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Abstract

In this paper, we define the concept of graph extension, embedded on a closed
and orientable surfaces, associated to pairing of edges of regular polygons in order to
show that the K-regular pairing of edges graphs can be obtained by the canonical
extension of graphs (graphs with a single vertex). We will present examples of
K-regular graphs associated to surfaces with genus g ≤ 3.
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1 Introduction

Given a polygon P with 2E sides, always is possible to obtain a closed orientable surface
Mg by edge pairing (quotient map), where the image of the border of P corresponds to a
graph G with E edges embedded on Mg (see Figure 1). Some authors have searched graphs
that can be associated with a edge pairing and the posible edge pairings linked to each
of them graphs. In [3], Jorgensen and Naatanen showed that for E = 9, there are eight
trivalent pairings (all vertices have degree 3) for surfaces with genus g = 2. These pairings
are associated to five graphs non isomorphic (see Figure 12). For g = 3, Nakamura [4]
presents a table of 65 graphs (it can be shown in Figure 15) that are associated with
trivalent pairings and asserts that there are 927 trivalent pairings associated with these
graphs. In [2], was introduced two surgeries of pairing that involves connected sum of
graphs, of surfaces and polygons, with the goal of determining families of trivalent graphs
for g ≥ 3, associated to some pairing edges.

In this paper, we will introduce an extension and contraction of graphs on surfaces,
for determining families of pairing graphs on closed orientable surfaces with genus g. The
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Figure 1: Edge pairing of polygon: (a) E = 2 and (b) E = 3.

article has a dual purpose: firstly to use the technique of extension of graphs on a surface
Mg, to show that all graph can be obtained by some extension of pairing graph with
a unique vertex and E = 2g associated to canonical identification, where the regular
polygon P has 4g sides (see Figure 9); afterwards show the constructions of these K-
regular graphs for surfaces with genus g ≤ 3, by extension of graphs. We have to remark
that the objective of this paper is to give theoretical conditions to obtain the pairing
graphs but we are not interested in the number of graphs (non isomorphic) that can be
computed depending on the genus of the surface.

The organisation of the paper is: in Section 2 we present the definition of extension of
graphs and some consequences. In Section 4, (graph of identification) pairing graph and
its extensions. In Section 5, we will introduce the K-regular identification graph. Finally
we present the construction of k regular graphs for g ≤ 3.

2 Extension and contraction of graphs

Let G be a graph with vertices set V (G) = {v1, . . . , vn} . The pair (V,A) will denote
the number of vertices and edges of the graph. For the convenience of the reader
we review the following concepts thus making our exposition self-contained: A path
of length n in a graph G is an alternate sequence of vertices and edges of the form
C = {v0, z1, v1, . . . , vn−1, zn, vn}, where zi = {vi−1, vi} is an edge that connects the ver-
tices vi−1 and vi. A cycle of G with length n is a closed path, where the vertices v1, . . . , vn
are all different. The number of free cycles of the graph G is given by β(G) = 1− V +A.
The Euler characteristic of the graph G is given by χ(G) = V − A.

Definition 2.1. The degree of a vertex v is the number of edges incident to v, with a loop
counting two towards the degree of the vertex to which it is incident. The degree of v is
denoted by deg(v)

A graph is said K-regular if all its vertices have degree equal to K.

Notation:The graph with a unique vertice and β loops, it will be denoted by Iβ.This
graph will be 2β-regular.

Example 2.2. Figure 2 illustrates examples of K-regular graphs with four free cycles.
From (a) to (i) represents the possible 3-regulars graphs (without isomorphisms) with
(v, a) = (6, 9) edges. The graph (j) represents a I4 and it is 8-regular type (1, 4). The
graphs from (k) to (m) are 5-regular type (2, 5) and from (n) to (q) are 4-regular type
(3, 6).
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Figure 2: Examples of K-regular graphs.

Definition 2.3. An edge uv ∈ G it is said vertex extension w ∈ G1 if the vertices u, v ∈ G
and the edge uv can be obtained by ”stretching” the vertex w. In this case, we say that
the graph G is an extension of the graph G1 or G1 is a contraction of the graph G.

