
animals

Article

A Modified Approach for the Ultrasound-Guided Quadratus
Lumborum Block in Dogs: A Cadaveric Study

Jaime Viscasillas 1,*, Jose Terrado 1 , Reyes Marti-Scharfhausen 1, Diego Castiñeiras 2, Vicente Esteve 1,
Niamh Clancy 3 and Jose Ignacio Redondo 1

����������
�������

Citation: Viscasillas, J.; Terrado, J.;

Marti-Scharfhausen, R.; Castiñeiras, D.;

Esteve, V.; Clancy, N.; Redondo, J.I.

A Modified Approach for the

Ultrasound-Guided Quadratus

Lumborum Block in Dogs: A

Cadaveric Study. Animals 2021, 11,

2945. https://doi.org/10.3390/

ani11102945

Academic Editors: Angela Briganti

and Hamaseh Tayari

Received: 2 September 2021

Accepted: 6 October 2021

Published: 12 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Departamento Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU,
CEU Universities, 46115 Valencia, Spain; jterrado@uchceu.es (J.T.); maria.marti29@uchceu.es (R.M.-S.);
vicente.esteve@uchceu.es (V.E.); nacho@uchceu.es (J.I.R.)

2 Willows Veterinary Centre & Referral Service, Highlands Rd, Shirley, Solihull B90 4NH, UK;
dfcastineiras@hotmail.com

3 The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK; nclancy@rvc.ac.uk
* Correspondence: jaime.viscasillas@uchceu.es

Simple Summary: This study describes a modified approach for the ultrasound-guided quadratus
lumborum block in dogs. Previous studies carried out in canine cadavers describe the needle insertion
following a ventro-lateral to dorso-medial approach. Our modified technique follows a dorso-lateral
to ventro-medial direction. We aimed to have the same success with this approach as previous
studies in dogs but to minimise the potential complications. After performing the modified technique
bilaterally in nine canine cadavers and administering contrast, we assessed the contrast distribution
with computed tomography (CT) and dissection. Potential complications were also assessed. Our
dissection results showed similar distribution to previous studies, although CT results showed a
more caudal contrast spreading. No contrast was found in the abdomen or epidural space. This
study shows that our modified approach is safe and has at least the same distribution as the previous
studies published in dogs.

Abstract: Ultrasound-guided quadratus lumborum block (QLB) is a locoregional technique described
in canine cadavers. The aim of this study was to assess a modified approach to QLB to minimise
potential complications such as abdominal organ puncture. Nine canine cadavers were included
and were positioned in lateral recumbency. An ultrasound-guided QLB was performed on each
side. The probe was placed in the transverse position over the lumbar muscles just caudal to the
last rib, and a needle was advanced in-plane from a dorso-lateral to a ventro-medial. A volume of
0.2 mL kg−1 of a mixture of iomeprol and methylene blue was injected. Computed tomography (CT)
and dissection were performed to evaluate the spreading. Success was defined as staining of the
nerve with a length of more than 0.6 cm. Potential complications such as intra-abdominal, epidural,
or intravascular spreading of the mixture were also assessed. The CT images showed a T13 to L7
vertebra distribution, with a median of 5 (3–6). Dissection showed staining of the nerves from T13 to
L4, with a median of 3 (2–5). No complications were found. This modified approach to QLB is safe
and shows similar results to the previous studies in canine carcass.

Keywords: canine; quadratus lumborum; regional anaesthesia; ultrasound

1. Introduction

The ultrasound (US)-guided quadratus lumborum block (QLB) is a regional anaesthe-
sia technique first described in humans by Blanco et al. as a posterior (dorsal) transversus
abdominis plane (TAP) block [1]. Due to the spread of the local anaesthetic (LA) into
quadratus lumborum (QL) plane and ventral thoracic paravertebral space however, QL
block (QLB) is used to provide superior abdominal pain control to TAP block as wall
analgesia and visceral analgesia are both provided [2,3]. In human anaesthesia, the QLB
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has been described for perioperative pain management in patients undergoing abdomi-
nal [4–6] and pelvic limb surgery [7]. Therefore, this technique is a potential alternative to
neuraxial anaesthesia in both scenarios. Since Blanco et al. [1] first described the technique
to perform the QLB, in human anaesthesia, different approaches to the QL, mainly in terms
of the location of the tip of the needle and the consequent pattern of LA distribution, have
been developed [8]

The main differences among them are the location of the tip of the needle and the
distribution of local anaesthetic. To the authors’ knowledge, none of these techniques have
been demonstrated to provide better analgesia or block a more extensive area.

