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Abstract
Background: Asthma is a complex, multifactorial disease often linked with sensitiza-
tion to house dust mites (HDM). There is a subset of patients that does not respond 
to available treatments, who present a higher number of exacerbations and a worse 
quality of life. To understand the mechanisms of poor asthma control and disease 
severity, we aim to elucidate the metabolic and immunologic routes underlying this 
specific phenotype and the associated clinical features.
Methods: Eighty-seven patients with a clinical history of asthma were recruited 
and stratified in 4 groups according to their response to treatment: corticosteroid-
controlled (ICS), immunotherapy-controlled (IT), biologicals-controlled (BIO) or un-
controlled (UC). Serum samples were analysed by metabolomics and proteomics; and 
classifiers were built using machine-learning algorithms.
Results: Metabolomic analysis showed that ICS and UC groups cluster separately from 
one another and display the highest number of significantly different metabolites 
among all comparisons. Metabolite identification and pathway enrichment analysis 
highlighted increased levels of lysophospholipids related to inflammatory pathways 
in the UC patients. Likewise, 8 proteins were either upregulated (CCL13, ARG1, IL15 
and TNFRSF12A) or downregulated (sCD4, CCL19 and IFNγ) in UC patients com-
pared to ICS, suggesting a significant activation of T cells in these patients. Finally, 
the machine-learning model built including metabolomic and clinical data was able to 
classify the patients with an 87.5% accuracy.
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1  |  INTRODUC TION

Asthma is a heterogeneous disease characterized by chronic airway 
inflammation and a clinical history of respiratory symptoms such as 
wheeze, shortness of breath, chest tightness and cough that vary 
over time and in intensity, together with variable expiratory airflow 
limitation.1

Asthma can have multiple phenotypes and endotypes, depend-
ing on the clinical features, histopathology, genetics or response 
to treatment, along with other characteristics.2 We can distinguish 
between allergic, intrinsic, neutrophilic, aspirin-intolerant and ex-
tensive remodelling asthma,3 among others. Patients with allergic 
asthma are usually sensitized to house dust mites (HDM). In fact, IgE 
titres to HDM correlate with exacerbations in asthma.4

HDM are the most relevant inducers of allergic diseases world-
wide.5 HDM allergens include cysteine-proteases (Der p 1, Blo t 1) 
and chitin-associated proteins (Der p 23), involved in epithelial dis-
ruption and remodelling; proteins able to activate TLR4 (Der p 2, Eur 

m 2), and lipid-binding proteins (Der p 5, Der p 7 and Der p 21), linked 
with the establishment of the Th2 response.5 The Canary Islands in 
Spain is one of the regions in Europe with higher mite exposure levels 
and sensitization prevalence to HDM due to its almost tropical cli-
mate of high humidity and warm temperatures.6,7 These features are 
common with other high-exposure HDM areas like Singapore or New 
Zealand.5 Additionally, the exposome in the Canary Islands has been 
deeply studied8; and it is very stable along the island, which makes it 
a perfect model to minimize variability in the study.

Due to the complexity of asthma, effective treatment is also 
a challenge. The GINA guideline sets a step-by-step approach, in 
which treatment with increasing doses and add-on medications are 
given to patients. For allergic asthma, therapeutic strategies include 
corticosteroids, bronchodilators, immunotherapy and biological 
drugs (i.e., anti-IgE or anti-IL5).1

Classification of asthmatic allergic patients is a difficult task. 
Several endotypes and phenotypes have been described. According 
to their response to treatment, patients have severe asthma if they 

Conclusions: UC patients display a unique fingerprint characterized by inflammatory-
related metabolites and proteins, suggesting a pro-inflammatory environment. 
Moreover, the integration of clinical and experimental data led to a deeper under-
standing of the mechanisms underlying UC phenotype.
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G R A P H I C A L  A B S T R A C T
Severe uncontrolled HDM-allergic asthma (UC) displays an increased T-cell activation and proliferation (IL-15, CASP-8, S1P, Leu) and an 
increased T-cell tissue recruitment (CCL13) compared to corticosteroid-controlled HDM-allergic asthma (ICS). UC shows an exacerbated 
inflammatory response with increased levels of inflammatory mediators (AA, EPA, DHA, …). Integration of clinical and metabolomic data is 
the best strategy to stratify patients by severity.
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either needed treatment from steps 4–5 of the GINA,1 or 5–6 of 
the GEMA9 guidelines (which includes inhaled corticosteroids cou-
pled to long term acting beta-agonists (inhaled CS/LABA) in high 
doses + antileukotrienes (LTRA) +  theophylline (T)) or had to take 
systemic corticosteroids to achieve control in the previous year.

