negative ionization mode fragmentation
spectrum is oxidized.

3.2.3. Semi-automated annotation of long chain oxidized
glycerophosphocholines (LCh-oxPC)

For the annotation of LCh-oxPC, the input data includes: m/z of
both fatty acids (oxidized and non-oxidized), m/z of the precursor
ion, the tolerance for the mass matching of both fatty acids and the
precursor ion, and the oxidation type, which can be selected be-
tween = 0, -OH, -OH-OH, -O0H (Fig. 5, panel A).

The algorithm for the annotation of long chain oxidized glyc-
erophosphocholines starts with the identification of the oxidized
fatty acid (Fig. 5S, panel A, supplementary material). To this end, it
subtracts the mass of the all possible oxidation types from both
fatty acids and subsequently queries the in-house fatty acids
dedicated library. A non-oxidized fatty acid will never obtain any
candidate, while the oxidized fatty acid may return candidates for
one or more oxidation types. Table 4S of supplementary material
contains an example of the list of oxidations for long and short
chain oxidations for particular fatty acid.

A) Fatty acid 1 -m/z- (*):

B319.2285
Fatty acid 2 -m/z-:
255.2330

Tolerance for
Fatty Acids(*):

Precursor -m/z for negative mode- (*):

842.5572

Tolerance for
precursor(*):

Once the oxidized and non-oxidized fatty acids are recognized
and annotated, the precursor ion is used to confirm the deduced
oxidation and the fatty acid's composition. It is searched for the
oxidized and the non-oxidized form of the deduced PCs and to
retrieve the signals arising from the diagnostic NLes that the
spectra should contain. The presumed adduct of the precursor ion
is formate, whose mass is subtracted from the m/z provided by the
user.

There are two types of annotation for the precursor ion: the first
refers to the oxidized form, which is searched against the list of
oxPCs. This search is restricted to the oxPCs matching the mass of
the precursor ion within the tolerance allowed and containing the
previously annotated non-oxidized fatty acid (e.g. C16:0) and
oxidized one (e.g. C20:4(OH)). The oxidized precursor ion candi-
dates are listed in the column corresponding to the oxPC (e.g
PC(16:0/20:4(0OH)). However, due to the limited number of oxPCs in
the databases, an alternative search is performed. The mass of the
non-oxidized precursor ion, calculated by subtracting the oxidation
type to the m/z of the oxidized precursor ion, is used to search the
non-oxidized form against the general list of PCs (e.g. PC(16:0/
20:4)). In this case the search is also restricted to PCs matching the
mass of the non-oxidized precursor ion and containing the previ-
ously annotated fatty acids. The list of candidates for non-oxidized
PC is shown in the column corresponding to non-oxidized

B) All fields are required
Non oxidized fatty acid m/z:

p55.2330

Tolerance for
Fatty Acids:

Precursor -m/z for negative mode-:

O L
PPmM mDa

638.3675

Tolerance for

precursor(*): o °

Possible oxidations (*):

Fig. 5. Input information with mandatory and optional fields for oxidized fatty acid identification and annotation of LCh-0xPC (panel A) andSCh-oxPC (panel B).
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precursor ions. Expected NLes are reported for positive and/or
negative ionization mode, depending on the evidence found for
each class of oxPCs. Although the annotation of oxidized fatty acids
is mainly based on the information obtained in negative ionization
mode, for some types of oxidation it is also necessary to use in-
formation acquired in positive ionization mode. Then, the MS/MS
spectra from positive and/or negative mode must be inspected to
confirm or reject the oxidation type proposed by the tool.
Furthermore, m/z of signals arising from particular NLes are
calculated for the confirmation of a particular oxidation. The result
of these searches, which includes the name, the molecular formula
and the ppm-error are displayed for each oxidation type in separate
pages (Fig. 5S, supplementary material).

3.24. Semi-automated annotation of short chain oxidized
glycerophosphocholines (SCh-oxPC)

For the annotation of SCh-oxPC, the input data includes: the m/z
of the non-oxidized fatty acid, m/z of the precursor ion, the toler-
ance for the mass matching of the non-oxidized fatty acid and the
precursor ion, and the oxidation type, which can be selected be-
tween -COH and —COOH (Fig. 5, panel B).

The mass of the precursor ion is subtracted by the mass of
adduct (either -H or -HCOQ), the PC head group and then by the
non-oxidized fatty acid (Fig. 5S, panel B, supplementary material).
The result of this subtraction corresponds to the mass of the
oxidized fatty acid. The mass of the oxidized fatty acid is subse-
quently subtracted by the mass of the possible oxidation. Then the
masses of non-oxidized and the oxidized fatty acid are searched
against the in-house library of fatty acids to annotate them. Thus,
the annotations of both fatty acids are reported, which includes the
name, the molecular formula and the ppm-error, displayed for each
oxidation type in separate tabs (Fig. 6S, supplementary material). In
this case, the annotations for the non-oxidized precursor ion are
not searched for, since it is impossible to deduce the initial length of
the truncated chain. For this reason, the identification of the
molecule is deduced based on the oxidation type and the annota-
tion of both fatty acids, e.g. PC(16:0/4:0(COOH)). Likewise to LCh-
oxPC functionality, in SCh-oxPC annotation, NLes and product
ions needed for confirmation or rejection of annotations are also
provided.

3.3. Validation

To test this functionality a set of previously identified LCh-oxPCs
and SCh-oxPCs was used. These oxPCs were found in the standard
of mixture of oxPAPC. To test the false positive annotations also
non-oxidized PCs were included (Table 5S, supplementary mate-
rial). The m/z of the potential fatty acid(s) and the precursor ion
were searched with 10 ppm error and without any further re-
strictions regarding the database or type of oxidation. To choose
between the proposed annotations leading to the formation of
isobaric compounds, the expected NLes given as an output were
searched in MS/MS spectra. The results of this validation are
summarized in Table 5S (supplementary material). This table shows
that for each lipid two candidates were obtained for different
oxidation types, except native forms (non-oxidized) where a single
candidate was retrieved. However, when the information about
NLes provided by CMM was confronted with the MS/MS spectra, a
single final annotation based on the presence or absence of the
NLes and the corresponding product ions was achieved. For non-
oxidized PCs, a single candidate was obtained, however the pro-
posed candidate could not be confirmed by MS/MS with the indi-
cated NL (Table 5S, supplementary material).

4. Conclusions

A general non-targeted metabolomics method has been
employed to analyze a complex standard mix of oxidation products
of PAPC. CID has been employed to study the fragmentation pattern
of the analytes. General diagnostic characteristics from MS and MS/
MS levels have been defined. Specific signals (both product ions and
NLes) for the presence of oxidation in the PC structure were
determined. These signals do not necessary lead to the identifica-
tion of a particular oxidized PAPC. However, a fast and reliable
determination of the presence of oxidation in the PC reduces the
amount of time spent for the overall identification process.

A deeper characterization of each product of the PAPC oxidation
has been conducted. Spectra were acquired both in positive and
negative ionization mode. In this study, the importance of acquiring
spectra in both ESI modes has been marked. Although the negative
ionization mode was confirmed to be the most informative
regarding the nature of the fatty acids esterified to the PC, the
positive ionization mode has enabled an easier identification of the
type of oxidation in LCh-oxPAPC.

Finally, data for MS/MS spectra acquired in this study have been
used to build an in-house database specific for oxidized lipids,
which is accessible from the metabolite annotation tool CMM.
Additionally, a new tool has been implemented for the identifica-
tion of oxidized fatty acids and the assignment of candidates for the
precursor ion for LCh-oxPC and SCh-oxPC.

This work constitutes a great advance in the recognition of
oxidation in PCs and in non-targeted metabolomics in general. It
should be mentioned that the proposed strategy is not useful for
very detailed identification of oxidation products of PCs, requiring
the exact position of the oxidation agent, nor the nature of oxida-
tion (enzymatic or non-enzymatic). However, it represents a highly
valuable tool in the recognition of oxidation among PCs, which can
be used to drive new hypotheses and further plan the design of
biological experiments. The aim of this work was to provide the
reader with a range of different parameters which can be used to
recognize and identify oxidized PCs in non-targeted metabolomics.
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CHARACTERIZATION AND ANNOTATION OF OXIDIZED
GLYCEROPHOSPHOCHOLINES
FOR NON-TARGETED METABOLOMICS WITH LC-QTOF-MS DATA
SUPPLEMENTARY INFORMATION

N
N

16:0 LPC-CH,

~J

16:0 FAH

16:0 LPC-CH,
X

Figure 1S: an example of MS/MS spectra and their interpretation for PCs
and oxPCs. Panels A and C illustrate spectra in positive mode and panels
B and D illustrate spectra in negative ionization mode. Panels A and B
illustrate typical spectra for non-oxidized PC, while panels C and D show
spectra of oxPC. Each panel includes characteristic regions of the
spectrum: low- (green), mid- (purple) and high-mass (orange). Grey color
indicates unexplained signals.
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Table 1S: information about participants

Gender Age BMI HbAlc Glucose Insulin HOMA-IR
female / Years kg/m? % mg/dL pU/mL value
male + SD + SD + SD + SD + SD = SD
14723 52.1 29.2 7.6 143.0 6.6 5.1
+11.3 +2.8 +2.2 +40.2 +7.9 +2.8

HOMA-IR: homeostasis model assessment-estimated insulin resistance index.

HbA1c: glycated hemoglobin
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Figure 2S: EIC for different adducts of two SCh-oxPC:
PC(16:0/5:0(COOH)) (panels A, B and C) and PC(16:0/5:0(CHO) (panels
D, E and F). Blue peaks are for [M-H] ions whereas red are for [M+HCOOQO]
and green for [M+CI] ions. The w-COOH group located at the end of the
chain in the sn-2 position of PC(16:0/5:0(COOQOH)) allows the ionization of
the compound as [M-H], while the semialdehydic chain located in position
sn-2 of PC(16:0/5:0(CHO) makes its ionization impossible without the
addition of a modifier to the mobile phase in negative ionization mode.
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Figure 3S: Product ion spectrum for PC(16:0/20:4(OH)) in positive mode

(panel A) and negative mode (panels B and C). Panel C shows a zoom of

the fatty acid region for panel B.



125 | Chapter 3: Characterization and annotation of oxidized glycerophosphocholines for non-targeted
metabolomics with LC-QTOF-MS data

Table 2S: Characteristic signals for SCh-oxPAPC in negative ionization

mode. Low abundant signals are reported in parenthesis.