In dogs, the quadratus lumborum (QL) muscle lies directly ventral to the bodies of the
last three thoracic and all the lumbar vertebrae. It also lies ventral to the proximal portions
of the last two ribs and the transverse processes of the lumbar vertebrae. The area caudal
to the first lumbar vertebra is covered ventrally by the psoas minor muscle and caudal
to the fourth lumbar vertebra by the major muscle. It ends on the medial surface of the
wing of the ilium between the articular surface and the cranial ventral iliac spine. The
lateral portion of the muscle overhangs the transverse processes of the lumbar vertebrae
so that it also comes to lie on the ventral surface of the tendon of origin of the transversus
abdominis muscle [9]. The last thoracic and the first three lumbar nerve roots exit from the
vertebral foramen and lie in the subserous endothoracic fascia at its origin. These nerves
run between the QL and psoas muscles then finally pass through the aponeurosis of origin
of the transversus abdominis muscle. Therefore, the injection of local anaesthetic between
the QL and psoas muscles would theoretically block these nerves.

In the veterinary literature, two cadaveric studies have been published in dogs de-
scribing different approaches to carry out the QLB. In both, the administration of contrast
between the QL and psoas muscles [10] and lateral to the QL [11] showed consistent
staining of the nerves and sympathetic trunk from T13 to L3. In both studies, the needle
was advanced from the abdominal wall to reach the injection point. Therefore, the needle
passes through the obliquus externus and internus abdominis muscles; the aponeurosis
of insertion of the transversus abdominis muscle; and, at this point, either the tip of the
needle is placed lateral to the QL muscle, or it passes through the QL muscle to reach
the fascia between QL and psoas muscles. One recognised potential complication of QLB
in human anaesthesia is the puncture of abdominal organs [8,12] due to the proximity
kidneys, spleen, or even liver to the QL and psoas muscles. To author’s knowledge, this
complication has not been reported in dogs, however, since the abdominal wall is very thin
in some dogs, and needle handling might be complex in some animals.

The aim of this study was to develop a dorsal approach to the QLB and describe the
sonoanatomy to perform the QLB, where the needle is introduced through the epaxial
muscles and advanced until the tip of the needle is placed between QL and psoas muscle.

In addition, the spreading with the pattern of a mixture of dye and radiological
contrast distribution obtained was evaluated by anatomical dissections and advance imag-
ing technique.

Our hypotheses are this modified approach will have an equivalent pattern of dis-
tribution to previous canine studies [10,11] and that undesirable locations of the contrast,
such as epidural space or abdomen, will not be found.

2. Materials and Methods

This study was performed at the Universidad CEU Cardenal Herrera in Valencia
(Spain), following the European (2010/63/UE) and Spanish (RD 53/2013) laws regarding
experimentation on animals. Nine thawed canine carcasses, euthanised for reasons not
related to this study, were included. This number was based on previous cadaveric studies
published in dogs [10]. The carcasses were kept in the freezer between two weeks and one
month before the experiment was performed. The carcasses were left two days at room
temperature before the experiment was performed.
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All carcasses were placed in lateral recumbency to perform the injections, and the
QLB technique was carried out on the uppermost side. The abdomen of the carcasses was
clipped, and ultrasound gel was applied. The technique was carried out twice in each
carcass with one injection per side. The order of these injections was randomised using
the free software www.randomize.org with both the right- and left-sided injections being
administered the same way. Only one anaesthetist performed all the injections using a
22-gauge, 88 mm, or 22-gauge, 35 mm Quincke needle (Spinocan; BBraun, Melsungen,
Germany), depending on the body weight of the carcass. The longer needles were used
for dogs larger than 10 kg. A linear 13–6 MHz ultrasound probe (Sonosite HFL38/13-6
for MicroMaxx Ultrasound Probe; Sonosite, Bothell, WA, USA) attached to an ultrasound
machine (Edge II; Sonosite, WA, USA) was used on all the carcasses. The needle was
connected to an extension set (Discofix C; BBraun) and a syringe (Omnifix; BBraun). A
total volume of 0.2 mL kg−1 of a 50:50 mixture of iomeprol (Iomeron; Bracco Imaging,
Milan, Italy) and methylene blue (methylthioninium chloride injection 1% w/v; Martindale
Pharmaceuticals, Romford, UK) was administered in each injection.

