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Bartolomé, 55. 46115, Alfara del Patriarca, Valencia, Spain

* malmaraz@uchceu.es

Abstract

Nearly 1% of the global population has Epilepsy. Forecasting epileptic seizures with an

acceptable confidence level, could improve the disease treatment and thus the lifestyle of

the people who suffer it. To do that the electroencephalogram (EEG) signal is usually stud-

ied through spectral power band filtering, but this paper proposes an alternative novel

method of preprocessing the EEG signal based on supervised filters. Such filters have been

employed in a machine learning algorithm, such as the K-Nearest Neighbor (KNN), to

improve the prediction of seizures. The proposed solution extends with this novel approach

an algorithm that was submitted to win the third prize of an international Data Science chal-

lenge promoted by Kaggle contest platform and the American Epilepsy Society, the Epilepsy

Foundation, National Institutes of Health (NIH) and Mayo Clinic. A formal description of

these preprocessing methods is presented and a detailed analysis in terms of Receiver

Operating Characteristics (ROC) curve and Area Under ROC curve is performed. The

obtained results show statistical significant improvements when compared with the spectral

power band filtering (PBF) typical baseline. A trend between performance and the dataset

size is observed, suggesting that the supervised filters bring better information, compared to

the conventional PBF filters, as the dataset grows in terms of monitored variables (sensors)

and time length. The paper demonstrates a better accuracy in forecasting when new filters

are employed and its main contribution is in the field of machine learning algorithms to

develop more accurate predictive systems.

Introduction

An estimation of the World Health Organization mention that about 50 million people around

the world have Epilepsy [1]. Thus, epilepsy is a common neurological disorder affecting nearly

1% of the global population. An epileptic seizure starts with a storm of abnormal electrical

activity in the brain. As it is stated in [2], this activity usually begins in one or two specific

brain regions and can then expand to other parts of the brain. It can cause inconveniences in
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movement, sensation, mood and mental function. At worst cases, where a severe seizure is

occurring, the person may have convulsions and lose consciousness. Such situation may

become a terrible problem that disrupts the daily activity of the person who suffers from this

disease.

Pharmacotherapy with anti-epileptic drugs is the keystone of epilepsy treatment, but

20–40% of patients continue having seizures despite medications [3–5]. People with less severe

level of epilepsy also appeal to medicate themselves excessively due to the constant threat and

fear of an unexpected seizure. Hence, the possibility of forecasting seizures with an acceptable

confidence level, could substantially improve the treatment of the epilepsy and thus the life-

style of the people suffering from this problem [3, 6].

Other methods followed by neurosurgeons [2] sometimes appeal to cut away the pieces of

brain tissue where the seizures originate, but in the past decade they have had another solution

through the implant of neurostimulators. Those devices send pulses of electricity, through the

nervous system, to prevent such electrical storms in the brain. But again, too many electrical

pulses in the brain could not be the best solution, as the overmedication, and it continues

being necessary to study the brain’s electrical activity to find accurate patterns of seizures in

order to forecast them. A precise seizure prediction system could allow to patients to abstain

risky activities, relax their level of anxiety or avoid taking unnecessary medication [6].

Some studies have proved the feasibility of forecasting human and canine epileptic seizures

in naturally occurring epilepsy using long recording of electroencephalogram (EEG). As it is

stated in [7–9] naturally occurring canine epilepsy is an excellent model for human epilepsy.

EEG is a multichannel recording of the brain’s electrical activity. EEG electrodes are located

on the scalp or invasively in the brain (intracranial EEG, iEEG). As a result of greater proxim-

ity to neural activity, iEEG has a higher spatial resolution and signal-to-noise ratio than scalp

EEG, thus it is more valuable for epilepsy research [10].

One of the most useful features extracted of the iEEG signal is the spectral power in differ-

ent frequency bands, as for example (δ (0.1-4 Hz), θ (4-8 Hz), α (8-12 Hz), β (12-30 Hz), low-γ
(30-70 Hz) and high-γ (70-180 Hz)), which were used in [3] for prediction of canine epileptic

seizures classifying preictal (prior to seizure) and interictal (between seizures) states of the

individual. From now on, this preprocessing method with the average of the frequencies

within these ranges is called Spectral Power Band Filter (PBF). Several studies sustain the

hypothesis of an existing preictal state, which is associated with distinctive iEEG waveforms

and spectral patterns [3]. This preprocessing technique is unsupervised, i.e., the procedure

does not use the class labels of the training set. It must be said that there exist supervised pre-

processing techniques used in other frameworks, for example Common Spatio-spectral Pat-

tern (CSP) [11] or Kernel Fisher Discriminant (KFD). In general, these feature extraction

techniques are used to locate relevant channels for a neurological state [12, 13].

National Institutes of Health (NINDS), the Epilepsy Foundation, the American Epilepsy

Society and Mayo clinic sponsored an International data science competition known as

“American Epilepsy Society Seizure Prediction Challenge” at the prestigious Kaggle platform.

Its goal was to identify the best model for discriminating preictal vs interictal iEEG clips col-

lected from dogs and persons. The ESAI research group participated, winning the third prize

among more than 505 teams, coming from the most relevant universities and specialized

enterprises from all over the world.

