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Abbreviations: 

ARA: Arachidonic acid 

FC: Fold change 

GC-MS: Gas chromatography coupled to mass spectrometry 

GSEA: Gene Set Enrichment Analysis 

IPA: Ingenuity Pathway Analysis 

LC-MS: Liquid chromatography coupled to mass spectrometry 

LPCs: Lysophosphocholines 

MS/MS: Tandem Mass Spectrometry 

PBMCs: Peripheral blood mononuclear cells 

QC: Quality control  

RT: Retention Time 

S1P: Sphingosine-1-phosphate 

 

ABSTRACT 

Background: Prevalence and severity of allergic diseases have increased worldwide. To date, 

respiratory allergy phenotypes are not fully characterized and, along with inflammation progression, 

treatment is increasingly complex and expensive. Profilin sensitization constitutes a good model to 

study the progression of allergic inflammation. Our aim was to identify the underlying mechanisms 

and the associated biomarkers of this progression, focusing on severe phenotypes, using 

transcriptomics and metabolomics. 

 

Methods: 25 subjects were included in the study. Plasma samples were analyzed using Gas and 

Liquid Chromatography coupled to Mass Spectrometry (GC-MS and LC-MS, respectively). Individuals 

were classified in 4 groups – “non-allergic”, “mild”, “moderate” and “severe” – based on their clinical 

history, their response to an oral challenge test with profilin, and after a refinement using a 

mathematical metabolomic model. PBMCs were used for microarray analysis. 
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Results: We found a set of transcripts and metabolites that were specific for the “severe” 

phenotype. By metabolomics, it was detected a decrease in carbohydrates and pyruvate and an 

increase in lactate, suggesting aerobic glycolysis. Ohter metabolites were incremented in severe 

group: lysophospholipids, sphingosine-1-phosphate, sphinganine-1-phosphate, as well as lauric, 

myristic, palmitic, and oleic fatty acids. On the other hand, carnitines were decreased along severity. 

Significant transcripts in the “severe” group were downregulated and were associated to platelet 

functions, protein synthesis, histone modification and fatty acid metabolism. 

 

Conclusions: We have found evidence that points to the association of severe allergic inflammation 

with platelet functions alteration, together with reduced protein synthesis, and switch of immune 

cells to aerobic glycolysis. 

 

INTRODUCTION 

Allergic diseases affect more than a quarter of the population and present an increasing trend. It is 

possible that in a near future, economic impact of allergy might reach a non-maintainable cost. 

Consequently, it is pivotal to unravel the mechanisms involved in this process in order to develop 

new diagnostic, intervention and prevention strategies. However, one of the main problems found in 

the quest for these new strategies is the difficulty of having properly clinically-stratified patients that 

can be used for the development of accurate models. 

 

In the last years, component-resolved diagnosis strategies (1) have allowed a significant increase in 

the understanding of allergic disease evolution. In this context, molecular-based epidemiological 

studies performed in Spain (2-4) allowed the identification of different clinical phenotypes of the 

dominant pollen allergies (olive and grass pollen). In areas of extreme pollen exposure, patients 

often display a more severe phenotype (5). In fact, some grass-pollen-allergic patients resident in 

highly exposed regions can develop severe food-allergic reactions mediated by profilin (6), a type of 

reaction hardly seen in other grass pollen-exposed territories. Profilin has proved to be a clinically 

relevant aeroallergen (7, 8) able to induce strong T cell proliferation (9). Recently, it has been proved 

that evolution towards severity in the profilin food allergy model is associated to a progressive rise in 

effector cell sensitivity, immune cells infiltration in the epithelia and structural remodeling of the 

oral mucosa (10). This provides evidence that oral mucosa may play a key role in both food allergic 
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reactions and respiratory-to-food allergy evolution. Moreover, severe profilin reactors express 

relatively high levels of periostin, a biomarker linked to airway inflammation and remodeling (11). 

 

As a consequence, the group of severe reactors to profilin provides a unique clinical model for 

understanding allergy progression and associated barrier inflammation. Moreover, by mean of 

integrated –omics approaches, new potential diagnostic strategies connected with progressive 

allergic endo-phenotypes can be uncovered. This is a clear unmet need in allergy research. (12) 

 

The –omics sciences have emerged as a new strategy to study living organisms. They offer the 

possibility of a better understanding of a disease by obtaining vast amounts of data from every 

individual biological sample. Transcriptomics, and to a lesser extent metabolomics, have been 

previously used to uncover the molecular mechanisms involved in the development of several 

allergic diseases (13-20). Previous studies have not yet addressed neither specific allergic 

phenotypes nor their associated metabolic signatures, and these are still largely unknown. 

Therefore, the combination of both –omics platforms used in the present work offers an opportunity 

to characterize allergic phenotypes. 