The US-guided QLB technique was performed in the following manner. The US
probe was placed in a transverse plane over the lumbar muscles just caudal to the last rib
using a paramedian sagittal oblique (subcostal) approach described by Elsharkawy [13] in
humans. Once in position, the probe was rotated slightly cranial to visualise the following
anatomical structures: quadratus lumborum muscle, psoas muscle, lateral aspect of the
body of the first lumbar vertebrae, and the transverse process of the first lumbar vertebrae
(Figure 1). The needle was inserted in-plane and advanced at a 45º angle from dorsolateral
to ventromedial until its tip was placed between the quadratus lumborum and psoas
muscles (Figure 2). At this location, the mixture was injected into the fascial plane. A
volume of less than 1 mL of saline was first injected to confirm the correct position of the
tip of the needle. The injection was considered as correct when hydrodissection of the
quadratus and psoas muscles together with the ventral movement of the thoracolumbar
fascia was noted (Figure 3). If this pattern was not visualised, the needle was redirected
until this hydrodissection was observed.

The CT images were taken five minutes after the anaesthetist had performed both
injections in each animal. The scanner employed was a Brivo CT 385 (GE Hangwei Medical
Systems Co., Ltd.; Beijing, China) set at 120 Kv, 199 mA, and 1.25 mm slide thickness
parameters. A 3D reconstruction of the CT images was performed using Horos DICOM
Medical Image Viewer (Horos Project, 2015), and a veterinary radiologist assessed the
images. The parameters evaluated on CT images were the extension and pattern of contrast
distribution based on the number of vertebrae.

After obtaining the CT images, we moved the carcasses to the post-mortem room,
where another investigator, different from the previous one, performed a dissection, un-
aware of the CT images. An incision was made through the linea alba into the abdominal
cavity; the digestive tract, spleen, and pancreas were eliminated en bloc by sectioning
at the cardiac and rectal levels. Subsequently, the parietal peritoneum was incised, and
the ventral roots of the lumbar nerves were dissected. This was performed by separating
the two muscle segments of the quadratus lumborum (to expose L1) or by dissecting the
bellies of the psoas major and quadratus lumborum to dissect the ventral branches of the
rest of the lumbar nerves. The parameter evaluated on dissection was the staining of T13,
L1, L2, L3, L4, L5, L6, and L7 nerves. Success was defined as staining of the nerve with a
length of more than 0.6 cm [14]. Potential complications such as distribution of mixture into
the epidural space, abdominal cavity, or intravascular space were assessed by CT images
and dissection.

The data were analysed using R 3.4.0, a free software environment for statistical
computing and graphics (R Core Team, 2017). They were reported as numbers of cases
(n/n) and percentage (%). Median (range) was also calculated. A Fisher’s exact test was
used to compare the number of observations for the stained nerves and the injection spread
between sides (right and left). A p-value < 0.05 was considered statistically significant.