Our algorithm [14] considered as features, the spectral power in the six frequency bands

and some other statistics. These were preprocessed by means of PCA (Principal Component

Analysis) and ICA (Independent Component Analysis), and finally modeled with a combina-

tion of Artificial Neural Networks (ANN) and K-Nearest Neighbor (KNN) machine learning

algorithms. In the present paper, the objective is to demonstrate how preprocessing the FFT
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(Fast Fourier Transform) signal, with a new approach, using supervised filters provides a

much better outcome than conventional spectral power band filters or PBF. The machine

learning technique selected to perform the comparison has been KNN, since the only

parameter to tune is the number of neighbors. Nevertheless, it was compared with other

machine learning algorithms to check whether similar conclusions can be drawn for such

algorithms.

Consequently, the present study explores a new method of preprocessing the iEEG signal,

based on the algorithm that was submitted to the competition. Such a new approach improves

the final quality and performance of some learning machine techniques to detect preictal state,

compared with other alternatives. The result of the study demonstrates that the bigger and

more complex the volume of data acquired from the brain, the better performance for the

methods we propose to detect these preictal states on the subjects under study, being the tech-

niques presented in this paper useful for situations close to a big data problem. Next, it is

described the dataset employed for the present study provided by Mayo Clinic and the basic

formulae to preprocess the iEEG signal. Then, the machine learning algorithm and the ROC

curve analysis are depicted describing the results of the comparison between several machine

learning algorithms. Finally, discussion and conclusions state the reason why we consider the

supervised filters proposed could improve epilepsy seizure forecasting and its reproducibility

in other studies.

Materials and methods

This section presents a description of the dataset available at Kaggle which have been used to

validate different preprocessing algorithms. The description and formalization of these algo-

rithms are thoroughly developed in the rest of this section. An implementation of the algo-

rithm is available at the repository https://github.com/fjmalmaraz/supervised-filters for

reproducibility.

Dataset

The dataset, used for the challenge was provided by Mayo Clinic and it has been validated in

several studies [3, 6, 9]. It was uploaded to the Kaggle platform and it is open to anyone who

wants to employ it [15]. It is organized, as Intracranial EEG (iEEG) data clips, in folders con-

taining training and testing data for each human or canine subject. There are data from five

dogs and two persons. The training data is organized into ten-minute iEEG clips labeled “Pre-

ictal” for seizure data segments, or “Interictal” for non-seizure data segments. Training data

segments are numbered sequentially, whereas testing data are in random order.

Preictal training and testing data segments were supplied covering one hour prior to seizure

with a five-minute seizure temporal window (i.e. from 1:05 to 0:05 before seizure onset) This

pre-seizure window ensures that: 1) seizures could be predicted with enough warning to allow

administration of fast-acting medications, and 2) any seizure activity before the annotated

onset that may have been missed by the epileptologist would not affect the outcome of the

competition.

Similarly, one-hour sequences of interictal ten-minute data segments were also provided.

The interictal data were chosen randomly from the full data record, with the restriction that

interictal segments be as far from any seizure as can be practically achieved, to avoid contami-

nation with preictal or postictal signals. In the long duration canine recordings it was possible

to maintain a restriction of one week before or after a seizure. However, in the human record-

ings (which may be less than a week in total duration) interictal data was restricted to be more

than four hours before or after any seizure.
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iEEG data was recorded from five dogs with the naturally occurring epilepsy using an

ambulatory monitoring system [3, 9]. The iEEG was sampled from 16 intracranial electrodes

at 400 Hz, and recorded voltages were referenced to the group average. These are long dura-

tion recordings, spanning multiple months up to a year and recording up to a hundred sei-

zures in some dogs. The dogs were housed at the veterinary hospitals at the University of

Minnesota and University of Pennsylvania.

For the human patients, the iEEG was sampled from 15 electrodes at 5000 Hz, the recorded

voltages were referenced to an electrode outside the skull; monitoring period for was up to a

week. The epilepsy patients, who underwent the iEEG monitoring, were reviewed at Mayo

Clinic Rochester. Interictal data segments were chosen at random, within the restrictions com-

mented above, for both canine and human subjects. Table 1 depicts characteristics of recorded

data and clip selection:the division of testing and training data clips and subjects’ characteris-

tics about their monitoring sampling rate, hours of recorded data, seizures and lead seizures.

Lead seizures are defined as seizures occurring without a preceding seizure for a minimum of

4h. The data provided was supervised by epileptologists of the prestigious institutions afore-

mentioned. A complete description is provided in [9].

The dataset, used for the competition, is still available at the Kaggle platform [15]. Thus, it

is possible to continue exploring and improving the work done during the challenge. The Kag-

gle competition was based on the approach of long recording dataset available to explore dif-

ferent learning machine techniques in order to develop an accurate algorithm to forecast

seizures.

Overall risk of the optimal prediction for features

Generally, the success of any forecasting algorithm highly depends on an adequate selection of

features, which is very often performed according to the technical expertise on the area. Never-

theless, signal or image processing generates such a huge volume of information that it is not

the most efficient way just to rely on the experts’ opinion to tune the feature extraction, being

convenient some automatic detection of high quality features.

