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A B S T R A C T

More than 50 years after anthelmintic resistance was first identified, its prevalence and impact on the animal
production industry continues to increase across the world. The term “anthelmintic resistance” (AR) can be
briefly defined as the reduction in efficacy of a certain dose of anthelmintic drugs (AH) in eliminating the pres-
ence of a parasite population that was previously susceptible. The main aim of this study is to examine an-
thelmintic resistance in domestic herbivores. There are numerous factors playing a role in the development of
AR, but the most important is livestock management. The price of AH and the need to treat a high number of ani-
mals mean that farmers face significant costs in this regard, yet, since 1981, little progress has been made in the
discovery of new molecules and the time and cost required to bring a new AH to market has increased dramati-
cally in recent decades. Furthermore, resistance has also emerged for new AH, such as monepantel or derquantel.
Consequently, ruminant parasitism cannot be controlled solely by using synthetic chemicals. A change in ap-
proach is needed, using a range of preventive measures in order to achieve a sustainable control programme. The
use of nematophagous fungi or of plant extracts rich in compounds with anthelmintic properties, such as ter-
penes, condensed tannins, or flavonoids, represent potential alternatives. Nevertheless, although new ap-
proaches are showing promising results, there is still much to do. More research focused on the control of AR is
needed.

1. Introduction

Gastrointestinal nematodes (GINs) or “roundworms” are very com-
mon parasitic helminths in herbivores, especially ruminants and horses,
which are both affected by a range of strongyle parasites, such as Tri-
chostrongylus axei. GIN parasitosis has a significant health and economic
impact on both industrialized and developing countries (Matthews et
al., 2016). In small ruminant livestock, GIN cause productive losses and
a deterioration in the animal's general state of health, with signs of diar-
rhoea, anaemia, and anorexia. In cattle, the effects are less serious, but
include possible growth retardation and a variable impact on milk pro-
duction (Raue et al., 2017). In humans, known ruminant parasites such
as Trichostrogylus spp. or Ostertagia spp., have been reported in humans
in European, Asian and African countries (Fuseini et al., 2009; Sato et
al., 2011; Lattes et al., 2011; Gholami et al., 2015; Buonfrate et al.,

2017; Karshima et al., 2018; Terefe et al., 2019). In tropical and sub-
tropical countries, GIN parasitosis represents a major human health
problem, with possible outcomes ranging from asymptomatic infection
to death, and its presence has been related to other infectious patholo-
gies in humans, such as tuberculosis or HIV (Pampiglione et al., 1987;
Glickman et al., 1999; Adams et al., 2005).

The main anthelmintic drugs used – benzimidazoles (BZs), imida-
zothiazoles (IMs) and macrocyclic lactones (MLs) – were initially very
effective, so their use spread rapidly (Kaplan 2020). This large-scale use
has led to the emergence of resistance to these drugs, with the first cases
of resistance being reported in sheep in 1964 (Drudge et al., 1964) with
the first wide-ranging review of anthelmintic resistance (AR) in live-
stock coming some years later (Prichard et al., 1980). Despite attempts
to optimize the efficacy of anthelmintics, over the last 20 years AR has
increased rapidly, making helminth control a serious worldwide prob-
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lem (Kaplan and Vidyashankar 2012; Lanusse et al., 2018). Currently,
AR affects all anthelminthic drugs, especially BZ (Traversa and von
Samson-Himmelstjerna, 2016) and multidrug resistant has been re-
ported in different European countries (Jackson et al., 1992; Sargison et
al., 2001; Álvarez-Sánchez et al., 2006; Traversa et al., 2007; Höglund
et al., 2009; Scheuerle et al., 2009; Geurden et al., 2014).

The increase in AR, the financial losses it causes for livestock farm-
ers, and the possible zoonoses that may also result mean that research
on alternative treatments is needed. To date, no alternative treatment
to anthelmintic drugs possesses proven effectiveness. This review exam-
ines the causes of AR and the latest alternative treatments reported in
the literature.

2. Causes of AR

AR can be defined as “parasite survival to treatment and pass on re-
sistance-associated genes to their offspring” (Sangster et al., 2018). Re-
sistant species are, a priori, morphologically non-differentiable from
non-resistant species and AR must be distinguished from therapeutic
failures in which the persistence of parasite is due to inappropriate ad-
ministration of treatment (Woodgate et al., 2017). In the initial phase of
AR, the number of resistant parasites within a population is low. Due to
continuous exposure to the same or similar AH, an intermediate phase
ensues, and the frequency of resistant heterozygous individuals within
the population increases. Finally, the intensity of selection pressure in-
tensity causes resistance to become widespread (Sutherst and Comins
1979). Therefore, AR is a heritable trait and rarely reversible, making
detection and prevention essential (Prichard et al., 1980).