 

MATERIALS AND METHODS 

Patients 

Twenty-five individuals (aged 18–55) were recruited between January 2013 and January 2016. All 

subjects provided written informed consent. The protocol was approved by the Committees of 

Research and Ethics from the participant Hospitals. These patients had been deeply studied for oral 

mucosa remodeling in a previous study (10). From these, six subjects were non-allergic and used as 

controls. All patients were interviewed to establish their clinical history. Inclusion criteria for allergic 

patients were: a positive skin prick test to profilin but negative to Lipid Transfer Proteins 

commercially available extracts, positive specific IgE to profilin (>0.35 kU/L), but negative to both Pru 

p 3 and Bet v 1, (ImmuneCAP and ISAC CAP, Thermo Fisher Scientific) (Supplementary Information SI, 

Table 1S). Patients underwent an oral challenge using a pure profilin extract. Clinical status was 

determined by the clinical history of food allergy and the outcome of the oral challenge. Patients 

who suffered systemic reactions affecting several organs like urticaria and asthma were phenotyped 

as “severe profilin-allergic patients” (n=6). Patients who presented local or subjective reactions 
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during oral challenge such as OAS, angioedema or oral pruritus, were considered as “Non-severe 

profilin-allergic patients” (n=12). Individual data are included in the (Table 2S). 

 

Allergic patients who had received any pollen extract immunotherapy in the last 5 years, or 

presented uncontrolled asthma, were excluded.  

 

Sample Collection and Processing 

Whole blood was drawn before the profilin challenge and was divided into two tubes: one for 

plasma extraction and another for PBMCs isolation. Briefly, 20 ml of peripheral blood were collected 

to obtain plasma by centrifugation and PBMCs using Ficoll-Paque (GE Healthcare™) density gradient 

centrifugation. Samples were stored at -80ºC until metabolomic and transcriptomic analyses were 

performed. 

 

Metabolomic analyses 

Plasma samples were measured using a multiplatform analysis: Liquid and Gas Chromatography 

coupled to Mass Spectrometry (LC-MS and GC-MS, respectively). Both techniques followed 

previously described methodologies (21, 22). Full descriptions of sample preparation, instrumental 

description, data treatment and metabolite identification are available in SI-Part 1. The data is 

available at Metabolomic Workbench platform (access number ST000980). 

 

Statistical analyses 

Multivariate analysis was performed using SIMCA P+14.0 (Umetrics, Umeå, Sweden). Principal 

Component Analysis (PCA), a non-supervised model, was used to observe data patterns. Likewise, 

Orthogonal- and Partial-Least-Square Discriminant Analysis models (OPLS-DA and PLS-DA, 

respectively), which are supervised models, were used to test real differences between the case 

groups. For LC-MS data, logarithmic transformation and center scaling were used, whereas for GC-

MS, unit variance scaling was applied to all variables. Robustness of the models was evaluated based 

on R2 (explained variance) and Q2 (capability of prediction) scores (23, 24). Regarding OPLS-DA, the 

variability between groups was explained only by the separation in the X-axis, while the Y-axis was 

not related (or orthogonal). This was validated by the cross-validation tool (24) and by the “leaving-
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1/3-out” approach (25). Differences among the experimental groups were tested using the non-

parametric Kruskal−Wallis test with a Benjamini-Hochberg (BH) correction in order to identify 

potential biomarkers. Additionally, significant differences between “mild vs severe” and “moderate 

vs severe” using U-Mann Whitney test with a BH p-value correction were added, in order to improve 

the biological interpretation. Statistical significance was set at 95% level (p < 0.05). Statistical 

analyses were performed using Matlab R2015a (Mathworks) software. The MetaboAnalyst online 

tool was used for heatmaps and hierarchical clustering.  

 

Transcriptomic analysis 

RNA extraction: quantitation and integrity check  

RNA was extracted from Ficoll ®-isolated PBMCs using RNeasy® Mini Kit (Qiagen) with DNase 

treatment following manufacturer procedure. RNA concentration was determined using a 

NanoDrop™ 2000/2000c Spectrophotometer and its quality was assessed with Experion RNA 

StdSens analysis kit (Bio-Rad), establishing RQI as an indicator of quality.  Following manufacturer 

recommendations, those samples with an RQI ≥7 were selected for the microarray experiments. 

Samples p2 and p3 from the “non-allergic group” and p24 from the “severe group” did not satisfy 

quality requirements and were excluded from transcriptomic analysis. 

 

Microarray target preparation and hybridization  

The gene expression profile of the samples was analyzed using GeneChip Human Gene 2.1 ST strips 

(Affymetrix, Thermo Fisher Scientific).  Following manufacturer instructions, 100 ng of RNA from 

each sample were hybridized using GeneChip ™ WT PLUS Reagent Kit. Details of hybridization are 

found in SI-Part 2. 