However, despite having received the treatment previously 
mentioned, around 3%–10% of patients display severe uncontrolled 
asthma. These patients often present comorbidities such as obesity, 
nasal polyposis, allergic rhinitis or food allergy; resulting in a worse 
quality of life and higher mortality rates.1,10

Particularly, in the Canary Islands several studies report frequent 
respiratory problems in children and high rates of asthma prevalence 
(69.6%). Moreover, 16% of the asthmatic patients have severe un-
controlled asthma,11 which is similar to other European countries, 
such as the United Kingdom where it is close to 18%.12

Regardless of this significant prevalence, there is no available ef-
fective treatment for these patients. Their treatment options rely on 
the development of new personalized medicine strategies.

In this study, all the patients were included by the Allergy Service 
at Hospital Universitario de Gran Canaria Dr Negrin, a group with 
deep knowledge on asthma management that works in an area with 
high HDM exposure and with a well-known exposome, resulting in 
a very homogenous cohort of asthmatic patients stratified accord-
ing to their response to treatment. This is a unique clinical model to 
study a complex disease such as allergic asthma.

Here, we used untargeted metabolomics and a bioinformatic 
analysis, in addition to a proteomics approach, to generate a spe-
cific fingerprint associated with uncontrolled allergic asthma that 
conforms a set of biomarkers with a potential use to develop the 
personalized intervention strategies that these patients need.

2  |  METHODS

2.1  |  Patients

Patient recruitment was conducted within one full year. Eighty-
seven patients with a clinical history of asthma, classified by the 
GINA guideline1 and with a positive skin-prick test to HDM were 
enrolled in the Allergy Department of Hospital Universitario de Gran 
Canaria Dr Negrín (Las Palmas de Gran Canaria, Spain).

Recruited patients were characterized by a very complete clin-
ical history, since they were monitored for at least 5 years prior to 
the study. Detailed information about patient sensitization profil-
ing and clinical characteristics can be found in Supplementary. All 
patients signed informed consent and the study was approved by 
the Ethics Committee of the hospital on the 4th/February/2016 
(code: 160009). Serum samples were obtained as described in 
Supplementary.

Clinical characteristics were compared between the 4  groups. 
For continuous variables, Shapiro-Wilk test was applied to assess 
normality of the data. Age and BMI passed the normality test, so we 
performed ANOVA test with Tukey's post hoc. Onset age and total 

IgE, however, did not pass the Shapiro-Wilk test, and were therefore 
analysed using Kruskal-Wallis with Dunn's post hoc. For categorical 
variables, chi-square analysis was performed, and for groups with 
data lower than 5, Fisher's exact was used.

2.2  |  Metabolomic analysis

Serum samples were prepared and measured in batches, in a ran-
domized order using a liquid chromatography coupled to mass 
spectrometry (LC-MS) with a quadrupole-time of flight (Q-TOF) 
analyser (Agilent series 6520). The experiment, as previously 
described,13 was measured in electrospray ionization in posi-
tive and negative modes (ESI+ and ESI−, respectively). A quality 
control (QC) sample was prepared by mixing equal volumes of a 
representative set of samples and was analysed throughout the 
analyses to ensure instrumental reproducibility. Metabolite anno-
tation was performed using CEU Mass Mediator 3.0 online data 
base14 and confirmed through tandem mass experiments (MS/MS) 
with a fragmentation energy of 20 eV. Full description of sample 
preparation, instrumental characteristics, data quality, data treat-
ment, statistical analysis and metabolite annotation are stated in 
Supplementary.