The following approach is based on the concept of the overall risk of a predictor, which can

be found for instance in [16]. Given some features, our objective is to determine the quality of

the optimal predictor, assuming the theoretical distribution of the classes as known. Suppose

there are two different classes, i.e. the variable G takes two possible values 0 and 1, and the

value of this variable needs to be predicted by means of other variables which are represented

by a random vector X. Let us suppose that the class-conditional probability density functions

are known, being f0 and f1 the density functions for 0 and 1 classes respectively. If p is the prior

probability of the class 1, a straightforward application of Bayes’ theorem provides the

Table 1. Data characteristics for the Kaggle.com seizure forecasting contest. Source: [9].

Subject Sampling rate

(Hz)

Recorded data

(h)

Seizures Lead Seizures Training clips

(% interictal)

Testing clips

(% interictal)

Dog 1 400 1920 22 8 504 (95.2) 502 (95.2)

Dog 2 400 8208 47 40 542 (92.3) 1000 (91.0)

Dog 3 400 5112 104 18 1512 (95.2) 907 (95.4)

Dog 4 400 7152 29 27 901 (89.2) 990 (94.2)

Dog 5 400 5616 19 8 480 (93.8) 191 (93.7)

Patient 1 5000 71.3 5 4 68 (73.5) 195 (93.9)

Patient 2 5000 158.5 41 6 60 (70.0) 150 (90.7)

https://doi.org/10.1371/journal.pone.0178808.t001
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probability of belonging to the class 1:

PrðG ¼ 1jX ¼ xÞ ¼
f1ðxÞp
f ðxÞ

¼ px ð1Þ

where f(x) is the unconditional density function f(x) = f1(x)p + f0(x)(1 − p). The random vari-

able G given that X = x is a Bernoulli random variable with the probability px. A rational choice

to fit the classifier is consider the regressor α(x) = px that minimizes the expected value of (α
(X) − G)2, considering as the loss function L(x, g) = (px − g)2. Notice that other loss functions

are possible, such as cross-entropy loss function, but they are out of the scope of this paper.

The risk given a vector x of features is the expected value of the loss associated:

RðxÞ ¼ E½Lðx;GÞ� ¼
X

g2f0;1g

Lðx; gÞPrðG ¼ gjX ¼ xÞ ¼ pxð1 � pxÞ: ð2Þ

Therefore, the risk is R(x) = p(1 − p)f1(x)f0(x)/f(x)2 and the overall risk is the integral of the risk

multiplied by the unconditional density function is given by

hRi ¼
Z

Rn
pð1 � pÞ

f1ðxÞf0ðxÞ
f ðxÞ2

f ðxÞ dx ¼ p ð1 � pÞ
Z

Rn

f1ðxÞ f0ðxÞ
f ðxÞ

dx ð3Þ

This value can be interpreted as the expected value of p(1 − p)f1(Z)/f(Z) where Z is a random

variable whose density function is f0. The smaller the overall risk, the more useful the random

vector of features X to predict the class G. If possible, the preprocessing of the features like the

FFT signal for epileptic prediction should be performed in such a way that the overall risk of

the new variables does not rise abruptly, being the potential prediction capability of our fea-

tures lost.

A lower bound of the overall risk

A set of features whose overall risk reaches the minimum of the optimal predictor would be

the perfect choice for the problem of selecting the most useful variables to predict a binary clas-

sification. In most of the situations, a straightforward optimization of the overall risk would

require long calculations if the number of original features is huge. Therefore, our proposal is

less ambitious and, in this paper, we start with the selection of features trying to get a minimal

value of a rough estimation of the lower bound of the overall risk. Our expectations are that

this provides one of the best feature selection to perform a good prediction. This bound

will be used as an insight to develop preprocessing algorithms for supervised classification.

Let fmax be the maximum value of the unconditional density function, which can be

considered a measure of the spread of the distribution. Therefore, p(1 − p)E[f1(Z)/f(Z)] is less

than (p(1 − p)/fmax)E[f1(Z)] where Z is a random variable with probability density function f0.

A kernel density estimator is used to approach E[f1(Z)] with

E
1

n h

Xn

j¼1

K
Z � Yj

h

� �" #

¼
1

n h

Xn

j¼1

E K
Z � Yj

h

� �� �

¼
1

h
E K

Z � Y
h

� �� �

ð4Þ

where K is the kernel, i.e. positive function whose integral is one and Yj are independent and

identical variables whose density function is f1. For instance, K(x) = exp(−kxk2). Since the

exponential function is convex, by Jensen’s inequality we have

exp ð� E½k
Z � Y

h
k2�Þ � E½ exp ð� k

Z � Y
h
k2Þ� ¼ E K

Z � Y
h

� �� �

ð5Þ
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In order to minimize the lower bound of the approximation to the variance of the prediction,

we have to maximize E k Z� Y
h k

2
� �

Þ, since the function exp(−x) is decreasing. Therefore, after

fixing a value for h, the lower bound of the variance is

exp ð� E½k
Z � Y

h
k2�Þ=ðh � fmaxÞ ð6Þ

Taking this expression as an approach to the overall risk, the overall risk of our features

decreases with the expected value of the square of the difference and with the unconditional

variability given by fmax. Following these ideas, a method to choose the variables is that the

expected value of the squared difference of them must be as large as possible. This approach is

developed in the next section.