OB-PC PC(16:0/4:0(CHO)) ‘é%%%ii; 624.3518: 578.3463: 564.3307: 101.0244
OV-PC PC(16:0/5:0(CHO)) ‘é%%gii; 638.3675; 592.3620: 578,3463: 115.0420
Hex-PC PC(16:0/6:0(CHO)) ‘é%%%ii; 652.3831; 606.3776: 592.3620: 129.0557
Hept-PC PC(16:0/7:0(CHO)) ‘é%%gii; 666.3988; 620.3933: 606.3776: 143.0714
ON-PC PC(16:0/9:0(CHO)) ‘é%%gi‘? 694.4301: 648.4246: 634.4089; 171.1027
OD-PC PC(16:0/10:0(CHO)) ‘é%%gsli; 708.4457: 662.4402; 648.4246: 185.1183
OU-PC PC(16:0/11:0(CHO)) ‘é%%gi‘? 722.4614; 676.4559; 662.4402: 199.1340
46.0055:
60.0211: _ _ _ _
HOOAPG | PCGO/BA(CHO-OH)) | o oacs | 694.3927; 676.3831; 648.3882; 634.3726;
9898, | 1850819: 171.0663: 153.0557: 109.0659;
18.0105.
14.0157:
46.0055:
COOAPC | PCE:0/8:1(CHO-0) | 600211 | 692.3780; 646.3726; 632.3560; 183.0663;
43.9898: | 169.0506: 151.0401: 139.0401: 125.0608:
14.0157:
opC PC(16:0/4:0(COOH)) | 59.0735; | 594.3413; 535.2678; 131.0350; (117.0193);
32.0262 99.0088:
o.pC PC(16:0/5:0(CO0H)) | 59.0735; | 608.3569; 549.2834; 145.0506; (131.0350);
32.0262 113.0244;
- PC(16:0/6:0(CO0H)) | 59.0735; | 620.3569; 561.2834; 157.0506; 125.0244;
eearGlier e 32.0262 113.0608: 81.0346
Heptendia- | PC(16:0/7:0(COOH)) | 59.0735; | 634.3726;575.2991; 171.0663; 139.0401;
PC 32.0262 95.0502
HOdiAPC PC(16:0(/)8|_:|§)(COOH- Sy omar | 664.3831; 620.3933; 605.3096; 201.0769;
9898, | 187 0612); 169.0506; 125.0608; 99.0452
32.0262
59.0735; . . . .
codiapc | PCUBOBI(COOH-0) | oooro> | 662.3675; 602.2867; 199.0612; (185.0456);
o095 | 167.0350; (141.0557); 123.0452; 99.0088
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Figure 4S: Product ion spectrum of OV-PC PC(16:0/5:0(CHO)) (1-
palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine) (Panel A), G-PC
PC(16:0/5:0(COOH)) (1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine)
(Panel B) and GemB-PC PC(16:0/4:0-CHO-O) (1-palmitoyl-2-(4,4-
dihydroxypentanoyl)-sn-glycero-3-phosphocholine) (Panel C). Signals in
the medium-low mass region are used in order to distinguish SCh-oxPAPC
with different terminal groups. OV-PC presents one dominant signal in this
region, which is the [M-H] signal of the short chain. G-PC presents two main
signals instead.
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Table 3S: The list of oxPCs mentioned in this publication. The list includes the common

and the systematic name as well as the composition. It is followed by the accurate exact

monoisotopic mass and the formula.

composition

IUPAC name

molecular
weight

‘ formula

source

PC(16:0/20:4) 1-palmitoyl-2-arachidonoyl- PAPC 781.5621 | C44H81NOS8P | canonical
sn-glycero-3-phosphocholine
PC(16:0/4:0(CHQO)) 1-palmitoyl-4-oxobutanoyl-sn- OB-PC 579.3536 | C44H81NOS8P | canonical
glycero-3-phosphocholine
PC(16:0/4:0(COOH)) 1-palmitoyl-2-succinyl-sn- S-PC 595.3485 | C28H54NO9P | canonical
glycero-3-phosphocholine
PC(16:0/5:0(COOH)) 1-palmitoyl-2-glutaryl-sn- G-PC 609.3642 | C28H54NO10P | canonical
glycero-3-phosphocholine
PC(16:0/5:0(CHO)) 1-palmitoyl-2-(5-oxovaleroyl)- QOV-PC 593.3693 | C29H56NO9P | canonical
sn-glycero-3-phosphocholine
PC(16:0/6:0(CHQ)) 1-palmitoyl-2-(6- Hex-PC 607.3849 | C30H58NO9P | canonical
oxohexanoyl)-sn-glycero-3-
phosphocholine
PC(16:0/6:0(COOH)) 1-palmitoyl-2-(5- Hexendia- | 623.3798 | C30H58NO10P | canonical
carboxypentanoyl)-sn- PC
glycero-3-phosphocholine
PC(16:0/7:0(CHO)) 1-palmitoyl-2(7- Hept-PC 621.4006 | C31H60NO9P | canonical
oxoheptanoyl)-sn-glycero-3-
phosphocholine
PC(16:0/7:0(COOH)) 1-palmitoyl-2-(6- Heptendia- | 637.3955 | C31H60NO10P | canonical
carboxyhexenoyl)-sn-glycero- PC
3-phosphocholine
PC(16:0/9:0(COOH)) 1-palmitoyl-2-azelaoyl-sn- AZ-PC 665.4268 | C33H64NO10P | canonical
glycero-3-phosphocholine
PC(16:0/9:0(CHQ)) 1-palmitoyl-2-(9- ON-PC 649.4319 | C33H64NO9P | canonical
oxononanoyl)-sn-glycero-3-
phosphocholine
PC(16:0/10:0(CHO)) 1-palmitoyl-2-(10- OD-PC 663.4475 | C34H66NO9P | canonical
oxodecanoyl)-sn-glycero-3-
phosphocholine
PC(16:0/11:0(CHO)) 1-palmitoyl-2-(11- OU-PC 677.4632 | C35H68NO9P | canonical
oxoundecanoyl)-sn-glycero-3-
phosphocholine
PC(16:0/8:1(COOH- 1-palmitoyl-2-(5-keto-oct-6- KOdiA-PC | 663.3747 | C32H58NO11P | canonical
0)) ene-dioyl)-sn-glycero-3-
phosphatidylcholine
PC(16:0/8:1(CHO- 1-palmitoyl-2-(5-hydroxy-8- HOOA-PC | 649.3955 | C32H60NO10P | canonical
OH)) oxooct-6-enoyl)-sn-glycero-3-
phosphocholine
PC(16:0/8:1(COOH- 1-palmitoyl-2-(5-hydroxy-8- HOdIA-PC | 665.3903 | C32H60NO11P | canonical
OH)) 0xo0-oct-6-ene-dioyl)-sn-
glycero-3-phosphocholine
PC(16:0/8:1(CHO- 1-palmitoyl-2-(5,8-dioxo-oct-6- | KOOA-PC | 647.3798 | C32H58NO10P | canonical
0)) en-yl)-sn-glycero-3-
phosphocholine
PC(16:0/4:0(w(OH)2)) 1-palmitoyl-2-(4,4- GemB-PC | 597.3642 | C28H56NO10P | canonical
dihydroxybutanoyl)-sn-
glycero-3-phosphocholine
PC(16:0/5:0(w(OH)2)) 1-palmitoyl-2-(4,4- GemP-PC | 611.3798 | C29H58NO10P | canonical

dihydroxypentanoyl)-sn-
glycero-3-phosphocholine
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PC(16:0/18:2(0OH)) 1-hexadecanoyl-2- POPC-OH | 773.5571 | C42H80NO9P new
hydroxyoctadecadienoyl-sn-
glycero-3-phosphocholine

PC(18:0/20:4(0OH)) 1-octadecadienoyl-2- OAPC-OH | 825.5584 | C46H84NO9P new
hydroxyarachidonyl-sn-
glycero-3-phosphocholine

PC(18:0/18:2(0OH)) 1-octadecadienoyl-2- OOPC-OH | 801.5884 | C44H84NO9P new
hydroxyoctadecadienoyl-sn-
glycero-3-phosphocholine

PC(16:0/22:6(0OH)) 1-hexadecanoyl-2- PDPC-OH | 821.5571 | C46H80NO9P new
hydroxydocosahexaenoyl-sn-
glycero-3-
phosphocholineadecadienoyl-
sn-glycero-3-phosphocholine

PC(16:0/20:4(0OH)) 1-hexadecanoyl-2- PAPC-OH | 797.5571 | C44H80NO9P new
hydroxyarachidonyl-sn-
glycero-3-phosphocholine
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A)
LCh-oxPC
Step 1
m/z of FA1 - A mass due to the oxidation = m/z of non-oxidized FA
search against FA library = no hits
Step 2 conclusion: native FA
m/z of FA2 - A mass due to the oxidation = m/z of non-oxidized FA
search against FA library = hits
conclusion: oxidised FA
Step 3
search of m/z of precursor against databases
Step 4
tentative annotation
PC(16:0/ 20:4 (OH))
B)
Sch-oxPC
Step 1
my/z of precursor — m/z of native FA — m/z of head group = m/z of oxidised FA
search against FA library
Step 2
m/z of oxidised FA — A mass due to the oxidation = m/z of non-oxidized FA
search against FA library
Step 3
search of m/z of precursor against databases
Step 4
tentative annotation
PC(16:0/5:0 (CHO))

Figure 5S: The scheme of the operations leading to the annotation of
oXPCs: LChoxPCs (Panel A) and SChoxPCs (Panel B).



130 | Design, validation and implementation of a software tool for metabolites annotation and identification

Table 4S: An example of experimental m/z of 294.2195 fatty acid and its
possible non-oxidized masses after re-calculation of mass according to long

and short chain oxidations.

m/z of oxidised e m/z of non-oxidised . o
. oxidation . identification
fatty acid fatty acid

Long chain oxidised glycerophosphocholines
293.2093 =0 13.9793 279.2330 C18:2
293.2093 -OH 15.9949 277.2174 c18:3
293.2093 -OOH 31.9905 261.2188 -
Short chain oxidised glycerophosphocholines
293.2093 -CHO 13.9793 279.2300 -
293.2093 -COOH 29.9742 263.2351 -
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5572, adduct: M+HCOO and oxidation: O

Oxidized compound found for oxidized FA: 319.2285, Non-oxidized FA: 255.2330, parent ion: 842

m/z of precursor in Neg

Oxidized compound found for oxidized FA: 319 2285, Non-oxidized FA: 255 2330, parent ion: 842 5572, adduct: M+HCOO and oxidation: OH

Putative annotations for

2. PC(16:020: 4B 8Z 117, 147)

SOHIST)

Name ¢ Formula ¢ Molecular | error m/z of precursor in Pos m/z of precursor in Neg Putative annotations for Putative annotations for non-
Weight ¢ PPM & Mode (M+H adduct) - Mode (M+HCOO adduct) - oxidized precursor oxidized precursor
Neutral loss = Fragment Neutral loss = Fragment
should be observed should be observed
(Positive Mode) (Negative Mode)
SHOW NON-OXIDIZED
ANNOTATIONS FOR
PC(16:0/20:3[0]) C44H82NO8BP | 7975570 2 No evidences of fragments found No evidences of fragments found No hits in the databases for oxidized precursor PRECURSOR
1. M+HCOO
1. PC(18:0/20:3(85 ME 14EW

Name ¢ Formula ¢ Molecular | error m/z of precursor in Pos
Weight ¢ PPM & Mode (M+H adduct) - Mode (M+HCOO adduct) - oxidized precursor oxidized precursor
Neutral loss = Fragment Neutral loss = Fragment
should be observed should be observed
(Positive Mode) (Negative Mode)
SHOW NON-OXIDIZED
ANNOTATIONS FOR
PC(16:0/20:4[OH]) C44H80NOBP 797.5569 2 1. 798.5653 -18.0108 = 780.5555 No evidences of fragments found 1. M+HCOO PRECURSOR