 

Analysis of results 

CEL raw files were normalized and transformed into expression measures using Expression Console 

Software (Affymetrix). The Robust Multi-array Average (RMA) algorithm was used for background 

correction, normalization, and summarization of probe-set level expression of the samples. 
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Gene-level expression analysis was performed using the refined metabolomic classification, with 

Transcriptome Analysis Console (Affymetrix). A gene was considered differentially expressed if it had 

a fold change (FC) higher than 2 or lower than -2 with an ANOVA p value< 0.05. 

 

The pathways involved were acquired by Ingenuity Pathway Analysis (IPA, Qiagen). Gene Set 

Enrichment Analysis (GSEA) of the RMA normalized samples was performed using the following 

parameters: number of permutations=100, collapse dataset to gene symbols=true and permutation 

type=phenotype. Raw data can be found on the GEO database (access number GSE114707). 

 

qRT-PCR analysis 

Twenty genes related to the main significant pathways found with GSEA and IPA (inflammatory 

response, platelet functions, fatty acid metabolism and histone modification) were selected for 

validation studies by quantitative RT-PCR (qRT-PCR, Table 3S).  

 

High Capacity RNA to cDNA Kit (Applied Biosystems) was used for the validation according to the 

manufacturer instructions, briefly; 1 μg of total RNA was reverse transcribed in a final volume of 20 

μL. Primers were designed using OligoArchitect™ (Sigma Aldrich) and qRT-PCR was performed using 

SYBR Green master mix (Takara) in the equipment Real Time HT 7900 (Applied Biosystems). 

Reactions were run in triplicate. Expression data were normalized to the median of housekeeping 

gene B2M and the results were analyzed using the 2 -ΔΔCT method (26). Details are found in SI-Part 

2. 

 

RESULTS 

Metabolic profiling and patient classification. 

Metabolomic profiles of plasma samples were obtained using LC-MS and GC-MS. Initially, from 615 

and 506 chemical signals obtained by LC-MS in positive and negative ionization modes, respectively, 

349 and 400 complied with the quality criteria. In addition, 95 metabolites per sample were 

obtained using GC-MS. Data quality was assessed by clustering quality control (QC) measurements in 

a non-supervised model using PCA for the three techniques (Figure 1S). Trends of the samples were 

examined; as an example, the PCA model from LC-MS data in positive mode showed no clear 

clustering of patients according to their clinical status (Figure 1A). However, individuals with a clear 
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clinical status –“non-allergic” and “severe profilin-allergic patients”– were modeled using a 

supervised model. Therefore, in order to obtain the differences exclusively according to the class 

(27), an OPLS-DA model was performed (Figure 1B). This model showed good quality parameters (R2 

= 0.99, Q2= 0.75) and was validated using the “1/3-out” approach, showing a prediction accuracy of 

92% and was used to assign a class to “Non-severe profilin-allergic patients” (Figure 1B), following a 

similar approach to other authors (28-30). Samples were grouped within circles according to the 

OPLS-DA mathematical algorithm (Table 4S). Patients with a predicted score higher than 0.75, 

related to non-allergic, were classified as “mild”. Those with a score higher than 0.75, closer to 

“severe profilin-allergic patients”, were classified as “severe”, whereas the rest of the samples were 

classified as “moderate”. Consequently, four groups were stratified: “non-allergic”, “mild”, 

“moderate” and “severe”. To sum up, the model allowed the classification of “Non-severe profilin-

allergic patients” that could not be properly classified in the oral challenge setup. 

 

Samples were plotted according to their metabolomic classification using a PCA model, which 

showed a clear tendency to separate the “mild” group from the “severe” and “moderate” groups 

(Figure 1C). Furthermore, aiming to show the differences between groups, discriminant analysis 

using PLS-DA was performed for each pair of groups (Figure 2S). The results produced at least one 

model for each pairwise comparison with high quality parameters. These results demonstrated that 

there are metabolic differences between the groups. 

 

Metabolic description between allergic phenotypes 

After multivariate analysis, significant variables were selected using univariate analysis. The numbers 

of significant variables between groups were summarized using Venn diagrams. More differences 

were observed between “mild vs severe” than between “severe vs moderate” phenotypes (Figure 

2A). Moreover, FC was represented by heatmaps using hierarchical clustering within the allergic 

groups (Figure 3S). Overall results suggest that there are specific features which can characterize 

each phenotype, especially the “severe”. 