2.1. Genetic factors

Nematodes have genetic and biological parameters that facilitate
the emergence of AR, such as short life cycles, high rates of reproduc-
tion, high speed to evolution and large populations. Consequently,
these parasites present exceptional genetic diversity, facilitating the ap-
pearance of genetic mutations which can reduce their susceptibility to
AH (Anderson et al., 1998). Concretely, mutations in the isotypes 1 and
2 β-tubulin gene (F200Y, E198A, E198L, F167Y and F200Y) determine
the resistance of BZs for many GIN species of ruminants (Kwa et al.,
1993; Avramenko et al., 2015; Baltrušis et al., 2020). Genotyping stud-
ies in BZ-resistant strain of H. contortus isolated from sheep and goat
presented 26% resistant alleles in the β-tubulin codon, suggesting a po-
tential underestimation of low-levels of resistance (Königová et al.,
2021). In the group of IMs, several candidate genetic markers for resis-
tance are known and resistance has been demonstrated in studies with
Caenorhabditis elegans (Fleming et al., 1997; Culetto et al., 2004; Towers
et al., 2005). Orthologues of some of these genes, as Cel-unc-38, Cel-
unc-63, Cel-unc-29, Cel-lev-1 and Cel-unc-8 have been found in differ-
ent species of GIN (Neveu et al., 2010). Moreover, the presence of the
truncated Hco-acr-8 transcript has been related to levamisole resistant
phenotype in H. contortus (Williamson et al., 2011; Sarai et al., 2013;
Barrère et al., 2014; Kotze et al., 2020). More studies will be necessary
to verify if this deletion confers resistance to other IMs and if it is pre-
sent in other GIN species. Resistance against MLs has been deeply inves-
tigated, mainly in the species H. contortus. Most of the studies are based
on the candidate gene strategy. So far, a quantitative trait loci (QTL)
has been related to ivermectin resistance in H. contortus chromosome V
(Doyle et al. 2019, 2020; Redman et al., 2019).

2.2. Drug factors

Inappropriate use of AH, such as incorrect concentrations or the ad-
ministration of broad spectrum AH, has also been reported as a frequent
cause of AR development by FAO (FAO 2004, p. 2). Certain AH drugs
present a prolonged elimination curve, maintaining the selection pres-

sure over time and, therefore, favouring the selection of alleles which
confer AR in GN populations (Vercruysse and Dorny 1991; Woodgate et
al., 2017).

2.3. Management factors

Livestock management is probably the most important contributory
factor to the appearance of AR, particularly with regard to widespread
and excessive use of AH in small ruminants or increases in treatment
frequency (Traversa and von Samson-Himmelstjerna 2016; Woodgate
et al., 2017; Williams et al., 2021). Two examples of the wayward use of
AH concern underdosing: dose calculation is often based on the average
weight of individuals in a herd, with larger animals thus receiving a low
dose; or goats may receive doses on the basis of calculations undertaken
for sheep, but the higher metabolic activity of goats means that they re-
quire a higher AH dose (Leathwick et al. 2008, 2012; Woodgate et al.,
2017; Babják et al., 2018). Furthermore, animals of different origins of-
ten harbour cohorts of parasites with different genetic backgrounds,
and if they are carriers of resistant alleles, these can be transmitted to
parasites indigenous to the herd. Therefore, quarantine is essential to
reduce AR (Fleming et al., 2006; Shalaby 2013).

2.4. Other factors

There are further factors which may facilitate the emergence of AR.
Certain climatic conditions may make the establishment of sustainable
methods for parasite control more difficult. For example, a high para-
site load during the wet season requires the most effective AH groups to
be employed to avoid severe parasitosis, but this may contribute to an
increase in AR (French 2018; Kaplan 2020).

Recently, Kaplan (2020) has published a review with a series of
management recommendations to avoid the increase of AR in herds.