1

PC(16:0/20:3(87 117 14Z))

3. PC(20:3(87 117, 147Y16:0)

4. PC(20.3(5Z,82.112/10.0)

5. PC(16:0/20:3(5Z 87 117))

Putative annotations for non-

M+HCOO

1. BC(18:0/20:4(82 1 Z 14Z 172)!

3 PC(16:0/20:4(5E B8 11E, 14E)

4. BC(20:4(5;

5. PC(16:0/20:6(5Z 87 117, 14Z))

No Oxidized compound found for oxidized FA: 319.2285, Non-oxidized FA: 255.2330, parent ion: 8425572, adduct: M+HCOO and oxidation: OH-OH

No Oxidized compound found for oxidized FA: 319.2285, Non-oxidized FA: 255.2330, parent ion: 842.5572, adduct: M+HCOO and oxidation: OOH

Figure 5S: Output of identification of oxidized fatty acids for four possible oxidations for LChoxPC functionality.
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Oxidized compound found for oxidized FA: 115.0396, Non-oxidized FA: 255.2330, parent ion: 638.3675, adduct: M+HCOO and oxidation: COH

Name ¢ Formula ¢ Molecular error m/z of precursor in Pos Mode m/z of precursor in Neg Mode Putative annotations for oxidized
Weight ¢ PPM ¢ (M+H adduct) - Neutral loss = (M+HCOO adduct) - Neutral loss = precursor
Fragment should be observed Fragment should be observed
(Positive Mode) (Negative Mode)
PC(16:0/5:0[COH]) C29H58NO8P 593.3692 0 No evidences of fragments found 1. 638.3675 -59.0371 = 579.3304 No hits in the databases for oxidized precursor

No Oxidized compound found for oxidized FA: 161.0451, Non-oxidized FA: 255.2330, parent ion: 638.3675, adduct: M-H and oxidation: COOH

Figure 6S: Output of identification of oxidized fatty acids for two possible oxidations with different ionisation possibilities for
SChoxPC functionality in CMM.
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Table 5S: Results of validation of CMM for identification of oxPC. Bolded

text indicates final correct result.

non-oxidised

oxidation fatty

m/z of the  m/z of
precursor the fatty . evidence oxidised precursor
. . type acid precursor
ion acid
PC(16:0/20:4(0OH)) 842.5572 | 319.2285 =0 C20:3 | no evidence no hit PC(16:0/20:3)
255.2831 "o [ c20:4 | NLof PC(16:0/20:4(OH)) | PC(16:0/20:4)
18:0108
producing
fragment
780.5554

-OH-OH no hit
-OOH no hit
PC(16:0/22:6(0OH)) 866.5564 | 343.2282 =0 C22:5 | no evidence no hit PC(16:0/22:5)

255.2333 "o | Cc22:6 |  NLof no hit PC(16:0/22:6)
18:0108
producing
fragment
804.5546

-OH-OH no hit
-OOH no hit
PC(16:0/18:2(0OH)) 818.5572 | 295.2280 =0 C18:1 | no evidence no hit PC(16:0/18:1)

255.2330 -OH C18:2 | NLof no hit PC(16:0/18:2)
18:0108
producing
fragment
756.5554

-OH-OH no hit
-OOH no hit

PC(16:0/18:2(0)) 816.5405 | 293.2140 =0 C18:2 no no hit PC(16:0/18:2)
255.2331 evidence
-OH C18:3 NL of no hit PC(16:0/18:3)
18:0108
producing
fragment
754.5387

-OH-OH no hit
-OOH no hit

PC(16:0/20:4(00H)) | 886.5825 | 335.2237 =0 no hit
255.2331 oH e

-OH-OH C20:4 NL of no hits PC(18:0/20:4)
18:0108
producing
fragment
824.5807
and NL of
36.0216
producing
fragment
806.5699
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-OOH

C20:4

NL of
18:0108
producing
fragment
824.5807
and NL of
34.0049
producing
fragment
808.5866

no hits

PC(18:0/20:4)

PC(16:0/18:2(0O0H))

834.5520

311.2242
255.2331

no hit

no hit

C18:2

NL of
18:0108
producing
fragment
772.5502
and NL of
36.0216
producing
fragment
754.5394

no hits

PC(16:0/18:2)

-OOH

C18:2

NL of
18:0108
producing
fragment
772.5502
and NL of
34.0049
producing
fragment
756.5561

no hits

PC(16:0/18:2)

PC(16:0/4:0(CHO)

624.3518

255.2332

-CHO

C4:0

NL of
59.3147
producing
fragment
565.3147

PC(16:0/4:0(CHO)

NA

-COOH
[M+HCOO]-

no
hits

-COOH
[M-HJ-

no
hits

PC(16:0/6:0(CHO)

652.3831

255.2331

-CHO

C6:0

NL of
59.3147
producing
fragment
593.3460

PC(16:0/6:0(CHO)

NA

-COOH
[M+HCOO]-

no
hits

-COOH
M-H]-

no
hits

PC(16:0/7:0(CHO)

666.3988

255.2331

-CHO

C7:0

NL of
59.3147
producing
fragment
607.3617

PC(16:0/7:0(CHO)

NA
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-COOH no
[M+HCOQ]- hits
-COOH no
[M-H]- hits
PC(16:0/4:0(COOH)) | 594.3412 | 255.2333 -CHO no
hits
-COOH no
[M+HCOQ]- hits
-COOH C4:0 NL of PC(16:0/4:0(COOH)) NA
[M-H]- 59.3147
producing
fragment
535.3041
PC(16:0/6:0(COOH)) | 668.3778 | 255.2332 -CHO no
hits
-COOH C6:0 NL of PC(16:0/6:0(COOH)) NA
[M+HCOO]- 59.3147
producing
fragment
609.3407
-COOH no
[M-H]- hits
PC(16:0/7:0(COOH)) | 636.3882 | 255.2332 -CHO no
hits
-COOH no
[M+HCOOQ]- hits
-COOH C7:0 NL of PC(16:0/7:0(COOH)) NA
[M-H]- 59.3147
producing
fragment
577.3511
PC(16:0/20:4) 826.5603 | 255.2333 =0 no
303.2335 .
hits
-OH no
hits
-OH-OH no
hits
-OOH no
hits
-CHO no
hits
-COOH no
[M+HCOQ]- hits
-COOH 21:3 NL of PC(16:0/21:3(COQOH)) NA
[M-H]- 59.3147

producing
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fragment

767.5232
PC(18:1/16:0) 804.5771 | 281.2492 =0 no
255.2333 ]
hits
-OH no
hits
-OH-OH no
hits
-OOH no
hits
-CHO no
hits
-COOH no
[M+HCOOQ]- hits

-COOH 19:0 NL of PC(16:0/19:0(COOH)) NA

[M-H]- 59.3147

producing

fragment

745.5400
PC(20:4/20:0) 882.6232 | 303.2340 =0 no
311.2958 .
hits
-OH no
hits
-OH-OH no
hits
-OOH no
hits
-CHO no
hits
-COOH no
[M+HCOOQ]- hits

-COOH 25:3 NL of PC(16:0/25:3(COOH)) NA

[M-H]- 59.3147

producing

fragment

823.5861
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ABSTRACT: CEU Mass Mediator (CMM, http://ceumass.eps.uspceu.es)
is an online tool that has evolved from a simple interface to query different
metabolomic databases (CMM 1.0) to a tool that unifies the compounds
from these databases and, using an expert system with knowledge about the
experimental setup and the compounds properties, filters and scores the
query results (CMM 2.0). Since this last major revision, CMM has continued
to grow, expanding the knowledge base of its expert system and including
new services to support researchers in the metabolite annotation and
identification process. The information from extemal databases has been
refreshed, and an in-house library with oxidized lipids not present in other
sources has been added. This has increased the number of experimental
metabolites up 332,665 and the number of predicted metabolites to 681,198.
Furthermore, new taxonomy and ontology metadata have been included.

MS/MS spectral search

Spectral Quality Controller

CMM has expanded its functionalities with a service for the annotation of oxidized glycerophosphocholines, a service for
spectral comparison from MS?® data, and a spectral quality-assessment service to determine the reliability of a spectrum for
compound identification purposes. To facilitate the collaboration and integration of CMM with external tools and metabolomic
platforms, a RESTful API has been created, and it has already been integrated into the HMDB (Human Metabolome
Database). This paper will present the novel functionalities incorporated into version 3.0 of CMM.

KEYWORDS: metabolomics, annotation, identification, knowledge representation, mass spectrometry, databases, REST, web services,

software tool

B INTRODUCTION

Compound annotation and identification remains one of the
major bottlenecks in untargeted metabolomics.'™* Mass
spectrometry (MS) is the dominant platform in metabolomics
and lipidomics” due to its high sensitivity.” MS is commonly
coupled to different separation techniques. Among them, high-
performance liquid chromatography (HPLC) is the most
frequently used.’

LC—MS can be used in hyphenated setups (LC—MS/MS)
for obtaining the fragmentation pattern of the analyzed
compounds or samples. MS/MS or MS" analyses provide
structural information based on the fragmentation pattern.
This fragmentation pattern can be compared against reference
MS/MS spectra present in metabolomic databases, providing
evidence pointing to different possible annotations.

In paralle]l with the development of metabolomics, there has
been an increase in the number and a growth in the size of
metabolomic databases.”"" Although some compounds are

< ACS Publications — © 2018 American Chemical Society
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present in most databases, there is not a complete overlap
among them, forcing the researcher to use different databases
and then manually unifying the results. This task is highly time-
consuming and prone to errors.

Most of the software tools for compound annotation are
based on MS/MS or MS" information, which can provide a
higher level of confidence for the annotations. However, in
some experiments, the sample quantity is limited; therefore,
the MS/MS analyses cannot be performed. Furthermore, in
some cases, a previous filter using only MS! is useful, or even
necessary. The time spent on compound annotation/
identification can be decreased by filtering the putative
annotations before using the fragmentation information with
RT and m/z data.
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Table 1. Updated Confidence Levels Proposed by the Metabolomics Society

confidence
level description matching requirements

level 0 unequivocal 3D structure, including full stereochemistry determination of 3D structure following natural product guidelines

level 1 confident 2D structure, using reference standard or full 2D at least two orthogonal characteristics, such as MS/MS fragmentation pattern,
structure elucidation retention time (RT), or collision cross-section (CSS)

level 2 probable structure using literature data and/or fragmentation  at least two orthogonal characteristics matching and evidence of excluding the rest
spectra and/or knowledge over the RT of candidates

level 3 possible structure, isomers, or dass more than one candidate; only one characteristic matched is required for

supporting the proposed candidate
level 4 unknown quantifiable feature in a sample
Author: CEU Mass Mediator (CMM) is a freely available directly from the update of the integrated sources; others

online tool designed to support researchers in metabolite
annotation tasks corresponding to the confidence levels 2 and
3 from the Metabolomics Standards Initiative (MSI) (see
Table 1).” It allows users to execute queries over the previously
unified compounds present in different databases, HMDB,
KEGG, and LipidMaps, and predicted compounds from
HMDB and MINE. It also collects cross-references from
Metlin (due to the spectra available in this database and its
wide appeal to many users) and PubChem.

