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Summary: Pregnancy is a complex process which significant changes occurring continually in both the corpora lutea
and in the endometrium of the females and varies depending on the embryonic, pre-implantation, or foetal stages. In the
embryonic stages, the majority of genes expressed in the pig embryo correspond to the loss of cellular pluripotency. In
contrast, the implantation consists of three phases: elongation of the conceptus, adhesion, and union of the embryo to
the endometrial epithelium. During these phases, many factors are expressed, including growth factors, molecules that
facilitate adhesion, and cytokines, among others. All these changes are ultimately regulated by different lipid and
hormonal substances, specifically by progesterone, oestradiol, and prostaglandins, which regulate the expression of
many proteins necessary for the development of the embryo, endometrial remodelling, and embryo-maternal
communication. This paper is a review of primary gene regulatory mechanisms in pigs during different stages of

implantation.
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Main text

Pluripotency transcription factors

The most critical transcription factors related to pluripotency in all mammals species are the Oct4 transcription factor
(belonging to the POU gene family), Nanog and SOX2 transcription factor, expressed predominantly in pluripotent cells
(Boyer et al., 2006). Among these, previous studies have shown Oct4 is required to cell differentiation processes in
different mammalian species, such as human, mice, rabbit and pig, and is expressed earlier, and required for embryonic
cells differentiation (Assadollahi et al., 2019; De Los Angeles et al., 2019; Dode et al., 2006; Fair et al., 2004; Llobat et
al., 2012; Shen et al., 2019). Oct4 transcription factor binds to DNA during embryonic development and acts as a gene
activator or repressor during cell differentiation and early embryonic development (Smith et al., 2007). In pigs, Oct4
expression is present in trophoblast and inner cell mass (ICM) (Hall et al., 2009; Vejlsted et al., 2006). Both Nanog and
SOX2 are expressed in swine ICM, and are also detected on day 8.5 in the early epiblast, whereas Oct4 seems to start on

day 10 (du Puy et al., 2011; Hall et al., 2010; Shen et al., 2019; Yoon et al., 2019)

However, in porcine and mouse ICM, other transcription factors related to pluripotency such as GATA6 have been
detected (Kuijk et al., 2008; Meng et al., 2018; Schrode et al., 2014).. Nevertheless, Hall (2012) indicate a possible
entry of the embryo at rest due to the lack of genes expressed in the ICM, while during the same stage, the epiblast
expresses several genes, such as SMAD (1, 2, 3, 4 and 5) or BMP4, demonstrates higher pluripotent activity in porcine
epiblast than in ICM, which exhibits a very premature pluripotency (Hall et al., 2010; Hall & Hyttel, 2014; Kuijk et al.,
2008; Wolf et al., 2011). Furthermore, recent studies in cloned embryos showed the dependence of pluripotency-related
and apoptosis gene expression on epigenetic transformations (Samiec et al., 2019). The single-cell expression analysis
technique pluripotency-related genes in pig embryos, such as paired box 6 (P4X6) and aquaporin 3 (AQP3), and, in late
blastocysts, clathrin adaptor protein (DAB?2), platelet-derived growth factor receptor alpha (PDGFRA), fibronectin 1
(FN1), hepatocyte nuclear factor 4 alpha (HNF4A4), goosecoid homeobox (GSC), nuclear receptor subfamily 5 group A
member 2 (NR5A42) and lysine acetyltransferase 6A (KAT6A4) (Wei et al., 2018). However, the underlying factors

involved in pluripotency and its regulation require further study.

Vascular endothelial and transforming growth factors
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The adhesion process can be affected by growth factors that regulate vascularisation and cell motility. One such factor
the vascular endothelial growth factor (VEGF), is associated with de novo vascularisation during processes such as
implantation, embryogenesis, menstrual cycle, development of luteal bodies, development of ovarian follicles and
tumorigenesis (Ferrara et al., 1998; Valdés et al., 2008). In pigs, VEGF expression has recently been associated with
foetal weights at 80 and 105 days of pregnancy (Guimaraes et al., 2017). Moreover, studies in vitro shows an increase
development of porcine embryos VEGF dependent, suggesting VEGF functions related not only to vascularization, but

also to development and growth (Biswas et al., 2018).

Transforming growth factor superfamily (7GF) is another group of transcription factors present in embryos of different
species both before and during implantation. The 7GF-f regulates blastocyst differentiation and maturation events,
including modulating the interactions between the uterus and embryo during implantation (Paria and Dey, 1990; Pauken
and Capco, 1999). In pigs, the expression of integrin-mediated 7GF-f increases at the time of embryonic elongation and
pre-implantation. This increase is related to several functions of 7GF-£ in the maternal-embryonic interface, such as
communication between the endometrium and conceptus (Jaeger et al., 2005; Li et al., 2019). Furthermore, recent
studies have shown that GFD8 (member of TGF-p) is involved in the expression of ICM marker SOX2 during embryo
in vitro development, indicating their role in preimplantation embryonic development (Yoon et al., 2019). Other growth
factors, such fibroblast growth factor 2 (FGF2) and angiopoietins (ANGPT5), has been related to vascularization during

peri-implantation process, since it has recently been shown that prostaglandin increases the expression of VEGF in

trophoblast and FGF and ANGPTs in swine endometrium on days 15 and 20 (Kaczynski et al., 2019). These results
suggest an important function of different growth factors mediated by prostaglandins in embryo development and

creation of new blood vessels between endometrium and trophoblast in pigs.