www.randomize.org
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Figure 1. Transverse view of a canine abdominal MRI at the level of the first lumbar vertebrae (L1) 
to illustrate the anatomy. The picture shows the relevant anatomy related to the quadratus lumbo-
rum block (QLB) and the different approaches described in the human literature to perform the 
QLB. PM, psoas muscle; QLM, quadratus lumborum muscle; TP, transverse process; VB, vertebral 
body; S, spine; EM, epaxial muscles; TAM, transversus abdominis muscle; VC, vena cava; SI, small 
intestine. The orange line is the fascia transversalis. The light blue line is the anterior thoracolumbar 
fascia. The dark blue line is the middle thoracolumbar fascia (based on three-layered model of the 
thoracolumbar fascia [7]). (1) Point of injection of the QLB1 technique; (2) point of injection of the 
QLB2 technique; (3) point of injection of the QL3 technique. Picture was taken and modified by the 
author without any copyright dispute 

Figure 1. Transverse view of a canine abdominal MRI at the level of the first lumbar vertebrae (L1) to
illustrate the anatomy. The picture shows the relevant anatomy related to the quadratus lumborum
block (QLB) and the different approaches described in the human literature to perform the QLB. PM,
psoas muscle; QLM, quadratus lumborum muscle; TP, transverse process; VB, vertebral body; S,
spine; EM, epaxial muscles; TAM, transversus abdominis muscle; VC, vena cava; SI, small intestine.
The orange line is the fascia transversalis. The light blue line is the anterior thoracolumbar fascia. The
dark blue line is the middle thoracolumbar fascia (based on three-layered model of the thoracolumbar
fascia [7]). (1) Point of injection of the QLB1 technique; (2) point of injection of the QLB2 technique;
(3) point of injection of the QL3 technique. Picture was taken and modified by the author without
any copyright dispute.
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Figure 2. (A) Showing the positioning of the ultrasound probe and needle using the in-plane tech-
nique. The ultrasound probe was positioned in the lateral aspect of the lumbar muscles, caudal to 
the last rib, to perform the quadratus lumborum block. Cr, cranial; Cd, caudal; D, dorsal; V, ventral. 
(B) Ultrasound image showing the landmarks of the QLB. TP (yellow), transverse process; VB (yel-
low), vertebral body; QLM (blue), quadratus lumborum muscle; PM (orange), psoas muscle; LA 
(green), local anaesthetic between quadratus lumborum and psoas muscle. 

Figure 2. (A) Showing the positioning of the ultrasound probe and needle using the in-plane
technique. The ultrasound probe was positioned in the lateral aspect of the lumbar muscles, caudal
to the last rib, to perform the quadratus lumborum block. Cr, cranial; Cd, caudal; D, dorsal; V,
ventral. (B) Ultrasound image showing the landmarks of the QLB. TP (yellow), transverse process;
VB (yellow), vertebral body; QLM (blue), quadratus lumborum muscle; PM (orange), psoas muscle;
LA (green), local anaesthetic between quadratus lumborum and psoas muscle.
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Figure 3. Ultrasound image obtained after injection in a canine carcass during quadratus lumborum 
block (QLB). The picture shows hydrodissection of the quadratus lumburom muscle from the psoas 
muscle and the thoracolumbar fascia, illustrating that the QLB block was successful. TP, transverse 
process of L2 vertebrae; VB, vertebral body of L2 vertebrae; QLM, quadratus lumborum muscle; 
PM, psoas muscle; LA, mixture of contrasts; TLF, thoracolumbar fascia. 
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Figure 3. Ultrasound image obtained after injection in a canine carcass during quadratus lumborum
block (QLB). The picture shows hydrodissection of the quadratus lumburom muscle from the psoas
muscle and the thoracolumbar fascia, illustrating that the QLB block was successful. TP, transverse
process of L2 vertebrae; VB, vertebral body of L2 vertebrae; QLM, quadratus lumborum muscle;
PM, psoas muscle; LA, mixture of contrasts; TLF, thoracolumbar fascia.

3. Results

Canine carcasses used in our study belonged to different breeds (one Yorkshire terrier,
one Siberian husky, one German shepherd dog, and six crossbreeds) and body weights, with
a median of 15 kg (2.7–45 kg). Body condition score was 4 (3–7) according to the AAHA
nutritional assessment guidelines for dogs and cats [15]. All the animals were adult dogs.

