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Summary: Pregnancy is a complex process which significant changes occurring continually in both the corpora lutea 

and in the endometrium of the females and varies depending on the embryonic, pre-implantation, or foetal stages. In the 

embryonic stages, the majority of genes expressed in the pig embryo correspond to the loss of cellular pluripotency. In 

contrast, the implantation consists of three phases: elongation of the conceptus, adhesion, and union of the embryo to 

the endometrial epithelium. During these phases, many factors are expressed, including growth factors, molecules that  

facilitate  adhesion,  and cytokines,  among others.  All  these  changes  are  ultimately regulated by different  lipid and 

hormonal substances,  specifically by progesterone, oestradiol,  and prostaglandins, which regulate the expression of  

many  proteins  necessary  for  the  development  of  the  embryo,  endometrial  remodelling,  and  embryo-maternal 

communication.  This  paper is  a  review of primary  gene regulatory mechanisms in pigs  during different  stages  of 

implantation. 
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Main text

Pluripotency transcription factors

The most critical transcription factors related to pluripotency in all mammals species are the Oct4 transcription factor 

(belonging to the POU gene family), Nanog and SOX2 transcription factor, expressed predominantly in pluripotent cells 

(Boyer et al., 2006). Among these, previous studies have shown  Oct4 is required to cell differentiation processes in 

different mammalian species, such as human, mice, rabbit and pig, and is expressed earlier, and required for embryonic  

cells differentiation (Assadollahi et al., 2019; De Los Angeles et al., 2019; Dode et al., 2006; Fair et al., 2004; Llobat et  

al., 2012; Shen et al., 2019). Oct4 transcription factor binds to DNA during embryonic development and acts as a gene 

activator or repressor during cell differentiation and early embryonic development (Smith et al., 2007). In pigs,  Oct4 

expression is present in trophoblast and inner cell mass (ICM) (Hall et al., 2009; Vejlsted et al., 2006). Both Nanog and 

SOX2 are expressed in swine ICM, and are also detected on day 8.5 in the early epiblast, whereas Oct4 seems to start on 

day 10 (du Puy et al., 2011; Hall et al., 2010; Shen et al., 2019; Yoon et al., 2019)

However,  in porcine and mouse ICM, other transcription factors related to pluripotency such as  GATA6 have been 

detected (Kuijk et al., 2008; Meng et al., 2018; Schrode et al., 2014)..   Nevertheless, Hall (2012) indicate a possible 

entry of the embryo at rest due to the lack of genes expressed in the ICM, while during the same stage, the epiblast 

expresses several genes, such as SMAD (1, 2, 3, 4 and 5) or BMP4, demonstrates higher pluripotent activity in porcine 

epiblast than in ICM, which exhibits a very premature pluripotency (Hall et al., 2010; Hall & Hyttel, 2014; Kuijk et al., 

2008; Wolf et al., 2011).  Furthermore, recent studies in cloned embryos showed the dependence of pluripotency-related 

and apoptosis gene expression on epigenetic transformations (Samiec et al., 2019). The single-cell expression analysis 

technique pluripotency-related genes in pig embryos, such as paired box 6 (PAX6) and aquaporin 3 (AQP3), and, in late 

blastocysts, clathrin adaptor protein (DAB2), platelet-derived growth factor receptor alpha (PDGFRA), fibronectin 1 

(FN1), hepatocyte nuclear factor 4 alpha (HNF4A), goosecoid homeobox (GSC), nuclear receptor subfamily 5 group A 

member  2 (NR5A2)  and  lysine  acetyltransferase  6A (KAT6A)  (Wei  et  al.,  2018).  However,  the  underlying  factors 

involved in pluripotency and its regulation require further study.