3. Anthelmintic resistance in the world

3.1. Small ruminants

Anthelmintic-resistant GIN have been reported in sheep and goats in
different countries around the world, with Brazil, Argentina, USA, Aus-
tralia, New Zealand and South Africa showing particularly high rates of
AR (Overend et al., 1994; Leathwick et al., 2001; Schnyder et al., 2005;
Pomroy 2006; Cringoli et al., 2007; Ahmed 2010; Cristel et al., 2017;
Oliveira et al., 2017; Hodgkinson et al., 2019). These data suggest that
the most widely used drugs (BZs, IMs and MLs) are frequently ineffec-
tive, with widespread multiple anthelmintic resistance (MAR) and even
resistance against more recently developed molecules, such as mon-
epantel and derquantel (Kaminsky et al., 2008). Haemonchus cortortus is
the most resistant GIN, although there are also resistant strains of
Teladorsagia spp. and Trichostrongylus spp. across different continents,
including Asia (Tsotetsi et al., 2013; Sutherland 2015; Han et al., 2017).
In Europe, studies show a lower prevalence of AR than in other regions
of the world, although resistance against BZs and MLs has been re-
ported in most European countries (Traversa and von Samson-
Himmelstjerna 2016).

Although most ARs seem to be found in sheep, some studies have
also observed it in other species such as goats (Holm et al., 2014; Singh
et al., 2017; Babják et al., 2018; Mickiewicz et al., 2019).

3.2. Cattle

AR in cattle has developed more slowly than in small ruminants.
This fact seems to be a consequence of a higher frequency of deworm-
ing and other handling factors in small ruminants, such as frequent in-
corporation of animals into the flock, semi-intensive farming systems,
whole-flock treatment lack of the dose-and-move practice or an-
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thelmintic rotation after each application, among others (Niciura et al.,
2012). However, in recent years the increase in the prevalence and dis-
tribution of AR has accelerated in all species. The major increase of AR
in Ostertagia spp. is a concern for veterinary clinicians, as they represent
an important pathogen in bovids, causing serious production losses and
zoonoses (Gasbarre et al., 2009; Edmonds et al., 2010). In the USA, Aus-
tralia, and New Zealand, ARs are common in pathogenic GIN such as
Cooperia spp., Ostertagia ostertagi and Haemonchus spp. In the USA more
than 90% of farms have had ML-resistant Cooperia spp. (Kaplan 2020)
in the last five years, and Waghorn et al. (2006) reported AR in 94% of
farms in New Zealand.

In Europe, ARs for ML have been found in H. contortus, Cooperia spp.
and O. ostertagi in countries such as Germany, France and Italy
(Geurden et al., 2014).

3.3. Horses

The most common GIN in horses are Strongylus vulgaris and Paras-
caris equorum (Reinemeyer and Nielsen 2009) and they can cause a poor
body condition, a distended abdomen, retarded growth, weakness, and
poor digestion and malabsorption (Slocombe 1985). As with small ru-
minants and cows, digestive nematodes in horses have developed AR to
the main drugs in use, such as BZs or MLs (Geurden et al., 2013; Wolf et
al., 2014; Saes et al., 2016). Although less common than in ruminants,
resistance in horses has been reported in countries such as the USA,
Cuba, New Zealand and Germany (Scott et al., 2015; Salas-Romero et
al., 2018; Nielsen et al., 2018).

4. Possible solutions and alternative treatments

Despite the consolidation of the animal health industry, the exten-
sive research undertaken into AR does not seem to have yielded results
in practice (Vande Velde et al., 2018). New molecules, such as mon-
epantel (Zolvix®, Novartis Animal Health) and derquantel (Startect®,
Zoetis), have been brought to market, with high manufacturing costs,
and yet AR to these new drugs have already been reported in sheep in
Australia, UK, Netherlands and France (Van den Brom et al., 2015;
Bartley et al., 2015; Sales and Love 2016; Niciura et al., 2019). More-
over, the later emergence of AR in cattle and horses indicates that AR
prevention measures are not being used appropriately (Kenyon and
Jackson 2012; (Charlier, 2014; Verschave, 2014). Other formulations
have been recently tested in vitro showing promising results, for exam-
ple aminoalcohol and diamine derivatives (Valderas-García et al.,
2021). However, the later emergence of AR in cattle and horses indi-
cates that prevention measures are not being used appropriately
(Hodgkinson et al., 2019; Kaplan 2020). Thus, a change in strategy is
needed involving all stakeholders to bring the problem under control
and the necessary openness to the adoption of alternative AR-
prevention measures already exists (Takeuchi-Storm et al., 2019).