Once significant features in LC-MS were found, identification through MS/MS fragmentation was 

performed. Together with GC-MS metabolites, a total of 74 compounds were listed (Table 5S), 

encompassing carbohydrates, sphingolipids, lysophospholipids, carnitines, amino acids, fatty acids 

and organic acids. Their FCs were calculated in the pairwise comparisons and summarized in Table 

6S. Most of the metabolites presented increased levels in “severe” compared to “mild” group 

(n=49). 
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The general observed changes in the “severe group” were: decreased levels of hexoses, pentoses, 

pyruvate and sphinganine-C17; an increase along severity in the levels of, most lysophosphocholines 

(LPCs), sphingosine-1-phosphate (S1P), sphinganine-1-phosphate and lactate. Furthermore, fatty 

acids such as myristic and lauric acid were diminished in “mild” and “moderate”, and increased in 

the “severe” group. Trajectories of these metabolites are shown in Figure 2B.  

 

Gene expression analysis 

From the 48226 transcripts analyzed, 596 transcripts were identified as significantly differently 

expressed between the experimental groups (Figure 3A). These differences were depicted in Venn 

diagrams. Major differences were observed between allergic phenotypes, especially in the “severe 

vs mild” comparison, with 220 differentially expressed transcripts (Figure 3A), and between “severe 

vs moderate”, with 87 (Figure 3B). Validation of the transcriptomic analysis was assessed by qRT-

PCR, where 95% of selected transcripts showed the same expression pattern as in the microarray 

experiments. Thus, the results obtained can be considered reliable (Figure 4S). 

 

Afterwards, we selected the 100 most differentially expressed genes to depict a heatmap (Table 7S). 

Transcripts were classified into four clusters according to their expression pattern (Figure 3C). 

Cluster 1 – upregulated in the “severe” phenotype and downregulated in “mild” – contained 

essentially H/ACA box snoRNAs (SNORA). Cluster 2 – which was downregulated in the “mild” group – 

included a heterogeneous group of genes. Cluster 3, - decreased in severe patients with respect the 

other groups and thus constituted the best bio-markers for the “severe” phenotype - includes genes 

closely related to coagulation and histone modifications. Finally, cluster 4 – where genes were 

downregulated in “severe” compared to the “mild” group – contained small nucleolar RNAs (snRNA), 

their variants, and genes related to protein biosynthesis and growth factors.  

 

“Severe” patients display a differential transcriptomic profile  

We performed pathway analysis aiming to match the characteristic genes of the “severe” profile 

with associated biological processes. Two types of complementary analyses were carried out. First, 

we compared separately “severe versus mild” (Table 8S-A) and “severe versus moderate” (Table 8S-

B) using GSEA. Then, we repeated the analysis of the previous comparisons with IPA (Table 1). GSEA 

results indicated that the pathways of: DNA reparation, inflammatory response, oxidative 
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phosphorylation, fatty acid metabolism, the complement system, and coagulation; were negatively 

correlated with the “severe” phenotype. Likewise, IPA obtained pathways related to: endothelial 

cells, platelet phagocytosis and platelet functions – such as activation and, binding and adhesion, 

among others –. Additionally, the activation state (Activation Z-score) of the significant pathways, 

which can be positive – pointing to pathway activation – or negative – for inactivation –, was 

measured. Most of these functions had a negative value for “severe” patients (Table 1).  

 

These results suggest that coagulation and platelet related pathways are downregulated in “severe” 

patients and might be their specific transcriptomic profile. Moreover, pathways and transcripts 

related to fatty acid metabolism and histone modification were increased in “mild” and “moderate” 

groups while decreased in “severe” phenotype. 

 

Severe allergic phenotypes present altered platelet functions. 

Taking into account these findings, we decided to focus on coagulation and platelet related 

transcripts. Specifically, those transcripts observed as statistically significant for IPA software, and 

genes related to platelet functions (Figure 3C), were analyzed.  

 

The trajectories among the groups were plotted to corroborate that the selected genes had a 

different expression pattern in the “severe” phenotype (Figure 4). The plots showed a significant 

decrease in the expression of these genes in the “severe” group compared to the rest. Among them 

there were genes related to platelet-adhesion (GP1BA, GP9, GP6 and SELP); activation (P2RY12, 

ALOX12 and PTGS2); both shape change and granule secretion (MYL9 and SDPR) (31); aggregation 

(ITGB3, ITGA2B and TREML1) (32); as well as other genes related to platelet functions (PPBP, CLU, 

and NRGN) (33, 34). These transcripts and their platelet-associated functions were represented in 

Figure 5 in order to have a better understanding of platelet dysfunctions in the “severe” phenotype. 

 

Regarding metabolomics, we also observed some metabolic changes related to platelet activation: 

S1P and LPs were incremented in the “severe” group compared to the intermediate allergic 

phenotypes (“mild” and “moderate”), while sphingosine was decreased (Figure 2B). An integrated 
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view of both metabolomic and transcriptomic changes supporting altered platelet functions in 

“severe” allergic individuals is represented in Figure 5. 