Note that the degree of w satisfies deg(w) = deg(u) + deg(v)− 2,

Example 2.4. The Figure 3, displays different extensions of the graph I4 for 3-regular
graphs. Note that the graphs are immersed in IR3, locally is not important the position
of the edges incident to a vertex, this allows to have different stretches. This does not
occur if the size of the space is smaller.

Figure 3: Examples of graph extension.

Proposition 2.5. Extension and contraction of graphs preserves the number of cycles.

Proof. The number of cycles in the graph is given by 1−V +A. In the stretching of each
vertex, the number of edges and vertices always changes by one unit at the same time.
Therefore the stretching of each vertex does not change the cycle number. Consequently
extension and contraction of graphs do not change the number of cycles.

Corollary 2.6. Every connected graph with β free cycles can be contracted in the Iβ
graph. Consequently, every tree can be contracted at one vertex.

Proof. If the graph G is connected with β free cycles, then any two vertices u and v in
G are connected by a path that can be contracted at a vertex. Consequently, any cycle
of G can be contracted in a loop. By contracting all paths and cycles, there will remain
only one vertices with β loops.
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3 Embedding graphs on a surface Mg

We will denote by Mg the closed and oriented surface with genus g. The genus of a
connected graph G is the smallest number g for which there is an embedding ι : G −→Mg.
This embedding exists provided that the genus of G is less than g.

Figure 4: Graphs inmersed in M1 and M2.

Example 3.1. Figure 4 illustrates two graphs on the torous and two on the bitorous.
The two graphs with six vertices are isomorphic and have genus one. Let us observe that
in Figure 4 (a) the complements of the two graphs on the torus have three components
that are simply connected and (b) the complements of the two graphs on the torus are
simply connected.

We will denote by G = ι(G) the graph on Mg. The number of connected components
of the complement of Mg \ G we will denote it by F .

Proposition 3.2. If Mg \G has F simply connected regions (homeomorphic to the disk),
then χ(G) = 2− 2g − F.

Proof. The Euler characteristic of the surface Mg is given by χ(Mg) = V − A + F =
χ(G) + F, when all of F regions of Mg \ G are simply connected. On the other hand,
the Euler Characteristic of a closed and oriented surface with genus g it is given by
χ(Mg) = 2− 2g. From these two equalities we have: χ(G) = 2− 2g − F.

Note that F is always less than the number of cycles of G.

If G1 is a graph embedded on the surface Mg and w is a vertex of G1, then we can
construct a new graph G, embedding the surface Mg, stretching the vertex w on the
surface Mg, the two vertices stretching on the torous, as displays Figure 5.

Definition 3.3. If G is a graph obtained from the graph G1 by stretching of vertices on
the surface Mg, then we will say that G is a extension on the surface Mg of G1.

Proposition 3.4. The extension and contraction of graphs on a surface does not change
the number of connected components of the graph complement.
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Figure 5: Extension of graphics on the torus.
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Figure 6: Local example of vertex stretching on a surface.

Proof. The stretching of a vertex in the graph on the surface changes by a unit the number
of vertices and the number of edges, which occurs only at the edges of the regions of the
complement of the graph, without changing the number of these connected components,
as can be seen example in Figure 6 and 11.

Note that if all components of the complement of Mg are simply connected, by Propo-
sition 3.4 becomes very clear by Proposition 3.2, since χ(M) is constant and the number
of vertices and number of edges that it adds (or decreases) to the contraction of the graph
are the same, where we can conclude that the same is true of the number of components
of the graph complement.

Theorem 3.5. Every connected graph embedded on a surface Mg, with β free cycles, can
be contracted in the graph type Iβ.

Proof. Let G be a connected graph, with β free cycles, embedded on a surface Mg. As
Mg is connected by path, we can stretch one of the edges of each free of G on a surface
and contract the other edges and vertices into a single vertex. By Corollary 2.6, this
contraction does not change the number of cycles in the graph. Thus the graph with only
vertex thus obtained is of the type Iβ (see Figure 4).

4 Pairing graphs on a surface

The complement of a graph on a surface Mg may have different numbers of connected
components, as you can see in Figures 4 and 5. A natural question is: which graphs
can be embedded on a surface Mg so that the complement of the graph has F simply
connected components?. Here we are interested when F = 1. The next definition gives us
a motivation to study these graphs.
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Definition 4.1. A graph G is said pairing graph on the surface Mg, if the complement
Mg \ G is simply connected (homeomorphic to a disk).