2.3  |  Proteomic analysis

Serum proteins were analysed by Proximity Extension Assay (PEA) 
(Olink®, Uppsala). PEA is based on the probes linked to paired an-
tibodies recognizing the same protein. Upon the antibodies bind-
ing to the target, the primers hybridize and create a PCR product, 
which is then amplified as the read-out, giving the Normalized 
Protein Expression (NPX) as result. For this assay, 10  µl of serum 
of corticosteroid-controlled (ICS) (n  =  15) and uncontrolled (UC) 
patients (n  =  11) were analysed by Olink. Therefore, proteomic 
analysis was not performed in all samples. We used Target 96 
Immuno-Oncology panel (95311, Olink®, Uppsala) consisting in 92 
proteins involved in processes such as promotion and inhibition of 
tumour immunity, chemotaxis, vascular & tissue remodelling, apop-
tosis & cell killing and metabolism & autophagy. Detailed information 
about quality control, data treatment and statistical analysis can be 
found in Supplementary.

2.4  |  Machine-learning model construction

To gather novel insights about the molecular mechanisms involved 
in the UC allergic asthma phenotype, we employed multi-omic data 
analysis. The integration and analysis of omics and clinical data with 
machine-learning (ML) methods offer novel techniques enabling the 
discovery of new biomarkers.15 After data pre-processing and down 
sampling, clinical (50 variables after the exlusion of medication) and 
metabolomic (86 identified significant metabolites) data were mixed 
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to create a ML predictor that could classify ICS and UC patients in 
separate groups. For the ML model, caret, mlbench, sjmisc and class 
R packages were used for k-Nearest Neighbour (k-NN) algorithm. 
Proteomic data were not included in this analysis because the sam-
ples used for metabolomics and proteomics were not always the 
same. Full description of the data treatment steps, training and test-
ing can be found in Supplementary.

3  |  RESULTS

3.1  |  Patient classification

Patients were classified in 4  groups according to the medication 
that controlled their symptoms: (1) Mild asthma patients controlled 
with inhaled or topic corticosteroids, and never with systemic cor-
ticosteroids (ICS, n  =  15); (2) mild-moderate asthma controlled 
with immunotherapy (IT, n  =  44); (3) moderate-severe asthma pa-
tients controlled with omalizumab (anti-IgE) (BIO, n  =  16); and (4) 
severe asthma patients that do not respond to any treatment, or 

uncontrolled patients (UC, n = 12). More information about these 
groups can be found in Supplementary.

Moreover, their clinical history was thoroughly analysed. There 
were no differences related to sex, ethnicity, BMI, smoking status, 
total IgE levels and type of HDM sensitization among the groups 
(p  >  0.05) (Table  1). However, age was found to be significantly 
higher in the UC group than in the ICS.

Looking at the medication, patients from the ICS group were 
treated with antihistamine (AH) and topical corticosteroids (Topic 
CS), and most of them (93%) administered inhaled CS/LABA. Three 
of these patients were prescribed LTRA and/or short-effect bron-
chodilators (SABA). IT patients had a medication pattern like that 
of ICS patients, although only about a third of them were taking in-
haled CS/LABA, while most of them (75%) were prescribed SABA. 
BIO patients, on the other hand, had more in common with the 
UC, although the percentage of patients taking topic CS doubled 
that of UC patients taking this drug (68.8%). The exact treatment 
and sensitizations of each patient are shown in Table S1. Regarding 
the UC, all patients were taking both inhaled CS/LABA and SABA, 
and most of them (75%) were taking LTRA as well. 50% of these 