Family of Integrins

Integrins are adhesion molecules involved in the maternal-embryonic interaction in different species. Pigs show
increased expression of different integrin subunits in the endometrium on day 18 of pregnancy (aVp3). However,
integrin expression decreases on day 25 before implantation, which indicates a critical role for integrins during
elongation and implantation stages (Lin et al., 2007). Among the group of integrins and their subunits, osteopontin
(SSP1I) is a phosphoprotein secreted by the matrix that binds integrin heterodimers o and £6 subunits and promotes the

migration and binding of the trophectoderm to the endometrium (Erikson et al., 2009). SSP/ is involved in the
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regulation of signalling events related to adhesion, including invasion by the trophoblast and its migration (Johnson et
al., 2003). In pigs, it was shown to contain an Arg-Gly-Asp (RGD) peptide sequence that joins the surface of the
endometrium with the trophectoderm. In vitro studies showed that this peptide sequence is essential for both the
elongation of the blastocyst and later stages of pregnancy, since it activates the ion transporters, thereby increasing
nutrient transport (Laughlin et al., 2017). Furthermore, the mechanical forces from the union of the conceptus to the
endometrium appear to be generated from the focal adhesions created during implantation and formed by SSP/ and the
aV subunit of the integrin. These focal adhesions are lost as placentation proceeds (Frank et al., 2017). The SSP/ protein
present on the entire apical surface of the uterine cells and trophectoderm Nevertheless its expression is limited to the
endometrium. Endometrial expression begins on day 11 and is induced by oestradiol to regulate maternal embryonic
recognition (Burghardt et al., 2002; Johnson et al., 2003). Besides, increased expression of SSP/ in the porcine
endometrium has been observed between days 25-30, and remains until day 85, indicating the role of SSP/ not only in
implantation, but also in later stages of pregnancy (Garlow et al., 2002). In pigs, the placenta is epitheliochorial, so that
the placental barrier includes both the trophectoderm and the uterine epithelium (Wildman et al., 2006). Therefore, the
factors that regulate or are related to the process of implantation are of great importance in the placentation. Recent
studies showed relationship between foetal size and integrin expression, since regulate adhesion and foeto-maternal
interface by interacting with SSPI (Stenhouse et al., 2019). Concretely, SSP/ has a fundamental role, primarily in the
non-invasive epitheliochorial placentation, and similar relates to processes that are occurring in pigs (Garlow et al.,

2002; Rashev et al., 2005).

Cytokines

Cytokines are a group of proteins and glycoproteins (interleukins (/L), tumour necrosis factors (7NF), interferons (IFN),
colony-stimulating factors (CSFs), and chemokines) produced by different cell types that act primarily as regulators of
immune and inflammatory responses and are essential for maternal-embryonic recognition (Sharkey, 1998).
Aproximately at day 12, pig embryo secretes /FNs (y and d), and /L (1B and 6) (Bazer, 2013). Specifically, the
expression of interleukin 1B, /L/B2 increases in the pig embryo around day 14, indicating cytokine requirement for
conceptus elongation and attachment to the uterine wall (Whyte et al., 2018). Other interleukins, such as /L-2 or IL-4,
are produced by the foetal and maternal placentas from day-30, suggesting their role in maternal-foetal recognition
(Vélez et al., 2019). Other important cytokines for successful pregnancy are interferons (/FN), which are classified into