Figure 7: Local example of pairing graphs on a surface.

The pairing graphs G on a surface Mg, corresponds to the image of the edge of some
regular polygon P , by the quotient map q : P −→ Mg, which takes a couple of edges of
P on a curve arc ai in Mg and it takes a set of ki vertices of P on a point vi de Mg. The
arcs of curves ai and the points vi corresponds respectively to the edges and vertices of
G, and the number ki corresponds to the degree of vi. The polygon will be P connected
with a segment of lines each pair of edges identified by q (see Figures 7 and 8).

Figure 8: Examples of surface pairing graphs.

Definition 4.2. The set of segments of lines that point the pairs of edges in P identified
on Mg it will be called pairing diagram, denoted by D.

Definition 4.3. The pairing of the polygon P , with 4g sides, on the surface Mg we will
call it canonical pairing (see Figure 9).

Figure 9: Examples of canonical pairing on Mg, para 1 ≤ g ≤ 3.

Notation: We will denote by I2g the graph of canonical pairing on the surface Mg.
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Proposition 4.4. If G is a pairing graph on Mg, then V − A = 1− 2g.

Proof. If G is a pairing graph on Mg, the complement of G on Mg is simply connected,
therefore F = 1. By Proposition 3.2, we have A− V = 2g − 2 + F = 2g − 1.

Corollary 4.5. The pairing graph G is a tree if, and only if, Mg = S2.

Proposition 4.6. Let G be an pairing graph with V vertices and A edges, on a surface
Mg. The graph G has Vi vertices with degree Ki, for i = 1, · · · , r, then

2A =
∑r

i=1KiVi and
∑r

i=1(Ki − 2)Vi = 2(2g − 1).

Proof. If G has Vi vertices with degree Ki,for i = 1, · · · , r, the total number of vertices is

given by V =
∑r

i=1 Vi and the total number of edges is given by A =
1

2

∑r
i=1 ViKi,because

each edge connects two vertices. So 2(A−V ) =
∑r

i=1 Vi(Ki−2). According to Proposition
4.7 it follows 2(A−V ) = 2(2g− 1). From this two equalities it follows the statement.

Proposition 4.7. All regular polygons P2A, with A > 1, are polygons of pairing for some
pair (Mg,G), where A ≥ 2g and the graph Ghas A edges and V = A+ 1− 2g vertices.

Proof. Given the polygon P2A, to obtain the sphere, g = 0, we take the quotient map
q : P4g −→ Mg, in way that the pairing diagram does not have points of intersection.
For A = 4g > 0, the canonical pairing guarantees the existence of the pair (Mg, I2g).
For 0 < 2g < A, we can identify, as in the previous case, the 4g first consecutive edges,
forming a type graph I2g with a single vertex v. The m = 2A− 4g remaining sides of the
polygon can be identified the consecutive pairs or pairs so that the corresponding lines of
the pairing diagram do not have intersection points. In the graph, this pairing forms a
tree-like branch connected to v (see Figure 8).

Lemma 4.8. Let G be an pairing graph on the surface Mg. If G1 is an extension or
contraction on Mg of the graph G, then G1 is also an pairing graph on Mg.

Proof. The extension of a vertex of the pairing graph on Mg increases two sides in the
pairing polygon because the changed edges always remain on the edge of the polygon, as
you can see in Figure 10. By Proposition 3.4, the extension (contraction) of graphs on Mg

does not change the number of the connected component of the graph complement. Since
G1 is an extension (or contraction) of G and Mg \ G is simply connected, then Mg \ G1is
also simply connected. Then G1 is an pairing graph on Mg, by Definition 4.1.

Example 4.9. Figure 11 illustrates 16 pairing graphs with four vertices on M3. These
graphs may be obtained by a sequence of extensions de graphs of type I6 (see (c) and (d)
Figure 9 .

Note that these graphs are not K-regular and that the vertex stretches can be made
within a region homeomorphic to disk.

Remark 4.10. An extension or contraction of any pairing graph in the space may lead
to a non-pairing graph. We can guarantee that the resulting graph of an extension or
contraction is a pairing graph if (the extension or contraction) is made on the surface.
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Figure 10: Examples of graph extension on the torus.
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Figure 11: Examples of graphs with four vertices on M3.
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Theorem 4.11. All pairing graph G on Mg, with g > 0, can be obtained by extension of
the pairing canonical graph I2g.