TA B L E  1  Clinical information of the patients

ICS IT BIO UC

N 15 44 16 12

Age (years) 37.2 ± 2.3 37.3 ± 1.5† 43.3 ± 2.4 48.5 ± 3.6*

Onset Age (years) 15.8 ± 2.9 16.1 ± 1.7 12.1 ± 1.8 11.9 ± 2.7

Gender (%F/%M) 66.7/33.3 77.3/22.7 87.5/12.5 58.3/41.7

BMI 26.7 ± 1.4 26.0 ± 0.6 26.8 ± 1.1 28.0 ± 1.2

Smoker (%) 13.3 0 6.3 0

Ex-smoker (%) 6.7 2.3 6.3 25

Total IgE (U) 483.7 ± 164.7 396.2 ± 64.6 503.9 ± 161.5 536.3 ± 181.7

AC (%) 0 0† 43.8* 50*

AH (%) 100 90.9† 37.5* 41.7*

LTRA (%) 13.3 11.4† 75* 75*

Inhaled CS (%) 0 2,3 0 0

Inhaled CS/LABA (%) 93.3 34.1*,† 100 100

Oral CS (%) 0 0 0 16.7

Topic CS (%) 100 97.7† 68.8* 33.3*

SABA (%) 20 75* 93.8* 100*

T (%) 0 0 0 8.3

NSAID-HS (%) 13.3 6.8 6.3 16.7

D. pteronyssinus (%) 93.3 97.7 93.8 91.7

D. farinae (%) 93.3 93.2 87.5 91.7

L. destructor (%) 66.7 50 43.8 58.3

B. tropicalis (%) 86.7 77.3 81.3 66.7

A. siro (%) 26.7 20.5 0 8.3

T. putrescentiae (%) 53.3 45.5 56.3 58.3

Abbreviations: AC, anticholinergic; AH, antihistaminic; BMI, Body mass index; CS, corticosteroids; Inhaled CS/LABA, inhaled corticosteroids 
combined with Long-acting beta-adrenoceptor agonist; LTRA, antileukotriene; NSAID-HS, NSAID-hypersensitivity; SABA, short-acting beta-
adrenoceptor agonist; T, theophylline; U, ISAC units.
*p < .05 against ICS. †p < .05 against UC.
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patients were prescribed with anticholinergics (AC); 41.7%, with 
AH; and 16.7% were having oral corticosteroid (Oral CS), while 
8.3% were having theophylline (T). 33.3% were taking topic CS.

3.2  |  Severe uncontrolled asthmatic patients 
display a unique metabolic fingerprint

The metabolomic signature of each patient was obtained by LC-MS. 
A total of 833 signals for ESI+ and 565 for ESI− complied with the 
quality criteria for metabolomics. Clustering of the QC injections in 

the non-supervised (PCA) model indicated the high quality of the 
data, while dispersion of the samples showed the biological variabil-
ity of the patients (Figure S1).

Patterns of the groups were analysed by PCA models for ESI+ 
and ESI− modes, respectively (Figure 1A,B). UC patients clustered 
together, especially in the ESI− mode. Additionally, we performed 
PCA models to see the differences between the UC group and the 
others, but only differences between ICS and UC patients were ob-
served (Figure S2).

More restrictive analysis was performed to assess the metabolic 
differences between ICS and UC patients, the ones that differed most 

F I G U R E  1  Serum metabolomic profile of all patients. A. Unsupervised PCA model of all groups (ICS, IT, Bio, UC) built using the 
833 signals for ESI+ that compiled with quality criteria. B. Unsupervised PCA model of all groups built using the 565 signals for ESI− that 
compiled with quality criteria. C. PLS-DA model for patients controlled with non-systemic corticosteroids (ICS) vs patients with uncontrolled 
asthma (UC) comparison in LC-MS (ESI+). D. PLS-DA model for ICS vs UC comparison in LC-MS (ESI−). E. OPLS-DA model for ICS vs UC 
comparison in LC-MS (ESI+). F. OPLS-DA model for ICS vs UC comparison in LC-MS (ESI−). All data were UV scaled. (Key: ‘ICS’: blue, ‘IT’: 
yellow, ‘BIO’: orange, ‘UC’: red). R2 is the capability of the model to classify the samples; Q2 is the capability of the model to predict the class 
of a new sample
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in terms of asthma control. To evaluate real differences between 
ICS and UC groups, PLS-DA and OPLS-DA models were performed 
(Figure 1C–F). The robustness of OPLS-DA models was assessed by 
a seven-fold cross-validation.16 The resulting models showed good 
quality parameters: R2 (0.70–0.96) for the variance explained, and 
Q2 (0.3–0.46) for the prediction capability by the model. The cross-
validated OPLS-DA scores plot showed that the percentage of accu-
racy was of 84% and 75% for ESI+ and ESI− modes (Figure 1D–E), 
respectively. From these models two ICS patients were observed to 
be outliers (bottom right in the panels from Figure 1C,F). The outlier 
patient from the ESI+ mode has the lowest FEV1 and FVC of the 
group (≈70%), while the outlier patient from the ESI− mode has hyper-
sensitivity to NSAIDs drugs. However, we did not find any remarkable 
reason to exclude these patients from the study.

Furthermore, as age was found significant between ICS and UC 
groups, PCA models were performed to illustrate their significance 
(Figure S3). We found that only for the ESI− mode there is a slightly 
trend of clustering inside ICS group between younger or older than 
35 years old.