CMM 1.0 was first released in 2014 as a simple service for
batch queries over several databases (KEGG, LipidMaps, and
Metlin).'® CMM 2.0, released in 2017, integrated com-
pounds from the HMDB and MINE databases, bringing the
total to 279,318 experimental compounds and 672,042
predicted compounds. It also featured an expert system
made up of 124 rules based on knowledge obtained from
researchers, which filters and scores the putative annotations
before presenting them to the user.

The purpose of this paper is to introduce CMM 3.0. In this
major update, the information from the databases integrated in
CMM has been refreshed, and information from oxidized
glycerophosphocholines (0xPCs), from LipidMaps and from
in-house data generated in CEMBIO, has been added. The
total number of metabolites has increased to 332,665
experimental and 681,198 predicted compounds. The CMM
database has also been extended with MS/MS spectra data
from HMDB, taxonomic, and ontological information about
the compounds (previously this information was not available)
as well as additional information about metabolic pathways.
CMM 3.0 also provides, for the first time, support for using
MS/MS data for annotation and identification. In addition,
CMM now offers support for the characterization and
annotation of oxidized lipids that is based on experimental
knowledge about the oxidation of glycerophosphocholines and
a tool that assesses the quality of a spectrum that it is being
used for metabolite identification. Finally, CMM 3.0 also
provides a RESTful API that allows facile integration of CMM
functionality into external tools. Using this API, we have
recently integrated CMM into HMDB as a new search
functionality (http://www.hmdb.ca/spectra/ms_cmm/
search), and integrations with other tools are under develop-
ment at this time.

CMM source code is available in GitHub (https://github.
com/albertogilf/ceuMassMediator) under the GNU General
Public License v3.0. CMM is a J2EE application, and it may be
accessed through any web browser that supports JavaScript.

M NEW FEATURES OF CMM 3.0

Because of the nature of the metabolomic software tools that
use data from external sources, some improvements emerge

798

benefit or depend on these updates but require additional work
by the developers of the tool, whereas other improvements
arise from independent work and are not related to the
sources. CMM 3.0 includes improvements that fall into each of
these three categories, and each enhancement will be discussed
in the following sections.

Database Updates

Since the release of CMM 2.0, nearly all of the external
databases integrated in CMM have been updated. HMDB has
released a new version, HMDB 4.0,"® which expanded the
number of metabolites from 40,153 to 114,100 (including in
silico predicted compounds), as well as the information
available about the compounds. HMDB has also updated the
chemical taxonomy system using ClassyFire'” for all of its
compounds. This has been integrated into the CMM database
and is now used by the CMM expert system to gather evidence
supporting or refuting the putative annotation of lipids. The
HMDB has also included information about the physiological
effects of the compounds, their source (endogenous or
exogenous), biological location, biological role, and the
processes in which such compounds are involved. This
information is very useful for the annotation of compounds.
For instance, knowing that a compound has been detected in
blood before and has been related to some type of kidney
disease is invaluable for a metabolomics analysis that aims to
study the biomarkers of a kidney disease using blood samples.
This ontology information can also be used as a filter for
researchers who are only interested in compounds previously
detected under particular conditions. For example, some
studies may have no interest in endogenous or exogenous
compounds, whereas others may want to search only for
compounds detected in a specific organ (bladder, kidney, liver,
etc.).

LipidMaps has launched the new LipidMaps Lipidomics
Gateway, where the curation of the lipids has been restarted,
and more than 500 lipids have been added since the last update
of CMM. Moreover, some bugs have been fixed, such as the
duplication of InChlIs or the correctness of the taxonomy of
some compounds. The corrections made by LipidMaps to their
taxonomy have resulted in an improvement of the correctness
of the rules applied by the CMM expert system when gathering
evidence about the putative annotations because this taxonomy
is used by the CMM rules."”

The KEGG database has increased its number of metabolites
and pathways (from 399 to 422). Pathways information is
useful for the subsequent biological interpretation. The CMM
pathway displayer tool uses pathway information from this
resource, showing to the users the pathways where each
metabolite has been detected.

DO: 10,1021/ acs.jproteome 8b00720
J. Proteome Res. 2019, 18, 797-802
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CMM has been supplemented with information from oxPCs
from an in-house library, expanding the current information
present in the other databases. There are 248 oxidized
glycerophospholipids (0xGPs) currently in LipidMaps and 48
0xPCs. The CMM library contains 24 new oxPCs that are not
present in any of the databases integrated.”’ Table 2 illustrates
the information present in CMM from each source.

Table 2. Number of Compounds and Type of Information
Available in the Different Versions of CMM

database  CMM 1.0 CMM 2.0 CMM 3.0
HMDB 0 74,484 114,065
N/A structure structure, taxonomy, pathways,
ontology
KEGG 13,526 15,909 18,293
N/A structure, structure, pathways
pathways
LipidMaps 37,576 40,213 42,555
N/A structure, structure, taxonomy
taxonomy (corrected)
MINE 0 672,042 672,042
N/A structure structure
in-house 0 0 24
N/A N/A structure, taxonomy

Figure 1 shows the overlap of the metabolite coverage
between the different databases integrated in CMM 2.0 and

HMDB HMDB
66,073 104,644
2764 4272 2869 5697
775 855
KEGG  ,,,, LipidMaps KEGG 5 LipidMaps
11,131 33,927 13,394 34,828
CMM 2.0 MM 3.0

Figure 1. Venn diagram with the coverage of metabolites between
different databases integrated in CMM 2.0 and CMM 3.0.

CMM 3.0. The comparison only covers those compounds for
which there is sufficient information available to perform
unequivocal compound unification (i.e, those with 3D
structure, the InChl, the InChlI key, or the canonical SMILES
available). The reason why there seems to be a reduction
(from 1239 to 1175 metabolites) in the overlap between
LipidMaps and KEGG in CMM 3.0 (despite the addition of
more compounds to both databases) is the previously
discussed errata present in some LipidMaps compounds,
which sometimes caused the incorrect unifications in CMM
2.0. Although the global number of metabolites increased, the
overlap of metabolites among the databases is still low.
Annotation of Oxidized Lipids

The biological role of oxidized lipids is currently an active
research topic, notably contributing to the understanding of
health and disease. Within human metabolomic studies, it was
observed that lipids are significantly affected by oxidative
stress.”">* However, until now, the number of tools to support
the annotation of oxidized lipids has been small.” Nowadays,
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this task usually starts with the annotation of the signals by
searching for experimental m/z matches in the databases.
However, the number of oxidized lipids currently present in
such databases is low. LipidMaps, the reference database for
lipids, contains only 248 oxidized lipids for all types of heads.
This makes the annotation of oxidized phospholipids
challenging, especially when the target compound is not
present in the database, and it increases the likelihood of the
compound being assigned as an unknown. There are some
patterns that can provide the researcher with clues about the
possibility that a feature may correspond to an oxidized lipid,
for example, a lower RT for reversed-phase (RP) chromatog-
raphy of the shortened chains due to the lower hydrophobicity,
a high level of fragmentation with 40 eV, the ionization
through deprotonation ([M — H]™) and the presence of the
neutral loss of water (usually detectable in positive ionization
mode).”” CMM has developed a service to annotate and
characterize oxidized lipids. The full process is explained in
SI1.

MS/MS Search

There is a large number of MS/MS-based annotation tools
using different approaches to spectral matching or compound
identification. Until now, CMM had only supported the
annotation of MS' data. CMM 3.0 has integrated the MS/MS
information present in HMDB, including experimental and
predicted spectra, with the aim of providing support to
compare experimental MS/MS spectra against the HMDB
reference data. The large number of existing algorithms to
calculate spectral similarity and their robustness leads us to
select the three most popular promising ones and to perform
an independent evaluation instead of proposing a new
solution.”'**~*" The results of the evaluation are shown in
SI2.

To use the MS/MS search service of CMM, the researcher
should introduce the precursor ion mass, the list of pairs of m/
z and intensity of the product ions, and the tolerance allowed
for the precursor ion and the product ions (in Da or ppm).
The intensity can be normalized or absolute (CMM normal-
izes the values if needed). The ionization mode used and
voltage applied are also necessary to restrict the search over the
corresponding experimental setup. The researcher can choose
if the MS/MS spectra comparison should be performed against
experimental or predicted spectra. Once all of the information
is submitted, the CMM comparison algorithm performs an
initial filter of the putative annotations based on the precursor
ion, the precursor ion tolerance, the ionization mode, the
fragmentation voltage and the type of spectra. The compounds
with spectra available under these conditions are then scored
to determine the similarity between the input spectra and the
putative annotations.

Spectral Quality Assessment for Identification Purposes

The success of an untargeted metabolomics study depends on
the correctness of the identification process. Decreasing the
number of unknowns and misidentifications is key to having a
biologically significant finding. Nevertheless, the time to
perform a study is restricted, and the low availability of
reference standards for clear compound identification often
hinders this task in untargeted approaches. Consequently, a
high-quality MS/MS spectrum is paramount to improve the
annotation rate of compounds, whereas a low-quality spectrum
increases the risk of misidentification.

DO: 10,1021/ acs.jproteome 8b00720
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However, assessing spectral quality can be difficult. To
provide researchers with a systematic method to evaluate the
quality of a MS/MS spectrum, CMM has created a pentagonal-
point evaluation system that takes into account: (1) the quality
of the overall intensity, (2) the impact of the noise, (3) the
number of MS/MS scans obtained, (4) the presence of
different precursor ions in the collision cell at the same time,
and (5) the presence of delayed ions from the previous scans, a
phenomena known as cross-talk. In Figure 2, we can see a

Intensity

Intensity

CrossTalk Noise CrossTalk Noise

Co-elution Scans

Scans

Co-elution

Figure 2. Graphic representation of the pentagonal-point evaluation
system used in CMM 30 to asses the quality of the spectrum
introduced by the user. On the left, a good quality spectrum. On the
right, a poor quality spectrum.

graphic representation of this evaluation system. The pentagon
on the left shows the evaluation result for an excellent
spectrum (green lines), whereas the pentagon in the right
corresponds to an inadequate spectrum (red lines). The closer
the lines are to the pentagon vertex, the better the spectrum is.
A full explanation about the principles used and how the
spec’t;ral quality assessment has been developed can be found in
SI3.7

RESTful API

The metabolomics field is continuously growing and so is the
number of tools available to assist in metabolomic data
analysis. Typically, metabolomic tools do not provide all of the
functionalities that a metabolomics workflow requires. There-
fore, researchers often have to use different tools to carry out
their analyses and are forced to use results from one tool in
another, a task that is not always trivial. To mitigate this
disadvantage, several platforms that try to integrate different
external tools into a single pipeline have emerged. Two of the
most popular open platforms are the Workflow4Metabolo-
mics” and PhenoMeNal.”’ The Elixir metabolomics com-
munity aims to share the data and the software tools with these
frameworks because they have proven to be useful, and they
can improve the reproducibility of the data analysis.”'