Traditional solutions, such as reducing selection pressure (by keep-
ing a part of the herd untreated in “refugia”, or the simultaneous use of
different groups of AHs), reducing larval density in pastures by reduc-
ing the number of animals, or through mixed pastures of sheep and
cows, do not seem to be effective. However, other host-focused solu-
tions, such as improved feeding, have been tested with relatively good
results (Burke and Miller 2020). The development of vaccines could be
a long-term solution, and research is taking place both into vaccines
themselves and on achieving a better understanding of the different im-
mune responses of GIN (Zhan et al., 2014; Traversa and von Samson-
Himmelstjerna 2016; Albuquerque et al., 2019).

The best long-term solutions for AR seem to be genetic selection of
animals which are resistant to GIN infection and the use of alternative
AH treatments. A number of genetic selection programmes have been
carried out, with promising results (Albers et al., 1987; Windon 1990;
Bisset et al., 2001; Vanimisetti et al., 2004b, a). Molecular studies have

also been carried out to determine how resistance to GIN infection is
generated and this can be used to accelerate the results of genetic selec-
tion (McManus et al., 2014; McRae et al., 2014). Recently, Estrada-
Reyes et al. (2019) discovered a large number of single nucleotide poly-
morphisms (SPNs) within 7 genes, in sheep and goats, related to resis-
tance to infection by H. contortus. This means that resistance to infec-
tion is polygenic, and so selection results will be slow.

Regarding alternative treatments, despite the fact that natural for-
mulations are rarely as effective as synthetic AH (Castagna et al., 2019),
phytotherapy remains an interesting field of research, so its use in a
comprehensive parasitological control program may contribute to a
gradual reduction in AH use to a more acceptable level. Molecules such
as condensed tannins, terpenes, or flavonoids are secondary metabo-
lites with well-established anthelmintic properties and they are increas-
ingly important for helminth control in ruminants (Burke and Miller
2020).

5. Phytotherapy

5.1. Condensed tannins

Condensed tannins, or proanthocyanidins, are phenolic polymers
synthesized by many plants – such as Lespedeza cuneata, Onobrychis vic-
cifolia, Hedysarum coronarium, Lotus pedunculatus and L. corniculatus –
and they possess proven anthelmintic effects in small ruminants
(Hagerman and Butler 1981; Hoste et al., 2012). These molecules can
have a directly anthelmintic effect, or they may act indirectly, by im-
proving the nutritional status and immune response of the host
(Lanusse et al., 2018). Anthelmintic effects in sheep have been demon-
strated in vitro and in vivo in studies focusing on different GINs, such as
Haemonchus contortus and Strongyloides venezuelensis (Iqbal et al., 2007;
Cabardo and Portugaliza 2017; Soldera-Silva et al., 2018; Acevedo-
Ramírez et al., 2019; Carvalho et al., 2019). However, their effect in
other species such as goats or cows is not yet known. For example,
Kalmobé et al. (2017) reported an anthelmintic effect in vitro against
Onchocerca ochengi, a bovine GIN, but an in vivo effect has not been yet
been reported. Furthermore, the AH activity of condensed tannins can
be significantly enhanced by the addition of other molecules, such as
flavonoids (Klongsiriwet et al., 2015). Thus, although these biomole-
cules could open a new area of study in anthelmintic treatments, there
is still some work to be done before they can be widely used.

5.2. Terpenes

Terpenes are the most common plant-derived volatile components
in essential oils used in human and animal medicine, and they possess a
variety of different properties. The effects of different terpenes in hu-
man diseases, such as cancer or depressive disorders, are well known
(Kumar et al., 2019; Kis et al., 2019; Chong et al., 2019). In the case of
parasitic diseases, artemisinin (obtained from the herb Artemisia annua)
plays a critical role in malaria treatment (Talman et al., 2019). The an-
thelmintic properties both in vitro (Macedo et al., 2015; Katiki et al.,
2017) and in vivo (de Aquino Mesquita et al., 2013; Andre et al., 2016)
of different terpenes has been demonstrated, but their AH effect against
particular species of GIN is still unclear. For example, Peña-Espinoza et
al. (2016) observed an anthelmintic effect of a chicory (Cichorium inty-
bus) diet on O. ostertagi in cattle. However, no effect of this diet against
C. oncophora in vivo was found, although a certain effect was observed
in vitro (Peña-Espinoza et al., 2017). Recently, the anthelmintic effects
and molecular mechanisms of other terpenes, such as carvacrol, thymol
and eugenol, have been studied (Hernando et al., 2019). Terpenes inter-
act with P-glycoprotein (P-gp), a protein related to genetic resistance to
AH, and that may explain their AH effect (Prichard and Roulet 2007;
Eid et al., 2013), but, at this time, the specific mechanism of their an-
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thelmintic effect on different GNs remains unknown (Lanusse et al.,
2018).