Vascular endothelial and transforming growth factors

2

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



The adhesion process can be affected by growth factors that regulate vascularisation and cell motility. One such factor 

the vascular endothelial growth factor (VEGF), is associated with  de novo vascularisation during processes such as 

implantation,  embryogenesis,  menstrual  cycle,  development  of  luteal  bodies,  development  of  ovarian  follicles  and 

tumorigenesis (Ferrara et al., 1998; Valdés et al., 2008). In pigs,  VEGF expression has recently been associated with 

foetal weights at 80 and 105 days of pregnancy (Guimarães et al., 2017). Moreover, studies in vitro shows  an increase 

development of porcine embryos VEGF dependent, suggesting VEGF functions related not only to vascularization, but 

also to development and growth (Biswas et al., 2018). 

Transforming growth factor superfamily (TGF) is another group of transcription factors present in embryos of different 

species both before and during implantation. The  TGF-ββ regulates blastocyst  differentiation and maturation events, 

including modulating the interactions between the uterus and embryo during implantation (Paria and Dey, 1990; Pauken 

and Capco, 1999). In pigs, the expression of integrin-mediated TGF-ββ increases at the time of embryonic elongation and 

pre-implantation.  This increase is related to several functions of  TGF-ββ in the maternal-embryonic interface, such as 

communication between the endometrium and conceptus (Jaeger et al.,  2005; Li et  al.,  2019).  Furthermore, recent  

studies  have shown that GFD8 (member of TGF-ββ) is involved in the expression of ICM marker SOX2 during embryo 

in vitro development, indicating their role in preimplantation embryonic development (Yoon et al., 2019). Other growth 

factors, such fibroblast growth factor 2 (FGF2) and angiopoietins (ANGPTs), has been related to vascularization during 

peri-implantation process, since it  has recently been shown that prostaglandin increases the expression of  VEGF in 

trophoblast and  FGF and  ANGPTs in swine endometrium on days 15 and 20 (Kaczynski et al., 2019).  These results 

suggest  an important  function of  different growth factors  mediated by prostaglandins in embryo development and 

creation of new blood vessels between endometrium and trophoblast in pigs.

Family of Integrins

Integrins  are  adhesion  molecules  involved  in  the  maternal-embryonic  interaction  in  different  species.  Pigs  show 

increased expression of  different integrin subunits  in the endometrium on day 18 of  pregnancy (αVβ3Vβ3).  However, 

integrin  expression  decreases  on  day  25  before  implantation,  which  indicates  a  critical  role  for  integrins  during  

elongation and implantation stages (Lin et al.,  2007). Among the group of integrins and their subunits, osteopontin 

(SSP1) is a phosphoprotein secreted by the matrix that binds integrin heterodimers αVβ3V and β6 subunits and promotes the 

migration  and  binding  of  the  trophectoderm  to  the  endometrium (Erikson  et  al.,  2009).  SSP1 is  involved  in  the 
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regulation of signalling events related to adhesion, including invasion by the trophoblast and its migration (Johnson et  

al.,  2003).  In pigs, it  was shown to contain an Arg-Gly-Asp (RGD) peptide sequence that  joins the surface of the 

endometrium with  the  trophectoderm.  In  vitro studies  showed that  this  peptide  sequence  is  essential  for  both the 

elongation of the blastocyst and later stages of pregnancy, since it activates the ion transporters, thereby increasing  

nutrient transport (Laughlin et al., 2017). Furthermore, the mechanical forces from the union of the conceptus to the  

endometrium appear to be generated from the focal adhesions created during implantation and formed by SSP1 and the 

αVβ3V subunit of the integrin. These focal adhesions are lost as placentation proceeds (Frank et al., 2017). The SSP1 protein 

present on the entire apical surface of the uterine cells and trophectoderm Nevertheless its expression is limited to the 

endometrium. Endometrial expression begins on day 11 and is induced by oestradiol to regulate maternal embryonic  

recognition  (Burghardt  et  al.,  2002;  Johnson  et  al.,  2003).  Besides,  increased  expression  of  SSP1 in  the  porcine 

endometrium has been observed between days 25-30, and remains until day 85, indicating the role of SSP1 not only in 

implantation, but also in later stages of pregnancy (Garlow et al., 2002). In pigs, the placenta is epitheliochorial, so that  

the placental barrier includes both the trophectoderm and the uterine epithelium (Wildman et al., 2006). Therefore, the 

factors that regulate or are related to the process of implantation are of great importance in the placentation. Recent  

studies showed relationship between foetal size and integrin expression, since regulate adhesion and foeto-maternal 

interface by interacting with SSP1 (Stenhouse et al., 2019). Concretely, SSP1 has a fundamental role, primarily in the 

non-invasive epitheliochorial placentation, and similar  relates to processes that are occurring in pigs (Garlow et al.,  

2002; Rashev et al., 2005).