Projection with an optimal lower bound (SqD)

In order to perform a binary classification using a large number of features, such as FFT using

long input windows, becomes necessary a data preprocessing prior to use any machine learn-

ing algorithm, summarizing all these features in a small vector. The simplest summary is a lin-

ear combination or mixture of variables. Geometrically speaking, a set of variables is going to

be summarized by a number employing a linear projection πu where u is a unit vector on the

direction along the features are projected, i.e. the projection is a scalar product πu(x) = u � x.

We consider Z a random vector of features under the condition of belonging to the class

G = 0 and, analogously, Y a random vector of features given G = 1. Our objective is to mini-

mize the numerator of the lower bound and this is equivalent to maximize the objective func-

tion E[(πu(Z) − πu(Y))2] where u is a unit vector. Applying Lagrange’s multipliers to the

objective function and restriction kuk2 = 1, the vector u where the optimal solution is attained

is a critical point of the function of u and λ,

uT E½ðZ � YÞðZ � YÞT �Þ�uþ lð1� kuk2Þ: ð7Þ

Vanishing the derivatives of this function, we got the equations to find the critical point

2E½ðZ � YÞðZ � YÞT �Þ�u � 2lu ¼ 0; ð8Þ

for unit vector u. Therefore, the critical points of Eq (7) are the eigenvectors of the matrix

E[(Z − Y)(Z − Y)T]. To get the projection πu, we have selected the eigenvector with the largest

eigenvalue by means of the power iteration algorithm. One of the main drawbacks to solve this

equation is that the matrix can exceed the available computational resources. Taking into

account that the data to calculate the matrix are distributed in multiple files, it is possible to

apply this algorithm without storing the full matrix in memory. Let Zj and Yj be a sample from

the training data. The initial vector u(0) = v/kvk where v is a vector such that all the compo-

nents are 1. For the kth iteration, given the previous vector u(k−1), we multiply this vector by an

estimation of the matrix E[(Z − Y)(Z − Y)T])]

vðkÞ ¼
X

j

ððZj � YjÞ � u
ðk� 1ÞÞðZj � YjÞ ð9Þ

and u(k) is the normalized vector of v(k), i.e. u(k) = v(k)/kv(k)k.

Alternative methods

Using a wider interpretation of the estimation of the lower bound, we are proposing several

preprocessing methods based on the idea that the larger is the expected differences between
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two signals of distinct classes and the smaller is the unconditional variance, the better forecast-

ing results are expected to get. Our alternatives consider the difference of the means (DM), the

difference of the variance between the two clases (VAR), a linear combination which tries to

trade off the variance and the mean (TVM) and a very simplified preprocessing method which

consists in the difference of the square (DS). The last method winds up to be the more effective

filters according to the experimental results.

Difference of the Mean(DM). The most intuitive idea is to estimate a projection πu such

that the difference of projected vectors mean have the larger possible value. Hence, the objec-

tive function is E[πu(Z) − πu(Y)] = E[u � (Z − Y)]. This function is the scalar product with

the vector difference of the mean E[(Z − Y)] � u and the maximum is attained at the point

u = E[(Z − Y)]/kE[(Z − Y)]k. This preprocessing is straightforward and no iterative process is

needed.

Variance (VAR). Most of literature preprocessing methods consist in maximizing the var-

iance to learn new discriminative features. For binary classification, some methods, like Com-

mon Spatial Patterns (CSP), maximize the generalized Rayleigh quotient whose solutions are

generalized eigenvalues [11, 17, 18]. The main drawback of this method is that the covariance

matrix must be computed and full stored in the computer. For a problem with a large number

of features this procedute cannot be performed. The difference between the variances can be

expected to have one of the classes with a large variance and the other class with a smaller vari-

ance. In this situation, the objective function is

E½ðpuðZÞ � E½puðZÞ�Þ
2
� � E½ðpuðYÞ � E½puðYÞ�Þ

2
� ð10Þ

being equals to

E½puðZÞ
2
� � E½puðYÞ

2
� � E½puðZÞ�

2
þ E½puðYÞ�

2 ð11Þ

This is a quadratic function whose associated matrix is:

S ¼ E½ZZT � � E½YYT � � E½Z�E½Z�T þ E½Y�E½Y�T : ð12Þ

This matrix S is symmetric. Therefore, the maximum of the quadratic form uT Su restricted to

unit vectors u is the eigenvector associated to the largest eigenvalue. The largest eigenvalue can

be calculated with the power iterative method based on successive multiplications by the

matrix and division of the outcome by its norm. For a large scale data set, it is possible to per-

form multiplications of the matrix S by a vector without storing the matrix in main memory in

a similar way as done in Eq (9).

Trade-off Variance-Mean (TVM). Another proposal for objective function appears

searching a trade off between the mean and the variance. Therefore, the objective function is

the sum of square of the objective function for the mean and the variance difference. In this sit-

uation, the algorithm is to solve a quadratic program with the objective function

E½ðpuðZÞ � puðYÞ�
2
þ Var ðpuðZÞÞ � Var ðpuðYÞÞ; ð13Þ

whose critical points are the eigenvectors of the following matrix

E½ZZT � � E½YYT � þ ðE½Y� � E½Z�ÞE½Y�T þ E½Y�ðE½Y� � E½Z�ÞT : ð14Þ

The calculations are performed analogously to the previous sections.

