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Introduction

This Ph.D. thesis is devoted to the application of dynamic consistent families to
problems arising in interest rate modelling.

A self contained introduction to the theoretical framework is presented in
Chapter 1. We report just those fundamental definitions and results, like the
fundamental arbitrage-free equation or the LIBOR rate definiton among others,
that are required in the following chapters. A detailed survey on the mathemat-
ical settings of interest rate models is presented in Chapter 2 where we present
the Heath-Jarrow-Morton (HJM) framework for the forward rates. Finally, in
Chapter 3 we expose the standard market practice and pricing techniques for
interest rates derivatives like caps and bond options, that will be fully developed
later.

A first aim of the present work is to study consistent families of the HJM
models existing in mathematical and financial literature, in order to evaluate
their applicability to specific financial engineering problems like calibration or
valuation. Therefore, in Chapter 4 we review the general features of the geometric
view of HJM models as seminally introduced by Björk and Christensen in [11],
introducing the concept of consistent families with this class of models.

A second part of the thesis is oriented to propose new techniques for the
application of existing consistent families. In particular, in Chapter 5 and 6, by
means of a new multiobjective extension of the calibration techniques proposed by
Herzel and Angelini in [2, 3], we develop a consistent framework for the calibration
of vanilla derivatives to consistent families.

First results obtained by the implementation of the method suggest that this
extended technique is quite robust and shows that the choice of consistent families
are really relevant in the quality of joint calibration outcomes. At this point,
it must be noted that consistency has been in the last years one of the most
important topics of discussion in interest theory, although the lack of practical

15



applications up to now keep the empirical value of the whole theory not fully
comprehended.

With a slightly different approach, in Chapter 7 we show that the models
empirically analyzed in Chapters 5 and 6 admit numerical implementions which
preserve wide open the use of the consistent families introduced before by means
of minor modifications of the standard numerical schemes introduced in the litera-
ture. In this chapter we face one of the most important problem in Mathematical
Finance, that is the pricing of derivative securities. We apply several discretiza-
tion and simulation techniques to the pricing of vanilla caps, the most important
derivative product in fixed income markets, bond options and digital caps. The
computational results confirms that the Crank-Nicolson method outperforms the
other numerical schemes considered, and it encourages the search for more effi-
cient implementations of this specific finite difference approach.

It is crucial to remark that although our choice of the models is quite restric-
tive, the results seems to be good, and, from a theoretical and computational
point of view, support the use of an entire consistent framework.



Chapter 1

Foundations of Interest Rate
Theory

1.1 Definitions and Notation

The primary objects of our investigation are pure discount bonds, of various
maturities. All payments are assumed to be made in a fixed currency. Moreover,
we need some formal definitions.

Definition 1 (Discount Bond.) A T−maturity pure discount bond is a con-
tract that guarantees its holder the payment of one unit of currency at time T ,
with no intermediate payments. The contract value at time t < T is denoted by
P (t, T ). Clearly, P (T, T ) = 1 for all T .

Definition 2 (Time to maturity.) The time to maturity x = T − t is the
amount of time expressed in years from the present time t to the maturity time
T > t.

Coupon bonds give the owner a payment stream during the interval [0, T ].
These instruments have the common property, that they provide the owner with
a deterministic cash flow, and for this reason they are also known as fixed income
instruments.

Pure discount bond prices are the basic quantities in interest-rate theory, and
all interest rates can be defined in terms of discount bond prices, as we shall see
now. Therefore, they are often used as basic auxiliary quantities from which all
rates can be recovered, and in turn discount bond prices can be defined in terms

17



18 Chapter 1. Foundations of Interest Rate Theory

of any given family of interest rates. Notice, however, that interest rates are what
is usually quoted in (interbank) financial markets, whereas zero-coupon bonds are
theoretical instruments that, as such, are not directly observable in the market.
In moving from discount bond prices to interest rates, and vice versa, we need to
know two fundamental features of the rates themselves: the compounding type
and the day-count convention to be applied in the rate definition. What we mean
by “compounding type” will be clear from the definitions below.

Definition 3 (Anually compounded spot interest rate.) The annually com-
pounded spot interest rate prevailing at time t for the maturity T is denoted by
Y (t, T ) and is the constant rate at which an investment has to be made to pro-
duce an amount of one unit of currency at maturity, starting from P (t, T ) units
of currency at time t, when reinvesting the obtained amounts once a year. In
formulas

Y (t, T ) := P (t, T )−
1

T−t − 1 (1.1)

which implies that bond prices can be expressed in terms of annually compounded
rates as

P (t, T ) = 1
(1 + Y (t, T ))T−t (1.2)

Definition 4 (Continuously compounded spot interest rate.) The contin-
uously compounded spot interest rate prevailing at time t for the maturity T is
denoted by R(t, T ) and is the constant rate at which an investment of P (t, T ) units
of currency at time t accrues continously to yield a unit amount of currency at
maturity T

R(t, T ) := − logP (t, T )
T − t

(1.3)

The continuously compounded interest rate is therefore a constant rate that is
consistent with the discount bond prices in that

eR(t,T )(T−t)P (t, T ) = 1 (1.4)

from which we can express the bond price in terms of the continuously com-
pounded rate R:

P (t, T ) = e−R(t,T )(T−t) (1.5)

where T − t, the time difference expressed in years. An alternative to contin-
uous compounding is simple compounding, which applies when accruing occurs
proportionally to the time of the investment.
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Definition 5 (Simply compounded spot interest rate.) The simply
compounded spot interest rate prevailing at time t for the maturity T is denoted by
L(t, T ) and is the constant rate at which an investment has to be made to produce
an amount of one unit of currency at maturity, starting from P (t, T ) units of
currency at time t, when accruing occurs proportionally to the investment time.

L(t, T ) := 1− P (t, T )
(T − t)P (t, T ) (1.6)

We denote by L such rates because the market LIBOR rates are simply com-
pounded. These are the most important interbank rates and they are considered
as a reference for contracts, fixing daily in London (London InterBank Offered
Rate). There exist equivalent interbank rates fixing in other markets (e.g. the
EURIBOR rate, fixing in Brussels by the European Banking Federation).

Suppose that we are standing at time t, and let us fix two other points in time
S and T with t < S < T . Let us consider now the project of writing a forward
rate agreement at time t which allows us to make an investment of one unit of
currency at time S, and have a deterministic rate of return, determined at the
contract time t, over the interval [S, T ]. This agreement can be achieved with the
following replicating strategy

1. At time t we sell one S-bond. This will give us P (t, S) units of our base
currency.

2. With this money we may buy exactly a P (t,S)
P (t,T ) amount of T -bonds.

P (t, S)− P (t, S)
P (t, T )P (t, T ) = 0 in t

Note that our net investment at initial time t is zero.

3. At time S the S-bond expires, so we must to pay out one monetary unit of
our currency.

4. At time T each T -bond expires paying one unit of currency, so we will
receive the payoff P (t, S)/P (t, T ) · 1.

5. The real effect of this strategy is that, based on the contract agreed at
t, for an investment of one unit of currency we have received in turn
P (t, S)/P (t, T ) at time T .
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Now the following crutial definition is well motivated by the implementation of
the financial strategy above.

Definition 6 (Simply compounded forward interest rate.) The simple for-
ward rate for the period [S, T ] contracted at t < S < T , is defined as

L(t;S, T ) := 1
T − S

(
P (t, S)
P (t, T ) − 1

)

Or, in other words, the simple forward rate L, is the solution to the equation

1 + (T − S)L = P (t, S)
P (t, T )

Moreover, it is straightforward to recover the spot definition making the assign-
ment t = S, i.e. the spot rates are forward when the time of the agreement
coincides with the start of the interval over which the interest rate is effective.

The simple forward rate L(t;T, S) may be viewed as an estimate of the future
spot rate L(T, S).

When the maturity of the forward rate collapses towards its expiry, we have
the notion of instantaneous forward rate. Let us consider the limit

lim
∆T→0+

L(t;T, T + ∆T ) = − lim
∆T→0+

P (t, T + ∆T )− P (t, T )
P (t, T + ∆T )∆T

= − 1
P (t, T )

∂P (t, T )
∂T

= −∂ logP (t, T )
∂T

(1.7)

This leads to the following.

Definition 7 (Instantaneous forward interest rate.) The instaneous forward
interest rate prevailing at time t for the maturity T > t is denoted by F (t, T ) and
is defined as

F (t, T ) := lim
∆T→0+

L(t;T, T + ∆T ) = −∂ logP (t, T )
∂T

, (1.8)

so that we also have

P (t, T ) = exp
(
−
∫ T

t
F (t, u) du

)
(1.9)
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Clearly for this notion to make sense, we need to asume smoothness of the dis-
count bond price function T 7→ P (t, T ) for all T ’s.

Intuitively, the instantaneous forward rate F (t, T ) is a forward interest rate at
time t whose maturity is very close to its expiry T , say F (t, T ) ≈ L(t;T, T + ∆T )
with ∆T small.

1.2 Interest-Rate Curves

A fundamental curve that can be obtained from the market data of interest rates
is the zero-copupon curve at a given date t. This curve is the graph of the function
mapping maturities into rates at times t. More precisely:

Definition 8 (Zero-rate curve.) The zero-rate curve at time t is the graph of
the function

T 7→

 L(t, T ) t < T ≤ t+ 1
Y (t, T ) T > t+ 1

(1.10)

Such a zero-coupon curve is also called the term structure of interest rates (TSIR)
at time t. By definition (1.10), it is a plot at time t of simply-compounded interest
rates for all maturities T up to one year and of annually-compounded rates for
maturities T larger than one year. Recall that at times it may be considered the
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Figure 1.1: Zero-rate curves on July 1, 2003. The normal line corresponds to US
dollar rates and the dashed one to the euro rates.
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sample for rates with different compounding conventions, such as for example

T 7→ R(t, T ), T > t

Definition 9 (Discount bond curve.) The Discount bond curve at time t is
the graph of the function

T 7→ P (t, T ), T > t (1.11)

which, because of the positivity of interest rates, is a T -decreasing function start-
ing from P (t, t) = 1. Two examples of such a curve ara shown in 1.2

0 2 4 6 8 10

0.7

0.8

0.9

1

Maturity T (in years)

P
(t
,T

)

Figure 1.2: Term structure of discount bonds on July 1, 2003. The normal line
belongs to the US dollar discount bond curve and the dashed one to the euro.

1.2.1 The Short Rate and the Money-Market Account

Definition 10 (Short rate.) The instantaneous spot interest rate, also referred
as the short rate, is the continuously-compounded insterest rate when time to
maturity collapses to zero:

r(t) = lim
∆t→0

R(t, t+ ∆t) (1.12)
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Let us work out this limit

lim
∆t→0

R(t, t+ ∆t) = − lim
∆t→0

logP (t, t+ ∆t)
(t+ ∆t)− t

= − lim
∆t→0

logP (t, t+ ∆t)− logP (t, t)
(t+ ∆t)− t

= − ∂ logP (t, θ)
∂θ

∣∣∣∣∣
θ=t

= F (t, t)

(1.13)

The next definition we consider is the definition of a money-market account. A
money-market account represents a locally riskless investment, where profit is
accrued continuously at the short rate prevailing in the market at every instant.

Definition 11 (Money-market account.) We define B(t) to be the value of
a money-market account at time t ≥ 0. Assume that B(0) = 1, and that the
money-market account evolves according to the following differential equation:

dB(t) = r(t)B(t)dt, B(0) = 1, (1.14)

where r(t) is a positive stochastic process, i.e.,

B(t) = exp
(∫ t

0
r(s) ds

)
. (1.15)

1.3 A Brief Note on Martingale Modeling

Throughout this work we consider a continuous trading economy, with a finite
trading interval given by [0,Θ]. The uncertainty is modelled by the filtered prob-
ability space (Ω,F ,F,P) where Ω denotes a sample space, with elements ω ∈ Ω;
F denotes a σ-algebra on Ω; and P denotes a probability measure in (Ω,F). The
uncertainty is resolved over [0,Θ] according to the filtration F = {Ft}t≥0.

We consider a financial market S = [ S0 S1 . . . Sn ]T with a riskless invest-
ment, S0, or money market account given by (1.14), and n risky assets which all
follow Itô processes driven by a q-dimensional Wiener-Einstein process, W ,

dSi = Si(µidt+ σi · dW ), Si(0) > 0, i = 1, . . . , n.

the appreciation rates µi and the volatility row vectors σi = [ σi1 . . . σiq ] are
assumed to be Ft-adapted, intuitively, this means that they all depend on past



24 Chapter 1. Foundations of Interest Rate Theory

values but not on future. They also satisfy the integrability conditions
∫ Θ

0
|µi|dt <∞,

∫ Θ

0
||σi||2dt <∞ i = 1, . . . , n (1.16)

almost surely.
A continuous time trading strategy is any Rn+1-valued Ft-adapted stochastic

process
φ(t) = [ φ0(t) . . . φn(t) ]

where φi(t) denotes the holdings in the asset i at time t. The asset holdings φi(t)
are furthermore assumed to satisfy similar regularity conditions as the presented
in (1.16).

Its corresponding value process is

V (φ, t) = φ(t) · S(t) =
n∑
i=0

φi(t)Si(t)

The portfolio or trading strategy φ, is called self-financing when

V (φ, t) = V (φ, 0) +
n∑
i=0

∫ t

0
φi(s)dSi(s), t ∈ [0,Θ], (1.17)

where
∫
φi(s)dSi(s) denote Itô integrals. Hence, a self-financing trading strategy

is a trading strategy that requires nor generates funds between time 0 and time
Θ.

1.3.1 Martingale Measures, Derivative Securities and Ar-
bitrage

All prices above are interpreted as being given in terms of some a priori given
numeraire, or monetary basis. Tipically this numeraire is the domestic currency
like e, but we may, of course, equally express all prices denominated in some other
numeraire. In fact, any asset which has strictly positive prices for all t ∈ [0,Θ] is
a numeraire.

Suppose that, for some p ≤ n, the p-asset is a numeraire . The prices of other
assets i 6= p denominated in Sp are called the relative prices or discounted prices
and we denote them by

S̃i := Si/Sp.
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We denote the relative value process as well by

Ṽ := V

Sp
=

n∑
i 6=p

φiS̃i

Let (Ω,F ,P) denote the probability space from the beginning of this section.
Consider now the set that contains all probability measures Q∗ such that:

1. Q∗ ∼ P, i.e. both measures have the same null-sets;

2. the relative processes S̃i are martingales under Q∗ for all i, i.e. for t ≤ s

S̃i(t) = EQ∗ [S̃i(s)|Ft].

The measures Q∗ are called equivalent martingale measures. Suppose we pick
one particular equivalent martingale measure Q∗.

Definition 12 (Derivative security.) Is any Ft-measurable random variable
h(T ) such that

E∗(|h(T )|) <∞,

where E∗ denotes expectation under the equivalent martingale measure Q∗.

Hence, derivative securities are those assets for which the expectation of the
payoff is well defined. If we can find a self-financing trading strategy φ such
that Ṽ (φ, T ) = h(T ) with probability one, the derivative is said to be attainable.
The self-financing trading strategy is then called a replicating strategy. If in an
economy all derivative securities are attainable, the economy is called complete.

An arbitrage portfolio is a self-financing trading strategy φ, with

P[Ṽ (φ, T ) ≥ 0] = 1, with Ṽ (φ, 0) < 0,

thus, an arbitrage trading strategy is capable to produce a “free lunch”, because
with initial negative costs we obtain at terminal time a non-negative value of the
portfolio denominated in the chosen numeraire.

Theorem 1 (Unique Equivalent Martingale Measure.) A continuous trad-
ing economy is free of arbitrage trading strategies and every derivative security
is attainable, i.e. the market is complete, if for every choice of numeraire there
exists a unique martingale measure.
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Proof. See [30]. �

Thus for a given numeraire M with unique martingale measure QM , the value
of a self-financing trading strategy

Ṽ (φ, t) = V (φ, t)
M(t)

is a QM -martingale. Hence, for a replicating strategy φh that replicates the
derivative security h(T ) we obtain

EM
[
h(T )
M(T )

∣∣∣∣Ft
]

= EM
[
V (φh, T )
M(T )

∣∣∣∣Ft
]

= V (φh, t)
M(t)

where the last equality follows from the definition of a martingale. Combining
the first and the last expression yields

V (φh, t) = M(t)EM
[
h(T )
M(T )

∣∣∣∣Ft
]

(1.18)

This formula can be used to determine the value at time t < T for any deriva-
tive security h(T ). In particular, absence of arbitrage and market completeness
implies the existence of the unique probability measure QB, equivalent to the
physical P, under which the price of any discount bond or T -bond, appropiately
discounted by the money-market account S0(t) = B(t), is a QB-martingale.

P̃ (t, T ) := P (t, T )
B(t) = EB

[
P (T, T )
B(T )

∣∣∣∣Ft
]

= EB
[
e−
∫ T

0 r(u)duP (T, T )
∣∣∣∣∣Ft
]

Combining this fact with the fact that a T -bond is a derivative security which has
price 1 at its maturity we can write the well-known arbitrage-free pricing formula

P (t, T ) = EB
[
e−
∫ T

t
r(s)ds

∣∣∣∣∣Ft
]
, (1.19)

where we have used thatB(t) is Ft-measurable. Let us now introduce a convenient
definition.
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Definition 13 (Stochastic discount factor.) The stochastic discount factor
D(t, T ) is given by

D(t, T ) = B(t)
B(T ) = exp

(
−
∫ T

t
r(u) du

)
(1.20)





Chapter 2

Forward Rate Models

In the nineties, Heath, Jarrow and Morton (henceforth HJM) [31] proposed a new
framework for modeling the entire forward curve directly.

2.1 The Heath-Jarrow-Morton Framework

The stochastic setup is as shown at the end of the Sect. 1.1.3. We consider
that there exists a unique equivalent martingale measure Q, associated to the
money-market account. Therefore, the T -bond market is complete and there are
no arbitrage strategies. Let W be a q-dimensional Q-Wiener process.