Cytokines

Cytokines are a group of proteins and glycoproteins (interleukins (IL), tumour necrosis factors (TNF), interferons (IFN), 

colony-stimulating factors (CSFs), and chemokines) produced by different cell types that act primarily as regulators of 

immune  and  inflammatory  responses  and  are  essential  for  maternal-embryonic  recognition  (Sharkey,  1998). 

Aproximately  at  day 12,  pig embryo secretes  IFNs (γ  and δ), and ),  and  IL (1B and 6)  (Bazer,  2013). Specifically,  the 

expression of interleukin 1β,  IL1B2 increases in the pig embryo around day 14, indicating cytokine requirement for 

conceptus elongation and attachment to the uterine wall (Whyte et al., 2018). Other interleukins, such as IL-β2 or IL-β4, 

are produced by the foetal and maternal placentas from day-30, suggesting their role in maternal-foetal recognition 

(Vélez et al., 2019). Other important cytokines for successful pregnancy are interferons (IFN), which are classified into 

two families, type I and II interferons. The type II interferon family is composed of a single known gene, whose product 
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is γ interferon (De Maeyer and De Maeyer-Guignard, 1992), the primary product of T cells, and is found in different  

placental cell types,  and human embryonic membrane and porcine trophoblast cells (Bazer et al.,  1997).  The other 

group of interferons, type I, is composed of different subtypes with similar biological properties, and interaction with 

the same receptor. This group includes interferons α, β, δ), and , ω and  interferon τ. Each subtype is different from each other 

in their amino acid sequence and serological properties, although all are involved in maternal-embryonic recognition 

(Aboagye-Mathiesen et al., 1995; Charlier et al., 1993; Charpigny et al., 1988; Cross and Roberts, 1989; Fung et al., 

2004; Godornes et al., 2007; Imakawa et al., 1987; Kawasaki et al., 1992; Li et al., 2007; Muscettola et al., 2003).  

During pregnancy in pigs, interferons exert both paracrine and autocrine effects; however, the effects in the uterus are 

not well understood, although expression of interferon γ type 2 has been observed in the trophectoderm cells (Lefèvre et 

al., 1998). In addition, the conceptus also expresses interferons, specifically γ and δ), and  interferons between days 12-20 of  

gestation  (Cencic  et  al.,  2003;  Cencic  and  La Bonnardière,  2002;  Joyce  et  al.,  2007a,  2007b).  The expression  of 

interferon-stimulated genes (ISG), including Mx, ISG15/17, IRF1, STAT1, and STAT2, is limited to specific uterine cells 

in pigs between days 14-18 of pregnancy (Hicks et al., 2003; Joyce et al., 2007a). The induction of  ISG  expression 

occurs, not only in pigs, but also in other mammalian species such as sheep, cows, mice, rat, primates, and humans, 

suggesting that the induction of IFN promotes the gene expression in the uterine epithelium to facilitate implantation, 

placentation, and foetal development (Bazer et al., 2011). Recently, it has been shown that the  IFN-βγ in the porcine 

trophoblast  influences  the  expression  of  specific  chemokines  (CCL2,  CCL5,  CCL11,  and  CXCL12)  required  for 

endometrial  communication  with  the  trophoblast  or  recruitment  of  immune  cells  and  establishment  of  an 

immunotolerant environment (CXCL9, CXCL10) for the embryo (Złotkowska and Andronowska, 2019).