Squared simplification of the trade-off (DS). In the previous objective function, the

expression can be simplified removing the terms which are depending on the expected values of

the variables. Hence, the objective function becomes E[(πu(Z))2 − (πu(Y))2] whose interpretation
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is that the projection is maximizing the difference of the squares of the variables between the

classes. The objective function can be rewritten as a quadratic form where the matrix of the qua-

dratic form is the tensor product of both variables multiplied by themselves.

E½ðuZÞ2 � ðuYÞ2� ¼ uTðE½ZZT � � E½YYT �Þu ð15Þ

During the following sections we are going to compare all these methods with several

machine learning algorithms, being the focus on KNN.

K-Nearest neighbors classifier

K-Nearest Neighbors (KNN) models were chosen because of their non-parametric nature,

since the training data are the model itself. A KNN model has one sole hyper-parameter that is

the number of neighbors, denoted by K. The K neighbors given by KNN were transformed

into probabilities following the implementation given in APRIL-ANN toolkit [19], similar to

[20]. It basically computes a posterior probability by normalizing the exponential of the nega-

tive distances, following this equation:

PrðG ¼ 1jxÞ ¼

P

y2K1

exp � ky � xk2
2

� �

P

y2K
exp � ky � xk2

2

� � ð16Þ

where x is an input sample, K is the set of K-neighbors of x, K1 is the intersection of K and the

class G = 1. The adequate value of K and the computation of probabilities using distances

reduce the impact of over-fitting in the KNN model.

The hyper-parameter K was estimated during Kaggle challenge according to the perfor-

mance in a cross-validation scheme and the public AUC, using for this estimation PBF prepro-

cessing for each channel. The number of blocks has been set to the number of seizures

recorded for every particular subject, leaving one seizure out for validation. A value K = 40

neighbors achieved good AUC for cross-validation and the best AUC at Kaggle public test par-

tition. Since the hyper-parameter K = 40 has been chosen with PBF preprocessing, proposed

preprocessing techniques could have a different optimal values for K. Therefore, our conclu-

sions would be expected to be biased in favour of PBF.

Prediction procedure

The goal of the system is to produce a posterior probability for preictal class given a file with

10 minutes of iEEG recording. The system is a pipeline of several methods divided in two

stages: preprocessing and classification. Such system is an adaptation of the one presented in

[6] and it is available for reproducibility issues at [14].

Starting at preprocessing stage, 1-minute Hamming windows are generated with 30 sec-

onds of overlap from 10-minute iEEG signal, FFT transformed, log compressed and filtered

according to the methods described in this paper. PBF filter is used in literature to summarize

the FFT in six features per channel, according to the frequency bands δ (0.1-4 Hz), θ (4-8 Hz),

α (8-12 Hz), β (12-30 Hz), low-γ (30-70 Hz) and high-γ (70-180 Hz). For each band, PBF com-

putes an uniform average of all FFT bins corresponding to the frequencies within the band. All

other supervised filtering methods proposed in this paper summarize the FFT into the same

six bands. Let us remark that, instead of an arithmetic mean, these methods compute a

weighted average of the FFT bins related with the frequencies of each band. These weights are

estimated following the procedures described in the previous section, highlighting the most
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Fig 1. Preprocessing stage diagram. A sliding window is used to extract 60-second windows which are processed by FFT

to generate a large vector. This vector is preprocessed with 6 filters located at the corresponding 6 bands (δ, θ, α, β, low-γ,
high-γ). These filters have been previously calculated with the preprocessing methods described in this paper. Finally the

output of the filters is log-compressed with the function log1p (Natural logarithm of 1 + x, element-wise). This procedure is

repeated for each available iEEG channel.

https://doi.org/10.1371/journal.pone.0178808.g001
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important frequencies in order to improve discrimination between classes. Fig 1 shows how

preprocessing stage is performed.

The second stage consists in the classification of an input file given its extracted features.

The classifier produces a posterior probability of preictal state for each time slice of FFT sliding

window. Due to there are 19 time intervals for every 10-minute input file, the model produces

19 posterior probabilities for each input file. Thus, in order to compute preictal posterior prob-

ability for one file it is required to aggregate these 19 probabilities. In order to increase sensitiv-

ity, these posterior probabilities are aggregated into one value following a geometric mean but

complementing each input probability. Finally, complement operation is repeated to obtain

the posterior preictal probability for the given input file. Eq (17) formalizes this process:

PrðpreictaljxÞ ¼ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yn

t¼1

1 � PrðpreictaljxtÞð Þ
n

s

ð17Þ

where n = 19 is the number of window slices, x is a matrix with n feature vectors and p(preic-

tal|xt) is posterior probability of KNN for feature vector t computed using Eq (16).

Results-ROC analysis

Using the Receiver Operating Characteristic (ROC) curve a quantitative assessment of the

model can be obtained and therefore it is possible to represent the trade-off between sensitivity

and specificity of the underlying model. Thus, an optimal point can be found in the curve in

order to decide when a sample should be classified as true or false by the model. The ROC curve

is created by evaluating the class probabilities for the model across a continuum of thresholds.