5.3. Flavonoids

The structural diversity of flavonoids make the study of their an-
thelmintic properties difficult and the number of studies concerning the
anthelmintic effect of flavonoids is lower in comparison with those on
condensed tannins or terpenes (Spiegler et al., 2017). Recently,
Delgado-Núñez et al. (2020) identified the flavonoid isorhamnetin in
Prosopis laevigata and tested its AH effect on H. contortus. Another
flavonoid, quercetin, has demonstrated an in vivo AH effect on C. punc-
tata in cattle when used alone and in combination with other natural
compounds such as caffeic acid or the flavonoid rutin, and an in vitro ef-
fect was also found when combined with ivermectin on H. contortus
(Escareño-Díaz et al., 2019; Borges et al., 2020). Acacia farnesiana is a
shrub legume with a potent AH effect on H. contortus and it contains
flavonoids and other natural compounds (Zarza-Albarrán et al., 2020).
In some cases, the AH effect of these flavonoids seems to derive from
their influence on nitric oxide synthase activity (Chetia and Das 2018).
Nevertheless, the AH effect of flavonoids is difficult to demonstrate,
since many of the studies that have been carried out concern plant ex-
tracts that contain flavonoids and also other natural compounds
(Swargiary et al., 2016; Váradyová et al., 2018; Yadav et al., 2020;
Dkhil et al., 2020; Davuluri et al., 2020).

5.4. Other alternative natural molecules

Research has also been carried out on the AH effect of other natural
molecules. The macrolide elaiophylin has demonstrated an AH effect in
in vitro studies, but its effect on GIN remains to be determined (Gui et
al., 2019). Natural peroxides have shown AH activity in parasites such
as S. stercoralis and others, but not in GIN (Panic et al., 2014; Vil’ et al.,
2017). Surveys of other natural molecules also indicate an AH effect on
GIN. For example, cyclotide variants extracted from Viola odorata inhib-
ited larval development of H. contortus and T. colubriformis in an in vitro
study (Colgrave et al., 2008). Other alternative plant extracts have
proved to be ineffective. Burke et al. (2009) studied the AH activity of
garlic and papaya, and found no effect on blood packed cell volume and
faecal egg counts in goats. Matthews et al. (2016) reported no effect for
supplementing food with ginger or pumpkin seeds on faecal egg counts
in sheep and goats.

6. Biological control

The biological control of GINs can also be carried out using ne-
matophagous fungi (Jackson and Miller 2006; Healey et al., 2018;
Canhão-Dias et al., 2020). The mechanism consists of the trapping and
consumption of parasitic larvae in faeces by the fungi (Grønvold et al.,
1993). Various species of fungi have been tested and spores from Dud-
dingtonia flagrans seem to have the best ability to survive in gastroin-
testinal tract of ruminants and horses without a negative impact on the
environment (Saumell et al., 2016). In the USA, two formulations of D.
flagrans recently became commercially available: BioWorma® and Li-
vamol® (Burke and Miller 2020). Even though these biological control
methods work well, GIN control should be carried out by means of a
comprehensive programme instead of via a single method.

7. Conclusion

AR is a serious problem affecting small ruminants, cattle and horses.
Many years of use of anthelmintic drugs have generated great resis-
tance to them in GIN. Although sound herd management is essential,
this is not enough to combat GIN, making it necessary to carry out stud-
ies on alternatives to traditional drugs. New synthesized molecules do

not eliminate the problem of AR, as these new AH also produce resis-
tances. An approach to the problem must take in other perspectives,
such as genetic selection or new natural treatments and methods. The
genetic selection of animals resistant to GIN infection is a safe but slow
system to resolve the problem of AR, since genetic selection gives re-
sults after many generations. Given that the host species are non-
prolific and have long generation times, and that resistance to infection
is quantitative and, therefore, of a complex nature, other solutions must
also be sought. Biological control using nematophagous fungi seems to
be working well in the USA, but a combined approach is recommended.
Some natural anthelmintic molecules have shown efficacy, but further
studies are needed to verify this efficacy in different species of GIN and
also in different hosts.
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