Insulin-like growth factors

Insulin-like growth factors (IGFs) are polypeptides with insulin-like sequences with mitogenic properties, for inducing 

proliferation and growth of somatic cells (Rinderknecht and Humbel, 1978). IGFs are also required for the regulation of 

amino acid and glucose transport in the placenta (Ashton and Spencer, 1983; Kniss et al., 1994). Type I receptor (IGF-β

IR) is a transmembrane tetrameric glycoprotein that resembles the insulin receptor and has a high affinity for both IGF-βI 

and IGF-βII (Germain-Lee et al., 1992; Ullrich et al., 1986). In contrast, the type II receptor ( IGF-βIIR) is a single chain 

polypeptide with a high affinity for IGF-βII and is unable to bind IGF-βI or insulin (Liu et al., 1993).  IGF deficiencies 

exhibit distinct functional differences, and studies with IGF-βIIR knock-out mice showed excessive placental and foetal 

growth (Kitamura et  al.,  2003).  Studies in humans showed that  mutations in the  IGF-βIR gene resulted in reduced 
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functionality associated with low pre- and post-natal growth, or that excessive foetal growth occurs when  IGF-βII is 

overexpressed  (Abuzzahab et  al.,  2003;  Lau  et  al.,  1994;  Murrell  et  al.,  2004;  Wang et  al.,  2017).  These  results 

demonstrate that  IGFs, together with their receptors, have an important role in the regulation of foetal and placental 

growth in most species (Wilson et al., 1982). Also, Fant and colleagues (1986) showed that the placenta produces both  

IGF-βI and IGF-βII, which act as local growth regulators in human. Specifically, IGF-βII is expressed predominantly in the 

placenta,  with  both  paracrine  and  autocrine  functions,  which  are  especially  important  during  implantation  and 

trophoblastic invasion (Giudice, 1997; Hamilton et al., 1997). However, the IGFs are not only related to the foetal and 

placental growth but also regulate different signalling cascades to promote both cell proliferation and differentiation 

(Clemmons & Maile, 2005; Kitamura et al., 2003). Studies with preimplantation mouse embryos showed that decreased 

IGF-βIR induced apoptosis through a cascade of signal transduction pathways and enhanced embryonic resorption (Chi 

et al., 2000). Similar studies demonstrated the relationship between IGFs and embryonic losses in rat, pig, or humans 

(Katagiri et al., 1997; Pinto et al., 2002; Sferruzzi-Perri et al., 2007, 2006). The final group in the  IGF family is the 

IGF-binding protein group (IGFBP), a large group in humans consisting of six different proteins (Denley et al., 2005). 

Of these, dephosphorylated IGFBP-β1 is found in the serum of pregnant women (Westwood et al., 1994), while IGFBP-β

3 is produced by the placenta and foetal membranes (Han, 1996; Rogers et al., 1996).  IGFBP-β1 is involved in the 

regulation  of  IGFs by  inhibiting  their  functions,  such  as  cell  proliferation  and  differentiation,  and  trophoblastic 

migration (Gleeson et al., 2001; Hamilton et al., 1997; Irving et al., 1995; Ritvos et al., 1988). In pigs, the expression of 

IGF-βI is explicitly observed in both the uterine lumen and glandular epithelium of pregnant pigs, while the IGF-βIR is 

expressed  in  endometrial  cells  and  the  embryo,  indicating  the  presence  of  both  paracrine  and  autocrine  functions  

(Letcher et al., 1989).

Conclusions

During different pregnancy stages in pigs, several cellular and molecular mechanisms are activated, each involving 

different  transcription  factors,  growth  factors,  cytokines  and  others,related  to  cell  differentiation,  implantation, 

placentation, vascularisation and maternal-embryonic recognition. Despite extensive knowledge of these factors, the 

interaction of these factors with each other and the metabolic pathways involved remain to be  clarified. The use of new 

technologies, such as single-cell gene expression, could help reveal the genes involved and their interactions. However,  

many questions about these and other molecules, as well as the interactions between them, remain to be discovered.
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