In Fig 2, the ROC curves of the KNN predictions with the preprocessing methods are com-

pared. The greater area under the curve, the better the model is for the prediction.

Fig 2. ROC curves for the preprocessing methods. Following the notation in the paper: PBF (dark green),

DS (orange), VAR (blue), DM (pink), TVM (light blue), Sq.diff (yellow) for all the test set (public+private) given

by the Kaggle contest.

https://doi.org/10.1371/journal.pone.0178808.g002
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Accordingly, Kaggle competition states to use the Area Under Curve (AUC) as a measure of

model goodness. The values calculated by the Kaggle platform for the preprocessing methods

in the public and private set are shown in Table 2, using KNN as machine learning algorithm.

All the proposed methods improve considerably the performance of the overall system with

respect to the PBF, in both public and private sets as shown in Table 2.

With the purpose of answering whether or not the differences seen in Fig 2 are due to

chance, Delong’s method [21] has been used to test AUC differences between standard PBF

preprocessing and our methods. The p-values for these testings are shown in Table 3 and it

can be observed that all the proposed methods got a significant difference compared with the

prediction using the conventional standard band filters (PBF). However, we have not detected

any significant difference between the supervised preprocessing methods proposed in this

paper, except for the DM method which is the poorest method of the proposed ones. More-

over, the AUC differences have also been tested for every individual, those whose volume of

data is large enough, have undergone a much better performance with the supervised prepro-

cessing methods as it is shown in Table 3.

A more detailed analysis can be performed comparing AUC between subjects for each of

the proposed methods and the PBF method. Two random partitions of all Kaggle test data

have been created to this purpose, using same Kaggle proportions which are 40% of the data

for validation and 60% for test. Due to the fact that hyperparameters have been chosen with

the previous partition, AUC calculations could be slightly optimistic. Nevertheless, hyperpara-

meters have not been chosen according to performance with the proposed filters, hence AUC

calculations with these filters are expected to be less optimistic than with PBF. Tables 4 and 5

show the results of AUC for the different individuals and for the total data (pool column),

which is evidence of generalization of these techniques. The pool column demonstrates that

our filters improve the AUC results in the validation and test sets. All the proposed filters got

Table 2. Public and private scores in the American Epilepsy Society Seizure Prediction Challenge for KNN with 40 neighbors for the preprocessing

methods.

Method PBF DS VAR DM TVM SqD

Public 0.67589 0.73958 0.71413 0.71106 0.73047 0.73967

Private 0.66939 0.72846 0.70507 0.70198 0.71593 0.71347

https://doi.org/10.1371/journal.pone.0178808.t002

Table 3. Comparison with the standard band filters (PBF) and the preprocessing techniques.

DS VAR DM TVM SqD Features Samples

All 2.2e-08‡ 0.00034‡ 0.0084‡ 2.6e-06‡ 3.2e-06‡ - 4 057

Dog 1 0.1 0.14 0.35 0.033♢ 0.45 262 144 504

Dog 2 0.61 0.00029♢ 8.2e-06♢ 0.024♢ 0.7 262 144 542

Dog 3 3e-12‡ 4.5e-09‡ 1e-07‡ 3.2e-09‡ 9e-08‡ 262 144 1512

Dog 4 0.0025‡ 0.033‡ 0.0085‡ 0.024‡ 0.21 262 144 901

Dog 5 0.13 0.16 0.12 0.64 0.12 245 760 480

Patient 1 0.22 0.98 0.68 0.48 0.18 3 932 160 68

Patient 2 0.025‡ 0.028‡ 0.6 0.00016‡ 0.08 6 291 456 50

For every cell the p-value is pointed out, being the null hypothesis that the preprocessing method in the column has the same AUC as PBF preprocessing

method. The number of features for an individual is the product of the number of frequencies and the number of channels. The column Samples is the

number of observations for every individual in the training set. If the proposed preprocessing method is significantly better that PBF, the cell is marked with

‡. The case of the difference being favourable to PBF is marked with ♢.

https://doi.org/10.1371/journal.pone.0178808.t003
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an AUC result above 0.7 whereas conventional filters (PBF) are around 0.67 in the best case.

Such results are coherent with the p-value of all the dataset in Table 3, which proves that there

is a significant improvement with these methods.

Moreover, results from the different subjects demonstrate that for dogs 3 and 4 and the

humans the proposed filters always improve the AUC results in both sets. This is due to Dogs

3 and 4 have many more samples than Dogs 1 and 2. On the other side, although humans have

less samples they have been sampled at a rate of 5000 Hz, i.e. much more information for both

individuals. Fewer samples has Dog 5 and thus obtains very bad results in forecasting intro-

ducing some noise when evaluating the overall dataset. To mention that using a validation test

allows us to select preprocessing algorithms with good performance in the test set.

In conclusion, the standard filters seem to be comparable to the supervised filters when the

volume of data is limited or reduced. Nevertheless, our conjecture is that there exists an impor-

tant improvement when data available for training grows substantially.