Together, these results reveal that the UC group is different from 
the ICS group in terms of their metabolic fingerprint. However, po-
tential differences with IT and BIO might be expected.

3.3  |  Severe uncontrolled asthma metabolic 
fingerprint is characterized by increased levels of 
lipid mediators

Univariate analysis was carried out to obtain significant metabolic 
signals in the ICS vs UC comparison, finding 280 with p < 0.05 (204 
of them had a FDR < 0.2). Using MS/MS fragmentation experiments, 
we could annotate (identify) 89 of these metabolites. Most of them 
had a FDR < 0.2 (83 out of 89); which is valid in exploratory studies 
as it allows to find more potential biomarkers.17-19

Next, aiming to see if the metabolic signals were able to stratify 
the patients according to their group, we built a heatmap with hierar-
chical clustering analysis (HCA) (Figure 2) using the 280 statistically 
significant signals (p < 0.05). We found that ICS patients (in light blue) 
are stratified at the bottom of the heatmap, while UC patients (in red) 
are located in the top. Accordingly, ICS and UC patients are able to be 
clustered separately using these 280 signals, as expected. IT and BIO 
patients did not cluster in any specific part of the heatmap, although 
most BIO patients seemed to be closer to UC patients. Therefore, we 
demonstrate significant metabolic features that differentiate ICS and 
UC and point out specific features for IT and BIO patients, although 
no significant clustering was demonstrated.

Since age was significant between ICS and UC groups (Table 1 
and Figure S2), ANCOVA was used to remove those metabolites that 
were affected by age. Therefore, we ended up with 86 annotated 
metabolites that were not affected by age. ANCOVA test, physico-
chemical and statistical details of annotated metabolites are shown 
in Tables S2-S4, respectively. From these, we obtained 33 metabo-
lites that were uniquely identified.

Among the significant annotated metabolites there were amino 
acids, bile acids, fatty acids, phospholipids, sphingolipids and vita-
mins; with phospholipids being the greatest group. Changes in the 
abundance of compounds between ICS and UC are presented in 
Figure 3 and Figure S4.

Most of these compounds, such as lysophosphocholines (LPC), 
lysophosphoethanolamines (LPE), lysophosphatidylinositols (LPI), 
leucine, arginine, arachidonic acid, sphingosine-1-phosphate (S1P) 
and retinol were increased in the UC group; with the exception of 
bilirubin, deoxycholic acid (Figure S4) and phosphocholine 16:0/20:5 
(Figure 3), which were decreased in the UC group.

We then performed a pathway analysis of the unique annotated 
metabolites (n = 33) to look for the routes in which they are involved 
(Table S5). We found an altered phospholipase A2 (PLA2) pathway 
(100% of affected metabolites in this route, whose changes are 
shown in Figure 4), along with arachidonic acid metabolism (79.81%), 
lipoprotein remodelling (52%), phospholipid biosynthesis (95.83%), 
sphingolipid metabolism (100%) and biosynthesis (82.86%), and 
other lipid-related routes (Table S5). There are also changes in sig-
nalling and transport pathways. Interestingly, there is an increase 
in metabolites related to a deficiency in leukotriene C4 production 
(91.5%). These routes are significantly enriched in the UC compared 
to the ICS patients.

Figure 5 represents metabolites from oleic acid and arachidonic 
acid pathways. We observed that all measured metabolites that 
participate in these pathways are increased in UC patients. Thus, 
we conclude that UC patients have an altered lipid metabolism, 
with increased levels of lipid mediators in serum compared to the 
ICS group.

3.4  |  UC patients have a distinctive expression of 
inflammatory-related proteins

In addition to the metabolic fingerprint, we studied the protein 
serum profile in ICS and UC patients. We measured the expression 
of 92 proteins (Table S6) and found that 8 of them were significantly 
different between ICS and UC (p < 0.05) (Figure 6A). From these, 
one of them (CASP-8) also had FDR < 0.2 (Table S6). A STRING anal-
ysis was performed in order to find relations between the differen-
tially expressed proteins. We were able to link 7 out of the 8 proteins 
(Figure  6B). We found that CCL13, ARG1, IL15, TNFRSF12A and 
CASP-8 were increased in the UC patients, whereas sCD4, CCL19 
and IFNγ were decreased (Figure 6C).