  

Discussion 

Finding suitable clinical models of allergy disease progression is not easy. In particular, identifying 

homogeneous severe allergic phenotypes, which are critical to understand allergy evolution, is an 

arduous task. We took advantage of the unique model that these grass-pollen-allergic patients 

represent – those resident in high pollen exposure areas who develop severe food allergic profilin-

mediated reactions –. These reactions identify a patient group with a severe allergic phenotype that 

apparently loses tolerance to the allergen. 

 

The aim of this work was both to identify potential biomarkers as well as to understand underlying 

causes for severity progression. We used a combined approach of two –omics, metabolomics and 

transcriptomics, and generated a model for patient classification. 

 

Previous studies have shown that the use of mathematical algorithms based on objective 

parameters –such as transcriptome profiles– is useful to improve the clinical classification of patients 

(28-30). In this work, we have established a classification based on the metabolic profile of the 

patients. First, we included non-allergic subjects and identified severe allergic phenotypes by their 

clinical history and their response to the oral challenge test with pure profilin. By using these two 

extreme phenotypes, we obtained a mathematical algorithm that was used to refine the clinical 

classification of the “Non-severe profilin-allergic patients”. It is important to point out that these 

phenotypes cannot be perfectly classified upon oral provocation, as many times the provocation 

procedure must be stopped due to intense local reactions (35). This new classification represents a 

potential tool for patient stratification that should be validated in further studies, and is in line with 

current approaches to understand disease phenotypes (28-30). This allowed us to analyze the 

evolution of allergic inflammation along severity. Interestingly and unexpectedly, all patients that 

were clinically classified as “severe” shared common metabolomic and transcriptomic profiles, thus 

confirming the correlation between clinical and –omics classification. 
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Afterwards, we performed data analysis of both –omics to find out specific signatures, to identify 

biomarker candidates and biological pathways associated with the acquisition of a severe 

phenotype. The different metabolite levels and transcript expression kinetics provided a global view 

of the biological processes associated to inflammation evolution. 

 

The first set of downregulated transcripts in “severe” patients consisted of DDX11L2 and MT-TR, 

which are involved in translation initiation, nuclear and mitochondrial splicing, and ribosome- - 

spliceosome assembly (36). In parallel, we observed an increase in urea, suggesting an increase in 

protein catabolism. 

 

Marked changes in cell energy metabolism were also found. Hexoses, pentoses and pyruvate are 

consumed and metabolized into lactate in the presence of oxygen. In agreement with our results, 

existing −omics-based studies have reported that immune cells change their metabolism to cope 

with the increasing demand resulting from the need to synthetize biological precursors. This is 

known as “aerobic glycolysis” or “Warburg metabolism” (37, 38) and has been described in tumoral 

cells, asthma and inflammation (39-41). Furthermore, with GSEA, we also identified different 

biological processes reduced in “severe” patients: such as oxidative phosphorylation, fatty acid 

metabolism and adipogenesis (Table 8S); all supporting the switch to Warburg metabolism. 

 

Analyzing lipid metabolism, we observed a progressive increase of arachidonic acid (ARA) precursors 

− palmitic and oleic acids − among allergic phenotypes. Meanwhile, shorter fatty acids − myristic and 

lauric acids − were decreased in the intermediate phenotypes (“mild” and “moderate”) but 

increased in the “severe” group. Furthermore, carnitines levels followed a reduction trend along 

severity. In contrast, we did not see changes in the levels of ARA between groups, matching previous 

reports in which exposure to allergens did not change the levels of this fatty acid in plasma (20). One 

possible explanation for these results is that, instead consuming the fatty acids by beta-oxidation, 

they are likely being used for the synthesis of inflammatory mediators (42-43). Perhaps, the most 

interesting metabolic signature is related to sphingolipids. We detected a progressive increase of 

S1P – a key mediator that exerts multitude of effects in different tissues – with severity. S1P is 

capable of regulating gene transcription by inhibiting histone deacetylases (45), which concurs with 

the downregulation of histone modification related genes (HIST1H2BH and HIST1H3H). These had a 
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negative association with DNA repair in the “severe” phenotype (46), suggesting modifications in 

epigenetic regulation networks.  