The results of the distribution of the mixture in the CT images and dissection are
summarised in Table 1 and Figure 4. On the basis of the CT images, we found that
4/18 (22.3%) injections showed a linear and lateralised pattern (Figure 5). Therefore, the
mixture was visualised from the thoracolumbar fascia and moved towards the transversus
abdominis plane. Conversely, 13/18 (72.3%) injections followed a linear pattern, and
the mixture was always found between the quadratus lumborum and psoas muscle. No
statistical differences were found between the distribution pattern or whatever side was
used to spread the mixture, neither in CT images nor in dissection (p = 1).

Table 1. The spreading of a 50:50 iohexol/methylene blue mixture after application of the quadratus lumborum block (QLB)
in nine canine carcasses bilaterally (18 injections). These results are based upon CT images and dissection and are shown
as number (n/n) and percentage (%). The CT images assessed spreading around the vertebral bodies, while dissection
assessed the number of stained ventral branches of the spinal nerves. M (median) represents the spreading of the mixture
and R (range) shows the minimum and maximum spread observed. C (complications) shows the complications found with
both methods of assessment.

T13 L1 L2 L3 L4 L5 L6 L7 M (R) C

CT 1/18
(5%)

12/18
(66%)

17/18
(94%)

18/18
(100%)

15/18
(83%)

11/18
(61%)

6/18
(33%)

2/18
(11%)

5
(3–6) none

Dissection 3/18
(17%)

14/18
(72%)

17/18
(95%)

17/18
(95%)

5/18
(28%) 0 0 0 3

(2–5) none



Animals 2021, 11, 2945 7 of 11
Animals 2021, 11, x FOR PEER REVIEW 8 of 12 
 

 

Figure 4. This table represents the difference in the extent of diffusion of the 50:50 iohexol/methylene 
blue mixture observed during CT versus dissection. The Y-axis of the graph represents the spread 
of the mixture from T13 to L7 using the red Xs to show the spread noted on the ventral branches of 
the nerve roots on dissection, while the blue line represents the distribution around the vertebral 
bodies seen on CT. The X-axis represents the 9 carcasses used in this study, comparing the left- and 
right-sided blocks. 

 
Figure 5. (A). 3D CT image of a carcasses showing a combined linear-lateral pattern of distribution 
of the mixture on the right and linear pattern on the left after performing the quadratus lumborum 
block. (B). Transverse view of CT image showing a lateral pattern on the right and linear pattern on 
the left. 

Only 1/18 (0.05%) injection was found inside the psoas muscle, for which both CT 
and dissection were confirmed. This injection was correlated with the low spreading of 
the mixture.  

Figure 4. This table represents the difference in the extent of diffusion of the 50:50 iohexol/methylene
blue mixture observed during CT versus dissection. The Y-axis of the graph represents the spread
of the mixture from T13 to L7 using the red Xs to show the spread noted on the ventral branches of
the nerve roots on dissection, while the blue line represents the distribution around the vertebral
bodies seen on CT. The X-axis represents the 9 carcasses used in this study, comparing the left- and
right-sided blocks.
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Figure 5. (A). 3D CT image of a carcasses showing a combined linear-lateral pattern of distribution
of the mixture on the right and linear pattern on the left after performing the quadratus lumborum
block. (B). Transverse view of CT image showing a lateral pattern on the right and linear pattern on
the left.

Only 1/18 (0.05%) injection was found inside the psoas muscle, for which both CT
and dissection were confirmed. This injection was correlated with the low spreading of
the mixture.

CT images showed 0/18 injections in unwanted locations such as inside the abdominal
cavity, epidural space, or intravascularly.
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4. Discussion

The dorsal US-guided approach to QLB described in this study appears to be a feasible
technique in dogs. All the injections but one were located between the QL and psoas
muscle, demonstrating that this technique can be easily reproduced in dogs. However, it is
essential to mention that visualisation of the fascia between both muscles was complex in
some carcasses, and the probe was angled in several positions until the operator achieved
an adequate visualisation of both anatomical structures. Interestingly, contrast was found
inside the psoas muscle in just one injection. This result might be related to the use of a
low volume of saline to confirm the correct location of the tip of the needle before contrast
administration. However, we cannot rule out that using thawed instead of fresh carcasses
or living specimens might have also had an impact on our results.