We assume that we are given an R-valued and Rq-valued stochastic process
α = α(ω, t, T ) and σ = [ σ1(ω, t, T ) . . . σq(ω, t, T ) ], respectively, with α(·, T )
and σ(·, T ) FT -adapted processes. We also assume that for 0 ≤ t < T <∞, the
forward rate F (·, T ) has a stochastic differential which under Q is given by


dF (t, T ) = α(t, T )dt+

q∑
j=1

σj(t, T )dWj(t)

F (0, T ) = F o(0, T ).
(2.1)

Note that conceptually equation (2.1) is one stochastic differential in the t-
variable for every choice of T . Also note that we use the observed forward rate
curve T 7→ F o(0, T ) as the initial condition. This will automatically give us a
perfect fit between observed and theoretical T -bond prices at t = 0, thus relieving
us of the task of inverting the term structure of discount bonds.

Suppose now that we have specified α, σ and {F o(0, T ); T ≥ 0}. Then we

29
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have specified the entire forward rate structure and thus, by the relation

P (t, T ) = e−Z(t,T ) (2.2)

where
Z(t, T ) =

∫ T

t
F (t, s)ds (2.3)

we have in fact specified the entire term structure of discount bonds

{P (t, T ); T ≥ 0, 0 ≤ t ≤ T}.

We now show how bond price dynamics are induced by a given specification of
the forward rate dynamics. By using Itô Lemma in (2.2), we have

dP (t, T ) = −P (t, T )dZ(t, T ) + 1
2P (t, T ) (dZ(t, T ))2 , (2.4)

and it remains to compute dZ(t, T ). We have

dZ(t, T ) = d

(∫ T

t
F (t, s)ds

)

and this is a situation that is not covered by the standard Itô formula. Let us
guess the answer.

Proposition 1 Consider for s ∈ [t0, T ] the Itô process defined by

dF (t, s) = α(t, s)dt+
q∑
j=1

σj(t, s)dWj(t) (2.5)

with t ∈ [t0, s]. Then, the dynamics for the stochastic process (2.3) is

dZ(t, T ) =
[(∫ T

t
α(t, s)ds

)
− F (t, t)

]
dt+

q∑
j=1

∫ T

t
σj(t, s)ds dWj(t). (2.6)

Proof. See Appendix A. �

Therefore, by substituting in equation (2.4)

dP (t, T ) = P (t, T )
{[
r(t)−

∫ T
t α(t, s) + 1

2
∑q
j=1

(∫ T
t σj(t, s)ds

)2
]
dt

− ∑q
j=1

(∫ T
t σj(t, s)ds

)
dWj(t)

} (2.7)
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which may be summarized as the the following:

Corollary 1 The Q-dynamics for the T -bond price, P (t, T ), follows the stochas-
tic differential equation

dP (t, T ) = P (t, T )
[(
r(t) + A(t, T ) + 1

2‖S(t, T )‖2
)
dt+ S(t, T )dW (t)

]
, (2.8)

where ‖ · ‖ denotes the Euclidean norm, and

A(t, T ) := −
∫ T
t α(t, s) ds

Sj(t, T ) := −
∫ T
t σj(t, s) ds,

and we have used the matrix notations

S(t, T ) = [ S1(t, T ) S2(t, T ) . . . Sq(t, T ) ]
W (t) = [ W1(t) W2(t) . . . Wq(t) ]T .

2.1.1 Absence of Arbitrage

Theorem 2 (HJM Drift Condition) Assume that the family of forward rates
is given by (2.1) and that the induced bond market is arbitrage free. Under the
martingale measure Q, the process α and σ must satisfy the following relation,
for every t and every T ≥ t.

α(t, T ) = σ(t, T )
∫ T

t
σ(t, s)T ds. (2.9)

Proof. Since we are modeling the market under the equivalent martingale mea-
sure, Q, the discounted T -bond price P̃ (t, T ) have to be a local Q-martingale
satisfying the following differential:

dP̃ (t, T ) = P̃ (t, T )S(t, T )dW (t)

We now look for the corresponding differential of the ordinary discount bond
price, P (t, T ) = B(t)P̃ (t, T ). From the Itô Lemma we know that

dP (t, T ) = P (t, T ) (r(t)dt+ S(t, T )dW (t)) , (2.10)

in other words, as Q is a martingale measure with the money account B as
numeraire, the local rate of return of every asset price under Q equals the short
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rate. We thus have
A(t, T ) + 1

2‖S(t, T )‖2 = 0.

Taking the T -derivative of this equation gives us the relation (2.9) �

2.2 From HJM to Short-Rate Models

What is the interplay between the short-rate dynamics and the present HJM
framework? Let us consider the simplest one-dimensional HJM model: a constant
σ(t, T ) ≡ σ > 0. Then, we have under the risk-neutral measure Q

dF (t, T ) = σ2(T − t)dt+ σdW (t),

which implies by direct integration

F (t, T ) = F (0, T ) + σ2

2 T
2 + σW (T ).

Hence for the short rates we obtain

r(t) = F (t, t) = F (0, t) + σ2

2 t
2 + σW (t),

and taking the differentials

dr(t) = (∂tF (0, t) + σ2t)dt+ σdW (t).

The observant reader may identify it with the Ho and Lee model [32]. The main
inputs into the HJM framework are the forward rate volatility processes σj(t, T ),
and as we have shown the Ho and Lee model is a special case of the general
1-factor HJM framework, corresponding to a particular choice of the volatility
process. However, it has remained unclear whether other short-rate models could
be derived within the HJM framework, and whether there exists a systematic
approach for generating the short-rate models. In general, we have the following:

Proposition 2 Suppose that F (0, T ), α(t, T ) and σ(t, T ) are differentiable in T

with
∫ T
0 |∂uF (0, u)| du <∞.

Then the short-rate process is an Itô process of the form

dr(t) = ζ(t)dt+ σ(t, t)dW (t), (2.11)
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where

ζ(t) = α(t, t) + ∂tF (0, t) +
∫ t

0
∂tα(s, t) ds+

∫ t

0
∂tσ(s, t)dW (s) (2.12)

Proof. See Appendix A. �

Remark 1 For every forward rate model, the arbitrage free price of a derivative
security, with T -payoff h(T ), will still be given by the general pricing formula

V (h, t) = EQ
[
e−
∫ T

t
r(u) duh(T )

∣∣∣Ft] ,
where the short-rate as usual is given by r(t) = F (t, t).

2.3 Forward Measures

Equation (1.18) shows to calculate the arbitrage free price V (t), of a derivative
security. The value calculated must, of course, be independent of the choice of
numeraire. Consider two numeraires M and N with martingale measures QM

and QN . Combining the result (1.18) applied to both numeraires yields

M(t)EM
[
h(T )
M(T )

∣∣∣∣Ft
]

= N(t)EN
[
h(T )
N(T )

∣∣∣∣Ft
]

This expression can be rewritten as

EM
[
g(T )

∣∣∣∣Ft] = EN
[
g(T )M(T )/M(t)

N(T )/N(t)

∣∣∣∣Ft
]

(2.13)

where g(T ) = h(T )/M(T ). Since, h, M and N are general, this result holds for
all random payoffs g and all numeraires M and N .

We have now derived a way to express the expectation g(T ) under the measure
QM in terms of an expectation under the measure QN .

Theorem 3 (Change of Numeraire) Let QM be the equivalent martingale mea-
sure with respect to the numeraire M(t). Let QN be the equivalent martingale
measure with respect to the numeraire N(t). The Radon-Nikodym derivative that
changes the equivalent martingale measure QM into QN is given by

λ(t) = dQM

dQN
= M(T )/M(t)

N(T )/N(t) .
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The Change of Numeraire Theorem is very powerful in the context of pricing
interest rate derivatives. Instead of using the value of the money-market account
B(t) as a numeraire, the prices of T -bonds can also be used as a numeraire. A
very convenient choice is to use the discount bond with maturity T as a numeraire
for derivatives which have a payoff h(T ) at time T . Assume, on the other hand,
that the probability measure QT associated to the numeraire P (t, T ) actually
exists. Hence, we can apply the Change of Numeraire Theorem as follows. Under
the measure QT the prices V (h, t)/P (t, T ) are martingales for t < T . Therefore,
applying the definition of a martingale and taking into account that P (T, T ) = 1,
we obtain

V (h, t) = P (t, T )ET
[
h(T )

∣∣∣Ft] (2.14)

The measure QT has another very interesting property, which virtually gave the
name T -forward measure. Under the T -forward measure, the instantaneous for-
ward rate, F (t, T ) is equal to the expected of the spot interest rate at time T . In
formulas

F (t, T ) = ET
[
r(T )

∣∣∣Ft] ,
e.g., see the straightforward arguments followed by Filipovic̀ in [27, Sect. 7.1]
or Björk in [5, Sect. 19.4.2]. Note that in this case, the corresponding Radon-
Nikodym derivative that changes the T -forward measure QT into the risk-neutral
measure (or money-market measure) Q, is

dQT

dQ
= P (T, T )/P (t, T )

B(T )/B(t) = D(t, T )
P (t, T ) = e−

∫ T

t
r(s) ds

P (t, T ) . (2.15)

2.4 The General HJM Gaussian Model

Consider a general HJM model under the risk-neutral measure Q specified by
(2.1). We also assume that

σ(t, T ) = [ σ1(t, T ) . . . σq(t, T ) ]

are deterministic functions of (t, T ), and hence forward rates F (t, T ) are Gaussian
distributed. We consider now a European call option, with expiration date T and
exercise price K, on an underlying bond with maturity S (where of course T < S).
The following general pricing formula may be derived:
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Proposition 3 (Bond Option Pricing for Gaussian Forward Rates) The
price, at t = 0 of the bond option

h(T ) = (P (T, S)−K)+

is given by
V (h, 0) = P (0, S)N(d+)−KP (0, T )N(d−) (2.16)

where

d± :=
log

(
P (0,S)
KP (0,T )

)
± 1

2ϑ
2(T, S)

ϑ(T, S) ,

ϑ2(T, S) :=
∫ T

0
‖ς(u;T, S)‖2 du ;

(2.17)

and,
ς(t;T, S) := S(t, S)− S(t, T ) = −

∫ S

T
σ(t, s) ds. (2.18)

Proof. Let us start with the fundamental arbitrage-free equation

V (h, 0) = E
[
D(0, T )(P (T, S)−K)+

]
,

where we are taking the expectations with respect the equivalent martingale
measure Q associated to the money-market numeraire B(·). We decompose it as
follows

V = E
[
D(0, T )P (T, S)1{P (T,S)≥K}

]
−KE

[
D(0, T )1{P (T,S)≥K}

]
(2.19)

In this case, the Radon-Nikodym derivative that changes S-forward measure QS

into the money-market measure Q will be given by

λS(T ) = dQS

dQ
= P (T, S)/P (0, S)

B(T )/B(0) = D(0, T )P (T, S)
P (0, S) .

In a similar way note that

λT (T ) = dQT

dQ
= P (T, T )/P (0, T )

B(T )/B(0) = D(0, T )
P (0, T ) ,

is the conversion factor responsible for changing the T -forward measure QT into
the risk-neutral world Q. Substituting into decomposition (2.19), and combining
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with the measurability at t = 0 of P (0, S) and P (0, T ) we have

V = E
[
P (0, S)λS(T )1{P (T,S)≥K}

]
−KE

[
P (0, T )λT (T )1{P (T,S)≥K}

]
V = P (0, S)QS (P (T, S) ≥ K)−KP (0, T )QT (P (T, S) ≥ K)

Now we have the value V for the call option in terms of the forward measures QS

and QT . Let us start with the probability computations referred to the T -forward
measure. Note that the probability may be written as

QT (P (T, S) ≥ K) = QT

(
P (T, S)
P (T, T ) ≥ K

)
= QT

(
log P (T, S)

P (T, T ) ≥ logK
)

Consider the “discounted” process

XS,T (t) := P (t, S)
P (t, T ) ,

with terminal value XS,T (T ) = P (T, S)/P (T, T ). By taking differentials under
the risk-neutral measure Q we have

d

(
P (t, S)
P (t, T )

)
= 1

P (t, T )dP (t, S)− P (t, S)
(P (t, T ))2dP (t, T ) + dP (t, S) · d

(
1

P (t, T )

)
=

= {. . . }dt+X {(S(t, S)− S(t, T )) dW (t)}
dX = {. . . }dt+Xς(t;T, S)dW (t).

For the second stage we have used equation (2.10) applied to the discount bonds
P (t, S) and P (t, T ). Recall that QT is a martingale measure and the multidimen-
sional Girsanov’s Theorem1 which locally induces the change into this T -forward
measure, does not affect the difussion coefficient of the initially taken differential.
Therefore we have

dXT,S(t) = XT,S(t)ς(t;T, S)dW T (t).

Let us introduce the auxiliary process:

YT,S(t) = logXT,S(t)

1See [43] for a detailed discussion of it.
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By means of the multidimensional Itô Lemma, it is not difficult to prove that the
random variable YT,S(T ) distributes like

YT,S(T ) ∼ N
(

log P (0, S)
P (0, T ) −

1
2ϑ

2(T, S), ϑ2(T, S)
)
,

where ϑ2(T, S) =
∫ T

0 ‖ς(u;T, S)‖2 du. Now the computation of the probability
under the T -forward measure is straightforward:

QT (P (T, S) ≥ K) = QT (YT,S(T ) ≥ logK) = N(d−)

For the pending probability QS, first, note the following:

QS(P (T, S) ≥ K) = QS

(
P (T, T )
P (T, S) ≤

1
K

)
= QS

(
log P (T, T )

P (T, S) ≤ − logK
)
.

It is enough to introduce the auxiliary processes,

WT,S(t) := P (t, T )
P (t, S) ,

and,
ZT,S(t) := logWT,S(t),

for concluding that ZT,S(T ) distributes like

ZT,S(T ) ∼ N
(

log P (0, T )
P (0, S) −

1
2ϑ

2(T, S), ϑ2(T, S)
)
,

and then
QS(ZT,S(T ) ≤ − logK) = N(d+).

�

Corollary 2 The price at t = 0 of the put option

h(T ) = (K − P (T, S))+

is given by
Π(h, 0) = KP (0, T )N(−d−)− P (0, S)N(−d+) (2.20)

where the quantities d± are completely determined by the identities (2.17) to
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(2.18).

Proof. First consider the difference between the call and the put option at time
t = 0. Under the risk-neutral martingale measure we know

V − Π = E
[
D(0, T )

{
(P (T, S)−K)+ − (K − P (T, S))+

}]
= E [D(0, T )(P (T, S)−K)]

By equation (1.19) we have

E [D(0, T )K] = KP (0, T ).

However, we have the problem of the correlation between the discounting factor
and the payoff factor for the first term

E [D(0, T )P (T, S)] .

We can circumvent this problem by using the Change of Numeraire Theorem in
an identical way to that shown in Proposition 3. Recall first that the likelihood

λS(T ) = dQS

dQ
= P (T, S)/P (0, S)

B(T )/B(0) = D(0, T )P (T, S)
P (0, S) ,

induces the change of the S-forward measure into the risk-neutral measure. Thus
we have:

E [D(0, T )P (T, S)] = E
[
λS(T )P (0, S)

]
= ES [P (0, S)] ,

and then the Put-Call Parity Relation:

V − Π = P (0, S)−KP (0, T ), (2.21)

is finally inferred. �



Chapter 3

Interest Rate Caps

Interest rate caps are widely traded OTC interest rate derivatives. An interest
rate cap is a financial insurance which protects you from having to pay more than
a predetermined rate, therefore, a cap is insurance against rising interest rates.

3.1 The Market Practice for Plain Vanilla Caps

In this section we discuss vanilla interest rate caps and the market practice for
quoting these instruments. For concreteness suppose the underlying rate is the
simply-compounded forward LIBOR rate L(t; ·, ·) introduced in Sect. 1.1. Let
suppose that we are standing at time t = 0. We consider a fixed set of increasing
maturities x0, x1, . . . , xn and we define τj, by

τj = xj − xj−1, j = 1, ..., N.

The number τj is known as the tenor.

Definition 14 We let Pj(t) denote the discount bond price P (t, xj) and let Lj(t)
summarize the notation for a forward LIBOR rate of the type L(t;xj−1, xj), i.e.

Lj(t) = 1
τj

(
Pj−1(t)
Pj(t)

− 1
)

j = 1, . . . , n.

Recall that a vanilla cap with cap rate K and resettlement dates x0, . . . , xn is a
contrat which each time xj gives the holder of the contract the amount

hγj
(xj) = τj(Lj(xj−1)−K)+, (3.1)

39
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where j = 1, . . . , n. In fact, the cap is a strip of caplets. Note that the forward LI-
BOR rate Lj(xj−1) above is in fact the simply-compounded spot LIBOR interest
rate. By definition:

Lj(xj−1) := L(xj−1;xj−1, xj) = L(xj−1, xj),

which is observed already at time xj−1. The payoff hγj
is determined at the reset

date xj−1 but not payed out until the settlement date xj. We also note that the
caplet γj is a call option on the on the underlying spot rate.

For a very long time, the market practice has been to value caps by using a
formal extension of the Black model [14]. This extension is typically obtained by
an approximation argument where the short rate at one point in the argument is
assumed to be deterministic, while later on in the argument the LIBOR rate is
assumed to be stochastic. This is of course logically inconsistent.

Definition 15 (Black’s Formula for Caplets.) The Black-76 formula for the
j-caplet with payoff:

hγj
(xj) = τj(Lj(xj−1)−K)+,

at time t = 0 is given by the expression

γj(hγj
, 0) = τjPj(0) {Lj(0)N(d1)−KN(d2)} , j = 1, . . . , n, (3.2)

where

d1 =
log

(
Lj(0)
K

)
+ 1

2σ
2
jxj

σj
√
xj

, (3.3)

d2 = d1 − σj
√
xj. (3.4)

The constant σj is known as the Black volatility for the j-caplet, γj. In the
market, cap prices are not quoted in monetary terms but instead in terms of
implied Black volatilities and these volatilities can furthermore be quoted as flat
volatilities or as forward rate volatilities but, in this work, we confine ourselves to
flat volatilities. Suppose we are standing at time t = 0 and consider the fixed set
of dates x0, x1, . . . , xn where x0 ≥ 0, and a fixed cap rate K. We assume that,
for each j = 1, . . . , n, there is a traded cap with resettlement dates x0, x1, . . . , xj,
and we denote the corresponding observed market price by Co

j . From this data
we can easily compute the market prices for the corresponding caplets by means
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of the recursion formula

γoj = Co
j − Co

j−1, j = 1, . . . , n (3.5)

with the convention Co
0 = 0. Moreover, note that given market data for caplets

we can easily compute the corresponding market data for caps by solving the
previous recursion formula (3.5):

Cj =
n∑
j=1

γj, j = 1, . . . , n (3.6)

Given market price data as above, the implied Black flat volatilities are defined
as follows.