 

Interestingly, we have identified a set of downregulated transcripts involved in platelet functions: 

formation of adhesion complexes (GP1BA and GP9, SELP); receptors (GP6, P2RY12) (47); aggregation 

of complexes (ITGB3, ITGA2B) (48); synthesis of HETE-12 and Thromboxane A2 (ALOX12, PTGS2) 

(49); and both shape change induction and granule secretion processes (MYL9, SDPR, RAB27B) (50, 

51). Moreover, in the GSEA and IPA analyses, several pathways related to platelets and coagulation 

were significantly downregulated in the “severe” group. Aligned with these findings, we have 

observed different metabolic changes. We detected a decrease of sphingosine and 

xenosphingolipids (sphinganine-C17) in the “severe” group. Sphingosine is a precursor of S1P, and 

their decreased levels along severity suggest a continuous biosynthesis of S1P. Furthermore, in a 

recent study, an inverse association of intestinal microbial-derived sphingolipids with childhood food 

allergy was established, highlighting the importance of those metabolites in the allergic disease (52). 

In addition, different studies have demonstrated that S1P has a role in inflammation and that 

activated platelets are able to produce, store, and release it by an ABC transporter (53-56). Besides, 

S1P can be degraded by the LPP1 platelet outer surface receptor (57) (Figure 5). Finally, we observed 

an increase along severity of lysophospholipids (LPCs, LPS and LPEs), as other authors have 

previously described in asthma and other inflammatory pathologies (17, 20, 58-60). These 

lysophospholipids and ARA precursors, increased in “severe” patients, are involved in platelet 

activation in inflammatory environments (61). Recent evidence revealed that the lung is a site of 

platelet biogenesis and a reservoir for hematopoietic progenitors (62). This creates a whole range of 

new possibilities for understanding the role of platelets in airway inflammation. Our findings point to 

platelet dysfunction in the “severe” phenotype (Figure 5). 

 

These findings open up the possibility for considering new intervention strategies oriented to the 

stabilization of inflammation/repair systems, e.g. by using supplement-based interventions to 

replenish metabolic precursors that are highly consumed, as other studies have pointed out for 

asthma and allergy (19, 63-65). Altered energy metabolism could also constitute a pharmacological 

target. Understanding in detail the role of platelets could become a completely different approach to 

control severe allergic phenotypes. 
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The combined analysis of transcripts and metabolic alterations in allergic patients that have been 

stratified based to their severity sheds some light on the progression of this pathology. Interestingly, 

the role of platelets in inflammation and related pathologies, such as cancer and autoimmune 

diseases, has been already suggested (66-71). We describe new mechanisms, pointing to platelet 

dysfunction, reduced protein synthesis, and a switch to Warburg metabolism, that are associated to 

severe allergic inflammation. Further studies in other severe allergy models, together with prognosis 

strategies based on the omics approaches, will allow for a better comprehension of the complex 

network between platelets and the immune system. 
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Figure Legends 

Figure 1. Unsupervised and supervised multivariate analysis of LC-MS positive mode data used for 

refined classification of “Non-severe profilin-allergic patients”. A. PCA model of the sample set (Key: 

“non-allergic” (●; green circle), “Non-severe profilin-allergic patients” ( ; blue square), “severe 

profilin-allergic patients” ( ; red triangle). B. OPLS-DA prediction model; R2 = 0.99, Q2= 0.75 (Key: 

workset samples (green circle ● – “non-allergic” subjects; red triangle  - “Severe profilin-allergic 

patients”), prediction set samples (blue square  - “Non-severe profilin-allergic patients”). C. PCA 
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model plotted using new classification (Key: “non-allergic” (●; green circle), “mild” ( ; blue square), 

“moderate” ( ; black pentagon), “severe” ( ; red triangle). Log transformation and centre scaling 

was used for the models.  

 

Figure 2. Statistical significant differences between the groups within the three techniques. A. Venn 

diagrams representing the differences in each group against the rest: “non-allergic vs mild” (blue), 

“non-allergic vs moderate” (red), “non-allergic vs severe” (brown), “mild vs moderate” (yellow) and 

“moderate vs severe” (purple). B. Trajectories of representative metabolites classified according 

their biochemical groups: A. Carbohydrate metabolism, B. Sphingolipid metabolism, C. 

Lysophospholipids metabolism, D. Fatty acid metabolism, E. Other (Key: “non-allergic”: white 

square, “mild”: light grey square, “moderate”: grey square, “severe”: dark grey square). The central 

box covers the interquartile range with the median indicated by the line within the box and the 

mean of each experimental group is represented by “X”. The whiskers extend to the minimum and 

maximum values and outliers values are shown individually. ** U Mann Whitney p-value < 0.01. * U 

Mann Whitney p-value < 0.05.  

 

Figure 3. Statistically significant transcript differences between experimental groups. A. Genes 

differentially expressed among the phenotypes. Red bars represent upregulated genes in the first 

group of the comparison and blue bars the downregulated genes of the second group. B. Venn 

diagrams representing the differences in each group against the rest: “non-allergic vs mild” (blue), 

“non-allergic vs moderate” (red), “non-allergic vs severe” (brown), “mild vs moderate” (yellow) and 

“moderate vs severe” (purple). C. Heatmap of the 100 top differentially expressed genes. 