Proof. If G is a pairing graph with β cycles, by Proposition 4.4, A − V = 2g − 1 e
β = 1 − V + A = 2g. Then by Theorem 3.5, G can be contracted in the graph type I2g
on a surface Mg. Since G is pairing graph, then I2g is a pairing graph on Mg, by Lemma
4.8. Doing the inverse path, by stretching vertices on Mg, we obtain the pairing graph G
from the canonical pairing graph I2g.

As consequence of Theorem3.5, we have the following result:

Corollary 4.12. All pairing graphs K-regular, with K > 1, can be obtained by some
extension of the graph I2g.

In particular, all pairing graph on Mg with (V,A) ≤ (4g − 2, 6g − 3) can be obtained
by some extension on Mg of the pairing graph I2g.

5 Pairing K-regular graphs

From now on we will give special attention to pairing k-regular graphs. Note that the
only 1-regular graph is a tree and can not be associated with a regular polygon. The
2-regular graphs are homeomorphic to the circle and also can not be pairing graphs, since
it does not have a simply connected complement on a surface.

5.1 Possible values for V and A

Let see the possible values for V and A for pairing K-regular graphs on surfaces Mg as a
function of g and K. On the torous exists a unique 3-regular graph (non-isomorphic) and
single 4-regular graph that is I2 (see Figure 10). Thus, we can state the following,

Definition 5.1. A regular polygon P it will be said pairing K-regular polygon if exists a
pair (Mg,G), where Gis a pairing K-regular graph on a surface Mg.

Proposition 5.2. Let G be a pairing graph on a surface Mg. If G is K-regular and g > 0,
then K ≥ 3. Consequently, if P2A is a K-regular polygon then A ≥ 2.

Corollary 5.3. Let G be a K-regular pairing graph on Mg, with V vertices. If V = 2V1,
then there are 2(K − 1)-regular pairing graphs on Mg, with V1 vertices.

Consequently, V = 2mVm, with m,Vm ∈ IN , then there are 2m(K − 1)-regula pairing
graphs on Mg, with Vm vertices.

Proposition 5.4. Let P be a pairing K-regular polygon associated with the pair (Mg,G).
Then

(V,A) = (
2(2g − 1)

K − 2
,
K(2g − 1)

K − 2
). (1)

Consequently, the pairing K-regular polygon has n = 2K(2g − 1)/(K − 2) sides.
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Proof. If G is a pairing K-regular graph, the quotient map q : P −→Mg, it takes a couple
of edges P on an edge of G.

Besides, q tales K vertices of P on a vertex of G. Since the number of vertices and
edges of the polygon P are equal, Then 2A = KV . From Proposition 4.4, we have G
satisfiesA− V = 2g − 1. From these two equality it follows A = K(2g − 1)/(K − 2) and
V = 2(2g − 1)/(K − 2).

Corollary 5.5. If G is a pairing K-regular graph on Mg, then g = 1
2K

[(K − 2)A+K].

Table 1: Values for the pairing k-regular graphs.

Remark 5.6. Fixed 0 < g ≤ 4, from Proposition 5.4 whe have the possible valuesK > 2
for pairing K-regular graphs on Mg:

1. For g = 1, we have (V,A) = (
2

(K − 2)
,

K

(K − 2)
). Then A and V it will be positive

integers only for K = 3, with (V,A) = (2, 3) and for K = 4, with (V,A) = (1, 2). In
both cases, there is only one graph (see Figure10).

2. For g = 2, (V,A) = (
6

(K − 2)
,

3K

(K − 2)
). it will be positive integers for A and V

for K = 3, with (V,A) = (6, 9), for K = 4, with (V,A) = (3, 6), for K = 5, with
(V,A) = (2, 5) and for K = 8, with (V,A) = (1, 4).

3. For g = 3, (V,A) = (
10

(K − 2)
,

5K

(K − 2)
). The numbers A and V it will be positive

integers for K = 3, with (V,A) = (10, 15), for K = 4, with (V,A) = (5, 10), for
K = 7, with (V,A) = (2, 7) and for K = 12, with (V,A) = (1, 6).