Definition 16 The implied flat volatilities σ̄1, . . . , σ̄n are defined as the solutions
of the equations:

Co
j =

j∑
k=1

γok(σ̄j), j = 1, . . . , n, (3.7)

In other words, the flat volatility σ̄j is the volatility implied by the Black formula
if you use the same volatility for each caplet, in the cap with maturity xj.

3.1.1 IRS and At-The-Money Plain Vanilla Caps

An interest rate swap (henceforth IRS) is a scheme where you exchange a payment
stream at a fixed rate of interest for a payment stream at a floating rate (e.g.
LIBOR). A payer IRS settled in arrears is specified by:

• a number of future dates x0 < x1 < · · · < xn where xj − xj−1 ≡ τj are the
settlement periods and xn is called the maturity of the swap,

• a fixed rate K; and,

• a nominal value N .

Moreover, plain vanilla IRS satisfy the equidistance condition for the settlement
periods; i.e., τ ≡ τj. We recall that cash flows take place just at the settlement
dates x1, x2, . . . , xn. At this dates, the holder of such an IRS, pays a predeter-
mined amount

KτN
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and receives in turn the floating payout

Lj(xj−1)τN.

The net cash at xj is therefore

{Lj(xj−1)−K} τN.

Without loss of generality we set the notional N = 1 and t = 0 with x0 > 0.
By means of the fundamental arbitrage free pricing formula, starting from the
money-market martingale measure Q we can compute the value of this contract
as:

Πsw =
n∑
j=1

E [D(0, xj) {Lj(xj−1)−K} τ ]

= τ

 n∑
j=1

E [D(0, xj)Lj(xj−1)]−K
n∑
j=1

Pj(0)
 (3.8)

where we have used the well-known definition

Pj(0) = E [D(0, xj)] .

Let us consider the first term

E [D(0, xj)Lj(xj−1)] .

Fist of all, we may change the risk-neutral measure Q by means of the Change of
Numeraire Theorem into the more suitable xj-forward measure Qxj . Therefore,
we have

Πsw = τ

 n∑
j=1

Pj(0)Exj [Lj(xj−1)]−K
n∑
j=1

Pj(0)
 (3.9)

The following result has a crutial role for concluding.

Lemma 1 For every j = 1, . . . , n, the LIBOR process Lj(t) is a martingale under
the corresponding forward measure Qxj , on the interval [0, xj−1].
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Proof. From Definition 61 for the simply-compounded LIBOR forward interest
rate Lj(t), we have:

τLj(t) := Pj−1(t)
Pj(t)

− 1.

We recall that the process
Pj−1(t)/Pj(t)

is the price of the xj−1-bond in terms of the strictly positive asset Pj(t), which is,
by definition, the numeraire for the forward measure Qxj . The process Pj−1(t)/Pj(t)
is thus trivially a Qxj -martingale on the interval [0, xj−1], where the normalized
process is well defined. Therefore, Lj(t) is also a Qxj -martingale on the same
interval. �

By using the previous Lemma, we have

Lj(t) = Exj

[
Lj(s)

∣∣∣Ft] 0 ≤ t ≤ s ≤ xj−1;

and, in particular,
Lj(0) = Exj [Lj(xj−1)] .

By substituting into (3.9):

Πsw = τ

 n∑
j=1

Pj(0)Lj(0)−K
n∑
j=1

Pj(0)
 =

= τ

1
τ

n∑
j=1

Pj(0)
(
Pj−1(0)
Pj(0) − 1

)
−K

n∑
j=1

Pj(0)
 =

=
 n∑
j=1

(Pj−1(0)− Pj(0))−Kτ
n∑
j=1

Pj(0)
 .

(3.10)

Finally, the total value Πsw at time t = 0 is therefore

Πsw = P0(0)− Pn(0)−Kτ
n∑
j=1

Pj(0). (3.11)

Proposition 4 (General Closed-Formula for Plain Vanilla IRS.) The to-
tal value Πsw(t) of a plain vanilla IRS settled in arrears at time time t ≤ x0 and

1See Sect. 1.1, p. 7
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notional N is

Πsw(t) = N

P0(t)− Pn(t)−Kτ
n∑
j=1

Pj(t)
 . (3.12)

In contrast to the interest rate caps pricing, which depends on the particular
choice of the volatility vector process σ(t, T ) within the HJM framework, the IRS
closed-formula is generic. However, note that the plain vanilla interest rate swaps
remain dependent on the term structure of discount bonds T 7→ P (t, T ).

Definition 17 (Forward Swap Rate.) The forward swap rate (also called par
swap rate) is the rate Ksw(t) at time t ≤ x0 which gives the “fair value” Πsw(t) =
0:

Ksw(t) = P0(t)− Pn(t)
τ
∑n
j=1 Pj(t)

.

Let t = 0 again for simplicity and suppose, as above, that x0 > 0, then:

Remark 2 A plain vanilla cap is said to be at-the-money (ATM henceforth) if

K = Ksw(0) = P0(0)− Pn(0)

τ
n∑
j=1

Pj(0)
. (3.13)

3.2 Caps under The General HJM Gaussian Model

Let us now turn to the problem of rigorously pricing the caplet. Remember that
the payoffs on settlement dates x1, . . . , xn are:

hγj
(xj) = τj(Lj(xj−1)−K)+.

Note that such an stream of payoffs for the corresponding strip of caplets γj, is
equivalent in terms of pricing to those

hγj
(xj−1) = τjE

[
D(xj−1, xj)(Lj(xj−1)−K)+

∣∣∣Fxj−1

]
,

which are received at fixing dates x0, . . . , xn−1. Because of Fxj−1-mesurability of
Lj(xj−1), they can also be expressed as

hγj
(xj−1) = τj(Lj(xj−1)−K)+E

[
D(xj−1, xj)

∣∣∣Fxj−1

]
= τjPj(xj−1)(Lj(xj−1)−K)+.

(3.14)
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From Definition 5 for the simply-compounded LIBOR spot rate Lj(xj−1), we
know:

Lj(xj−1) := 1
τj

(
1

Pj(xj−1) − 1
)
,

and after some trivial algebra

hγj
(xj−1) = τjPj(xj−1)

(
1
τj

(
1

Pj(xj−1) − 1
)
−K

)+

=
(
Pj(xj−1)

(
1

Pj(xj−1) − 1
)
−KτjPj(xj−1)

)+

= (1− (1 + τjK)Pj(xj−1))+

(3.15)

we may finally write the following representation for the stream of payoffs:

hγj
(xj−1) = (1 + τjK) (κ− Pj(xj−1))+ (3.16)

where κ = (1 + τjK)−1.

Consequently we see that a j-caplet is equivalent to (1 + τjK) put options on
an underlying xj-bond, where the exercise date of the option is at xj−1 and the
exercise price is κ. An entire cap contract can thus be viewed as a portfolio of
put options, and we may use the results on Corollary 2 of Sect. 2.4 to compute
the theoretical price and, in particular, to price it under the General Gaussian
HJM model.

Proposition 5 (Caplet Pricing for Gaussian Forward Rates.) The price at
t = 0 of the j-caplet, γj, with payoff:

hγj
(xj) = (Lj(xj−1)−K)+

is given by

γj(hγj
, 0) = (1 + τjK) {κPj−1(0)N(−d−)− Pj(0)N(−d+)} (3.17)
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where

d± :=
log

(
Pj(0)

κPj−1(0)

)
± 1

2ϑ
2(0, xj−1)

ϑ(0, xj−1) , (3.18)

ϑ2(0, xj−1) :=
∫ xj−1

0
‖ς(u;xj−1, xj)‖2 du ; (3.19)

ς(t;xj−1, xj) := −
∫ xj

xj−1
σ(t, s) ds. (3.20)

and κ = (1 + τjK)−1.



Chapter 4

Geometric Interest Rate Theory

4.1 The Problem

Any acceptable model which prices interest rate derivatives must fit the observed
term structure. This idea pioneered by Ho and Lee [32], has been explored in
the past by many other researchers like Black and Karasinski [13] and Hull and
White [33].

The contemporary models are more complex because they consider the evo-
lution of the whole forward curve as an infinite system of stochastic differential
equations (Heath, Jarrow and Morton [31]). In particular, they use a continu-
ous forward rate curve as initial input. In reality, one only observes a discrete set
composed either by bond prices or swap rates. So, in practice, the usual approach
is to interpolate the forward curve by using splines or other parametrized families
of functions.

A very plausible question arises at this point: Choose a specific parametric
family, G, of functions that represent the forward curve, and also an arbitrage free
interest rate model M. Assume that we use an initial curve that lay within as
input for model M. Will this interest rate model evolve through forward curves
that lay within the family? Motivated by this question, Björk and Christensen
[11] define the so–called consistent pairs (M, G) as ones whose answer to the
above question is positive. In particular, they studied the problem of consistency
between the family of curves proposed by Nelson and Siegel [45] and any HJM
interest rate model with deterministic volatility, obtaining that there is no such
interest model consistent with it.

We remark that the Nelson and Siegel interpolating scheme is an important

47
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example of a parametric family of forward curves, because it is widely adopted
by central banks (see for instance BIS [4]). Its forward curve shape, GNS(z, ·) is
given by the expression

GNS(z, x) = z1 + z2e
−z4x + z3xe

−z4x,

where x denotes time to maturity and z the parameter vector

z = [z1 z2 . . . ]T .

Despite all the positive empirical features and general acceptance by the financial
community, Filipovic̀ [29] has shown that there is no Itô process that is consistent
with the Nelson-Siegel family. In a recent study De Rossi [20] applies consistency
results to propose a consistent exponential dynamic model, and estimates it using
data on LIBOR and UK swap rates. On the other hand, Buraschi and Corielli
[16] add results to theoretical framework indicating that the use of inconsistent
parametric families to obtain smooth interest rate curves, violates the standard
self financing arguments of replicating strategies, with direct consequences in risk
management procedures.

In order to illustrate this situation, we describe a very common fixed-income
market procedure. In the real world, practitioners usually re-estimate yield curve
and HJM model parameters on a daily basis. This procedure consists of two
steps:

• They fit the initial yield curve from discrete market data (bond prices, swap
rates, short-term zero rates), and

• They obtain an estimate of the parameters of the HJM model, minimiz-
ing the pricing error of some actively traded (plain vanilla) interest rate
derivatives (commonly swap options or caps).

In contrast with the parsimonious assumption that model parameters are con-
stant, an unstable HJM model parameter estimation it is often observed. Perhaps,
this fact is not relevant for mark to market, but it could have practical conse-
quences on the hedging portfolios associated with these financial instruments.
Recall that such dynamic strategies depend on the model assumptions. Thus,
re-calibration is conceivable because the practitioners are aware of model risk. A
particular HJM model is not a perfect description of reality, and they are forced to
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re-estimate day to day model parameters in order to include new information that
arrives from the market. On the other hand, unstable estimates may be caused
by reasons that are more theoretical, because the above mentioned set-up does
not take into account that HJM model parameters are linked, in general, to the
initial yield curve fit parameters. If a practitioner uses an interpolation scheme
which is not consistent with the model, then the parameters will be artificially
forced to change. Thus, it seems to be that there are a plethora of motivations
for the study of the empirical evidence and the practical implications that are
predicted by a consistent HJM build model.

4.2 Setup

We consider, as earlier in chapter 2, a given forward rate model under a risk
neutral martingale measure Q. We will adopt the Musiela parameterization [42]
and use the notation

f(t, x) := F (t, t+ x).

The reasons why this parameterization is better suited to address the main prob-
lems that are the subject of the present work have been accurately explained, for
instance, by Filipovic̀ [28]. As we will see, this parametrization makes changes
in the specification of the stochastic process originally proposed by HJM for the
instantaneous forward rate process, F (t, t+x), since now x is not considered any
more a fixed variable which parametrizes the dynamics of these rates.

Proposition 6 (The Musiela HJM formulation.) Under the martingale mea-
sure Q the f -dynamics are given by df(t, x) =

(
∂f(t,x)
∂x

+ σ̃(t, x)
∫ x

0
σ̃(t, u)T du

)
dt+ σ̃(t, x)dW (t)

f(0, x) = f o(0, x).
(4.1)

where σ̃(t, x) := σ(t, t+ x).

Proof. See Appendix B. �

From now, with a clear abuse of notation we remove the symbol ˜ from σ

because in the whole chapter we will consider the HJM model under the Musiela
parametrization. Thus the interest rate model M will be characterized by the
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particular volatility function σ(t, x) used in the following f -dynamics:

df(t, x) =
(
∂xf(t, x) + σ(t, x)

∫ x

0
σ(t, u)T du

)
dt+ σ(t, x)dW (t). (4.2)

4.3 The Formalized Problem

4.3.1 The Forward Curve Manifold

Assume that we have a parametrized family of forward rate curves

G : Z −→ H, (4.3)

with Z ⊆ Rd the parameter space. For each parameter value z ∈ Z we have a
smooth curve G(z). The value of this curve at the point x ∈ R+ will be written
as G(z, x), so we see that G can also be viewed as the mapping

G : Z × R+ −→ R. (4.4)

The main problem is to determine under which conditions the f -dynamics given
by (4.2) is consistent with the parametrized family of forward rate curves (4.3)
as follows:

• Assume that, at an arbitrarily chosen time t = s, we have fitted a forward
curve G to market data, i.e. for some zo ∈ Z we have

f o(s, s+ x) = G(zo, x), ∀x ≥ 0 ,

• the future forward curves produced by the interest rate model (4.2) always
stay within the given forward curve family? In other words, does there exist
at every fixed time t ≥ s some z ∈ Z such that

f(t, t+ x) = G(z, x), ∀x ≥ 0 ?

First, to see more clearly what is going on in differential geometric terms, we
define the forward curve manifold G, as the set of all forward curves produced by
the parametrized family.
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Definition 18 The forward curve manifold G ⊆ H is defined as

G = Im(G).

We now move on to give precise mathematical definition of the consistency prop-
erty discussed above.

Definition 19 (Invariant manifold.) Take as given the f -dynamics (4.2). Con-
sider also the forward curve manifold G. We say that G is invariant under the
action of f if, for each point (s, f) ∈ R+ × G, the condition fs ∈ G implies that
ft ∈ G on a time interval t− s > 0.

The purpose of the following section will be to characterize invariance in terms
of local characteristics of both G and M.

4.3.2 The Space

As the space of forward rate curves we will use a weighted Sobolev space where
a generic point will be denoted by f .

Definition 20 Consider a fixed real number γ > 0. The space Hγ is defined as
the space of all differentiable (in the distributional sense) functions

f : R+ −→ R

satisfying the norm condition ‖f‖γ <∞. Here the norm is defined as

‖f‖2
γ =

∫ ∞
0

f 2(x)e−γx dx+
∫ ∞

0

(
df

dx
(x)
)2

e−γx dx

Intuitively, as a specific Sobolev space, Hγ is a vector space of functions equipped
with a norm that is a combination of L2-norms of the function itself as well as
its first derivative. Recall that x is the time to maturity, as defined in Sect. 1.1.

In fact, if we introduce the inner product

(f, g) =
∫ ∞

0
f(x)g(x)e−γx dx+

∫ ∞
0

(
df

dx
(x)
)(

dg

dx
(x)
)
e−γx dx,

the space Hγ becomes a Hilbert space as proved by Björk and Landen [7].
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4.3.3 The Interest Rate Model

Finally, let us consider as given a volatility function σ of the form

σ : Hγ × R+ → Rq.

σ(f, x) is thus a functional of the infinite dimensional f -variable, and a function
of the real variable x. Denoting the forward curve at time t by ft we then have
the following forward rate equation.

dft(x) =
{
∂

∂x
ft(x) + σ(ft, x)

∫ x

0
σ(ft, u)T du

}
dt+ σ(ft, x) dWt. (4.5)

4.4 The Invariance Conditions

As we see before, the pair (M, G) is consistent if and only if the forward curve
manifold G is invariant under the action f , and the question we pursue from now
is when it happens. In order to guess the precise answer we have to rewrite the
analysis in terms of Stratonovich integrals instead of Itô integrals.

Definition 21 For given semimartingales X and Y driven by a multidimensional
Wiener process, the Stratonovich integral of X w.r.t Y ,

∫ t

0
Xs ◦ dY (s) ,

is defined as ∫ t

0
Xs ◦ dYs :=

∫ t

0
Xs · dYs + 1

2dXt · dYt

Remark 3 For computing the “quadratic variation process” dXt · dYt the usual
“multiplication rules” dW · dt = dt · dt, dW · dW = dt must be applied.

Proposition 7 (Chain rule.) Assume that the function F (t, y) is smooth. Then
we have

dF (t, Yt) = ∂F

∂t
(t, Yt)dt+ ∂F

∂y
(t, Yt) ◦ dYt.

Note that under the Stratonovich formulation of the stochastic integral, the Itô
formula takes the form of the standard chain rule of ordinary calculus. Now,
returning to the above f -dynamics (4.5), we can write it in terms of Stratonovich
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calculus as the following

dft(x) =
{
∂

∂x
ft(x) + σ(ft, x)

∫ x

0
σ(ft, u)T du

}
dt−1

2dσ(ft, x)·dWt+σ(ft, x)◦dWt ,

(4.6)
and, as it can be seen, it appears a quadratic variation term commonly known
as the Stratonovich correction. Note that σ is not a function but a functional,
however in practical terms we can work with the ordinary Itô formula which is
still correct as in the finite dimensional case. Then,

dσ · dW (t) =
(
{. . . }dt+ σ′f (ft)σ(ft)TdWt

)
· dWt

= σ′f (ft)σ(ft)Tdt.
(4.7)

where σ′f denotes the Frechet derivative of σ w.r.t the f -variable. This derivative
extends the concept of Jacobian matrix to the infinite dimensional case. Its formal
definition, which is somewhat technical, is left out. See [19].