Upregulated genes are represented in red and downregulated are shown in blue. ANOVA p-value 

<0.05 

 

Figure 4. Trajectories of significant transcripts associated with platelet functions. A. Adhesion, B. 

Activation, C. Receptor Occupancy, D. Shape Change, E. Secretion, F. Aggregation, G. Other (Key: 

“non-allergic”: white square, “mild”: light grey square, “moderate”: grey square, “severe”: dark grey 

square) 95% confidence interval limits for the mean (central circle) of each experimental group are 

indicated ** ANOVA p-value < 0.001. * ANOVA p-value < 0.05.  
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Figure 5. Schematic representation of the proposed platelet dysfunction mechanism in “severe” 

phenotype. Molecules and functions represented in blue are diminished: decreased metabolites and 

downregulated transcripts are represented in light blue. Molecules indirectly associated with 

transcripts are represented in dark blue and marked with a down arrow. Increased metabolites are 

marked in red. All functions are divided by blue lines and their associated downregulated transcripts 

are shown in a blue ellipse. Platelet-activation pathways are included in a light blue circle. 

Abbreviations: T-R: “Thrombopoietin Receptor”, Gq=“G-Protein Receptor”, TK=“Tyrosin Kinase 

Receptor”, PKC-θ= “Protein Kinase C θ), PLC=“Phospholipase C”, IP3=“Inositol triphosphate”, 

MLC=“Myosin Light Chain Protein”, CO=“Cyclooxygenase”, LO=“Lypoxygenase”, 

PGG2=“Prostaglandin G2”, PGH2=“Prostaglandin H2”, 12-HETE=“12-Hydroxyeicosatetraenoic acid”, 

αG=“Alpha granules”, δG= “Dense granules”, Vs=“Vesicles”, GP= “Glycoprotein”, 

SPHK1/2=“Sphingosine Kinase 1/2”, LPP=“lipid phosphate phosphatase”, ABC=“ABC transporter”, 

vWF=“Von Willebrand Factor”. 

 

Figure 1S. Unsupervised PCA models showing the quality of the data for the three techniques. (Key: 

QC injections (●; dot), samples (●; grey circle). 

 

Figure 2S. PLS DA models for each pairwise comparison in the three complementary techniques. 

(Key: “non-allergic”: circle, “mild”: square, “moderate”: pentagon, “severe”: triangle). Data was Log 

transform and centre scaled. *Characters in bold pointed out suitable quality parameters (Q2>0.5) 

for the model. 

 

Figure 3S. Significant signals between “mild vs severe” and “moderate vs severe” groups were 

depicted on heatmaps using hierarchical clustering of the samples. Kruskal-Wallis test was used to 

detect statistical significance (p < 0.05). 

 

Figure 4S. Validation of microarray data by qPCR using 2 -ΔΔCT method. Microarray results in white 

are shown compared to qPCR results in black. Standard deviation bars are represented in qPCR 

results. 
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Table 1. IPA significant results for “severe versus mild” and “severe versus moderate” comparison. The functions were ranked by p-value.  

A. SEVERE VS MILD 

Categories Diseases or Functions Annotation p-Value 
Activation z-

score* 
n& 

Cell-To-Cell Signaling and Interaction, Hematological System Development and Function, 
Inflammatory Response, Organismal Functions 

Activation of blood platelets 1,01E-05 -1.091 5 

Cell-To-Cell Signaling and Interaction, Hematological System Development and Function, 
Inflammatory Response 

Binding of blood platelets 1,07E-04 -1.019 4 

Cell-To-Cell Signaling and Interaction Binding of blood cells 1,90E-04 -0.605 8 

Cardiovascular System Development and Function, Cell-To-Cell Signaling and Interaction Binding of endothelial cells 2,15E-04 -1.095 6 

Cell-To-Cell Signaling and Interaction, Cellular Function and Maintenance, Hematological 
System Development and Function, Inflammatory Response 

Phagocytosis of blood platelets 2,55E-04 
 

2 

Cell-To-Cell Signaling and Interaction, Cellular Function and Maintenance, Inflammatory 
Response 

Phagocytosis of blood cells 2,58E-04 -1.103 4 

Cellular Movement Chemotaxis 3,58E-04 -0.919 9 

Cellular Movement, Immune Cell Trafficking Leukocyte migration 3,76E-04 -0.505 10 

Cardiovascular System Development and Function, Cell-To-Cell Signaling and Interaction Adhesion of endothelial cells 3,85E-04 -1.079 5 

Cell-To-Cell Signaling and Interaction, Hematological System Development and Function, 
Inflammatory Response 