two families, type I and II interferons. The type II interferon family is composed of a single known gene, whose product
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is v interferon (De Maeyer and De Maeyer-Guignard, 1992), the primary product of T cells, and is found in different
placental cell types, and human embryonic membrane and porcine trophoblast cells (Bazer et al., 1997). The other
group of interferons, type I, is composed of different subtypes with similar biological properties, and interaction with
the same receptor. This group includes interferons a, B, 6, ® and interferon t. Each subtype is different from each other
in their amino acid sequence and serological properties, although all are involved in maternal-embryonic recognition
(Aboagye-Mathiesen et al., 1995; Charlier et al., 1993; Charpigny et al., 1988; Cross and Roberts, 1989; Fung et al.,
2004; Godornes et al., 2007; Imakawa et al., 1987; Kawasaki et al., 1992; Li et al., 2007; Muscettola et al., 2003).
During pregnancy in pigs, interferons exert both paracrine and autocrine effects; however, the effects in the uterus are
not well understood, although expression of interferon y type 2 has been observed in the trophectoderm cells (Lefévre et
al., 1998). In addition, the conceptus also expresses interferons, specifically y and 8 interferons between days 12-20 of
gestation (Cencic et al., 2003; Cencic and La Bonnardiére, 2002; Joyce et al., 2007a, 2007b). The expression of
interferon-stimulated genes (ISG), including Mx, ISG15/17, IRF1, STATI, and STAT?2, is limited to specific uterine cells
in pigs between days 14-18 of pregnancy (Hicks et al., 2003; Joyce et al., 2007a). The induction of ISG expression
occurs, not only in pigs, but also in other mammalian species such as sheep, cows, mice, rat, primates, and humans,
suggesting that the induction of /FN promotes the gene expression in the uterine epithelium to facilitate implantation,
placentation, and foetal development (Bazer et al., 2011). Recently, it has been shown that the /FN-y in the porcine
trophoblast influences the expression of specific chemokines (CCL2, CCL5, CCL1I, and CXCLI2) required for
endometrial communication with the trophoblast or recruitment of immune cells and establishment of an

immunotolerant environment (CXCL9, CXCL10) for the embryo (Ztotkowska and Andronowska, 2019).

Insulin-like growth factors

Insulin-like growth factors (/GFs) are polypeptides with insulin-like sequences with mitogenic properties, for inducing
proliferation and growth of somatic cells (Rinderknecht and Humbel, 1978). IGF's are also required for the regulation of
amino acid and glucose transport in the placenta (Ashton and Spencer, 1983; Kniss et al., 1994). Type I receptor (/GF-
IR) is a transmembrane tetrameric glycoprotein that resembles the insulin receptor and has a high affinity for both /GF-/
and /GF-II (Germain-Lee et al., 1992; Ullrich et al., 1986). In contrast, the type II receptor (/GF-IIR) is a single chain
polypeptide with a high affinity for /GF-II and is unable to bind /GF-I or insulin (Liu et al., 1993). /GF deficiencies
exhibit distinct functional differences, and studies with /GF-IIR knock-out mice showed excessive placental and foetal

growth (Kitamura et al., 2003). Studies in humans showed that mutations in the /GF-IR gene resulted in reduced
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functionality associated with low pre- and post-natal growth, or that excessive foetal growth occurs when IGF-II is
overexpressed (Abuzzahab et al., 2003; Lau et al., 1994; Murrell et al., 2004; Wang et al., 2017). These results
demonstrate that /GFs, together with their receptors, have an important role in the regulation of foetal and placental
growth in most species (Wilson et al., 1982). Also, Fant and colleagues (1986) showed that the placenta produces both
IGF-I and IGF-II, which act as local growth regulators in human. Specifically, IGF-II is expressed predominantly in the
placenta, with both paracrine and autocrine functions, which are especially important during implantation and
trophoblastic invasion (Giudice, 1997; Hamilton et al., 1997). However, the /GFs are not only related to the foetal and
placental growth but also regulate different signalling cascades to promote both cell proliferation and differentiation
(Clemmons & Maile, 2005; Kitamura et al., 2003). Studies with preimplantation mouse embryos showed that decreased
IGF-IR induced apoptosis through a cascade of signal transduction pathways and enhanced embryonic resorption (Chi
et al., 2000). Similar studies demonstrated the relationship between /GFs and embryonic losses in rat, pig, or humans
(Katagiri et al., 1997; Pinto et al., 2002; Sferruzzi-Perri et al., 2007, 2006). The final group in the /GF family is the
IGF-binding protein group (/IGFBP), a large group in humans consisting of six different proteins (Denley et al., 2005).
Of these, dephosphorylated /GFBP-1 is found in the serum of pregnant women (Westwood et al., 1994), while /GFBP-
3 is produced by the placenta and foetal membranes (Han, 1996; Rogers et al., 1996). IGFBP-1 is involved in the
regulation of /GFs by inhibiting their functions, such as cell proliferation and differentiation, and trophoblastic
migration (Gleeson et al., 2001; Hamilton et al., 1997; Irving et al., 1995; Ritvos et al., 1988). In pigs, the expression of
IGF-1 is explicitly observed in both the uterine lumen and glandular epithelium of pregnant pigs, while the /GF-IR is
expressed in endometrial cells and the embryo, indicating the presence of both paracrine and autocrine functions

(Letcher et al., 1989).

Conclusions

During different pregnancy stages in pigs, several cellular and molecular mechanisms are activated, each involving
different transcription factors, growth factors, cytokines and others,related to cell differentiation, implantation,
placentation, vascularisation and maternal-embryonic recognition. Despite extensive knowledge of these factors, the
interaction of these factors with each other and the metabolic pathways involved remain to be clarified. The use of new
technologies, such as single-cell gene expression, could help reveal the genes involved and their interactions. However,

many questions about these and other molecules, as well as the interactions between them, remain to be discovered.
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