Finally, we may write the Stratonovich formulation of the Musiela equation
(4.6) as

dft = µ(ft) + σ(ft) ◦ dWt (4.8)

where

µ(ft, x) = ∂xft(x) + σ(ft, x)
∫ x

0
σ(ft, u)T du− 1

2
[
σ′f (ft)σf (ft)T

]
(x). (4.9)

Let us consider as given the forward curve manifold G: the relevant concept is
the following.

Definition 22 Consider a given interest rate model M, specifying a forward
rate process ft(x), as well as a forward curve manifold G. We say that G is
f -invariant under the action of the forward rate process ft(x) if there exists a
stochastic process Z(t) with state space Z and possessing a differential of the
form

dZ(t) = γ(t, Z(t))dt+ ψ(t, Z(t)) ◦ dWt, (4.10)

such that, for every fixed choice of initial time s, whenever ys(·) ∈ G, the stochastic
process defined by

yt(x) = G(Z(t), x), ∀t ≥ s, x ≥ 0, (4.11)

solves the SDE (4.6) with initial condition fs(·) = ys(·).
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In fact, the stochastic Z-process is describing how evolves the vector parameter
z as the forward rate curve moves on the manifold G.

We assume that the forward rate Itô dynamics of M are given by (4.5), and
that the quadratic variation process may be written in intensity form:

−1
2
[
σ′f (ft)σ(ft)T

]
(x)dt = φ(t, x)dt

Now we can state and prove the main invariance result.

Theorem 4 (Consistency Conditions.) The forward curve manifold G is f
invariant for the forward rate process f(t, x) in M iff

Gx(z, ·) + σ(t, ·)
∫ ·

0
σ(t, u)T du+ φ(t, ·) ∈ Im [Gz(z, ·)] , (4.12)

σ(t, ·) ∈ Im [Gz(z, ·)] . (4.13)

∀(t, z) ∈ R+ × Z. Here, Gz and Gx denote the Jacobian of G w.r.t. to z and x,
provided some minimal smoothness of the mapping G.

Proof. See Appendix B. �

Condition (4.12) is called the consistent drift condition (henceforth CDC) and
condition (4.13) is called the consistent volatility condition (henceforth CVC). It
is said that we have invariance if and only if the latter conditions hold which
brings us the following definition.

Definition 23 (Consistency.) We say that the interest rate model M is con-
sistent with the forward rate manifold G if the CDC and CVC conditions (4.12)-
(4.13) prevail.

4.4.1 Simple Invariance

In order to obtain some geometric intuition, we will analyze a bidimensional
deterministic version of our problem as a motivational example. Let us consider:

• first, a deterministic vector function Q : R+ → R2

Q(t) =
Q1(t)
Q2(t)

 , (4.14)
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with differential given by
Q̇ = µ(t, Q(t)), (4.15)

where µ : R+ × R2 → R2 is some smooth vector field.

• Next, a smooth mapping G : Z → R2,

G(z) =
G1(z)
G2(z)

 . (4.16)

It could be interpreted that the process Q corresponds to two specific coordinates
of the infinite-dimensional object f(t, x) in a purely deterministic world. Say, for
instance, picking out the 3-month and 10-year key rates at any time t. Thus, this
is our toy model M.

Now define the manifold G as

G = {G(z) : z ∈ Z}, (4.17)

and assume that Q(s) ∈ G for some initial value zo ∈ Z, that is

qo = Q(s) = G(Z(s) = zo), (4.18)

where Z is also another deterministic d-dimensional process Z : R+ → Rd. When
the relation for the future times t ≥ s,

Q(t) ∈ G, ∀ t ≥ s, (4.19)

prevails? The answer is geometrically obvious. We have the relation (4.19) iff the
velocity vector

dQ

dt
,

belongs to the tangent space TQ(t)(G) for each t ≥ s. Note, that a generic point
of G is written as q = G(z), and the tangent space at this point is given as the
span of the tangent vectors

∂G(z)
∂zi

, i = 1, . . . , d. (4.20)
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Let us return to the first order deterministic system written on normal form

Q̇ = µ(t, Q(t)).

Physically, we may interpret this system as a condition set for the velocity of
a particle at position q at time t. Indeed, geometrically, we may think in this
context that µ : U → R2, where U is an open set U ⊂ R+×R2, is a velocity field
defined over the plane R2. By definition, the function Q : I → R2 is a solution of
the aforementioned linear dynamical system whenever the relation

Q̇ = µ(t, Q(t)), ∀t ∈ I ⊂ R+

holds. That is, Q(t) is a solution for the differential system iff the trajectory of
the particle is tangent to the vector field µ in all its points. Thus, we have related
the problem of finding the solution for the differential system with the geometric
problem of finding tangent trajectories for the velocity field µ. In fact, the theo-
retical problem for the infinite-dimensional stochastic case is the same, and the
use of the Stratonovich form for the differential is the convenience trick in order to
bridge the gap between stochastic differential calculus and ordinary calculus for
real variable functions. Consider for instance the concrete bidimensional system
in R2:  Q̇(t) = [−Q2(t) Q1(t)]T

Q(0) = [1 0]T
(4.21)

For this system the unit circle manifold

S1 = {G(z) = [cos z sin z]T : z ∈ R}

is invariant. The deterministic system (4.21) has the exact solution

Q(t) = [cos t sin t]T ,

and if we start the system on S1 it will stay forever on S1. In fact, the latter may
be easily seen by introducing the trivial one-dimensional deterministic realization
Z(t) = t, because making such a choice

Q(t) = G(Z(t)), ∀t ≥ s.
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Now, it is easy to check the corresponding invariance condition first introduced

Figure 4.1: The vector field from the the system (4.21) with S1 and a parabollic
noninvariant manifold.

−3 −2 −1 0 1 2 3
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−2

−1

0

1

2

3

Q1(t)

Q
2(
t)

in (4.20). Let Gz(z) denote the Frechet derivative (which in turns is the Jacobian
in this deterministic and finite-dimensional case) of G at z. The columns of the
matrix representation of Gz are the tangent vectors above (4.20), so the tangent
space Tq(S1) to S1 at q = G(z) coincides with the image Im[Gz(z)]:

Gz(z) = [− sin(z) cos(z)]T .

Recall that the vector field µ at q = G(z) is in turns:

µ(G(z)) = [− sin(z) cos(z)]T .

We thus trivially have
µ(G(z)) ∈ Im[Gz(z)],

and, in fact, this is the consistency condition we have to check out for pairs
(M,G) when M is an autonomous and deterministic differential system of finite
dimension.





Chapter 5

The Hull-White Model and
multiobjective calibration

This chapter is the first chapter with empirical and numerical applications1 of
this work. We have shown the foundations of interest rate theory and we have
derived the general conditions of consistency. However, only little attention has
been devoted to the empirical applications of these concepts. In this chapter we
address these applications.

5.1 The Hull-White Model

Our test case is the following model, studied by Hull and White [33] (henceforth
HW):

dr(t) = [Φ(t)− ar(t)] dt+ σdW (t). (5.1)

The Hull-White model improve Ho-Lee model incorporating mean-reversion and
providing closed formulas for liquid options like interes rate caps. This model is
one of the simplest Gaussian HJM models which preserves the Markov property,
allowing very efficient numerical methods for the pricing of any kind of options.
On the negative side, it does not capture large humps of the term structure of
volatilities (TSV hereafter). The model instantaneous-forward volatility curve
T → σf (t, T ), as we will prove later, is monotonically decreasing and this fact
often allows only small humps in the caplet curve. However, as pointed out by
Brigo and Mercurio [15, pp. 91–92], in case of decreasing TSIR curves, large

1Some of the results presented in this chapter are also reported in [25].
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humps can be produce even by this model.
Summarizing, it exhibits a relative good performance when it is chosen as a

parsimonious solution for bussiness cycles with monotonically decreasing TSV,
as it is shown by [3].

5.1.1 Markovianity of the HW model

The short-rate differential process (2.11) in Proposition 2 is not a Markov process
in general. Notice in fact that time t appears in the expression (2.12) for the drift
both as extreme of integration and inside the integrand function. However, the
HW model as a particular Gaussian HJM have a suitable specification of σ for
which the short-rate r is indeed a Markov process. This happens because we can
write the model volatility function σ(t, T ) as a separable specification:

σ(t, T ) = ς(t)%(T ) (5.2)

with ς(t) and %(T ) strictly positive and deterministic functions of time. Under
such a separable specification, the short-rate process becomes

r(t) := F (t, t) = F (0, t) +
∫ t

0

(
ς(u)%(t)

∫ t
u ς(u)%(s) ds

)
du+

∫ t
0 ς(s)%(t) dW (s)

= F (0, t) + %(t)
∫ t

0

(
ς2(u)

∫ t
u %(s) ds

)
du+ %(t)

∫ t
0 ς(s) dW (s)

(5.3)
Notice that, if we introduce the deterministic function A(·)

A(t) := F (0, t) + %(t)
∫ t

0

(
ς2(u)

∫ t

u
%(s)ds

)
du,

by taken differentials in (5.3) we can write

dr(t) = A′(t) + %′(t)
∫ t

0 ς(s)dW (s) + ς(t)%(t) dW (t)

=
[
A′(t) + %′(t)r(t)− A(t)

%(t)

]
dt+ ς(t)%(t) dW (t)

= [a(t) + b(t)r(t)] dt+ c(t) dW (t)

(5.4)

where
a(t) := A′(t)− %′(t)

%(t)A(t),

b(t) := %′(t)
%(t) ; and,

c(t) := ς(t)%(t) = σ(t, t).

(5.5)
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We can finally derive the HJM forward-rate dynamics that is equivalent to the
original short-rate dynamics (5.1). To this end, let us set

σ(t, T ) = σe−a(T−t),

where a and σ are real constants, so that

ς(t) = σeat,

%(T ) = e−aT ,

A(t) = F (0, t) + σ2

2a2 (1− e−at)2;
(5.6)

and after some tedious but trivial algebra we have for the HW model:

a(t) := Ft(0, t) + aF (0, t) + σ2

2a(1− e−2at),
b(t) := −a
c(t) := σ.

(5.7)

The resulting short-rate dynamics is then given by

dr(t) =
[
Ft(0, t) + aF (0, t) + σ2

2a(1− e−2at)− ar(t)
]
dt+ σ dW (t), (5.8)

which is equivalent to (5.1) when combined with the identity

Φ(t) := Ft(0, t) + aF (0, t) + σ2

2a(1− e−2at).

In conclusion, we then have that the HW model is a short-rate markovian model
that admits a one-factor HJM formulation. Turning back to the Musiela parametriza-
tion, we have that the volatility specification for this model is

σ̃(t, x) := σ(t, t+ x) = σe−ax, (5.9)

which falls into the class of HJM models with deterministic volatility

σ̃(ft, x) = σ̃(x).
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5.2 The Nelson and Siegel family and Invariance

In order to illustrate the theoretical ideas shown in the previous chapter, we
now move from abstract theory to the investigation of a number of concrete for-
ward curve families and the Hull-White model. More fundamental results can be
found in Björk and Christensen [11] in detail. The leading example is the popular
forward curve family introduced by Nelson and Siegel [45], first introduced infor-
mally in previous chapter. We analyze the consistency of this family and several
variations of it with the Hull-White model. We adapt some of the theoretical
results to this Gaussian case study without no further technical discussion for
the general case. From now, we again remove the symbol ˜ as in Chap. 4., i.e.
we will consider the HJM model under the Musiela parametrization.

Consider the space Hγ introduced in Sect. 4.3.2

Corollary 3 Consider as given the mapping

G : Z → Hγ

where the parameter space Z is an open connected subset of Rd, Hγ a Hilbert
space and the forward curve manifold G ⊆ Hγ is defined as G = Im(G). The
family G is consistent with the one-factor model M with deterministic volatility
function σ(·), if and only if

Gx(z, x) + σ(x)
∫ x

0
σ(s)ds ∈ Im [Gz(z, x)] , (5.10)

σ(x) ∈ Im [Gz(z, x)] , (5.11)

for all z ∈ Z.

Proof. See Theorem 4 in Sect. 4.3.2 for the particular case of deterministic
volatility σ(ft, x) = σ(x). �

The statements (5.10) and (5.11) are the particular CDC and CVC for the
deterministic volatility case. These are easy to apply in concrete cases as shown
Björk and Christensen [11] or De Rossi [20], among others.
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5.2.1 The NS family

The NS forward curve manifold G is parametrized by z ∈ Z = R4. Recall that
the curve shape G(z, x) is given by the expression

G(z, x) = z1 + z2e
z4x + z3xe

−z4x. (5.12)

For z4 = 0 the Frechet derivatives Gz(z, x) and Gx(z, x) are easily obtained as

Gz(z, x) = [1 e−z4x xe−z4x]T ,
Gx(z, x) = (z3 − z2z4 − z3z4x)e−z4x.

(5.13)

Henceforth, we write ZNS = {[z1 z2 z3 z4]T : z4 6= 0} for the NS parameter space
and GNS = G(ZNS) for the associated manifold. For the HW model characterized
by the volatility function (5.9), the consistency conditions of Theorem 4 become

 Gx(z, x) + σ2

a
[e−ax − e−2ax] ∈ Im[Gz(z, x)],

σe−ax ∈ Im[Gz(z, x)].
(5.14)

To investigate whether GNS is invariant under HW dynamics, we consider now
simplest consistency condition, the CVC: let us consider for constants αi, such
∀x ≥ 0 we have

σe−ax = α1 + α2e
−z4x + α3xe

−z4x − α4(z2 + z3x)xe−z4x. (5.15)

One can easily see that is is possible iff z4 = a. So as a first hint, let us fix z4 = a

in the parametrization and introduce the restricted NS family:

G(z, x) = z1 + z2e
−ax + z3xe

−ax.

Now the CVC is verified, while in the CDC we look for βi such that ∀x ≥ 0 we
have:

(z3 − az2 − az3x)e−ax + σ2

a

(
e−ax − e−2ax

)
= β1 + β2e

−ax + β3xe
−ax. (5.16)

This equation can never be verified, due to the extra exponential e−2ax, so we
have proved the following.

Proposition 8 (Nelson-Siegel and Hull-White.) The Hull-White model is
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inconsistent with the Nelson-Siegel family.

Let us include this extra exponential in the parametrization, thus, we finally
introduce the augmented NS family:

GANS(z, x) = z1 + z2e
−ax + z3xe

−ax + z4e
−2ax.

Now, both CDC and CVC are verified for this family.

Proposition 9 (Augmented Nelson-Siegel and Hull-White.) The augmented
Nelson-Siegel family is consistent with the Hull-White model.

Proof. The Frechet derivatives are in this case

∂GANS

∂z
(z, x) = [1 e−ax xe−ax e−2ax]T ,

∂GANS

∂x
(z, x) = [z3 − a (z2 + z3x)] e−ax − 2az4e

−2ax.
(5.17)

Now the set Im[∂zGANS] is “large” enough to trivially satisfy CVC and CDC
due to the extra component e−2ax. The derivation of the balancing equations
analogous to (5.15) and (5.16) are left to the meticulous reader. �

5.3 The Minimal Consistent family and Real-
izations of Gaussian Models

It should be also noted that σ(x) is a one dimension quasi-exponential function
(QE for short), because is of the form

f(x) =
∑
i

eλix +
∑
i

eαix[pi(x) cos(ωix) + qi(x) sin(ωix)], (5.18)

with λi, αi, ωi being real numbers and pi, qi are real polynomials.
If f(x) is a q-dimensional QE function, then it admits the following matrix

representation
f(x) = ceAxB, (5.19)

where A is a (n× n)-matrix, B is a (n× q)-matrix and c is a n–dimensional row
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vector, see Björk [6, Lemma 2.1, p. 13]. Thus, σ(x) can be written as

σ(x) = ceAxb, where (5.20)

c = 1,

A = −a,

b = σ.

We can write the forward rate equation (4.2) following Björk [6, Proposition 2.1,
pp. 8–9]

dqt(x) = Fqt(x) dt+ σ(x) dWt, q0(x) = 0 (5.21)

ft(x) = qt(x) + δt(x), (5.22)

here F is a linear operator that is defined by

F = ∂

∂x
,

and δt(x) is the deterministic process given by

δt(x) = f o(x+ t) +
∫ t

0
Σ(x+ t− s) ds,

with
Σ(x) = σ(x)

∫ x

0
σ(s) ds.

Moreover, qt(x) has the concrete finite dimensional realization

dZt = −aZt dt+ σ dWt, Z0 = 0, (5.23)

qt(x) = e−axZt, (5.24)

as a particular result from [9, Definition 2.1, p. 7] with the fundamental conclud-
ing remark derived by Björk for QE deterministic volatilities in [9, Proposition
2.3, p. 13]. The SDE (5.23) is linear in the narrow sense [39], with explicit
solution

Zt = σe−at
∫ t

0
eas dWs, (5.25)
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Now, with the definition of S(x) =
∫ x

0 σ(u)du, it is easy to obtain that
∫ t

0
Σ(t+ x− s) ds = 1

2
[
S2(t+ x)− S2(x)

]
,

and, therefore, combining these explicit results with decomposition (5.22) we
arrive to the forward rate dynamics

ft(x) = f o(x+ t) + 1
2
[
S2(t+ x)− S2(x)

]
+ e−axZt. (5.26)

Equation (5.26) may be used for building initial forward rate curves f o(x) time-
consistent with the model.

5.3.1 The Minimal Consistent family

Proposition 10 The family

GMIN(z, x) = z1e
−ax + z2e

−2ax, (5.27)

is the minimal dimension consistent family with the model characterized by

σ(x) = σe−ax.

Proof. As we mentionead earlier, there is a way to justify (5.27) focusing on
forward rate evolution deduced at (5.26) we describe it next. By the definition
of S(x), we have that S ′(x) = σ(x). Then it is easy to derive that deterministic
term 1

2 [S2(t+ x)− S2(x)] is of the form

g(t)e−ax + h(t)e−2ax.