The pattern of distribution (linear +/− lateralised) found in our study could be
related to the injection point. This is compatible with the different approaches described
in human anaesthesia [16,17]. The QLB1 (or lateral approach) involves administering
the local anaesthetic inside the triangle formed by the lateral aspect of the QL muscle,
internal aspect of the transversus abdominins muscle, and the anterior thoracolumbar
fascia. This approach will produce a lateral distribution of the local anaesthetic. With the
QLB2 (or posterior approach), the needle is aimed at the dorsal aspect of the QL muscle, and
local anaesthetic is administered inside the middle thoracolumbar fascia. This approach
will produce a linear distribution dorsal to the QL muscle. The QLB3 (or transmuscular
approach) inserts a needle through the quadratus lumborum and injects local anaesthetic
between QL and the psoas muscles. This approach will separate both muscles and will
produce a linear and slightly lateral distribution since the anterior thoracolumbar fascia is in
direct contact with the ventral border of both muscles [16,18]. Finally, the QL intramuscular
approach involves advancing the needle tip until it penetrates the fascia and it is then
inserted into the QL muscle [2]. In our study, the QLB3 was utilised in all the cases, and
CT images showed a linear and slightly lateral distribution pattern compatible with the
QLB3 approach. It is still unclear as to which approach would be more advantageous
regarding the authors’ knowledge based on the human literature. There might be some
clinical differences since the QLB3 approach appears to spread more caudally but less
cranially than the other approaches [2]. Garbin et al. [10,11] found more cranial spreading
using a QLB1 versus QLB3 approach in their studies in dogs. However, clinical studies are
needed in veterinary medicine to confirm these results.

We found some differences between the results obtained with CT images in compari-
son with those from the dissection because they reveal different aspects of the technique.
Dissection showed which nerves were actually stained. Conversely, CT images indicated
the extension and distribution of the injection along with the vertebral bodies and there-
fore provided us with a better understanding of how the local anaesthetic might diffuse
once injected between both muscles. Therefore, the dissection and CT images obtained in
the current study provided valuable information about how the local anaesthetic might
distribute in living animals. However, it is crucial to consider the tissue differences in a
thawed carcass to a living specimen.

Our study’s results regarding the spreading of dye during the dissection are similar to
those reported in another canine study with the same injection point [9]. Therefore, our
modified approach to the QLB does not seem to affect the potential efficacy of the technique.

The CT images showed a caudal distribution of the contrast mixture starting from
the level of L2 in most cases and reaching L7 in some injections. However, no nerves
were stained during the dissection caudally to L4. Garbin et al. [9] studied the contrast
distribution with MRI in two carcasses after carrying out an US-guided QLB, but they did
not report the same caudal spreading. In their study, contrast ended up on L4/L5 while
12/18 (66%) reached at least L5 in our study. The reason for this difference could simply
be the higher number of carcasses we used in our study. On the contrary, although CT
images showed contrast starting from the level of L2, the dissection showed staining of the
nerves starting at T13 in 3/18 (16.7%) of the injections. This difference could be explained
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anatomically by the caudolateral direction the ventral roots of the thoracic and lumbar
nerves take when exiting the intervertebral foramen.