CMM provides functionality that is not available in other
metabolomics tools: its knowledge-based approach to filtering
and scoring putative annotations as well as its support for the
identification of oxidized lipids using experimental knowledge.
The compound unification from multiple external databases
also provides great value. Because of these unique features,
there has been a growing number of requests to integrate
CMM features in external tools through an application
programming interface (API). This RESTful (REpresenta-
tional State Transfer architectural style compliant) API for
CMM has been already integrated into the HMDB environ-
ment (http://www.hmdb.ca/spectra/ms_cmm/search), where
users can take advantage of the CMM filtering and scoring
functionality directly from the HMDB web interface. The
details of this API can be found in SI4.
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B CONCLUSIONS

We have presented version 3.0 of CMM, a free online tool to
support many of the needs of researchers in the annotation of
metabolites. CMM integrates and unifies experimental and
predicted metabolites from several databases, including
HMDB, KEGG, LipidMaps, and MINE, allowing the user to
query in all of them through a single interface. In addition,
CMM uses an expert system to filter and score putative
annotations, allowing researchers to focus on those annotations
that are more plausible.

After the data refreshing performed in version 3.0 and the
integration of an in-house library of oxidized lipids, the total
number of available experimental metabolites in CMM 3.0 is
332,665 and the total number of predicted metabolites is
681,198. Taxonomy and ontology information from HMDB
and LipidMaps has been added to the CMM database, being
used by its expert system. Novel functionalities that have been
added to CMM 3.0 include MS/MS search support, a service
for the annotation of oxidized glycerophospholipids and a
spectral quality-assessment tool to measure the quality of the
MS/MS spectra. Furthermore, in CMM 3.0, the search services
are now available through a RESTful API that has already been
used to integrate CMM functionalities into the HMDB. For
future work, we intend to further exploit the taxonomy and
ontology information that is available now in the CMM
database to enhance the filtering and scoring performed by our
expert system. Some of this information is already used by the
124 rules currently available in the expert system.
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SI1: Annotation of oxidized lipids

Three different regions can be recognized in the MS/MS spectrum in the negative ion-
ization mode of a lipid (see Figure S-1). The high-mass (yellow) region corresponds to the
precursor ion and the neutral losses. The m/z 802.56128 corresponds to the precursor ion
PC(16:0/18:2), and the m/z 742.54089 to the precursor ion with a neutral loss of Cy;H,0,
(60.02 Da). The mid-mass (blue) region corresponds to the fatty acids (FAs) if they have
not suffered an oxidation that shortened the chain. In Figure S-1 the two FAs 16:0 and
18:2 are represented by the m/z 255.23630 and 279.23679, respectively, with correspond-
ing lyso-forms, either de-methylated or de-methylated and de-hydrated. Finally, the green
region corresponds to the product ions and to the shortened oxidized chains (if present).
There are no shortened oxidized chains in the Figure S-1. since oxidation has not occurred,
and there are product ions from the head group (PC). The m/z 224.07240 is formed by
C7H15sNPOs and m/z 168.04520 from C4H1NPOy4, both being characteristic product ions
for PCs. The researcher can hypothesize or perform a structural elucidation for the annota-
tion by assigning the experimental masses to new structures formed by the transformation
of the precursor ion. Subsequently they could assign the peaks to the structures based on
the m/z and the biological transformations, but this task is difficult if the annotation of
the precursor ion is not correct. To mitigate this disadvantage, CMM includes a service to
support the annotation of oxidized glycerophosphocholines (oxPCs).

CMM identifies the oxidized and the non-oxidized FAs for long chain oxPCs by matching
against a FA database containing all the FAs from 3:0 to 36:6 and their possible oxidations
products. The mass of these FAs and their alterations has been generated algorithmically. If
this search returns matches, then CMM searches for oxPCs in its database that correspond
to the previously identified FAs. For short chain oxPCs, the short FA is not present in
the mid-mass region; therefore it is difficult to identify which product ion from the low-
mass region corresponds to the short chain oxidized FA. However, the mass of this product

ion can be calculated by subtracting the non-oxidized FA from the precursor ion. If the
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Figure S-1: Peaks regions for MS/MS analysis of oxPCs. High-mass (yellow) region: pre-
cursor ion and neutral losses; mid-mass (blue) region: non-shortened FAs; low-mass (green)
region: product ions and shortened FAs (if present).

mass calculated corresponds to an oxidized FA present in the algorithmically generated
database, the researcher can check if the product ion is present in the MS/MS spectrum and,
subsequently CMM performs a query to see if there is any hit in the databases. Nevertheless,
CMM computes the putative annotation regardless there is any hit in the databases with
the aim of increasing the coverage of the oxPCs.

This service includes knowledge about the fragmentation pattern and a list of 24 oxidized
lipids from an in-house library, some of which are not present in LipidMaps. The flowchart
in Figure S-2 shows the annotation of long chain and short chain oxPCs. For the long
chain oxidation, the algorithm receives the m/z of the two FAs (FAl and FA2) and the
precursor ion. It detects and annotates the oxidized FA by matching against a database
of FAs, and then annotates the other FA, the non-oxidized one. Once the two FAs are
annotated, it creates a tentative annotation (see step 4) and checks to see if there is any hit
in the databases. The annotation is always returned, no matter if the oxPC is present in the
databases or not, to overcome the limited number of oxPCs present in the databases. For
the short chain oxidation, only the m/z of the non-oxidized FA is visible in the mid-mass
region, but based on the m/z of the precursor ion, the mass of the PC head group and the
non-oxidized FA, it can calculate the m/z of the oxidized FA. Once this is done, the user

can look through the entire MS/MS spectrum to see if this mass is present, and process the
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annotation in an analogous way to the annotation of the long chain oxPCs.

Long Chain oxidation
Step 1
m/z of FA1 - A mass of oxidation = m/z of non-oxidized FA

search against FA library = no hits
Step 2 conclusion: native FA

m/z of FA2 - A mass of oxidation = m/z of non-oxidized FA
search against FA library - hits
conclusion: oxidised FA

Step 3
search of m/z of precursor against databases

Step 4
tentative annotation
PC(16:0/ 20:4 (OH))

Short Chain oxidation
Step 1

m/z of precursor — m/z of native FA — m/z of head group = m/z of oxidised FA
search against FA library

Step 2
m/z of oxidised FA — A mass of oxidation = m/z of non-oxidized FA
search against FA library
Step 3
search of m/z of precursor against databases
Step 4

tentative annotation
PC(16:0 / 5:0 (CHO))

Figure S-2: Flowchart for annotation of long and short chaind oxPCs.



151 | Chapter 4: CEU Mass Mediator 3.0: A Metabolite Annotation Tool

SI2: Independent evaluation of MS/MS search

CMM has carried out an independent evaluation of three different: the euclidean distance
(see equation S-1), the dot product used previously by MyCompoundID! (see equation S-2)
and a weighted dot product used previously by Metfrag? but penalizing the peaks from the

acquired spectra not present in the reference one (see equation S-3).

number o f

matched peaks 1
Euclidean distance score = Z —_— =
o VUP—LR)?
number of (eqn S-l)
matched peaks 1
; VUPMZ; — LPM Z;)? + (I PIntenstiy; — LPIntensity;)?
nm’r:b;rofk
matched peaks , 3
dot product penalised = ’:nlumberof Uhslt) =
e peaks( P, « IP;
number of = ( ! J) ((‘.qn S-Q)
matchedpeaks ([ PM Z; « LPM Z;) + (I PIntensity; * LPIntensity;)
number of
}';"l"”'wk’(IP]\[Zj « IPMZ;) + (I PIntensity; « I PIntensity;)
number of
weighteddot _ Sop PN (IPM Z; x LPMZ;) x 3 + (I PIntensity; x LPIntensity;)*
product penalized = numbero f

TRPaks([PM Z; « IPM Z;)3 + (IP Intensity; = [P Intensity;)0
(eqn S-3)

In the three equations, I P = experimental peak and LP = library peak. The equation
S-3 gives more weight to the precursor ion (intensity and m/z) matching than to the product
ions (3 vs 0.6).

We developed our own implementation of these three algorithms, and they were tested
with 30 spectra publicly available in MassBank repository.® To compare the results of our

implementation with the original implementations of these algorithms, we report here also
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the results of searching for these 30 compounds with HMDB and MyCompoundId. In these
tests we evaluated if the correct annotation appeared in the search results in the top-1, top-5
or among all the putative annotations returned by the tool. The Figure S-3 shows the results
for the evaluation. The euclidean distance (see the equation S-1) demonstrates a slightly
better performance than the other two algorithms developed, therefore this has been the one

chosen for the production version of CMM 3.0.

Percentage of correct identifications using only experimental
spectra

Topl

Top5

0

10 20 30 40 50 60 70 80 0 100

mWeghteddot product  ® Dotproduct  mEuclideandistance W HMDBtool ® MyCom pound ID tool

Figure S-3: Percentage of correct annotation from MS/MS search using only experimental
spectra.
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SI3: Spectral quality assessment development

To provide researchers with a systematic method to evaluate the quality of a MS/MS

spectrum CMM has created a pentagonal-point evaluation system that takes into account:
1. The quality of the overall intensity.
2. The impact of the noise.
3. The number of MS/MS scans obtained.
4. The presence of different precursor ions in the collision cell at the same time.

. The presence of delayed ions from the previous scans, a phenomena known as cross-talk.

ot

The correct detection of the product ions is key for the identification of compounds via
a MS/MS spectrum. If the intensity of the mass fragments is high enough, the product ions
can be better identified. To score the overall intensity, CMM takes into consideration the
average signal in the MS! mode; if the average signal is low, the intensity of the compound
needed for a good quality spectrum is lower than in experiments with a higher average signal.
The values for the intensity score are shown in the Table S-1. The values for an acceptable
spectrum vary linearly from 0 (inadequate intensity) to 1 (optimum intensity) depending on
the average intensity in the MS' spectrum and the intensity of the compound analyzed in
the MS/MS spectrum. The noise influences the product ions detection as well, since a high
noise requires a higher intensity for the reliability of the product ion detection, and a low
noise permits the detection of product ions with low intensities. The noise is measured as a
percentage (from 0 to 100). A noise < 5% has a maximum score of 1, a noise > 20% has a
score of 0, and a noise in the range (5-20) has a score which varies linearly between (1-0). If
the noise is < 5%, the intensity score rises until 0.5 for low intesity spectrum (intensity score
< 0.5), since having a low level of noise enables the identification of lower intensity product

ions.
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Table S-1: Scoring system of the MS/MS intensity depending on the average signal intensity
in MS analysis.

Average Inadequate Acceptable Excellent spec-
intensity in spectra (0) spectra (0-1) tra (1)

MS analysis

< 10° <10% 10% - 10° > 103

10° - 107 <10° 103 - 101 > 101

107 - 108 < 10! 107-10° > 10°

> 108 <10° 10° - 10° > 10°

The third aspect that biases the confidence of the MS/MS annotation is the number of
measurements (scans) performed during the MS/MS analysis. A higher number of scans
increases the reliability of the measured ions. The score for the number of scans is 0 if there
are only 1 or 2 scans, 0.25 if there are 3, 0.5 for 4, 0.75 for 5, and 1 for > 5. However, the
researcher can use the concordance between different samples to make the spectrum more
reliable if the number of scans is low by analyzing different samples to obtain their MS/MS
spectrum and then verifying the fragmentation in two or more samples.