Finally, we looked for biological processes in which these pro-
teins were involved using gene ontology (GO) pathway enrichment 
analysis (Table S7). We found that these proteins are linked to im-
mune response including cytokine response, leukocyte differentia-
tion and adhesion, T cell activation, and nitrogen metabolism, among 
other pathways.

Therefore, proteomic results support that UC patients have an 
altered inflammatory response, and point out immune cell activation 
as a possible key mechanism.
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3.5  |  Machine-learning models for UC classification

Aiming to obtain a more accurate profile of the UC asthmatic pheno-
type, we integrated both the metabolomic and clinical data in a ML 
model. Since the proteomic analysis was performed in a limited num-
ber of samples, it could not be included in the model. The ML model 
aim was to find which variables could be used to classify UC and ICS 
patients. The k-NN model is a ML algorithm that classify a sample 

based on all the variables given, which has been tested for breast 
cancer prediction model.20 The k-NN learning algorithm requires us 
to specify how many neighbours (k) are going to be considered. To 
obtain this parameter we used the elbow method. The lack of elbow 
when using only clinical or metabolomic data alone suggests that 
these datasets are not good enough to predict classification of UC 
and ICS patients on their own. When using both datasets combined, 
the elbow test suggested that the k parameter should be either 2 or 

F I G U R E  2  Hierarchical clustering heatmap of the patients from the four groups (in rows) and the 280 significant metabolites between 
ICS and UC (in columns). Red cells represent an increase of the specific metabolite in that sample, whereas blue cells represent decreased 
metabolites. Samples and metabolites are clustered according to their similarity, and the group they belong to is showed with colours at the 
right. (Key: ‘ICS’: light blue; ‘IT’: yellow; ‘BIO’: orange; ‘UC’: red)
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FIGURE 3  Legend on next page
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3, so we built one model with each value to select the one with a bet-
ter performance. However, both models ended up being identical.

From the original 136 variables (50 clinical variables and 86 me-
tabolites), we ended with a k-NN model that used 39 (16 clinical and 
23 metabolomic variables). This model was able to correctly classify 
all patients but one. The accuracy, specificity, sensibility, positive 
predicted value (PPV) and negative predicted value (NPV) were all ≥ 
0.75 (Table S8). We also performed a variable selection analysis, but 
the resultant model had worst performance (data not shown).

4  |  DISCUSSION

Management of uncontrolled severe asthma entails a significant 
challenge for healthcare professionals. These patients are difficult to 
identify in the first place and need personalized treatment because 
they do not respond to conventional pharmacological interventions. 
We believe that a better knowledge regarding the metabolic, pro-
teomic and biological pathways associated with this specific phe-
notype will provide new insights and will be helpful towards the 
management of these patients.

Here, we studied a cohort of HDM-allergic asthmatic patients 
from a high-exposure HDM region. The Canary Islands are located 
near the west coast of North Africa, close to the Sahara Desert, and 
thus, are impacted by Saharan Dust (calima) during approximately 
30% of the year. The most common HDM sensitizers in the Canary 
Islands are Dermatophagoides pteronyssinus and Blomia tropicalis, 
which are linked to asthma prevalence.7,21 Moreover, prevalence of 
persistent rhinitis and asthma is higher in this area than in the main-
land of Spain, as previously reported,6,11 probably due to the higher 
sensitization profile to perennial allergens and favourable ecological 
conditions supporting mite growth. Similar conditions have been de-
scribed in other insular areas like the United Kingdom, Australia or 
New Zealand.7,12 Thus, even if this study was carried out in a spe-
cific region, the results can be extrapolated to many Atlantic climate 
areas.

Moreover, this cohort of patients is characterized by a well-
known exposome and a recruitment process by a single clinical 
group with more than 30 years of experience in the field, which as-
sures the uniformity of inclusion criteria and treatment strategy. This 
fact minimizes variability factors, making this a unique asthma model 
that is representative of the severe allergic asthma phenotype.