Our CT results showed a precise caudal distribution of the mixture in most cases,
with only one injection reaching the cranial part of the T13 vertebra. This finding is in
agreement with the results found by Carline et al. [13]; however, it is in contrast to the
cranial distribution obtained in other human cadaveric studies [19] or canine cadaveric
study [11], in which the contrast reached a more proximal area (T11). It is not clear why
this cranial distribution does not occur on the basis of canine anatomy. The QL muscle
reaches the 10th or 11th thoracic vertebrae in dogs; therefore, it should be possible for the
mixture to extend to that location. One potential explanation could be that the needle was
directed caudally in all cases, which might explain why the distribution was only in a
caudal direction since the needle trajectory may influence the spread and clinical effect of
the block [20]. Finally, another potential reason could be the volume administered in this
study. The volume used in our study was based on the one administered in the study by
Carline et al. [16]. Canine cadaveric studies have used between 0.15 and 0.3 mL kg−1. Other
authors have used up to 0.5 mL kg−1 of ropivacaine 2% on clinical cases in humans [20].
More studies are needed to evaluate the spreading of contrast with the needle facing
cranially and/or increasing the injection volume.

The CT images showed radiographic contrast distribution at the L4, L5, and L6 verte-
brae levels in 83%, 61%, and 33% of the injections, respectively. However, no methylene
blue was found upon dissection of those nerves. Our CT distribution findings agree with
some studies in human anaesthesia [16]. In a study conducted by Winker [21], a patient
was found to have slight femoral nerve deficits after a US-guided QLB was performed for
an abdominal procedure. Therefore, it is reasonable to think this technique might cause
caudal distribution in some cases and block the lumbar plexus. Some published work has
even shown the use of QLB as a new approach for the lumbar plexus block [6,7,21–23].
On the basis of the results of this study, we cannot provide a clear explanation about how
the local anaesthetic reaches these nerves once they are inside the psoas muscle. One
potential explanation could be the spreading of local anaesthetic into the epidural space,
although our results do not support this. Further studies with living specimens could help
us understand whether local anaesthetic can diffuse into the psoas muscle and block the
lumbar plexus.

The main advantage of the QLB versus TAP block is the addition of visceral analgesia;
however, the exact mechanism is still unknown. Some authors hypothesise that the thora-
columbar fascia has a high-density network of sympathetic fibres and mechanoreceptors
that might be responsible for the visceral analgesia [8,24,25]. On the other hand, other
authors suggest that local anaesthetic might spread to the celiac ganglion or sympathetic
chain, as previously described with a paravertebral block via the splanchnic nerves [26,27].
Unfortunately, our study cannot answer that question, and further studies are needed to
correlate the distribution of the local anaesthetic and extension of visceral analgesia.

Finally, potential complications were recorded neither during the dissection nor CT
images. Abdominal organ puncture (i.e., kidney) has been reported as a potential complica-
tion [8]. The authors believe that this scenario is less likely with this approach because the
needle is visualised in-plane all the time, and it must pass through all the epaxial muscles
and psoas or QL muscles to reach the abdomen. Therefore, the operator has more time to
notice the correct needle angle and can advance the needle slowly until the tip is between
QL and psoas muscles. Epidural injection/contamination has also been mentioned in the
literature [10,21]. Again, our modified approach advanced the needle from dorso-lateral to
ventro-medial. Therefore, the needle is moving away from the intervertebral foramen, and
the administration of the local anaesthetic is in the opposite direction. It is then difficult
to either advance the needle into the vertebral canal or spread the local anaesthetic to the
vertebral foramen.

Our study has some limitations. Only one volume of mixture was administered so we
cannot assess whether a higher volume would increase the cranial and caudal spreading.
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In addition, there is an absence of a comparison group where the approaches described by
Garbyn et al. [10,11] were performed. Therefore, although we did not found contrast in
undesirable locations, it is impossible to assess that the modified approach is safer. Finally,
the viscosity of the radiographic contrast is higher than local anaesthetics; therefore, more
spreading might be expected using just local anaesthetics. Marhofer et al. [15] reported a
wider distribution area for sensory blocks than expected according to MRI images obtained
after injecting a mixture of radiographic contrast and local anaesthetic. Therefore, to
evaluate the clinical effect of this block, we must assess the technique in living specimens
using a local anaesthetic solution.

5. Conclusions

The described modified US-guided QLB is a technique that can be performed in dogs.
This cadaveric study showed that the distribution of contrast is similar to the previous
described approaches in dogs, and therefore it is an alternative. However, further studies
are needed to determine the extent of the block in living animals.
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