The presence of more than one compound in the collision cell at the same time signif-
icantly hampers the assignment of the product ions to the different precursor ions present.
Therefore, the presence of more than one compound makes the identification impossible if
the compounds and their fragmentation pattern are not previously known. The score of a
spectrum when co-elution occurs with an unknown compound is 0, independently of other
parameters. The score of the co-elution is 0.5 when co-elution with a known compound that
has a known fragmentation pattern occurs, and 1 if co-elution did not happen in the collision
cell. The last aspect that the score takes into account is the presence of cross talk. This
phenomenon hinders the product ion detection, since it increases the possibility of assigning
delayed signals as product ions. If this phenomenon has happened, the researcher can see
m/zs higher than the precursor ion. If the intensity of these m/zs is high, the score is 0; if it
is low, is 0.5; and if it does not exist, then the score is 1. CMM user interface to enter this

information is shown in Figure S-4.
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Average signal in MS mode:

enter the average signal in MS level

Overall intensity of MS/MS spectra:

enter the overall intensity of MS/MS .
Noise (%):

enter the noise level percentage
Number of scans:

enter the humber of scans of MS/MS
Number of samples:

enter the number of scans of MS/MS

Co-elution

with known compound | with unknown compound

Cross-talk
soft cross-talk hard cross-talk

Figure S-4: Web interface of the spectral quality assessment tool.
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An overall score is calculated as the sum of each partial score. The spectrum is ranked as
excellent if the overall score is > 3.5, acceptable if it is between 2.0 and 3.5, and inadequate
if it is below 2.0. The overall score is shown numerically and the color of the lines are
red, yellow or green according to the spectral quality (inadequate, acceptable and excellent

respectively).



157 | Chapter 4: CEU Mass Mediator 3.0: A Metabolite Annotation Tool

SI4: CMM RESTful API

An API enables two software tools to communicate with each other by establishing a con-
tract (which services can be requested, how to invoke them and what outcome is expected).
As CMM is a web application, a web service has been created to expose its functionality
(i.e. its API). Currently. there are two different architectural approaches for designing a web
service. The traditional approach, commonly known as Web Services, is based on a Ser-
vice Oriented Architecture and tied to a well defined protocol stack (SOAP, WSDL, UDDI
and so on). The other approach. based on the REST (REpresentational State Transfer)
architectural style for hypermedia distributed systems (the style underlying the World Wide
Web), is called RESTful Web Services. Unlike the traditional approaches that only use the
HTTP protocol as a transport layer, RESTful Web Services take advantages of all web re-
lated protocols (HTTP, URI, Mime Types) and are easier to use than the traditional ones.
Furthermore, the use of ubiquitous technologies like HTTP, JSON or XML supported by
most of the programming languages make this approach very suitable for integrating those
services in an effortless way.

CMM 3.0 features a RESTful API that allows its integration with external tools. This
API is structured around two resources providing the batch and advanced batch CMM
services. The URIs of these resources follow the nomenclature:
http://ceumass.eps.uspeen.es,/ api/v3/ < serviceName ~. The concrete URIs for the provided

services are:
1. batch(http://ceumass.eps.uspceu.es/api/v3/batch).
2. advancedbatch (http://ceumass.eps.uspeeu.es/api/v3/advancedbatch).

Although the results of the requests seem like a query and a GET method might appear to
be more appropriate at first sight, the amount of data potentially needed for performing the
request precludes the use of this method: the number of m/zs, RTs and composite spectra can

exceed the standard length of a parametrized URI, the method used to send the parameters

S-12



158 | Design, validation and implementation of a software tool for metabolites annotation and identification

in the GET method. Thus, both resources support the POST method to return the results
of the request. Consequently, the body of the POST method must include all necessary
input parameters needed for each service. As JSON has become the main format for data
exchange over the web and it is supported by most of the tools and technologies, CMM uses
this format for the communication through the RESTful API. Thus, both input parameters
and service outcomes, must be encoded using this media type (see S1 for further details
about service request and response specifications). The complete manual of the application
is available at http://ceumass.eps.uspceu.es/manuals.xhtml.

This RESTful API for CMM has been already integrated into the HMDB environment
(http://www.hmdb.ca/spectra/ms_cmm /search), where users can take advantage of the
CMM filtering and scoring functionality directly from the HMDB web interface (see Figures
S-5 and S-6). The integration with HMDB has been configured to use only the data from its
own database, but it can take advantage of the filtering and scoring performed by CMM. We
also have plans to integrate CMM with the WorkflowdMetabolomics. Such service integration
lets users perform all the steps of the metabolomics work-flow in a simple way.

The following sections show detailed information on how to invoke these services using

the new APL
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The CMM search s an external service provided and supported by CEMBIO (Center of Metabolomics and bioanalysis of University San Pablo-CEU, Spain). It calculates a score
over the annolations based on:

1. Probability of the compound 1o torm a speciic adduct.

2. Presence of other acducts coming from the same signal in the same RT window.

3 AT of the lpids with the same head depending on the number of cirbons and double bonds (and, w MMrwhdﬂ!ydM)

& alows the user fo filler the kst of results based on the chercal alphabet, the pr on ona of more type. It uses tha |
sattings (moddier) for the onizaton rules (1). nwn-mmmumm(mwmmmmhw It uses the RT for the application of
adduct relation ruies (2) and the hydrophobictty of ipids pertaining to the same class depending on the number of carbons and double bonds (3). It takes advantage of the pre-
Mldhlllllnﬂhgwmw-ml’enmmwﬁnﬂﬂwﬂludﬂdhmhw For a more detailed information about the scores over the
annotations, we suggest lo visit the official xhtmi).

CMM service s available from HMDB. but all the issues and suggestions regarding this search should be addressed to the CEMBIO team ().

It you use this service, please also cite: ()

Spectra Search Mass Spectrum - CEU Mass Mediator

LC-MS Search LC-MSCMM Search ~ LC-MS/MS Search GC-MS Search 1D NMR Search 2D NMR Search

Signiticant Query Massos (Da) Retention Times Compoaite Spectra
one entry per line one entry per line oad example to see lormat
4 P
All Query Masses (Da) All Retention Times All Composite Spectra
one entry per line one eniry per line aad example to ses format

Figure S-5: Web interface of the CMM search input form in HMDB.

Spectra Search Mass Spectrum - CEU Mass Mediator

LC-MS Search LC-MSCMM Search LG MS/MS Search GC MS Soarch 1D NMR Search 2D NMA Seacch

Search Results

© Metabolites found for mz: 400.343 and retention time: 18.843

Show 10 {entries Searcr
n Molecular lonization) | Refation| AT Final

Compound  Name Formula Weight Adduct Score Score score Score Cas Pubchem  Metlin  Lipid
HMDBO000Z222 Palmioylcarn... C23H4SNO4  368.334856933 M+H NA 20 20 20 2364-67-2 11953816 96! LMFA
HMDBO000248 Thyroxine CISHITMNO4 776.686681525 M+HsNa NA NA NA NA 51-48-9 25201348 439 NA
HMDBO010412 TG(16:0:14:0... C49HE206 776.569390682 M+HsNa NA NA NA NA NA 131750529 61720 NA
HMDBOO11137 MG(18:00:0/.. C21H4204 356.308309832 M+ACNH  N/A NA 1.0 1.0 NA 15560610 61993 NA
HMDBOO11535 MG(0:0/18:0/.. C21H4204 358.308309832 M+ACNH  NA NA 1.0 10 NA 79075 62319 NA
HMDBO011544 MG(0.0/20:2( . C23H4204 382.308309832 MeNH4 N/A NA 01 0.1 NA 53480964 62328 NA
HMOBOD11S74 MG(20:2(11Z... C23H4204 382308309832 MNH4 NA NA 01 01 NA 53480983 62056 NA
HMDBOO13111 Ubiguinol 10 C58HS204 B864.699561432 2M+ACN«Na NA NA NA NA NA 9962735 NA NA
HMDBO013631 N-oleoyl glycine C20HI7NOS  338.277344055 M+lsoPropsH N'A NA NA NA NA 5436908 46569  LMFA
HMDBO014651 Dextrothyroxine CI1SHITMNO4 776.686681525 M+HsNa NA NA NA NA NA 90657408 85382 N/A
Showing 1 to 10 of 72 entries Previous . 2 3|4 5. |8 Nt

Figure S-6: Search results, including filtering and scoring performed by CMM, displayed in
HMDB.
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Batch Search Service

Batch search enables the user to find metabolites through the m/z or the neutral masses.

The service is accessed through the following URI:

http://ceumass.eps.uspceu.es/api/v3/batch

To perform a query, the user must send a POST request. This request must include:

e A Content-type header set to application/json.

e A request body with a JSON object that includes all data needed for the query: masses

to search in CMM, tolerance allowed for the putative annotations regarding the masses,

metabolite types to search, masses mode, ionization mode, possible adducts formed

when running the experiment and databases that will be included in the search.

The query’s attributes, its name, type, default value (the value which will be used if the

user does not specify the attribute) and optativity are defined in table S-2. As the value of

some attributes is restricted to a range of literals, table S-3 shows the defined enumeration

types.

Table S-2: Batch Search service - Request - Query

array of doubles

double (Range: [0..100])

10

tolerance _mode enum

“ppmﬂ

array of database enum

“all-except-mine”

metabolites type enum

“all-except-peptides”

masses__mode _enum

“mz”

ion_mode enum

“positive”

mandatory

array of positive_enum

I“M+I'I”, “M+21"I”, “M+Na”, “M+K”,
“M-+NH4", “M-+H-H20"|

array of negative _enum

“I\/I_H”’ ‘LM ‘I’Cl”’ “M+FA_H”’ “M_H_H?O”]

array of neutral _enum

“Ni”l

The following example shows a query to the Batch Search service:
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{

}

"metabolites_type": "all —except—peptides",

"databases": ["hmdb"],
"masses_ mode": "mz",
"ion_mode": "positive",
"adducts": ["all"],
"tolerance": 10.0,
"tolerance_mode": "ppm",
"masses": [400.3432, ...,

288.2174]

If the request contains no errors and is therefore correctly processed, the service returns a

set (table S-4) of putative annotations for the masses submitted. Each putative annotation

structure (table S-5) contains the name of the putative annotation compound, its formaula,

its molecular weight, the difference between the molecular weight and the corresponding

experimental mass, and references of the compound in external databases.