Thus, the forward rate evolution becomes

ft(x) = f o(x+ t) + (g(t) + Zt) e−ax + h(t)e−2ax. (5.28)

From (5.28) we see that a family which is invariant under time translation is
consistent with the model if and only if it contains the linear space {e−ax, e−2ax}.
�
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It should be also noted that the map

G(z, x) = GMIN(z, x) + φ(z, x),

where φ(·), is an arbitrary function, is also consistent with this model.
Finally, we list some concluding remarks about the families analyzed.

Lemma 2 The following hold for the Hull-White model

• The Nelson-Siegel family (henceforth NS)

GNS(z, x) = z1 + z2e
−z4x + z3xe

−z4x,

is not consistent with the model.

• The family
GMIN(z, x) = z1e

−ax + z2e
−2ax,

is the lowest dimension family consistent with the model (hereafter MIN).

• The family

GANS(z, x) = z1 + z2e
−ax + z3xe

−ax + z4e
−2ax,

is the simplest adjustment based on restricted NS family that allows model
consistency (hereafter ANS).

5.4 Calibration to Market Data Approaches

To calibrate the model by means of real data, we actually need to determine
the vector of parameters p = [ σ a ]T . In order to estimate the forward rate
volatility, the statistical analysis of past data can be a possible approach, but
the practitioners usually prefer implied volatility, laying within some derivative
market prices, based techniques. This way involves a minimization problem where
the loss function can be taken as

lC(p) =
n∑
i=1

(Co
i − Ci(p))2,
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where Ci(p) are the i–th theoretical derivative price and Co
i is the i–th market

price one. As we proved on Sect. 3.2, the model price, at t = 0, of the cap with
equidistant settlement periods is given by

C =
n∑
j=1

γj = (1 + τK)
 n∑
j=1

κPj−1(0)N(−d−)− Pj(0)N(−d+)
 , (5.29)

where the d± are given by (3.18). Moreover, recall that Pj(0) is the initial xj-
maturity discount bond price P (0, xj), κ equals to (1 + τK)−1 with K denoting
the cap rate. The volatility function ϑ(0, ·) defined by the expressions (3.19) to
(3.20) take the particular form for the HW model:

ϑ(0, xj) = σ

a

(
1− e−aτ

)√1− e−2axj

2a .

The equations (3.18) and (5.29), also express the effective influence of ab initio
discount bond curve estimation on cap pricing.

The calibration procedures can be described formally as follows.

Let p be the parameter vector

[σ a]T

for the model under consideration. Assume that we have time series observations
of the flat volatilities σ̄i of N at-the-money caps Ci which mature at Ti-times
where i = 1, . . . , N . Suppose we are also equipped with the discount bond curve
estimation, P (0, x), at time t = 0. As we introduce in Sect. 3.1, market partici-
pants translate volatility quotes to cash quotes adopting Black model [14]. Thus,
according to the Definition 15 in Sect. 3.1., the market price, at t = 0, of the cap
with regular payment periods is given by

Co =
n∑
j=1

γoj = τ
n∑
j=1

Pj(0) (Lj(0)N(d1)−KN(d2)) , (5.30)

where d1 and d2 are given by the identities (3.3) to (3.4).

In addition, recall that according to Remark 2 in Sect. 3.1.1 the cap rates for
the ATM plain vanilla caps must fulfill (3.13). By direct inspection, it is clear
that this market convention makes the rates K depend on the discount bond
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curve estimation P (0, x). Let us denote the market prices of caps by

Co (Ti, P (0, x), Ki(P (0, x)), σ̄i) .

Notice that this expression emphasizes explicit and implicit dependence (through
ATM strikes) on discount bond curve estimation even for market prices. Let

C (Ti, P (0, x), Ki(P (0, x)),p) ,

be the corresponding theoretical price under our particular model.

5.4.1 The Two-Step Traditional Method

Suppose that we are standing at time t = 0, the fixed time of calibration under
study. For simplicity from now, we remove the dependency on initial time t = 0
from discount bond curve P (0, x) ≡ P (x). First, we choose a non-consistent
parametrized family of forward rate curves G(z, x).

Let P (z, x) be the zero-coupon bond prices produced by G(z, x).

P (z) = [ P1(z) . . . PM(z) ]

Let P o
k be the corresponding discount xk-bond observations with xk-times running

from k = 1, . . . ,M
P o = [ P o

1 . . . P o
M ] .

For each zero-coupon bond denoted with subscript k, the logarithmic pricing
error2 is written as follows

εk(z) = logP o
k − logPk(z).

Then, we have chosen in this work the sum of squared logarithmic pricing errors,
lP , as the objective loss function to minimize:

min
z
lP (z) = min

z
‖ logP o − logP (z)‖2

2 = min
z

M∑
k=1

ε2k(z), (5.31)

2Recall that, for small εk, it is also the relative pricing error P o
k −Pk(z)

P o
k

.
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with
logPk(z) = −

∫ xk

0
G(z, u) du.

Now, via the least squares estimators ẑ, an entire discount bond curve estimation
allows the pricing of caps using the market practice or the HW model. Following
a similar scheme for the derivatives fitting as in the preceeding lines, we have

ηi(p) = logCo
i − logCi(p),

and
min

p
lC(p) = min

p
‖ logCo − logC(p)‖2

2 = min
p

N∑
i=1

η2
i (p), (5.32)

with the vector definitions:

Co = [ Co
1 . . . C

o
N ] (5.33)

C(p) = [ C1(p) . . . CN(p) ] . (5.34)

Note that here we have dropped the dependencies (P (x), K, T, σ̄) for simplicity.
Moreover, notice that the discount bond curve estimation is external to the model
in the sense that there is no need to know first any of the model parameters p

for solving non-linear program (5.31).

5.4.2 The Joint Calibration to Cap and Bond Prices

Let us now describe in detail the joint cap-bond calibration procedure which
has sense in a consistent family framework. We note that in this situation the
parameters of the model are determined together with the initial forward rate
curve.

This is different from the traditional fitting of the Hull-White model, where
the two steps are separate, as we discussed before. From the expression (5.27),
we notice the dependency of the family from the parameter a. Let G(z, x, a) be a
family consistent with the HW model (for instance, GMIN and GANS) and define
least-squares estimators, ẑ(a)

ẑ(a) = arg min
z

M∑
k=1

(logP o
k − logPk(z, a))2. (5.35)
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From the expression

logPk(z, a) = −
∫ xk

0
G(z, a, u) du =

np∑
j=1

Mkj(a)zj, (5.36)

we note that, for consistent families and for a fixed a the problem (5.35) is linear
in z-parameters (for the GMIN family np = 2, and for the GANS family np = 4).
Thus, ẑ is an explicit and continuous function of a.

Strictly speaking, joint calibration must be formalized as a multiobjetive op-
timization problem (MOO) of the form:

min
p

l(p) (5.37)

where l = [l1(p) l2(p)]T is an objective function vector and p is the design vector
[σ a ]T . Notice that in this case there are two objectives and two design variables.
The partial loss functions li(σ, a) are defined as

l1(p) = ‖ logCo [P (ẑ(p),p)]− logC [P (ẑ(p),p),p] ‖2
2

l2(p) = ‖ logP o −M(p)ẑ(p)‖2
2

where
ẑ(p) = R(a)Q−1(a) logP o (5.38)

being Q, R the matrices of the reduced QR decomposition of M(p) which is
defined by the relation (5.36).

Note that it is highly probable that these objectives would both be conflicting,
in general, and no single p̂ = (σ̂, â) would generally minimize simultaneously the
pair of objective functions li. Tipically here, there is no single, global solution,
and often, it is necessary to determine a set of points that all fit a predetermined
definition for an optimum. Thus, the predominant concept in defining is that of
Pareto optimality [47].

One of the most common and basic approach for multiobjective optimization
requires to build a weighted sum of the objectives (see for instance [23, 40]). The
result is the following scalarized utility function, which is minimized:

l̃ = ω1l1 + ω2l2. (5.39)

When an appropriate set of solutions is obtained by the single-objective optimiza-
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tion of l̃, the solutions can approximate a Pareto front. The weighted-sum method
parametrically changes the weights among objective functions l1 and l2 to obtain
this Pareto front. If the two weights are positive then minimizing the utility
provides a sufficient condition for Pareto optimality, which means the minimum
of (5.39) is always Pareto optimal [40, Sect. 4.1.1, pp. 41–42]. Thus, consistent
calibration carried out with consistent families involves the entire Pareto optimal
set, in contrast to the unique solution appearing in the two-step scalar problem.

At this point, note that the program used by Angelini and Herzel [2, 3] in
their works, uses a different goal attainment

min
p
l1(p) (5.40)

where l1(p), and ẑ(p) are defined trough the identities (5.32) and (5.35). As a
consequence, the program used by these authors is a degenerate case of (5.39)
with ω1 fixed equal to 1 and ω2 to 0, so it just allows to obtain one point of the
implied trade-off front, which would be potentially only a weak Pareto optimum3

(WPO) not a standard Pareto optimum [40, Sect. 4.1.1, p. 42].

5.5 Empirical Results

In this context the main goal is to analyze the impact that an alternative inter-
polation scheme has on the fitting capabilities of the model. To this end, we use
as a measure, the daily (on average) relative pricing errors, hereafter RPEC :

RPEC = 1
N

N∑
i=1

|Co
i − Ci(p̂)|
Co
i

The same kind of measure is used for the zero-coupon bond prices and we denote
it with RPEB:

RPEB = 1
M

M∑
k=1

|P o
k − Pk(ẑ(p̂), p̂)|

P o
k

We perform such analysis focusing on US market. The real date consists of 282
daily observations, between 2/09/2002 and 30/09/2003. The data set is composed
of US discount factors for fourteen maturities (1, 3, 6, 9 months and from 1 to 10
years) and of implied volatilities of at-the-money interest rate caps with maturities

3Pareto optimal points are WPO, but WPO are not Pareto optimal.
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1,2,3,4,5,7,10 years. This database is provided by Thomson Reuters Datastream.

Figure 5.1: Average of the US market TSIR and TSV with 99% confidence levels.
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As it have been explored before, the daily joint calibration of caps and bonds
with consistent families must be properly carried out as a MOO problem. In
doing so, we choose an a posteriori articulation of preferences, that is, we delay
the selection of the solution from the palette of solutions after the weighted-
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method runs. In response to this articulation of preferences, the decision-maker
imposes preferences directly on a set of the potential solution points which depicts
the Pareto front. In such a context, weights are typically chosen such that

Q∑
i=1

ωi = 1 (5.41)

with ω ≥ 0 leading to a convex combination of objectives and this choice can be
more helpful than unrestricted weights so as not to repeat any weighting vectors
in terms of its relative values [40, Sect. 5.3, pp. 73–74]. According to this, the
weighted-sum method was run for every date in sample with the fixed weight
vector ω satisfying (5.41). In doing so, we assume the same ten uniformly spread
values

ω1 = 1
10j j = 1, 2, . . . , 10 (5.42)

and ω2 = 1− ω1 as the second vector weight component for all trading dates.

We use the following transformation scheme of the objectives, which is often
called scaling [48]:

lτi = li(p)
si

(5.43)

with l1(p0)
s1

≈ l2(p0)
s2

(5.44)

where si are scalar coefficients, and p0 is a feasible starting point. This approach
ensures the objective functions have similar orders of magnitude. Thus, the way
to solve our joint calibration problem is to use the weighted-sum method, which
is finally stated as:

min
p

(
ω1
l1(p)
s1

+ (1− ω1) l2(p)
s2

)
(5.45)

with ω1 discrete values given by (5.42).

Figure 5.2 shows the in-sample fitting results performed by the MIN family
for some dates of the sample under analysis. First of all, notice that efficient
frontiers with regular shapes appear nicely revealing the intrinsic multi-objective
nature of the consistent calibration. Moreover, note that it can be found different
topologies for this frontiers depending on the date. All the days the objectives
are conflicting, and beyond a certain point of the Pareto front the better we fit
the discount bonds the worse we calibrate the caps portfolio. However, note that,
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moving on to the Pareto curve, we can achieve better results for both components
of the vector objective without a trade-off until the above-mentioned Pareto point
is reached. In other words, the MOO calibration may provide a better set of
results for the calibration of caps that would produced by single optimizing the
scalar objective l1(p).

Figure 5.2: Some daily calibration results for the minimal consistent family.
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The tables on Figure 5.3 show, as a numerical example, two different Pareto
sets restricting ourselves to the MIN family, the family with the lowest dimen-
sionality. If we look on both tables, it must be noted that for a fixed trading
date the best cap fit results may occur with ω1 6= 1, even if the objectives are
competing.

In Figure 5.4, we analize more deeply the latter fact this time for both, MIN
and ANS, consistent families. We plot the daily distribution of the weight ω1

which performs the best calibration for caps in sample data. As for the lowest
dimensional family, most of the days the weight vector (ω1 = 0.7, ω2 = 0.3)
produces the best cap calibration results and there is a non-negligible number
of bussiness dates where other weights than ω1 = 1.0 produce better goals than
it. As for the ANS family, we observe an entirely different distribution, but once
again, we note that the best cap calibration results may be reached with weights
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Figure 5.3: Efficient points in the RPEB − RPEC space using the method of
convex combinations for two different days in sample.

Day 1
ω1 ω2 RPEB (%) RPEC (%)
0.1 0.9 0.1036 11.5795
0.2 0.8 0.1645 11.2761
0.3 0.7 0.3160 10.2359
0.4 0.6 0.4864 8.8214
0.5 0.5 0.6573 7.1267
0.6 0.4 0.8136 5.3813
0.7 0.3 0.9343 4.3329
0.8 0.2 0.9941 3.9132
0.9 0.1 1.0181 4.0016
1.0 0.0 1.0287 4.0718

Day 2
ω1 ω2 RPEB (%) RPEC (%)
0.1 0.9 0.0902 6.1874
0.2 0.8 0.1574 5.3478
0.3 0.7 0.2295 4.7551
0.4 0.6 0.2944 4.4395
0.5 0.5 0.3499 4.3203
0.6 0.4 0.3962 4.2797
0.7 0.3 0.4345 4.3490
0.8 0.2 0.4670 4.4933
0.9 0.1 0.4930 4.6303
1.0 0.0 0.5138 4.7546

The partial objectives, ω1 and ω2 are strong conflicting, for the Day 1 (top). In
contrast, the latter ones are more cooperative for the Day 2 (bottom).

different than ω1 = 1.0 and even get a large number of them with the smallest
weight possible, ω1 = 0.1.

For the shake of simplicity, from now on we will only consider the calibration
results obtained with daily weights choices that produce the best calibration for
the caps on every trading date. This a posteriori articulation of preferences
may be followed by a decision-maker which want to use consistent calibration
as a good risk management practice or as an extrapolation tool for marking to
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Figure 5.4: Daily empirical distribution of weights with the best RPEC for both
consistent families as produced by the multi-objective calibration.
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market less liquid interest-rate derivatives. Following this particular articulation
of preferences we choose a single Pareto optimum from the set that estimates
the complete Pareto curve. In Figure 5.6, we compare summary statistics of the
parameter estimates and the in-sample fit measures reported by NS, MIN and
ANS families. In addition, Figure 5.5 shows the comparison of in-sample fitting
results in time series.

The two consistent families under study report better RPE results when we
restrict the analysis to cap data. For RPE on bonds, only the ANS family outper-
forms NS in the sample. Recall that this fact is acceptable since the MIN family
is a forward curve with less number of parameters than the other ones proposed.
Moreover, on caps, note that the MIN family appears to give better results than
its consistent counterpart, ANS. Now, this behaviour can be explained because
the major of dates considered, market data make the objective functions l1 and
l2 of this family to strongly conflict as seen in Figure 5.4.
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Figure 5.5: Time Series Comparison.
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5.6 Concluding Remarks

When calibrating the Hull-White model, a TSIR curve choice to fit a few market
data observations is needed. In particular it seems to be natural to use families
of curves which do not modify their structure under the future evolution of the
model, the so-called consistent families.
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Figure 5.6: Summary statistics for the calibration results. In-sample descriptive
statistics are carried out using the daily Pareto points with the best derivative fit
outcomes.

Summary Statistics
MIN ANS NS

σ 0.0145 0.0127 0.0164
a -0.0096 0.0243 0.0256

Cv(σ) 0.1113 0.3118 0.14
Cv(a) -3.2659 2.4268 1.8831

RPEC (%) 3.3361 8.3011 8.5458
RPEB (%) 0.5688 0.061 0.0609

In this work, we choose three families of curves (two consistent families and the
popular Nelson-Siegel family) and we conclude that this choice have an effective
impact on the quality of in-sample fitting for US-market data. Moreover, this
paper extends the seminal calibration algorithm proposed in Angelini and Herzel
[2].

In a consistent approach the parameters of the model are estimated jointly
with the esmation of initial discount bond curve. Therefore, from a rigorous point
of view, joint calibration of caps and bonds must be viewed as a multi-objective
optimization nonlinear problem. Although the main purpose of the algorithm is
to minimize the relative differences of cap prices too, note that the bi-objective
extension of the consistent calibration presents more general features. Such ex-
tension is structured to allow more numerical outcomes and we observe that it
allows to better fit results for both, caps and bonds, than the above mentioned.
In particular, it is possible to find better cap calibration outcomes with ω1 6= 1,
and this is definitively different from what worked Angelini and Herzel [2] on
Hull-White model, where only the fixed ω1 = 1 seems to be considered for all
consistent families. The empirical findings of this paper show that, in general,
consistent calibration on every date must to be carried out by analyzing the entire
shape of the Pareto curve.

In this sense, this work confirms and complements the shown by Angelini and
Herzel [2, 3] restricted to a Euro data set. We articulate preferences restricting
possible outcomes on every date, by choosing the Pareto points which are respon-
sible of better fit results on caps. Then the minimal consistent family gives the
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best performance in terms of caps pricing errors and becomes a good candidate
for the calibration of the Hull-White model. The ANS consistent family performs
very close to the Nelson-Siegel family, though it seems to be the best solution for
estimating the discount bond function. Now, this could be explained in the con-
text of vector optimization. We show empirically the usual competing behaviour
followed by the objectives through the sample considered. Then, the minimal
parameterized consistent family relax the performance on the estimation of the
discount bond curve function, allowing minor relative pricing errors on caps.