F I G U R E  3  Trajectories of the most relevant identified compounds. Box and whiskers plots with mean are represented for corticosteroid-
controlled (ICS, blue) and uncontrolled (UC, red) groups. For metabolites that had more than one m/z or that were detected in both ESI 
modes, the most abundant m/z overall was represented. Mean is represented with ‘+’ inside the boxes and individual data points are shown 
as blue (ICS) or red (UC) dots. Mann-Witney U test was used to calculate significant differences. *p < .05; **p < .01. Other trajectories can be 
found in Figure S4

F I G U R E  4  Changes in the abundance 
of metabolites in the PLA2 pathway 
between ICS and UC patients. Red cells 
represent an increase in the amount of a 
metabolite, whereas blue cells represent 
a decrease. LPC: lysophosphocholine, 
PC: phosphocholine
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According to their response to treatment, patients were clas-
sified into 4  groups. Patients that controlled asthma with non-
systemic CS were considered mild HDM-allergic asthmatic patients 
(ICS); and patients that do not respond to none of the available treat-
ments are considered uncontrolled HDM-allergic asthmatic patients 
(UC). Additionally, patients controlled with IT and biological drugs 
were also included, showing a disperse distribution probably due to 
several factors, like time of treatment, administration pathway or 
response to treatment, that might need further analysis. Moreover, 
BIO patients were only treated with omalizumab, since it was the 
only biological drug approved for the treatment of asthma in the 
Canary Islands at the time. Therefore, it will be relevant to perform 
further studies considering other biologics such as mepolizumab or 
benralizumab.

Here, we combine an appropriate clinical classification, focusing 
on disease control, with a wide range of techniques to identify me-
tabolites and proteins.

Metabolomics is a promising tool in the detection of dynamic 
changes and alterations in the metabolism associated to a pathol-
ogy.22 In fact, the metabolome has been described to be closely 
linked to the phenotype of a disease and can be an extremely useful 
tool when evaluating the effect of treatments. From a practical point 
of view, it uses very sensitive and specific techniques, such as LC-
MS, which allows the simultaneous detection of a great variety of 
metabolites in each biological sample.23,24

In this study, we performed an untargeted metabolomic analy-
sis in all samples from each experimental group, what results, after 
a complex and laborious statistical analysis, into the identification 
of several significant signals that conform the metabolomic signa-
ture of UC group. Therefore, this study should be understood as 

exploratory. In addition to the metabolites, we have also identified 
the biological pathways associated to those metabolic changes. 
However, further analyses in prospective studies are needed to val-
idate these metabolites as potential biomarkers in a new and larger 
cohort of patients, including other subtypes of asthma.

Most of the identified compounds (94%) have a FDR < 0.2. For 
exploratory studies, setting higher cut-offs allows them to find more 
potential biomarkers resulting in a more extensive knowledge17-19; 
although validation in further studies is critical to ensure that the 
resulting biomarkers can properly classify the patients.25

Our metabolomic results show that LPC, LPE and LPI, along with 
arachidonic acid, are increased in the UC compared to the ICS. Lipid 
metabolism has been previously associated with asthma, as lipid me-
diators are related to inflammatory signalling pathways. Yoder et al26 
previously reported increased levels of LPC 16:0 and LPC 18:0 in 
the bronchoalveolar lavage fluid (BALF) of patients with moderate 
asthma compared to non-asthmatic or mild-asthmatic patients. This 
was also accompanied by an increase in PLA2 activity, a pathway 
that we report increased in UC patients as well. Moreover, Pang 
et al27 compared eosinophilic and non-eosinophilic asthma, finding 
that LPC 18:1 was increased in the eosinophilic phenotype. As a 
matter of fact, LPC have been reported to have a role in eosinophil 
regulation.28-30 Therefore, the observed increase in LPC seems to 
be directly associated with an exacerbated inflammatory response 
taking place in UC patients.

LPC have also been associated to arachidonic acid release in 
human derived monocytes.31 Arachidonic acid (C 20:4; AA), eicos-
apentaenoic acid (C 20:5; EPA) and docosahexaenoic acid (C 22:6; 
DHA) were detected either as free fatty acids or in LPC, LPE and/
or LPI forms. An enrichment of these metabolites and their implied 