While some of these attributes are related with score rules, please bear in mind that rules

are only applied when using the Batch Advanced Search service. Therefore, when using the

Table S-3: Batch Search service - Enumeration types

“ppm”, LLmDa”

%all”, “all-except-mine”, “HMDB”, “LipidMaps”, “Metlin”, “Kegg’,

R {3

“in-house”, “mine”

“all-except-peptides”, “only-lipids”, “all-including-peptides”

“neutral”, “mz”

“neutral”, “positive”, “negative”,

NIH, “M{2H°, “M+Na’, “‘M{K’, “M{NHY, “MH-H207,
“M-+H+NH4", “2M+H”, “2M+Na”, “M+H-+HCOONa",
“OM+H-H20", “M+3H", “M+2H-+Na”, “M+H+2K”, “M+H+2Na”,
“M+3Na”, “M+H+Na”, “M+H+K”, “M+ACN+2H”, “M-+2Na”,
“M-+2 ACN+2H”, “M+3ACN+2H", “M-+CH30H+H”, “M+ACN-+H”,
“M+2Na-H”, “M+IsoProp+H”, “M+ACN+Na’, “M+2K-H”,
“M-+DMSO-+H”, “M+2ACN+H”, “M+IsoProp+ Na+H”, “2M + NH4”,
“M+K”, “2M-+ACN+H”, “2M+ACN-+Na”

“M-—I‘I”, “M-{"Cl”, “M-{-FA-H”, “M-H-H20”, “M—H+HCOONa”,
“2M-H”, “M-3H”, “M-QH”, “M+Na—2H”, “M+K—2I‘P’, “M+Hac-H”,
“M+Br”, “M+TFA-H”, “2M+FA-H", “2M+Hac-H", “3M-H”

“M”
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batch search, all the putative annotations returned will have a score of -2, which shows that
the rules engine has not been used in this type of search. See the next section.

This example shows the results of a successful request:

{

"results": [

{

"identifier": 32600,
"EM": 400.3432,

"name": "Palmitoylearnitine",

Table S-4: Batch Search service - Response - Results

- array of putative_annotation _object (table S-5) | - |

Table S-5: Batch Search service - Response - Putative Annotation

[ Name ] Type |
integer

double

string

string
positive__enum
negative_enum
neutral _enum
double

integer

integer (Range: -2, |0..2])
integer (Range: -2, [0..2
string

string

string

string

string

string

string

string

string

string

string

array of strings
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"formula": "C23H45NO4",

"adduct": "MyH",

"molecular_weight": 3909.334858933,

“"error_ppm": 3,

"ionizationScore": -2,

"finalScore": -2,

"cas": "2364-67-2",

"kegg_compound": "C02000",

“"kegg_uri": "http://www.genome.jp/dbget—bin/www_bget?cpd: C02990",
"hmdb_compound": "HMDBO0000222",

"hmdb_uri": "http://www.hmdb.ca/metabolites /HMDB0000222",
"lipidmaps_compound": "LMFA07070004",

"lipidmaps_uri": "http://www. lipidmaps.org/data/LMSDRecord. php? LMID=LMFAO07070004" ,
"metlin_compound": "961",

"metlin_uri": "https://metlin.scripps.edu/metabo_info.php?molid=961",

“pubchem _compound": "11953816",
"pubchem _uri": "https://pubchem.ncbi.nlm.nih. gov/compound/11953816",

"pathways": []

Batch Advanced Search Service

Batch advanced search also enables the user to find metabolites through the m/z or the neu-
tral masses query parameters. But, in contrast with the previous service, it uses additional
information devoted to biomarker discovery experiments.

The service is accessed through the following URI:
http://ceumass.eps.uspceu.es/api/v3/advancedbatch

To perform a query, the user must send a POST request. This request must include:
e A Content-type header set to application/json.

e A request body with a JSON object that includes all data needed for the query. In
this case, the query is just an extension of the Batch Search query. Therefore, it must
include all attributes described in table S-2 and, on top of that, provide the additional

information shown in table S-G: retention times, composite spectra (spectra created by
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the summation of all co-eluting. m/z ions that are related), chemical alphabet (possible

elements of the putative annotations), etc.

Table S-6: Batch Advanced Search service - Request - Query - Extra attributes

chemical _alphabet _enum “CHNNOPS”
boolean false
modifiers_type enum “none”

array of doubles empty

array of arrays of spectra_object (table S-7) | empty

array of doubles empty

array of doubles empty

array of arrays of spectra_object (table S-7) | empty

Table S-7: Batch Advanced Search service - Request - Spectra

Spectra_object

Type

Default value

: double
double

Table S-8: Batch Advanced Search service - Enumeration types

“CHNOPS”, “CHNOPSCL”", “ALL”

_type_enum | “none’, “NH3", “HCOO", “CH3C0O0", “HCOONHS’,
“CH3COONH3”

The next example shows the JSON structure of a query for the Batch Advanced Search

service:

"chemical _alphabet": "all",

"modifiers _type": "none",

"metabolites _type": "all —except—peptides",
"databases": ["hmdb"],

"masses_ mode": "mz",

"ion_mode": "positive",

"adducts": ["all"],

"deuterium": false ,

"tolerance": 10.0,
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"tolerance _mode": "ppm",

"masses": [400.3432, ..., 288.2174],
"all_masses": [],

"retention_times": [18.842525, ..., 4.021555],
“"all_retention_times": [],

"composite _spectra": |

[{
"mz": 400.3432,
"intensity ": 307034.88

I

{
"mz": 311.20145,
"intensity ": 400.03336

I

When using the Batch Advance Search service, CMM scores the putative annotations
based on expert knowledge. Thus, the response structure of this service contains all attributes
already defined in table S-5, plus some other attributes defined in table S-9.

Table S-9: Batch Advanced Search service - Response - Putative Annotation - Extra At-
tributes

_ Tybe

double
e | integer (Range: -2, [0..2]) |
| integer (Range: -2, [0..2]) |

integer (Range: 2, [0.2]) |

This example shows the results of a successful request:

{

"results": |

{
"RT": 8.144917,
"adductRelationScore": -2,
"RTscore": 2,
"identifier™: 111123,
"EM": 338.2299,
"name": "MG(0:0/i-12:0/0:0)",
"formula": "CI5H3004",
"adduct": "MACN+Na'",
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"molecular_weight": 274.214409446,

"error_ppm": 1,

"jonizationScore": -2,

“finalScore": 2,

"kegg compound": "",

"kegg_uri": ",

"hmdb_compound": "HMDBO072858",

"hmdb_uri": "http://www.hmdb. ca/metabolites /HMDB0072858",
"lipidmaps _compound": "",

"lipidmaps_uri":
"metlin_compound": "",

"metlin_uri”: "",

"pubchem _compound": "131779644",
"pubchem_uri": "https://pubchem.ncbi.nlm.nih.gov/compound/131779644",
"pathways": []

}.
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7.1 Summary

CMM was created in 2012 with the goal of providing a single interface
to query distinct metabolomic databases. In 2017, a first major revision was
released to assist in metabolite annotation with new functionalities using a
knowledge-based approach to filter and score the putative annotations
obtained by querying them. In 2018, a second major revision was published
containing relevant changes such as the update of data sources, a MS/MS
search service, a dedicated service for oxPCs identification and a spectra
quality controller.

Currently, CMM integrates 332,665 experimental compounds from
the metabolomic databases HMDB, KEGG, LipidMaps, Metlin and an in-
house library containing oxPCs, and 681,198 predicted compounds from
MINE. CMM allows the user to simultaneously query these sources. It
scores the annotations based on the probability of ionization and adduct
formation, the presence or absence of other expected adducts originating
from the same signal, and the elution order of lipids belonging to the same
class when working in reversed-phase (RP) mode. CMM is a free an open
source J2EE (Java 2 Platforms, Enterprise Edition) application
(https://github.com/albertoqilf/ceuMassMediator) currently running on
TomEE 7.0.2 and MySQL server 5.7.24 that can be accessed through web

browsers supporting JavaScript (JS) (http:/ceumass.eps.uspceu.es) or

through its REST API (http://ceumass.eps.uspceu.es/mediator/api/v3).

CMM updates the data from the original sources approximately every 6
months and provides a JavaScript Object Notation (JSON) based REST API
for all its services to facilitate communication with other tools in an
automated way (see Figure 4). The following subsections summarize with

more detail the main contributions made in this thesis.


https://github.com/albertogilf/ceuMassMediator
http://ceumass.eps.uspceu.es/
http://ceumass.eps.uspceu.es/mediator/api/v3
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| R package ‘ ’ CMM website H Client requests |
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\ / REST API
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KEGG Advanced search Long chain oxidation
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Figure 4 CEU Mass Mediator architecture and list of the services (end-

points) available.

7.1.1 The expert system using MS? annotation

CMM simple and batch search options allow users to find the putative
annotation for the m/z values acquired using any type of accurate mass
spectrometer. It also enables filtering the compounds based on the data
source and/or the type of metabolite searched. The advanced search is

designed specifically for ESI-MS (see Figure 5).

CMM can distinguish between the statistically significant signals
between the compared groups and the complete set of acquired signals. All
measured signals can provide information to support or refute putative
annotations of the statistically significant signals, signals which, as potential
biomarkers, are the main target of the annotation process. If the user
provides the complete signal matrix, CMM will try to extract evidence from
it to achieve confidence level 2 in the annotation of significant signals. CMM
also exploits information from the Composite Spectrum (CS), the set of all
related co-eluting m/z ions, including isotopes, adducts, charges, multimers

and IPs formed by in-source fragmentation or neutral losses
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1 Statistically significant experimental masses REQUEST
= 2 Statistically non-significant experimental masses (optional)
>
& 3 Tolerance (ppm) for EM
= 4 Retention Times (optional)
5 Composite Spectra (optional)
@ Chemical Alphabet Modifier Database Metabolite Type
s W
& E All None  CH,COONH, All LipidMaps| | All except peptides
@4— 3 < CHNOPS NH, CH,COOH KEGG Metlin Only lipids
< CHNOPS +Cl HCOOH HCOONH, HMDB MINE All
7 N\
— Neutral / Positive mode \ 4 Negative mode \
mode [M+3H]**  [M+ACN+2H]* [2M+Na]* [M+2ACN+H]* [M-3H]? [M-H+HCOONa]
[M+2H+Na]**  [M+2Na]?* [M+H+HCOONal* [2M+NH,]* [M-2H]*  [2M+FA-H]
[M+H+2K]** [M+2ACN+2H]?* [2M+H-H,0]* [2M+K]* [M+Na-2H]"  [3M-H]
@ [M+H+2Na]3* [M+3ACN+2H]* [M+CH;OH+H]* [2M+ACN+H]* [M-H] [2M+Hac-H]
t:: M [M+H+2K]3* [M+H]* [M+ACN+H)*  [2M+ACN+Nal* [M+CIT" [M+FJ-
2 [M+3Na]** [M+Na]* [M+2Na-H]*  [M+H-2H,0]* [M+K-2H]"  [2M-H]
< [(M+2H]> [M+K]* [M+IsoProp+H]*  [M+NH,-H,0]* [M-FA-H]"  [M-H-H,0]*
ESpTRpataT: [M+H+NH, 2 [M+NH,J*  [M+ACN+Nal* [2M+2H+3H,02 | | [M-Hac-H]
Bules [M+H+Nal*  [M+H-H,0]*  [M+DMSO+H]* [M+H+CH,COOH]* [M+Br]
aRRlicAtER QA+H+K]“ [2M+H]* [M+2K-H]* [M+H+CH3COOHW \[M+TFA-H]' )
over L\ J
annotations
RESPONSE
1.  Putative annotations
'5 2. Scores for adduct formation rules, presence/absence of other adducts, and
& elution time according to lipid class, and integrated score
3 3. Links to data sources
4.  Pathways from KEGG

Figure 5 Workflow of CEU Mass Mediator MS* batch advanced search.
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Users can restrict the chemical elements of the putative annotations,
such as deuterated compounds, based on the Chemical Alphabet.
Information about the mobile phase modifier used in the experiments can
be added to restrict the formation of possible adducts to only the expected

ones. The possible adducts supported are shown in Figure 5.