Chapter 6

Multiojective Calibration: More
Empirical Evidence

In Chapter 5 we have shown that the consistency hypothesis stated by Björk [10,
11], implies that the discount bond curve has to be determined at the same time
as the parameters of the model. Angelini and Herzel [2, 3], originally proposed the
use of a optimization program related to the mentioned daily calibrations, which
is compatible with this joint estimation. The milestone of this methodology is
the use of an objective function based on an error measure for just the portfolio
of caps. Then, the theoretical prices for the caps along the minimization of this
measure can be calculated at the same time that the discount bond curve is fitted.
This is an efficient method because consistent families of discount bond curves
have good analytical properties under the Gaussian hypothesis, i.e. deterministic
forward volatility.

In last chapter, we have also provided an extension of the above strategy which
involves a multi-objective framework. As a direct consequence, the objective
function above-mentioned, is subtituted by a scalarized form of the intrinsic bi-
objective problem. Now, the error measure for the discount bonds is evaluated in
each iteration and could even dominate the joint optimization problem. To this
scope, we construct this scalarized form using a convex combination of both the
cap and the bond error measures, by means of a set of restricted weights. As a
matter of fact, this approach is richer in possible outcomes.

81
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6.1 Introduction

Given the theoretical tools we have developed in the previous chapters, we want
to analyze further empirical results which support the use of consistent families
and the multi-objective calibration techniques.

To this end, we extend such analysis to a particular humped volatility HJM
model, proposed by Ritchen and Chuang [49] and Mercurio and Moraleda [41],
independently. We have chosen this model because it is quite popular and analyt-
ically treatable. In particular, it provides closed formulas for Europeans interest-
rate options. Moreover, it is a one-factor Gaussian model that seems to be more
capable than the Hull-White model for reproducing large humps in the implied
cap volatility curve.

We perform our study by calibrating this model, first by using simulated data
and second by focusing on market a data set composed by US discount bonds
and at-the-money flat cap volatilities quotes in two different periods, as shown
by the Figure 6.1.

With regard to the real market data, the first scenario depicts a market sit-
uation where the implied cap volatility curves have a large long-term humped
shape and the term structure of interest rates is closer to be flat. On the other
hand, the second scenario has periodically resurfaced in the market and may be
considered more typical. In this situation the peak of the hump is at about the
two year point. Moreover, the TSIR is not monotonic increasing nor flat, being
initially-inverted with a local minimum at short-term maturities.

This rest of this chapter is organized as follows1. In Section 6.2 we give a brief
overview of the model we want to consider and later we discuss how to construct
consistent families with such a model. Section 6.3 is devoted to empirical results,
first comparing the consistent calibration with the non-consistent approach by
means of simulated data, then presenting the results of the fitting of the different
methods with market data. In the last section we give some final conclusions and
remarks.

1This chapter is based on [24, 26].
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Figure 6.1: Market TSIR and TSV data in the two different market scenarios.
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6.2 Consistent Curves with The Model

Our work is devoted to the one-dimensional Gaussian HJM humped volatility
model of the form:

dft(x) = {. . . } dt+ (α + βx) e−ax dWt. (6.1)

Thus, the forward rate volatility function σ(x) is deterministic depending only
on time to maturity. Note that σ(x) is a QE function that admits the matrix
representation (5.19). Therefore, σ(x) may be rewritten as

σ(x) = ceAxb, where (6.2)

c = [α β − aα],

A =
 0 −a2

1 −2a

 ,
b =

 1
0

 .
For this model, the forward rate decomposition ft(x) = δt(x)+qt(x), as seen before
in Sect. 5.3, eqs. (5.21)–(5.22), has the corresponding qt-process dynamics:

dZt = AZt dt+ b dWt, Z0 = 0, (6.3)

qt(x) = C(x)Zt, (6.4)

with A, b as in (6.2) and C(x) = ceAx. Therefore, the analytical expression of
the forward rate curve for the model is given by

ft(x) = f o(x+ t) + 1
2
[
S2(t+ x)− S2(x)

]
+ C(x)Zt, (6.5)

being S(x) =
∫ x

0 σ(u) du. After some algebraic manipulations like using the ex-
plicit expansion for the stochastic term C(x)Zt

ceAx

 Z1
t

Z2
t

 = e−ax [α β − aα]
 1 + ax −a2x

x 1− ax

  Z1
t

Z2
t



= e−ax
(
αZ1

t − aαZ2
t + βZ2

t

)
+ xe−ax

(
βZ1

t − aβZ2
t

)
,
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and expanding the deterministic term 1
2 [S2(t+ x)− S2(x)] which is of the form

g1(t)e−2ax + g2(t)xe−2ax + g3(t)x2e−2ax + h1(t)e−ax + h2(t)xe−2ax,

(6.5) may be written as

ft(x) = f o(x+ t) + g1(t)e−2ax + g2(t)xe−2ax + g3(t)x2e−2ax+(
h1(t) + αZ1

t − aαZ2
t + βZ2

t

)
e−ax +

(
h2(t) + βZ1

t − aβZ2
t

)
xe−ax.

(6.6)

Note that this formula, as its corresponding counterpart in previous chapter
(5.28), is relevant for consistency, because it shows which curves the model pro-
duces for a given initial curve f o(x).

6.2.1 The Minimal Consistent family

Proposition 11 The family

GHMC(z, x) = (z1 + z2x)e−ax + (z3 + z4x+ z5x
2)e−2ax, (6.7)

is the minimal dimension consistent family with the model characterized by de-
terministic volatility σ(x) = (α + βx)e−ax.

Proof. From (6.6) we see that a family which is invariant under time trans-
lation is consistent with the model if and only if it contains the linear space
{e−ax, xe−ax, e−2ax, xe−2ax, x2e−2ax}. �

Similar results as discussed along the lines of Sect. 5.2.1 will turn up over and
over again, so we list some concluding remarks which the reader may immediately
derive.

Lemma 3 The following hold for the humped volatility Heath-Jarrow-Morton
model characterized by σ(x) = (α + βx)e−ax.

• The NS
GNS(z, x) = z1 + z2e

−z4x + z3xe
−z4x,

is not consistent with this model.

• The family

GHMC(z, x) = (z1 + z2x)e−ax + (z3 + z4x+ z5x
2)e−2ax,
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it is the lowest dimension family consistent with the model (hereafter HMC).

• The family

GANS+(z, x) = z1 + z2e
−ax + z3xe

−ax + (z4 + z5x+ z6x
2)e−2ax,

is the simplest adjustment based on restricted NS family that allows model
consistency (hereafter ANS+).

6.3 Empirical Results

We compare four different estimations of the initial discount bond curve based
on NS, HMC, ANS+ and cubic spline interpolation (hereafter SP).

The US data set consists of 126 daily observations divided in two periods: first
period covers from 3/7/2000 to 29/09/2000 (64 trading dates) and the second one
starts in 4/1/2001 and finish on 30/3/2001 (62 trading dates).

With regard to the market the data set is composed of US discount bond of
fourteen maturities (1, 3, 6 and 9 months and from 1 to 10 years) and of implied
volatilities of at-the-money interest rate caps with maturities 1, 2, 3, 4, 5, 7 and 10
years. This two windows of data comes from the same database explained before
in Chapter 5 being kindly provided by Thomson Reuters Datastream. On the
other hand, the simulated data was obtained from 360 extractions of bond and
cap prices with identical maturities as its real-market equivalents as produced by
the model under study.

Simulations

We simulate the forward rate curves of the humped volatility model at time t
when initiliazed from alternative starting curves f o(x) using (6.6).

Next, we compute the fourteen prices of the set of discount bonds by inte-
grating the forward curve ft(x) in

P (t, x) = e−
∫ x

0 ft(u) du,

and the seven prices of the ATM caps by using equations (5.29), (3.13), (3.18),
and by working out the integral (3.19) to obtain the model implied volatility
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function:

ϑ2(0, xj−1) =
∫ xj−1

0

[∫ xj

xj−1
(α + β(T − t))e−a(T−t) dT

]2

dt. (6.8)

The fixed model parameters, p0 = [0.002 0.007 0.35]T , have been taken. This
particular choice has similar order of magnitude as the empirical estimations for
this model reported by Angelini and Herzel [3]. As alternative starting curves,
we choose HMC, ANS+ and NS fitted to the zero coupon bond prices shown in
Figure 6.2.

Figure 6.2: Discrete data for initial yield-curve estimation.

Maturity, x 0.083 0.25 1 2 3 4
Discount Bond, P o(x) 0.9962 0.9886 0.9538 0.9069 0.8602 0.8142

Maturity, x 5 6 7 8 9 10
Discount Bond, P o(x) 0.7693 0.7260 0.6843 0.6445 0.6066 0.5706

Starting from the initial fitted curves, which may be denoted with f oHMC(x),
f oANS+(x) and f oNS(x), and according to (6.5), the corresponding three different
model evolutions are calibrated to HMC, ANS+ and NS, restricting the palette
of the possible Pareto-front approximants produced by the scalarized program
(5.45), to ω1 = 1. In order to make calibration results more comparable, Monte
Carlo simulations are built in from the identical random sequence (Z1

t , Z
2
t ) in all

three cases.
Following the expression (6.6), it is easy to observe that there are two con-

sistent families, GHMC and GANS+, for the first simulation E1, just one, GANS+,
for the second simulation E2, and no one for the last simulation E3.

Figure 6.3 shows main consequences of the theory when the model is the truth
model. Notice that perfect calibration just occurs, although model parameters are
fixed a priori, when the used family to perform calibrations is consistent with all
the future forward curves generated from initial curve f o(x). This fact explains,
for instance, the bad performance for the NS family even on E3 experiment.
Indeed, as may be seen in Figure 6.4, an incorrect discount bond choice selection
produces parameter instability and imprecision.
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Figure 6.3: Summary statistics for calibration results with simulated data.

HMC ANS+ NS
εr(α) 0 0 0.23
εr(β) 0 0 0.13
εr(a) 0 0 8.7 10−2

E1: Cv(α) 0 0 0.18
f0(x) = f oHMC(x) Cv(β) 0 0 0.14

Cv(a) 0 0 9.7 10−2

σLS 0 0 1.9 10−3

εr(α) 0.25 0 0.28
εr(β) 0.16 0 0.16
εr(a) 0.12 0 9.5 10−2

E2: Cv(α) 3.8 10−2 0 0.117
f0(x) = f oANS+(x) Cv(β) 3.9 10−2 0 9.1 10−2

Cv(a) 3.2 10−2 0 4.8 10−2

σLS 2.6 10−4 0 6.7 10−4

εr(α) 0.313 2.7 10−4 0.18
εr(β) 0.20 2.10 10−4 0.10
εr(a) 0.16 1.6 10−5 6.7 10−2

E3: Cv(α) 2.3 10−2 1.4 10−4 0.17
f0(x) = f oNS(x) Cv(β) 2.6 10−2 1.0 10−4 0.111

Cv(a) 2.2 10−2 8.3 10−5 6.3 10−2

σLS 3.8 10−4 3.9 10−9 3.5 10−4

Sample statistics of the calibration on simulated data. Relative errors of the pa-
rameters estimates are expressed in absolute value. We set to 0 table entries with
value < 103·eps (variable eps ∼ 10−16 measures Matlab internal accuracy).

Real Data

The main purpose of this section is to compare the performance of the two differ-
ent calibration approaches introduce in Chapter 5 along the two different periods
of real trading dates described before. Therefore, from now on we will only con-
sider the calibration results obtained with the market data. For simplicity, the
consistent calibrations are carried out by means of just the lowest dimension
family, the HMC family.

Concerning the real data, calibration with consistent families are carried out
by setting the weights palette (ω1, ω2), as defined in (5.42), Sect. 5.5. With
regard to the consistent calibration, the scalarized MOO program (5.45) has also
been used. The table on Figure 6.5 exhibits the sample mean of the daily error
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Figure 6.4: Daily estimates of parameters a and α for data simulated from the
model with α = 0.002 and a = 0.35 and starting forward curve f0(x) = f oANS+(x).
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The straight line corresponds to daily calibration results belonging ANS+
family, the irregular black line to the MC family and the dashed red one to the
NS family.
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fitting measures, namely RPEC and RPEB, and the mean and the coefficient of
variation of parameter estimates.

Figure 6.5: Summary statistics for calibration results with US data on both
periods.

HMC NS SP
α 0.0093 0.0098 0.01
β 0.0007 0.0013 0.0008
a 0.0024 0.0961 0.064

Period 1 Cv(α) 0.11 0.05 0.05
Cv(β) 0.33 0.71 1.30
Cv(a) 0.52 0.54 0.92

RPEC(%) 2.2 2.7 2.75
RPEB(%) 0.019 0.047

α 0.0087 0.0091 0.0085
β 0.0041 0.0039 0.0052
a 0.1469 0.176 0.2129

Period 2 Cv(α) 0.15 0.1 0.11
Cv(β) 0.72 0.38 0.35
Cv(a) 0.96 0.3 0.27
RPEC 1.49 1.56 1.36
RPEB 0.031 0.043

On the other hand, Figure 6.7 shows in-sample fitting time series. The HMC
family under study report good in-sample fitting results as compared with non-
consistent approaches. However, when we look in detail at the Period 2, the fam-
ilies NS and HMC and even the cubic spline based interpolants perform slightly
similar with regard to caps calibration. In fact, the non-consistent approach
based with cubic spline interpolation, marginally outperforms all the rest. In
Figure 6.6, we plot the daily distribution of the weight ω1 which performs the
best calibration for caps in both samples of data. As for the Period 1, we observe
that the cap contribution of the scalarized objective is more dominant, because of
the reason that when articulating a posteriori preferences as we made in previous
chapter, the weights closer to the WPO (ω1 = 1) have the capability to repro-
duce better daily fits of derivatives. As for the Period 2, the individual objectives,
[l1 l2]T appear to be more cooperative relaxing the performance of the fit results
of the implied cap volatility curve. This fact, may explain the very similar results
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provided for all three methods in the second window.

Figure 6.6: Not normalized daily empirical distribution of weights with the best
RPEC for both sample periods as produced by the multi-objective calibration.
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6.4 Conclusions

In this chapter, we analyze two new consistent families of curves (the HMC and
ANS+ families) for comparing to another non-consistent approaches like cubic
spline interpolation as well as the well-known Nelson and Siegel family. In so
doing, we have tried to support and extend to another treatable Gaussian model
the empirical findings of Chapter 6.

When using simulated data it is very clear that the consistent families for
the E1 ans E2 experiments performs much better than the non-consistent ones.
Moreover, Nelson-Siegel family does not work even if it is chosen as the start-
ing yield-curve (recall E3 experiment). These empirical facts constitute a nice
demonstration of the theory introduced in Chapter 4, in the sense that even on
absence of model risk only when consistent families are used, perfect calibration
may occur.
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Translation of these consequences to real data is less clear, due to model risk
and quality of data but we can infer the following concluding remarks. In this case,
the introduction of a sufficiently rich consistent families like HMC, which is well
motivated theoretically by Björk et al., improves in-sample fitting capabilities on
caps on bonds complementing what Angelini and Herzel [2, 3] empirically found
with a different set of data.

According to the results reported for the humped volatilty model in this chap-
ter and the Hull-White model in Chapter 5, multi-objective calibration would
lead generally to better results in caps calibration as compared to non-extended
consistent calibration (originally introduced in [2, 3]) and the more traditional
non-consistent methodologies.

Finally, future empirical research on the matter should include multi-factor
models for capturing more appropriately the TSIR and TSV observed in the
market.



6.4. Conclusions 93

Figure 6.7: In-sample fitting time series for the first period (left) and the second
period (right) with real market data.
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Chapter 7

Pricing Options with a
Consistent HJM Model

7.1 Introduction

One of the main goals of financial mathematics is to determine the prices of
derivatives. In this chapter we adapt the sophisticated machinery introduced in
literature in past years, in order to study which pricing methods are available for
interest rate derivatives in the event that consistent families are used.

Therefore, we will study the behaviour of some efficient numerical implemen-
tations of the model introduced in Chapter 5, pricing the most liquid and traded
derivatives such as vanilla caps as well as directly related deals such as bond op-
tions and binary caps. However, to calculate prices for derivatives when models
such as considered in Chapter 6 are used, more expensive computational methods
like Monte Carlo simulation have to be used.

The rest of this chapter is arranged as follows. First, we show in Section 7.2
how deterministic methods may be set up in a Hull-White economy. How to im-
plement finite difference methods for the Hull-White model is explained in Section
7.3. Section 7.4 presents and dicusses the computational results reported by the
several lattice methods aforementioned. Finally, basic Monte Carlo procedures
for valuation are outlined for the model analyzed in Chapter 6.
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7.2 Partial Differential Equation of the HW Model

We recall the Q-dynamics of the HW model as introduced in Sect. 5.1:

dr(t) = [Φ(t)− ar(t)] dt+ σdW (t). (7.1)

A method of transforming this stochastic evolution problem into a determin-
istic one is to use the well-known Feynman-Kač formula.

Theorem 5 (Feynman-Kač) The partial differential equation

Vt + 1
2σ(x, t)2Vxx + µ(x, t)Vx − r(x, t)V = 0

with boundary conditon h(x, T ) has the solution

V (x, t) = EQ
[
e−
∫ T

t
r(X,s)dsh(X,T )

]
,

where the expectation is taken with respect to the process X defined by

dX = µ(X, t)dt+ σ(X, t)dW.

Proof. A proof can be found in [46]. �

Therefore, under an arbitrage free economy, the value of an interest rate
derivative security V , solves the Partial Differential Equation (PDE, for short):

 Vt + 1
2σ

2Vrr + [Φ(t)− ar]Vr − rV = 0
V (r, T ) = h(r).