As seen in Table 3, the proposed methods show statistical significant (for α = 0.05)

improvements when compared with PBF filter taken as the baseline. The positive behavior of

this preprocessing motivates a deeper comparison of the methods using any other classifier

algorithms, in order to check if they were able to get similar improvements to KNN. The most

used algorithms among Kaggle challenges have been chosen to predict and perform a compari-

son with the preprocessing technique: Support Vector Classifier (SVC), Gradient Boosting

Classifier (GBC), Random Forest (RF) and Logistic Regression (LR). The hyper-parameters

for these algorithms have been chosen to be similar according to the best performance values

used by other participants during the Kaggle competition [9], since AUC calculations are done

Table 4. AUC results for the validation set.

Model Filter Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 Pat. 1 Pat. 2 Pool

KNN PBF 0.804 0.807 0.547 0.737 0.517 0.611 0.458 0.663

DS 0.750 0.809 0.716 0.796 0.466 0.737 0.616 0.732

VAR 0.738 0.724 0.672 0.779 0.479 0.691 0.537 0.699

DM 0.804 0.710 0.765 0.774 0.524 0.672 0.378 0.706

TVM 0.726 0.756 0.675 0.769 0.493 0.691 0.675 0.708

SqD 0.777 0.812 0.680 0.767 0.473 0.754 0.593 0.720

For this comparison, AUCs have been calculated for the validation set which is a sample of the 40% of test data available at Kaggle. The bold-faced number

is the best performance for the individual got with the different classifier systems. Average of subjects AUC is shown at column Average. Pool column

shows AUC computed after union of all subject predictions, as done by Kaggle framework.

https://doi.org/10.1371/journal.pone.0178808.t004

Table 5. AUC results for test set.

Model Filter Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 Pat. 1 Pat. 2 Pool

KNN PBF 0.885 0.756 0.673 0.777 0.585 0.711 0.470 0.679

DS 0.865 0.741 0.796 0.823 0.462 0.720 0.577 0.735

VAR 0.814 0.686 0.796 0.804 0.462 0.647 0.643 0.716

DM 0.763 0.651 0.786 0.835 0.382 0.634 0.463 0.705

TVM 0.798 0.713 0.805 0.811 0.530 0.703 0.695 0.733

SqD 0.866 0.742 0.768 0.801 0.453 0.722 0.571 0.728

For this comparison, AUCs have been calculated for the test set which is a sample of the 60% of test data available at Kaggle.

https://doi.org/10.1371/journal.pone.0178808.t005
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using the new partition, these AUC calculations could be slightly optimistic. The AUC values

of these algorithms are shown in Table 6. The DS filter has been selected as it obtained in gen-

eral a better performance than the others. It is observed that under no circumstances is KNN

competitive with other machine learning algorithms using conventional filters as shown in

Table 6. Not only is KNN performance improved using DS filter, but also it becomes competi-

tive with the rest of the algorithms.

This behavior suggests a tight coupling between KNN space tessellation and the proposed

preprocessing methods. It can be explained informally as a result of the proposed lower bound

for variance, that follows Eq (6) employing a kernel density estimator whose probability esti-

mation resembles Eq (16).

Table 7 shows confidence intervals of AUC for the different machine learning methods and

three subsets of frequency bands. The first subset consists in the prediction using all the six

bands, the second subset includes the band with the lowest frequency and the third one corre-

sponds to the prediction of the band with only the highest frequencies. Even though our pre-

processing method is able to summarize a large number of variables, the predictions with the

highest band have not a better performance than the standard method (PBF).

Table 6. Comparison with PBF and DS preprocessing methods using different learning machine algorithms.

Model Filter Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 Pat. 1 Pat. 2 Pool

KNN PBF 0.885 0.756 0.673 0.777 0.586 0.711 0.470 0.679

DS 0.865 0.741 0.796 0.823 0.462 0.720 0.577 0.735

SVC PBF 0.924 0.870 0.759 0.845 0.263 0.682 0.646 0.734

DS 0.888 0.827 0.783 0.764 0.292 0.824 0.617 0.732

GBC PBF 0.882 0.665 0.728 0.853 0.258 0.822 0.774 0.709

DS 0.877 0.642 0.681 0.868 0.193 0.832 0.373 0.691

RF PBF 0.848 0.672 0.623 0.854 0.514 0.778 0.812 0.695

DS 0.858 0.652 0.671 0.863 0.419 0.814 0.341 0.694

LR PBF 0.816 0.777 0.690 0.865 0.439 0.681 0.436 0.648

DS 0.683 0.717 0.664 0.876 0.450 0.598 0.425 0.626

For this comparison, AUCs have been calculated for the test set which is a sample of the 60% of test data available at Kaggle.

https://doi.org/10.1371/journal.pone.0178808.t006

Table 7. Confidence interval for pool AUC with all the individuals.