Once the query has been performed according to the user input,
CMM incorporates an expert system that scores the putative compounds
(see Figure 6). This expert system uses 122 rules divided in three main
groups: (1) probability of the compounds forming a specific adduct (score
x1), (2) presence or absence of other adducts coming from the same signal
(determined for co-eluting signals within a defined RT window) (score y5),
and (3) elution order of lipids belonging to the same class when working in
RP (score y3). These three scores are integrated into a single overall score

by computing their weighted geometric mean:

¥ = exp (—2i3=1 b lnXi)

where w; is the weight of each score; w; = 1, w, = 1, and w3 € [0, 2]. w;
weight depends on the number of rules that were applied for lipid elution
time (this number is variable and depends on how many other lipids could

be used in the lipid elution order).

X1 X2 X3

Relative RT rules based

on the lipid class, length

and saturation level of
the chains

Adduct formation rules

lonization rules over no previously
grouped peaks in CS

— Lipid Type — Lipid Type

g——%,

Are there any other

—  Adduct formed experimental masses =] Length of

chain/chains

which corresponds to
the same primal
metabolite?

|| Modifier used in the || Saturation level of
maobile phase chain/chains
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Figure 6 Rules of CEU Mass Mediator expert system.

7.1.2 A semi-automated tool for oxPCs identification

CMM also provides support for the identification of oxPCs. Recently,
these compounds have been characterized as relevant biomarkers of health
and diseases status, driving the interest in specific tools to support their
identification and understanding their biological function. CMM aids in the
identification of oxPCs from LC-ESI-MS/MS experimental data. It integrates
knowledge about fragmentation of oxPCs as either long- or short-chain
oxidized lipids, characterized by different oxidation and fragmentation
processes, as well as a different handling of their oxidized derivatives.
Based on the fragmentation patterns of oxPCs, the procedure compares the
input spectrum introduced by the user with an internal database of oxPCs
containing both curated and computationally generated records. The steps
for the identification of short-chain and long-chain oxPCs are shown in
Figure 7.

Long-Chain oxidation

Step 1
m/z of FA1 — A oxidation mass = m/z of native FA
Step 2 Search against FA library -> no hits conclusion: native FA
m/z of FA1 — A oxidation mass = m/z of non-oxidized FA
Search against FA library -> hits conclusion: oxidized FA
Step 3 Search of m/z of precursor against databases
Step 4

Tentative annotation -> PC (16:0 / 20:4 (OH))
Short-Chain oxidation

Step 1

m/z of precursor — m/z of native FA — m/z of head group = m/z of oxidized FA

Search against FA library

Step 2 i

m/z of oxidized FA — A oxidation mass = m/z of non-oxidized FA

Search against FA library

Step 3 .

Search of m/z of precursor against databases
Step 4

Tentative annotation -> PC (16:0 / 5:4 (CHO))

Figure 7 Flowchart of oxidized lipids identification in CEU Mass Mediator.

The oxPCs elute earlier than PCs in RP and later in HILIC
(Hydrophilic Interaction Liquid Chromatography) due to an increment in their
hydrophilicity. The oxPCs tend to form the adducts [M-H] and [M+HCOO]
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in short chain oxidations and only the adduct [M-H] in long chain oxidations
as well as the neutral loss of water, that usually appears in oxPCs while it is
very uncommon in non-oxidized PCs. Different collision energy was applied
to the oxPCs to observe the changes in the IPs formed. Although sometimes
the information available is not enough to the unequivocal identification of a
structure, this method is fast and reliable to determine the presence of an
oxPC, thus reducing the false putative annotations and the amount of time
spent by the researchers.

7.1.3 Use of non-analytical information

CMM enables sorting the compounds for their subsequent biological
interpretation based on the number of compounds from a specific pathway
present in the experimental data and the compound’s relevance for a given
pathway. Relevance is determined by the number of pathways in which a
compound is present. Water is an example of a compound with low
relevance because, due to its ubiquity in most pathways, its presence does

not yield specific biological relevance.

7.1.4 MS" support

CMM provides also a MS/MS search that supports metabolite
identification using MS/MS data. This search is based on spectral similarity
measurements between experimental spectra and library spectra of

standards and/or predicted spectra contained in HMDB.

Another unique functionality of CMM is its ability to calculate the
quality of a MS/MS spectrum for identification purposes. Experimental
conditions are key to obtain a clear spectrum that enables a more reliable
identification. A spectrum of inferior quality usually leads to too many
unknowns or, even worse, to misidentifications. CMM ranks the quality of a
spectrum considering the intensity of the signal in both MS and MS/MS
analysis, noise level, number of scans performed to acquire the spectrum,
number of samples analyzed (correspondence between different samples

provides more confidence to the fragments obtained), presence of more
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than one compound in the collision cell (arising from chromatographic co-
elution), crosstalk, and any spectrum contamination by ions present in the

collision cell but originating from previous scans (see Figure 8).

SPECTROMETRY '
abundance number of scans -

noise co-elution

Each score is normalized in the
critical aspects for the quality of MS/MS spectrum range [0,1]

Figure 8 Aspects measured by the CMM spectral quality controller and

pentagonal representation of the score of each aspect.

7.1.5 Restful API

All these services offered by CMM can be accessed through a REST
API, enabling users to include them in their data analysis and workflows.
Currently CMM is already integrated in the most cited metabolomic
database: HMDB. The HMDB users can perform MS?! searches with the
filters and the expert system provided by CMM and can obtain the scores
for the putative annotations calculated by CMM. The service can be used
with no need of accessing CMM webpage and it avoids the process of
learning a new environment. It is publicly accessible through the URL:
http://www.hmdb.ca/spectra/ms_cmm/search.

CMM is also accessible through an R package available in the
Comprehensive R Archive Network (CRAN) collection. The users with
experience in R can use all the CMM services through the package

https://rdrr.io/github/lzyacht/cmmr/. The R package has been developed by

Yaoxiang Li, a current collaborator of CMM.


http://www.hmdb.ca/spectra/ms_cmm/search
https://rdrr.io/github/lzyacht/cmmr/
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7.2 Global discussion

Untargeted Metabolomics is a promising research area for different
purposes. The idea of observing the biochemical changes without any
previous hypothesis is innovative and breaks with the classical paradigm,
consisting on observing a phenomenon to create hypotheses that are
subsequentially checked. Although the hypothesis-based approaches have
proved successful in many cases, it fails in some situations where lack of
knowledge prevents researchers from formulating the right prior
hypotheses, or where controlling the high number of variables interacting in
living organisms is not possible. Untargeted metabolomics opens the
investigation to unexpected findings. There are two main objectives in
untargeted metabolomics, that are compatible: i) finding biomarkers for a
given situation, pathology, treatment, etc and ii) generating a hypothesis

about the mechanisms altered in a defined physiopathological situation.

Untargeted metabolomics main challenge is the metabolite
identification and the subsequent biological interpretation, which depends
in a large extent on the metabolite identification. Increasing the metabolite
coverage will provide with a better picture of the processes concurring in
living organisms, and it will increase the chances to achieve the right

biological interpretation.

The metabolomic workflow can be improved by enhancing the
sample preparation and the data acquisition steps, therefore increasing the
data quality and easing the metabolite identification (analytical aspects). But
the metabolite identification itself can be improved by expanding the
metabolome completeness or developing more robust and reliable methods
to perform identification, using both computational and methodological
aspects. Currently, there are a high number of researchers working in this
field and providing different solutions to increase the metabolite coverage

from both analytical and computational sides.
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CMM utilizes analytical and nonanalytical data to process the matrix
of features obtained after the data processing, including chromatographic,
information, pathway information, and it plans to use taxonomy and ontology
information that it is already available in the integrated data sources. CMM
has novel functionality not present in other tools such as the application of
rules based on RT principles for the annotation of features obtained by MS?,
the identification of oxPCs using experimental knowledge or a spectra
quality controller to help focusing efforts on the features most likely to be
identified. While new tool updates and new tools are currently using filters
based on the RT of the compounds, CMM was the first tool to exploit this

information.

CMM has been conceived to overcome the current and future
challenges in the metabolite annotation and identification, and these
challenges may come from our laboratory, CEMBIO, or from other external
groups. When CMM was born in 2012, it was used mainly at CEMBIO, but
since then it has significantly expanded its user base. Figure 9 shows the
CMM monthly users since the beginning of CMM 2.0 in July 2016 until the
present (June 2019). It can be observed that the number of users keeps an
upward trend. During the last 6 months (2019), the average number of
monthly users is 264, being about 75% of them from outside Spain. These
users on average have spent over 15 minutes using CMM and have seen
8.5 pages per session. In a traditional website, such as an online
newspaper, users usually spend on average between 1 or 2 minutes on the
web, and see about 1.5 pages per session; i.e., CMM users are doing real
work with the tool. Analyzing this data, it can be concluded that CMM has
had a very good acceptance by the metabolomic community.

7.3 Future perspectives

Applying analytical and non-analytical information yields a more
reliable and less cumbersome approximation for metabolite identification

and annotation. As more information becomes available in public resources,
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more opportunities to exploit it can be developed, and a higher confidence

level can be reached for the putative annotations.

Regarding analytical information, currently in CMM there is a lack of
information about CCS. The CCS is a promising technique to distinguish
between isomers. There is also limited information about MT of compounds
using CE-ESI-MS. This experimental information can provide a better
support for the identification of compounds analyzed under this technique.
Concerning non-analytical information, we consider that the exploiting of the
taxonomy information of the compounds during the identification process,
such as the information about endogenous or exogenous compounds can

be substantively extended.

CMM metabolite identification can be improved in two main ways:
providing general methods for supporting the identification regardless the
analytical set up used and creating specific methods to improve the
precision of the metabolite identification when using a concrete set up or
technique. The creation of such specific services is a promising strategy for
already well-established analytical methods. We plan to create a service for
the metabolite identification using CE-ESI-MS and exploiting the efficient
mobility and the relative migration time regarding a specific background

electrolyte.

CMM has been already integrated into HMDB. However, we plan to
integrate it into existing workflow tools such as Workflow4Metabolomics,
KNIME or Taverna. Workflow4Metabolomics is particularly interesting
because it provides data repositories and processing services for all the
stages of the metabolomics workflow. They believe in the idea of providing
a single interface to use all the necessary tools during all these metabolomic
workflow stages. We fully agree with the idea that a single interface to use

a set of different tools will be appreciated by the researchers.

CMM was born to fulfill the CEMBIO needs, but it has grown with

feedback of internal and external users that continuously provide new ideas
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to improve the tool. Some of the users that have provided feedback come
from Canada, the United States, Colombia, Brazil, Poland or United
Kingdom. We encourage the community continue providing feedback and
ideas about how to improve CMM, that, without doubt, shall be extremely

valuable to guide the future development of CMM.
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