(7.2)

For instance, for the discount bond value we have

h(r) = 1,

and for the European-style option the corresponding payoff is

h(r) = [φ(P (T, S)−K)]+

at option expiry time T , T < S, where binary unit φ = +1 for the call and
φ = −1 for the put, as we discussed in Sect. 2.4.
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7.2.1 Bypassing Forward Induction

In a recent work, Daglish [21] provided an extension of the Hull and White [35]
approach that allows the use of implicit methods by noting that the calcula-
tion of Arrow-Debreu prices for interest rate securities is analogous to discretize
the Forward Fokker-Planck equation which describes the future evolution of the
transition probability densities. This approach substitutes the traditional explicit
scheme with the superior implicit Crank-Nicolson method for approximating the
aforementioned equation.

In this section we show how the HW model we are considering can be fitted to
the initial term structure analytically which is definitively different from both the
original algorithm of Hull and White and the above mentioned improvement in
which the use of the forward induction technique stands [37]. Later, numerical ex-
amples confirm that this approach improves computation times and accuracy for
derivative pricing whatever the discretization method is used, explicit or implicit.

Consider the following transformation of variables

x = r − Ω(t)

Ω(t) := e−at
(
r0 +

∫ t

0
eauΦ(u)du

)
. (7.3)

Let us note that Ω(t) is chosen in such a way that x(0) = 0. The price of
any derivative in terms of the new variable can be written as w(x, x). We can
immediately infer the following relations between V and w

V (r, t) ≡ w(x, t) = w(r − Ω(t), t)

Vt = wt − (−aΩ(t) + Φ(t))wx (7.4)

Vr = wx

Vrr = wxx

where we have used that

d

dt
Ω(t) + aΩ(t) = Φ(t)

Substituing this identities into (7.10) and using r = x + Ω(t), the PDE reduces
to

wt + 1
2σ

2wxx − axwx + (x+ Ω(t))w = 0,
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where the function Ω(t) may be easily obtained by direct integration of (7.3):

Ω(t) = F (0, t) + σ2

2a2

(
1− e−at

)2
. (7.5)

From now we show that with an additional transformation of function we can
make the PDE independent of this function Ω(t). If we define the function u(x, t)
as

u(x, t) = e
∫ T

t
Ω(q)dq w(x, t), (7.6)

we get the following PDE for u

ut + 1
2σ

2uxx − axux − xu = 0 (7.7)

and we see that this PDE has no longer coefficients dependent on t. By solving
(7.7) numerically, approximate values U(x, t) for the exact solution u(x, t) can be
calculated. Recall that the price V (r, t) of any interest rate option is recovered
from u(x, t) via

V (r, t) = e−
∫ T

t
Ω(q)dq u(r − Ω(t), t), (7.8)

where using the analytic formula for Ω(t) given in (7.5), the integral of Ω can be
calculated as∫ T

t
Ω(q)dq = − (logP (0, T )− logP (0, t)) +

+ σ2

2a3

(
a(T − t)− 2(e−at − e−aT ) + 1

2(e−2at − e−2aT )
)
,

(7.9)

which allows to match the initial discount bond curve by means of a consistent
family with the model and with no need of forward induction.

7.3 Finite-Difference Implementation

Let us consider a general form of the homogeneous one-dimensional parabolic
equation given by:

Vt + a(x, t)Vxx + b(x, t)Vx + c(x, t)V = 0 (7.10)
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subject to the final condition

V (x, T ) = g(x). (7.11)

We approximate the PDE (7.10) in the bounded domain [xmin, xmax]×[tmin, tmax].
Let us define the finite difference operator:

LhV m
n := amn

h2 (V m
n+1 − 2V m

n + V m
n−1) + bmn

2h (V m
n+1 − V m

n−1) + cmn V
m
n ,

where l = (tmax−tmin)/M and h = (xmax−xmin)/N . Our main goal is to construct
an approximation, V̂ (x, t) of the true solution V (x, t) by using a weighted finite-
difference (FD, henceforth) scheme given by

V̂ m+1
n − V̂ m

n

l
+ (1− ν)LhV̂ m+1

n + νLhV̂ m
n = 0. (7.12)

As it is well-known, we recall that if:

1. ν = 0 we get the explicit finite-difference scheme,

2. ν = 1
2 we get the Crank-Nicolson implicit finite-difference scheme,

3. ν = 1 we get the fully implicit finite-difference scheme.

It may be shown that when ν = 1
2 the discretization error is O(h2, l2) whereas

this error is O(h2, l) otherwise, see for instance [22, Chap. 8, pp. 139–156] or [51,
Chap. 2, pp. 39 and 93]. The implicit methods are also absolutely stable while
the explicit method has the avoidable disadvantage of certain stability conditions
as we will see later.

Applying Lh to the FD equation (7.12), we get

0 = V̂ m+1
n − V̂ m

n + (1− ν)lam+1
n

h2 (V̂ m+1
n+1 − 2V̂ m+1

n + V̂ m+1
n−1 )+

+ νlamn
h2 (V̂ m

n+1 − 2V̂ m
n + V̂ m

n−1) + (1− ν)lbm+1
n

2h (V̂ m+1
n+1 − V̂ m+1

n−1 )+

+ νlbm+1
n

2h (V̂ m
n+1 − V̂ m

n−1) + (1− ν)lcm+1
n V̂ m+1

n + νlcmn V̂
m
n .

(7.13)
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Simplifying, we obtain a general form of the weighted scheme discretization(
−νla

m
n

h2 + νlbmn
2h

)
V̂ m
n−1 +

(
1 + 2νlamn

h2 − νlcmn

)
V̂ m
n +

(
−νla

m
n

h2 −
νlbmn
2h

)
V̂ m
n+1 =

=
(

(1− ν)lam+1
n

h2 − (1− ν)lbm+1
n

2h

)
V̂ m+1
n−1 +

(
1− 2(1− ν)lbm+1

n

h2 + (1− ν)lcm+1
n

)
V̂ m+1
n +

+
(

(1− ν)lam+1
n

h2 + (1− ν)lbm+1
n

2h

)
V̂ m+1
n+1 ,

(7.14)

Let us introduce the coefficients:

Amn = lamn
h2 −

lbmn
2h

Bm
n = −2lamn

h2 + lcmn , (7.15)

Cm
n = lamn

h2 + lbmn
2h .

Substituting these into (7.14) we finally arrive to the more compact:

− νAmn V̂ m
n−1 + (1− νBm

n ) V̂ m
n − νCm

n V̂
m
n+1 =

=(1− ν)Am+1
n V̂ m+1

n−1 +
(
1 + (1− ν)Bm+1

n

)
V̂ m+1
n + (1− ν)Cm+1

n V̂ m+1
n+1 ,

(7.16)

m = 0, . . . , M.

7.3.1 A Stable Explicit Scheme

Suppose we construct a grid with steps ∆x = h symmetric along the x-axis where

xmin = −xmax ,
⌊
N

2

⌋
=
⌊
xmax
h

⌋

and steps ∆t = l along the t-axis. A node (m,n) on the grid is a point where:

xn = nh, n = −bN/2c,−bN/2c+ 1, ..., 0, 1, ..., bN/2c − 1, bN/2c(7.17)

tm = ml, m = 0, 1, ...,M. (7.18)
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We will next apply the following explicit scheme to the PDE (7.7)

0 = Um+1
n − Um

n + lam+1
n

h2 (Um+1
n+1 − 2Um+1

n + Um+1
n−1 )+

+ lbm+1
n

2h (Um+1
n+1 − Um+1

n−1 ) + lcmn U
m
n .

(7.19)

where we have used the notation Um
n for an approximation to umn = u(xn, tm). So

we get after solving for Um
n

Um
n = 1

1 + nhl

[(
lσ2

2h2 + 1
2anl

)
Um+1
n−1 +

(
− lσ

2

h2 + 1
)
Um+1
n

(
lσ2

2h2 −
1
2anl

)
Um+1
n+1

]
,

(7.20)
where we have used the identities

am+1
n := 1

2σ
2

bm+1
n := −nah (7.21)

cmn := −nh.

By setting lσ2

h2 = 1
3 the backward recursion (7.20) reduces to

Um
n = 1

1 + nhl

(
qdU

m+1
n−1 + qmU

m+1
n + quU

m+1
n+1

)
, (7.22)

with 
qd := 1

6 + 1
2anl

qm := 2
3

qu := 1
6 −

1
2anl .

Lemma 4 (Stability Condition.) Let u be the solution of the PDE (7.7) and
let U be the solution of (7.22). If qi > 0, and provided that qu + qm + qd = 1, then

max |umn − Um
n | ≤ AT (l + h2)

for xmin ≤ xn ≤ xmax, and 0 ≤ tm ≤ T .

Proof. It is a direct consequence of the results stated in [1, Chap. 2, pp. 44–
45] and [51, Chap. 2, pp 45–47] for the canonical heat equation and its explicit
discretization. �

For −1
3

1
al
< n < 1

3
1
al

, the numbers qi(n) are all positive, satisfying stability
condition. In order to prevent these quantities from going negative, we cannot use



102 Chapter 7. Pricing Options with a Consistent HJM Model

a finite difference grid that is arbitrarily large. At some level n̂ < 1
3al, we want to

express Um
n̂ in terms of Um+1

n̂ , Um+1
n̂−1 and Um+1

n̂−2 . By doing so we avoid using Um+1
n̂+1

and the grid will remain bounded at n̂. If we use the following approximations
of the spatial partial derivatives

uxx ≈
Um+1
n̂ − 2Um+1

n̂−1 + Um+1
n̂−2

h2

ux ≈
3Um+1

n̂ − 4Um+1
n̂−1 + Um+1

n̂−2
2h (7.23)

we can express Um
n̂ as

Um
n̂ = 1

1 + nhl

(
q̂ddU

m+1
n̂−2 + q̂dU

m+1
n̂−1 + q̂mU

m+1
n̂

)
, (7.24)

with 
q̂dd := 1

6 −
1
2an̂l

q̂d := −1
3 + 2an̂l

q̂m := 7
6 −

3
2an̂l .

These coefficients are all positive for 1
6

1
al
< n̂ < 1

3
1
al

.

Figure 7.1: Downward Branching

u(m, n̂)
HHH

HHHH

@
@
@
@
@
@
@

m

d

d

u (m+ 1, n̂)

u (m+ 1, n̂− 1)

u (m+ 1, n̂− 2)

We can analogously proceed for bounding the grid from below imposing a
level ň > −1

3
1
al

. At ň we get

Um
ň = 1

1 + nhl

(
q̌uuU

m+1
ň+2 + q̌uU

m+1
ň+1 + q̌mU

m+1
ň

)
, (7.25)

with quantities: 
q̌uu := 1

6 + 1
2aňl

q̌u := −1
3 − 2aňl

q̌m := 7
6 + 3

2aňl .



7.3. Finite-Difference Implementation 103

which ara all positive for −1
3

1
al
< ň < −1

6
1
al

.

Figure 7.2: Upward Branching
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Let us note that from the definition (7.6) for exact solutions, we may infer
the identical relation for the approximants

Um
n ≡ U(xn, tm) = e

∫ T

tm
Ω(q)dq

Wm
n (7.26)

which allows us to rewrite the differencing scheme as

Wm
n = e−

∫ (m+1)l

ml
Ω(q)dq

1 + nhl

(
qdW

m+1
n−1 + qmW

m+1
n + quW

m+1
n+1

)
.

Note that for every m, the integral expression can be calculated analitically by
adapting (7.9) to the grid

∫ (m+1)l

ml
Ω(q)dq = − (logPm+1(0)− logPm(0)) +

+ σ2

2a3

(
al − 2(1− e−al)e−aml + 1

2(1− e−2al)e−2aml
)
,

m = 0, 1, . . . ,M − 1.

(7.27)

We also note that the quantities

logP0(0) = 0, logP1(0), . . . , logPM(0)

may be computed by means of consistent calibration, deeply analyzed in previous
chapters. With the results provided by the joint calibration for the parameters
p̂ and ẑ(p̂) from a set of instrument observations [P o

1 . . . P o
M ′ ] and [Co

1 . . . C
o
N ′ ],
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we recall that

logPm(0) = −
∫ xm

0
G(z(p̂), p̂, q)dq =

np∑
j=1

Mmj(p̂)ẑj.

It is also important to point out that for every node point (m,n) the approximate
price V̂ m

n of any derivative is equivalent to Wm
n by construction.

The finite difference method outlined below can be implemented as follows.
For a derivative with maturity T , and a given number of steps M we may calculate
the step-sizes as l = T/M and h = σ

√
3l. Then, we set N̂ = d 1

6ale which is
the first integer value on the right of the lowest bound of n̂ for which central
and downward branching produce positive coefficients in the backward recursions
(7.22) and (7.24). Therefore, reasoning by symmetry, making n̂ = −ň = N̂ we
can bound the grid without making this explicit scheme unstable.

Figure 7.3: An example of stable explicit grid for x with l = 10a = 1.
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For m = 0, . . . , N̂ we may set up a normal branching with coefficients qu, qm, qd.
For m = N̂ + 1, . . . , . . . ,M we build a bounded scheme at n = N̂ and n = −N̂ .

We remark that
WM
n = h(xn,Ml)

for n = −N̂ , . . . , 0, . . . , N̂ are the known payoff values which allow to start the
backward recursion. Finally, we recall that due to the fact that the grid is bounded
additional spatial boundary conditions are no needed.
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7.3.2 A Crank-Nicolson Scheme

From now, we apply the Crank-Nicolson implicit scheme to the PDE (7.7). In
this case, introducing the following ratios

%1 = l

h2 , %2 = l

h

and particularizing ν to 1
2 the general weighted scheme (7.16) may be written as

−αnUm
n−1 + (1− βn)Um

n −γnUm
n+1 = αnU

m+1
n−1 + (1 + βn)Um+1

n +γnU
m+1
n+1 , (7.28)

where 
αn = 1

2A
m
n = 1

4σ
2%1 + 1

4nah%2 ,

βn = 1
2B

m
n = −1

2σ
2%1 − 1

2nhl ,

γn = 1
2C

m
n = 1

4σ
2%1 − 1

4nah%2 .

In this case, we consider again a symmetric spatial domain [−xmax, xmax] where
the grid points (m,n) are defined as

xn = −xmax + nh, n = 0, 1, . . . , N
tm = ml, m = 0, 1, . . . ,M.

(7.29)

being h = 2xmax/N and l = T/M . As suggested by Cairns [17] and Daglish [21]
we fix xmax to 5 σ

2a and impose as well homogeneous Dirichlet boundary conditions

u(xmax, tm) = u(xmin, tm) = 0 m = 0, 1, . . . ,M. (7.30)

Therefore, we recall that

Um
0 = um0 = 0, Um

N = umN = 0, UM
n = h(xn,Ml)

for m = 0, 1, . . . ,M and n = 0, 1, . . . , N are known values.

In order to clarify how to compute the approximate values for the solution
at the grid points, taking the above mentioned conditions into account, we may
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break down the difference equation (7.28) as follows


n = 0 → Um
0 = 0

n = 1 → (1− β1)Um
1 − γ1U

m
2 = (1 + β1)Um

1 + γ1U
m
2

n = 2, . . . , N − 2 Eqn. (7.28)
n = N − 1 → −αN−1U

m
N−2 + (1− βN−1)Um

N−1 = αN−1U
m
N−2 + (1 + βN−1)Um

N−1

n = N → Um
N = 0

(7.31)
Written in matrix form the above problem we have the linear system:

D1U
m = D2U

m+1 (7.32)

where

D1 =



1− β1 −γ1

−α2 1− β2 −γ2

−α3 1− β3 −γ3
. . . . . . . . .

−αN−2 1− βN−2 −γN−2

−αN−1 1− βN−1


,

D2 =



1 + β1 γ1

α2 1 + β2 γ2

α3 1 + β3 γ3
. . . . . . . . .

αN−2 1 + βN−2 γN−2

αN−1 1 + βN−1


,

are nearly tridiagonal and

Um =
[
Um

1 Um
2 . . . Um

N−1

]T
.

Thus, provided we exactly know the terminal condition

UM = uM = h(Ml) = [ h(x1,Ml) . . . h(xN−1,Ml) ]T
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we are able to solve this difference equation obtaining the matrix

U =
[
U 0 U 1 . . . UM

]
,

which represents the approximate solution to the matrix

u =
[
u0 u1 . . . uM

]
.

Finally, note that if we apply the relation (7.26) that links the approximants Um

and Wm next we may to construct the following two-level difference equation:

D1W
m = D2Z

m+1 m = 0, 1, . . . ,M − 1
WM = wM ,

(7.33)

where Zm = e−
∫ (m+1)l

ml
Ω(q)dqWm is known at any time stage on the above back-

ward recursion formula and wM = h(Ml).

7.4 Numerical Examples

The explicit finite difference (EFD henceforth) and the implicit Crank-Nicolson
(CN for short) are different from the trinomial tree approach of Hull and White
[35] (HWT hereafter), as we have analyzed in the previous sections.

Due to the fact that with the HWT algorithm forward induction is needed,
this method is slower than the EFD algorithm even if we use the Arrow-Debreu
prices for partially avoiding backward recursion as we suggested in [44, Chap. 2,
pp. 23] for vanilla European-style bond options.

Figure 7.4: Discrete data for initial discount bond estimation. All rates are
expressed with continuous compounding.

Maturity, x 0.083 0.25 1 2 3 4
Zero Rate, Ro(x) 3.46% 3.54% 4.02% 4.51% 4.79% 4.98%

Maturity, x 5 6 7 8 9 10
Zero Rate, Ro(x) 5.13% 5.24% 5.35% 5.44% 5.51% 5.56%
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Bond Options

As first examples, we consider the pricing of a two-year and three-year vanilla
put options, written on a five-year discount bond. We assume parameters a = 0.1
and σ = 0.01, which are of similar order of magnitude of the ones observed on
the markets. In our analysis we also use the discount curve given in the table
on Figure 7.4 which is estimated by means of the lowest dimensional consistent
family with the model introduced in (5.27) as the MIN family. For finite-difference
EFD and CN methods, both bond and option prices are computed on the same
grid. The bond price at time t = S = Ml is subject to the well-known condition
PM
n = 1. The option price at time t = T = M ′l, with M ′ < M , is subject to the

following condition
WM ′

n = (K − PM ′

n )+. (7.34)

We did not use closed-form formulas for the bond price. Therefore we, first of all,
compute de bond price starting recursion form t = S up to t = T . Then we apply
the final condition for the option price. The latter means to replace the bond
values with option values computed by (7.34) on the same grid (m,n). Then we
compute option prices using the grid up to t = 0.