All frequency bands (0.1-180 Hz) δ (0.1-4 Hz) high-γ (70-180 Hz)

Model Filter AUC Validation AUC Test AUC Validation AUC Test AUC Validation AUC Test

KNN PBF 0.663 ± 0.051 0.679 ± 0.044 0.673 ± 0.052 0.700 ± 0.044 0.608 ± 0.048 0.571 ± 0.048

DS 0.732 ± 0.049 0.735 ± 0.043 0.677 ± 0.049 0.698 ± 0.043 0.600 ± 0.053 0.552 ± 0.048

SVC PBF 0.744 ± 0.059 0.734 ± 0.050 0.576 ± 0.057 0.625 ± 0.044 0.719 ± 0.054 0.692 ± 0.049

DS 0.740 ± 0.052 0.732 ± 0.047 0.610 ± 0.055 0.645 ± 0.043 0.566 ± 0.051 0.619 ± 0.042

GBC PBF 0.709 ± 0.050 0.709 ± 0.046 0.679 ± 0.055 0.718 ± 0.047 0.693 ± 0.050 0.645 ± 0.045

DS 0.688 ± 0.055 0.691 ± 0.045 0.670 ± 0.053 0.710 ± 0.045 0.523 ± 0.061 0.577 ± 0.047

RF PBF 0.670 ± 0.060 0.695 ± 0.045 0.662 ± 0.054 0.696 ± 0.044 0.653 ± 0.053 0.629 ± 0.042

DS 0.674 ± 0.057 0.694 ± 0.047 0.640 ± 0.055 0.687 ± 0.043 0.556 ± 0.057 0.588 ± 0.045

LR PBF 0.667 ± 0.050 0.648 ± 0.046 0.639 ± 0.057 0.658 ± 0.046 0.577 ± 0.060 0.566 ± 0.046

DS 0.633 ± 0.049 0.626 ± 0.045 0.625 ± 0.054 0.637 ± 0.043 0.526 ± 0.061 0.564 ± 0.046

https://doi.org/10.1371/journal.pone.0178808.t007
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Discussion

In [22] a Kernel Fisher Discriminant (KFD) analysis was performed determining that high

gamma power with the raw signal is not found between the most discriminant features for

most of the cases. Even though, their conclusion differs for time-differential signal, according

to these authors raw signal is dominated by small changes in low frequencies. With the pur-

pose of verifying whether low frequencies of the signal are more useful for predictions and the

effect of preprocessing techniques, AUC values for each subject have been calculated with pre-

dictions based on KNN. Moreover, it was considered only the lowest and the highest frequen-

cies against PBF and DS preprocessing techniques, being compared in Fig 3. Whereas there is

Fig 3. Comparison between AUC for individuals, preprocessing methods and the highest and the lowest frequency group. Every

panel is a comparison between all the bands, only δ (0.1-4Hz) or only high-γ (70-180Hz). The red points correspond to the AUC got by the

DS preprocessing and the black points by the PBF method. Every point is labeled according to the individual D1 (Dog 1), D2 (Dog 2), D3

(Dog 3), D4 (Dog 4), D5 (Dog 5), P1 (Patient 1) and P2 (Patient 2). Most of the points are in the lower bisector of the first quadrant, pointing

out that the lowest frequency band is more useful than the highest frequency band with respect to forecasting seizures.

https://doi.org/10.1371/journal.pone.0178808.g003
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an obvious improvement with low frequencies using DS preprocessing, there is not such a

gain if only the highest frequency band is considered. Please notice that two of the individuals

(Dog 3 and Dog 4) with the largest volume of information got a better performance with DS

for the highest frequency band. This suggests that a dataset with subjects with a larger volume

of information could give some pieces of evidence that this method could also be effective for

high-γ frequencies.

In this paper, we have provided evidence that several preprocessing methods improves

KNN. These algorithms do not have the same improvement using other machine learning

algorithms, finding tailored supervised preprocessing could be a promising scope for future

work to improve prediction techniques.

Conclusions

The present paper extends the work carried out in detecting preictal states using an algorithm

that was submitted to win the third prize of an international research challenge proposed by

the American Epilepsy Society, the Epilepsy Foundation, National Institutes of Health (NIH)

and Mayo Clinic through the Kaggle platform. It has been evaluated within this study if it is

possible to design and develop the fundamental equations to obtain a new method of prepro-

cessing the iEEG signal.

The idea is to find if an alternative iEEG supervised signal preprocessing, different from the

conventional filters bank (PBF), could improve the forecasting results of a machine learning

algorithm as the KNN. Accordingly, to remark that our main contribution is in the field of

machine learning and statistics and not the clinical one, as our objective is to develop new

improved predictive systems with better accuracy. Results seem highly promising as the per-

formance, robustness and quality of the predictions have been improved, mainly when the

data is getting bigger and bigger. Such behavior opens the usefulness of the method if we think

for the future as a big data problem. That is, if the iEEG data stream coming from the brain is

continuous and has to be processed in real-time. Although this concept is not the focus of the

present study, it is true that when data clips had more variables (i.e. brain sensors) and more

recording duration at a higher sampling rate, the quality of the prediction improved consider-

ably, being able to have learning machine algorithm to detect preictal states in long recording

iEEG is a first step for seizure forecasting.

A concern and indeed a challenge is the necessary evolution from some conventional tech-

niques to the new framework given by the Big Data due to the increasing capabilities, for

example, of real-time monitoring of body health indicators. In our opinion the treatment of

such massive datasets with softer techniques than the conventional ones will be required by

the new juncture. This opens a new task for us in evaluating the performance and suitability of

our work in other areas.
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