Adhesion of blood platelets 4,52E-04 
 

3 

Cell-To-Cell Signaling and Interaction Aggregation of cells 9,58E-04 -0.556 6 

Cell-To-Cell Signaling and Interaction, Hematological System Development and Function Aggregation of blood cells 9,83E-04 -0.783 5 

Cell-To-Cell Signaling and Interaction, Hematological System Development and Function Activation of blood cells 1,22E-03 -2.021 9 
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Cardiovascular System Development and Function, Organismal Development Angiogenesis 1,43E-03 -1.294 10 

Cell Morphology, Hematological System Development and Function Conversion of blood cells 1,51E-03 
 

2 

Cardiovascular System Development and Function, Cellular Movement 
Cell movement of endothelial 

cells 
1,63E-03 -1.404 7 

Tissue Development Accumulation of cells 1,70E-03 0.243 4 

Carbohydrate Metabolism Metabolism of glycogen 1,74E-03 
 

2 

Cardiovascular System Development and Function, Cellular Movement 
Movement of vascular 

endothelial cells 
2,01E-03 -0.849 5 

Cell-To-Cell Signaling and Interaction, Cellular Movement, Hematological System 
Development and Function, Immune Cell Trafficking 

Recruitment of leukocytes 2,45E-03 
 

4 

     

B. SEVERE VS MODERATE 

Categories Diseases or Functions Annotation p-Value 
Activation z-

score* 
n& 

Cell-To-Cell Signaling and Interaction, Hematological System Development and Function, 
Inflammatory Response 

Binding of blood platelets 3,19E-12 -2,369 9 

Cell-To-Cell Signaling and Interaction Binding of blood cells 6,75E-11 -3,219 15 

Cell-To-Cell Signaling and Interaction Adhesion of blood cells 1,44E-10 -2,932 14 

Cell-To-Cell Signaling and Interaction, Hematological System Development and Function, 
Inflammatory Response 

Adhesion of blood platelets 1,52E-10 -1,632 7 

Cell-To-Cell Signaling and Interaction, Hematological System Development and Function Aggregation of blood cells 3,20E-10 -2,521 11 

Cell-To-Cell Signaling and Interaction, Hematological System Development and Function, 
Inflammatory Response 

Aggregation of blood platelets 5,19E-10 -2,298 10 

Hematological System Development and Function Hemostasis 4,38E-09 -2,107 10 
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Cell-To-Cell Signaling and Interaction, Hematological System Development and Function, 
Inflammatory Response, Organismal Functions 

Activation of blood platelets 1,75E-08 -1,318 7 

Cardiovascular System Development and Function, Cell-To-Cell Signaling and Interaction 
Binding of vascular endothelial 

cells 
2,29E-06 -2,620 7 

Cardiovascular System Development and Function, Cell-To-Cell Signaling and Interaction Binding of endothelial cells 2,68E-06 -2,170 8 

Cardiovascular System Development and Function, Cell-To-Cell Signaling and Interaction Adhesion of endothelial cells 3,31E-06 -1,563 7 

Cellular Movement, Hematological System Development and Function, Immune Cell 
Trafficking, Inflammatory Response 

Infiltration by neutrophils 3,39E-06 -2,159 5 

Cardiovascular System Development and Function, Cellular Movement 
Chemotaxis of vascular 

endothelial cells 
3,67E-06 -1,934 4 

Cellular Movement, Hematological System Development and Function, Immune Cell 
Trafficking 

Cell rolling of leukocytes 7,83E-06 
 

4 

Cellular Movement 
Arrest in cell movement of 

myeloid cells 
8,86E-06 

 
3 

Cellular Movement, Hematological System Development and Function, Immune Cell 
Trafficking, Inflammatory Response 

Cell rolling of phagocytes 8,86E-06 
 

3 

Cellular Movement, Hematological System Development and Function, Immune Cell 
Trafficking, Inflammatory Response 

Cell movement of neutrophils 8,91E-06 -2,541 7 

Cell-To-Cell Signaling and Interaction, Hematological System Development and Function, 
Immune Cell Trafficking, Inflammatory Response 

Adhesion of neutrophils 9,21E-06 -2,177 5 

Immunological Disease Allergy 1,05E-05 
 

10 

Cell-To-Cell Signaling and Interaction, Hematological System Development and Function Activation of blood cells 1,45E-05 -2,620 12 

Cellular Assembly and Organization Binding of cytoskeleton 1,62E-05 
 

3 

NOTE: The source was IPA for all categories. 

*: statistical value based on the match between expected relationship and observed gene expression that predicts the activation state of pathways 

(positive-activation; negative-inactivation) .                 &: number of significant genes present in the pathway.  
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