4. For g = 4, (V,A) = (
14

(K − 2)
,

7K

(K − 2)
). The numbers A and V it will be positive

integers for K = 3, with (V,A) = (14, 21), for K = 4, with (V,A) = (7, 14), for
K = 9, with (V,A) = (2, 9) and for K = 16, with (V,A) = (1, 8).
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Table 1 shows a summary of possible values V,A,K e n = 2A associated to pairing
k-regular graph. Note n = KV.

5.2 Pairing graphs for g ≤ 3

Remark 5.6 describes the possible K for pairing k-regular graphs associated to Mg, with
g < 4.

We are going to present the possible diagrams associated with the pairing graphs on
M1 e M2. For M3, we are going to depict examples because we are limited by the huge
number of pairings (see [4], for V = 10).

(i) For M1: the possible values for K are: 3 and 4. Figure 10 illustrates the unique pairing
3-regular graph obtained by extension of graph type I2.

(ii) For M2: the possible values for K are: 3, 4, 5 e 8. We will now see the possible pairing
graphs for V = 1, 2, 3 and 6 (see Table 1) by extentions of the graphs type I4. Figure 12
iillustrates the possibles pairing K-regular graphs (non isomorphic) on M2 (K = 3, 4, 5, 8).
The reader can verify any other K- regular diagram on M2 is equivalent to one of this
fours. For

V = 1: (a) and (b) illustrates the two possible pairing graphs type I4 with their
respective diagrams on the polygon with 8 sides.

V = 2: (c), (d) and (e) illustrates the three possible pairing 5-regular graphs (non
isomorphic) on M2, with their respective diagrams on the polygon with 10 sides.
Note that the graph (d) is associated with two pairings.

V = 3: (f), (g) e (h) illustrates the three pairing 4-regular graphs (non isomorphic)
on M2, with their respective diagrams on the polygon with 12 sides. Note that the
graph (g) is associated with two pairings.

V = 6: (i), (j), (k), (l) and (m), illustrates the five pairing 3- regular graphs
(non isomorphic) on M2, with their respective diagrams on the polygon with 18
sides. These graphs can be obtained by different extensions of 5-regular graphs
or 4−regular graphs. Note that the graphs (i) and (k), has an unique associated
pairing. In [3], Jorgensen and Naatanen shows all possible pairing 3-regular graphs
which corresponds to eight different pairing 3-regular diagram on M2.

(iii) For M3: the possible values for K are: 3, 4, 7 e 12 (see Table 1). Figures 13, 14, 15
illustrates the pairing K-regular graphs (non isomorphic) on M3.

We will now see some examples of pairing graphs for V = 1, 2, 5 and 10, by extension
beginning with graph type I6.

V = 1: Figure 13-(a) illustrates eight examples of pairing diagrams associated to
graphs type I6, on the polygon with 12 sides. The reader can check that there are
other pairing diagrams on the polygon with 12 sides, besides these eight.
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Figure 12: Examples of extension of pairing graphs K-regular on M2.
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Figure 13: Extension for graphs of 3-regular pairings on M2 .

2

Figure 14: Examples of 4-regular diagrams and graphs of graphs on M3.
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V = 2: Figure-13(b), (c) and (d), illustrates the eight examples of pairing 7-regular,
associated to three 7-regular graphs, with their respective pairing diagrams. The
reader can verify that exists other pairing diagrams on the polygon with 14 sides.
These graphs can be obtained by different extension of pairing graphs type I6 (Figure
13).

V = 5: Figure-14, displays some examples of pairing 4-regular graphs on M3 (non
isomorphic), with some of their pairing diagrams. Note that each graph can be
associated to a various pairings. The reader can verify that any pairing 4-regular
graph on M3 can be obtained by extension of some pairing graph with 4 vertices,
see Figure 11.

V = 10: in [4], Nakamura shows that exists 65 pairing 3-regular graphs (see Figure
15) that are non isomorphic on M3 and the authors show the 927 pairing diagrams
associated with these graphs, on the polygon with 30 sides.
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Figure 15: Possible 3-regular pairing graphs on M3.

Figure 15 illustrates the 65 pairing 3-regular graphs given by Nakamura, in [4]. These
graphs can be obtained by extension of the graphs displayed in Figure 14 (shown in
the right-hand rectangle below). These extensions are not unique, because one pairing
3-regular graph can be obtained from different extensions of graphs 4−regular.
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