F I G U R E  5  Pathways of lipid metabolism in uncontrolled patients. A. Oleic acid pathway; B. Arachidonic acid pathway. In red, metabolites 
increased in uncontrolled patients (UC) with respect to corticosteroid-controlled patients (ICS); in grey, metabolites that were not 
significantly changed between UC and ICS patients
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F I G U R E  6  Specific serum proteomic profile of ICS and UC patients. A. Volcano plot of the differences in proteomic profile between ICS 
and uncontrolled patients. B. STRING analysis of significant proteins. An increase in the size of the circles and intensity of colour signals an 
increase in logFC. Red signals an increase of the protein expression, while blue means that the protein is decreased. C. Boxplot of the relative 
abundances of significant proteins between ICS (light blue) and UC (red). Significance *p < .05, **p < .01
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pathways has been previously reported in asthma.27,32-34 These fatty 
acids act as precursors of eicosanoids (prostaglandins, leukotrienes, 
lipoxins), resolvins and protectins through the activity of enzymes 
such as cyclooxygenase (COX), lipoxygenase (LOX) or cytochrome 
P450.35,36 This suggests that UC patients have a significant activa-
tion of these pathways, which are involved in the regulation of the 
immune response.

S1P was also increased in UC patients. This metabolite has been 
previously associated with asthma and other lung inflammatory dis-
eases,37 along with asthma severity.32,38 Interestingly, we have re-
ported an increase of S1P levels in plasma of patients with severe 
allergy.39 Moreover, S1P also plays a key role in regulation of T cells 
lifespan and recruitment.40 Thus, this increase might point to the 
activation of T cells in UC patients, which may play a role in uncon-
trolled asthma pathogenesis.

Other metabolites significantly altered in UC patients are argi-
nine, which is related to the nitric oxide (NO) pathway38,41-44; and 
leucine, associated with the activation of mTORC1 pathways re-
sponsible for T cells activation, proliferation and differentiation.45

Furthermore, proteomic analysis reveal that UC patients seems 
to have an increased pro-inflammatory T cell response, which is also 
supported but the changes in S1P and leucine abovementioned. 
We found an increase in CCL13 and IL-15 in the UC patients, which 
have been shown to attract monocytes and lymphocytes and pro-
mote T cell proliferation, suggesting an activation of the immune re-
sponse.46-49 This activation would be mainly produced in the mucosa, 
as there was a reduction of CCL19, responsible of lymphoid organ 
homing, and soluble CD4.50-52 Moreover, this is a type 2 response, 
as shown by the decrease of IFNγ. This inflammation was accompa-
nied by complementary epithelial and endothelial permeability and 
growth, as shown in the increase of proangiogenic factor TNFRSF12A 
and ARG 1, which regulates NOS activity.53,54 Finally, this inflamma-
tion might be maintained in time by the increased levels of CASP-8, 
as this caspase is important to maintain T cell proliferation and has 
been shown to inactivate RIPK1, which limits TNF and inflammatory 
responses.55,56

Together, metabolomic and proteomic data demonstrate unique 
biological mechanisms associated with HDM-allergic asthmatic un-
controlled asthma patients (UC) when compare with the mild phe-
notype (ICS), which are mainly associated with a pro-inflammatory 
environment and T cell activation and proliferation.

Next, aiming to integrate clinical and demographical with met-
abolic data and to identify potential classifiers for UC patients, we 
performed a ML approach. K-NN algorithm is one of the simplest 
ML algorithms, but it has a very efficient performance.57 Using this 
model, we could properly classify UC patients with more than 80% 
of accuracy. In fact, our results demonstrate that inclusion of clinical 
data in the ML model significantly improved patient's classification, 
demonstrating the need to develop more bioinformatic models that 
allow the integration of clinical and omics data to generate a com-
plete picture of the patient phenotype.

Currently, high throughput techniques are already being used in 
other disciplines, like cancer or even in allergy (e.g. protein arrays). 

The next step in precision medicine will be to have a more detailed 
and accurate vision of the patient through the integration of data 
from one or more high throughput techniques (multi-omics) with 
clinical and demographical data. This type of analysis will provide a 
better comprehension of the pathology, and will help develop better 
systems to classify patients, design personalized treatments and 
reach a more accurate diagnosis.

Together, these data show a set of specific biological features 
associated with the UC phenotype. Metabolomics, proteomics and 
clinical data all point towards a systemic and sustained inflamma-
tory response, underlined by an exacerbated lipid, S1P and NO 
metabolism, and an increase in T cells activation and proliferation. 
Moreover, our results support the need of exhaustive clinical criteria 
to better characterize and classify these patients. These observa-
tions shed light into the molecular and cellular mechanisms under-
lying this phenotype and provide a starting point to design novel 
personalized treatments for these patients.
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