For the trinomial tree approach HWT, we tried to price faster European-style
options by using elementary Arrow-Debreu prices QM ′

n , evaluated at the options’
maturity following [44, Sect. 2.2.4, pp. 22–23]. By means of forward induction
and restricting the backward recursion to just computing the bond grid values
at time stages m = M ′, . . . ,M − 1 we partially avoid the need of a full forward-
then-backward methodology.

With regard to European-style options, the table on Figure 7.5 and Figure 7.6
confirms that both EFD and CN algorithms are superior than HWT approach
in terms of accuracy. We note that CN algorithm converge very fast due that
the Crank-Nicolson method is second order accuracy in time. Convergence to
within two decimals of the price in basispoints is reached with l ≈ 0.01. On the
other hand, the EFD converges slightly faster than the HWT algorithm, but the
difference is not very large.

As concern to time consumption performance, we report in the table on Figure
7.7 the calculation times needed for the three algorithms. We see that the EFD
algorithm is by far faster than the HWT algorithm. The CN method is slower
than both of them due to its more matricial nature and because we use a LU
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Figure 7.5: Prices (in basispoints of the notional) for put options on 5yr discount
bond.

European-style American-style
Mat. / Strike l EFD CN HWT EFD CN HWT

0.50 0.44 1.07 1.34 18.3 78.6 18.4
0.40 1.07 1.69 2.11 27.5 78.6 27.6
0.25 0.75 1.10 1.19 45.3 86.0 45.5
0.20 0.94 1.08 1.32 53.7 85.5 53.8

T = 2yr 0.10 0.91 1.04 1.08 72.4 86.7 72.5
K = 0.78 0.05 1.00 1.04 1.09 82.9 89.8 83.0

0.04 1.00 1.04 1.06 85.0 90.4 85.0
0.025 1.03 1.04 1.07 87.8 91.2 87.8
0.02 1.03 1.04 1.06 88.6 91.5 88.6
0.01 1.04 1.04 1.05 90.2 92.0 90.2

Exact 1.04
0.50 4.14 5.01 5.82 647 779 648
0.40 2.79 2.89 3.69 680 779 680
0.25 4.84 4.79 5.65 716 779 717
0.20 4.12 4.84 4.73 729 779 730

T = 3yr 0.10 4.73 4.83 5.04 755 779 755
K = 0.85 0.05 4.67 4.82 4.82 767 779 767

0.04 4.80 4.82 4.92 769 779 769
0.025 4.83 4.82 4.90 773 779 773
0.02 4.83 4.82 4.89 774 779 774
0.01 4.82 4.82 4.85 776 779 776

Exact 4.82

Note: We recall that HWT refers to the Hull-White trinomial tree, and EFD and
CN to the stable explicit and the Crank-Nicolson implicit algorithms, respectively.
For the HWT and EFD method, we assume h = σ

√
3l as in [35]. For the Crank-

Nicolson method we set h = σ
√

2l with boundaries at ±5 σ
2a following [17] and

[21].

tridiagonal solver to solve the system. However, we remark that for achieving
similar accuracies on European-style valuation, the Crank-Nicolson may be even
the fastest method with less consumption of time for the involved calculations.

While pricing a vanilla European bond option by finite differences is certainly
instructive in order to give an insight of which numerical method may be more
efficient, it is not very practical in the real market situations because we are
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Figure 7.6: Relative pricing errors of vanilla 2yr put on 5yr discount bond.
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Figure 7.7: Calculation times in milliseconds, running MATLAB on an Intel Core
2 Duo P8600 @ 2.39GHz computer for a 2yr option on a 5yr discount bond, with
a = 0.1 and σ = 0.01.

American-style
l EFD CN HWT

0.50 0.97 2.2 1.7
0.40 0.67 2.5 1.8
0.25 0.86 2.9 2.7
0.20 0.98 3.7 3.2
0.10 1.82 17.7 6.6
0.05 4.22 104 13.6
0.04 4.82 401 17.4
0.02 10.8 3367 48.1
0.01 40.2 33366 142

equipped with well-known closed-form solutions for the HW model. Therefore,
we may apply these schemes to American options, for which exact formulas are
not available. To avoid arbitrage, the option value at each point in the grid
(m,n) cannot be less than the intrinsic value (the immediate payoff if the option
is exercised). For instance, for a vanilla American-style put on a discount bond,



7.4. Numerical Examples 111

this means
w(x, t) ≥ (K − P (T, S))+, t < T.

From a strictly practical point of view, taking this condition into account is not
very difficult. After computing Wm

n , we should check for the possibility of early
exercise, and set

Wm
n = max(Wm

n , K − Pm
n ).

Therefore, if we want to price American-style options, we need to construct the
full grid containing the bond prices, Pm

n , and the separate grid with option prices,
Wm
n .

Due to accuracy issues, we might prefer adopting a Crank-Nicolson scheme.
We remark that in such a case for each time layer m we have the scheme (7.33)
and we may equally compute the chance of early excercise after the calculation
of the vector Wm

Wm = max(Wm, K − Pm),

allowing the implementation of this method with a LU direct solver.
We report in the table on Figure 7.5 the results for all three methods. The

results for the CN method are the best in terms of the speed of convergence
and compatible with the numerical approximations reported by commercial black
boxes such as DerivaGem or FINCAD. As can be seen, the results for the EFD
and HWT are slightly similar with less time consumption for the stable explicit
method (Figure 7.7).

Interest Rate Caps

Earlier in this work we have shown how the value of a vanilla cap can be expressed
as a portfolio of puts on discount bonds.

As is explained in Sect. 3.2, the price of such a cap contract with strike K
and resettlement dates x0, . . . , xn−1 may be determined wih the following repre-
sentation for the stream of payoffs

hγj
(xj−1) = (1 + τK) (κ− Pj(xj−1))+ j = 1, . . . , n (7.35)

where κ = (1+τK)−1. Therefore, the numerical problem reduces to the valuation
of the corresponding portfolio of these European-style bond options which we have
discussed in detail above.
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A digital cap is an instrument that has the same characteristics as a vanilla
cap, except that the payoff is a fixed amount paid if the final floating rate is above
the strike. Therefore, the payoff of any digital j-caplet which composes it can be
represented as

hδj
(xj) = 1{Lj(xj−1)−K>0} j = 1, . . . , n (7.36)

if we take as unitary the notional amount. For instance, typical Chicago Board
of Trade binary options on the target US federal funds rate take as notional the
amount of $1000.

By following similar algebraic manipulations as we have used in Sect. 3.2 for
the payoff of a vanilla we may numerically compute the price of a digital cap by
considering that the sequence of payoffs at times x0, . . . , xn−1,

hδj
(xj−1) = Pj(xj−1)1{Pj(xj−1)−κ<0} j = 1, . . . , n, (7.37)

is equivalent to (7.36). We remark that now, κ is (1 + τK)−1 once again.

As next examples, we analyze the pricing of a five-year and ten-year vanilla
and digital caps, with semi-annual tenor. We assume the same parameters for
the HW model, a = 0.1 and σ = 0.01, as we have used in the case of bond
options. Moreover, we employ as well the MIN family to estimate the zero rate
curve from the discrete data reported by table on Figure 7.4. In the Appendix
C we derive closed-form formulas for the digital caps under the assumptions of
Gaussian Heath-Jarrow-Morton models.

From table on the Figure 7.8 and Figure 7.9 we see first that even with the
stable explicit procedure described in this work, we already get vanilla cap prices
accurate to within one basispoint taking time-steps close to the month (l ≈
0.1). Also we see that the vanilla numerical approximations converge much more
quickly to the theoretical prices than the corresponding digital approximants,
maybe a direct consequence of the severe non-smooth nature of the stream of
payoffs which determine the value of these binary options.

We note that in both cases, digital or plain vanilla, the implicit Crank-Nicolson
scheme converges faster than the other procedures considered.
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Figure 7.8: Prices of vanilla/digital European-style caps with semi-annual tenor.

Vanilla Digital
Mat. / Strike l EFD (%) CN (%) HWT (%) EFD CN HWT

0.50 5.64 5.50 43.6 7.59 7.46 7.49
0.25 5.55 5.50 10.7 7.07 7.61 7.03

T = 10yr 0.1 5.52 5.50 5.56 7.67 7.41 7.65
0.05 5.51 5.50 5.52 7.39 7.45 7.39

K = 5.5% 0.025 5.51 5.50 5.51 7.42 7.47 7.41
0.02 5.50 5.50 5.51 7.49 7.47 7.49
0.01 5.50 5.50 5.50 7.48 7.46 7.48

Exact 5.50 7.46
0.50 3.11 3.16 41.1 4.33 4.47 4.20
0.25 3.14 3.16 8.34 4.67 4.50 4.62

T = 5yr 0.1 3.16 3.16 3.20 4.63 4.51 4.63
0.05 3.16 3.16 3.17 4.69 4.51 4.68

K = 5% 0.025 3.16 3.16 3.17 4.52 4.53 4.52
0.02 3.16 3.16 3.17 4.53 4.52 4.53
0.01 3.16 3.16 3.16 4.51 4.52 4.51

Exact 3.16 4.52

The numerical approximations for vanilla caps are expressed in percent of the
notional amount whereas the approximants for digital caps are presented in
unitary terms. Exact valuation for binary options is worked out in Appendix C.

Figure 7.9: Relative valuation errors of 10yr vanilla/digital caps with semi-annual
tenor.
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7.5 Monte Carlo Simulation for Consistent HJM
Models

As we have discussed above with the finite difference methods, we are typically
in front of a derivative pricing problem where we cannot evaluate analytically the
fundamental arbitrage-free equation

V (h, 0) = EQ [D(0, T )h(T )] =

= EQ
[
exp

(
−
∫ T

0
r(u) du

)
h(T )

]
. (7.38)

whether we combine or not it with the Feynman-Kač formula in order to produce
the corresponding valuation PDE.

The lattice methods described in the previous sections assumed that there
was a short-rate realization for the HJM model under consideration. When the
HJM model considered is not associated to a low dimensional markovian system
being the implied short-rate process r, one of the state variables, lattice-based
computing times increase very significantly and could even be impossible to im-
plement. Then, Monte Carlo methods offer an effective and popular alternative
to lattice methods.

7.5.1 Basic Monte Carlo

If we recover the one-factor HJM model considered in Chapter 6

dF (t, T ) = {. . . } dt+ (α + β(T − t)) e−a(T−t) dW (t), (7.39)

we notice, in fact, that the spot rate process r is not Markovian since does not
belong to the Ritchken and Sankarasubramanian class [50].

Even though the short-rate process is not Markovian, there may yet exist a
higher-dimensional Markov process having the short rate as one of its components.
At this point, we remark that the volatility function σ(t, T ) of the model (7.39)
can be expressed as a sum of separable into time and maturity dependent factors

σ(t, T ) = eat
(
(α + βT )e−aT

)
− teat

(
βe−aT

)
=

=
2∑
i=1

ςi(t)%i(T ). (7.40)
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Therefore, as it is shown by [18, Propos. 1, pp. 4] in this case we need 2
2(2+3) state

variables to determine the forward rate via a suitable markovian system where
two of the state variables are stochastic and describe the non-Markovian nature of
the short rate process. Thus, assuming we know an analytically treatable relation
between these stochastic variables and the spot rate process, we finally conclude
that, at best, two dimensions and time lattice-based schemes are needed in order
to approximate derivative prices. Consequently a brief analysis of simulation
techniques have full sense for this kind of HJM model.

From now, let us take as an example the model the one-factor humped volatil-
ity model we have analyzed in previous chapter. We remark that the following
discussion may be easily extended for any HJM model. As we shown in (6.6) we
know how the forward curve produced by the model evolves. In particular, note
that the expression

r(t) ≡ ft(0) = f o(t) + g1(t) + h1(t) + αZ1(t) + (β − aα)Z2(t), (7.41)

describes how the spot rate evolves in time. We will assume, without loss of
generality, that, as before, we want to evaluate the price at time 0 of a security
V with maturity in time T .

Let us consider the following procedure:

1. Discretize the period [0, T ] into M intervals of equal length l = T/M and
define tm = ml.

2. For S simulations denoted by ω, simulate M i.i.d. standard normal random
variables ξ(tm) ∼ N (0, 1) for m = 1, . . . ,M . Note that the vector SDE
(6.3) is linear in the narrow sense [39], with explicit solution

Zt = Φt

∫ t

0
Φ−1
s b dWs, (7.42)

where

Φt = eAt = e−at

 1 + at −a2t

t 1− at

 .
Therefore, both Z1,2-variables are centered Gaussian variables.
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3. Calculate the simulated path ω of r(t, ·) as follows; for m = 1, . . . ,M let

r(tm, ω) = f o(tm)+g1(tm)+h1(tm)+α√v1,mξ(tm, ω)+(β − aα)√v2,mξ(tm, ω)
(7.43)

where deterministic quantities

v1,m = 5
4a (1− exp(−2atm))−

(3
2tm + 1

2at
2
m

)
exp(−2atm), and;

v2,m = 1
4a3 (1− exp(−2atm))−

( 1
2a2 tm + 1

2at
2
m

)
exp(−2atm),

are derived from Itô isometry property of the stochastic integral (7.42).

4. Evaluate V (T, ω) ≡ V (T, r(tm, ω)) for simulation ω.

5. Evaluate the random discounted value of the derivative payoff

X(ω) = exp
(
−

M−1∑
m=0

r(tm, ω)l
)
V (T, ω). (7.44)

6. Conclude with the calculation of the mean value

X̄ = 1
S

∑
ω∈Ω

X(ω).

which is our Monte Carlo estimate of the price.

We point out that, by construction, this simulation procedure naturally makes
suitable the use of initial consistent families f o(·) with the model. As an instruc-
tional example, we consider the pricing of a one-year European-style option on a
three-year discount bond.

For evaluating the payoff

V (T, ω) ≡ (K − PT (x, ω))+

we use the same strategy outlined in Sect. 6.3 under the Musiela parameteriza-
tion. In this case, we have to pay our attention in just the two-year point, and we
directly compute it by simulating forward curves fT (x, ω) up to T -time –one-year
forward in this example. Then we have to integrate them over time-to-maturity
up to x-point in order to determine each simulated realization P1(2, ω) of the
discount bond composing the payoff.
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We assume the model parameters α = 0.0075, β = 0.005 and a = 0.15. We
employ the HMC family as initial family f o(·) for the Monte Carlo runs (6.6)–
(7.43). Finally, we also remark that this consistent estimation is again carried
out from the discrete data reported by table on Figure 7.4.

From table on Figure 7.10 we see that this procedure gives rise to two types
of error: simulation error and discretization error. First, the numer of sample
paths, S, is finite. In fact, this means that X̄ is a random variable. Second, the
discretization of the period [0, T ] result in one more error: the approximation of
the Riemann integral with non-smooth integrand

∫ T

0
r(u, ω) du,

by the sum in (7.44). We see that both errors can be reduced to a limited extent
by increasing the number of simulations and reducing the step size l. We must
be very careful here. We are showing a particular and basic implementation of
simulation approach, and could be certainly improved by reworking the simu-
lation based on (6.6)–(7.43) dynamics in a more efficient way or by enhancing
the elementary discretization scheme we have used to approximate the integral
expression which involves discounting.

Figure 7.10: Prices (in percent of the notional) for a 1yr put option on 3yr
discount bond.

MC Estimator MC Standard Error
S / l 0.1 0.05 0.01 0.1 0.05 0.01
100 1.974 2.252 2.478 0.18 0.17 0.17
1000 2.332 2.321 2.315 0.06 0.06 0.06
10000 2.347 2.333 2.346 0.018 0.018 0.018
100000 2.334 2.337 2.330 0.006 0.006 0.006
Exact 2.377





Appendix A

Forward Rate Models

A.1 The HJM Framework

Proposition 1 (Leibniz Rule for Stochastic Integrals) Consider for any fixed
parameter s ∈ [t0, T ], the Itô process defined by

dg(t, s) = α(t, s)dt+
q∑
j=1

βj(t, s)dWj(t) (A.1)

with t ∈ [t0, s]. Then, the dynamics for the stochastic process H(t, T ) =
∫ T
t g(t, s)ds

is

dH(t, T ) =
[(∫ T

t
α(t, s)ds

)
− g(t, t)

]
dt+

q∑
j=1

∫ T

t
βj(t, s)ds dWj(t). (A.2)

Proof. Assume that the Rq-valued stochastic processes

β(t, T ) = [ β1(t, T ) β2(t, T ) . . . βq(t, T ) ]

W (t) = [ W1(t) W2(t) . . . Wq(t) ]T

are given.

Then for any t1 ∈ [t0, T ], the differential (A.1) may be written in integral
form:

g(t1, s) = g(t0, s) +
∫ t1

t0
α(t, s)dt+

∫ t1

t0
β(t, s)dW (t) (A.3)
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Thus,

H(t1, T ) =
∫ T
t1
g(t1, s)ds

=
∫ T
t1
g(t0, s)ds+

∫ T
t1

(∫ t1
t0
α(t, s)dt

)
ds+

∫ T
t1

(∫ t1
t0
β(t, s)dW (t)

)
ds

∗ =
∫ T
t1
g(t0, s)ds+

∫ t1
t0

(∫ T
t1
α(t, s)ds

)
dt+

∫ t1
t0

(∫ T
t1
β(t, s)ds

)
dW (t)

=
∫ T
t0
g(t0, s)ds−

∫ t1
t0
g(t0, s)ds+

∫ t1
t0

(∫ T
t α(t, s)ds

)
dt−

∫ t1
t0

(∫ t1
t α(t, s)ds

)
dt+

+
∫ t1
t0

(∫ T
t β(t, s)ds

)
dW (t)−

∫ t1
t0

(∫ t1
t β(t, s)ds

)
dW (t)

∗∗ = H(t0, T ) +
∫ t1
t0

(∫ T
t α(t, s)ds

)
dt+

∫ t1
t0

(∫ T
t β(t, s)ds

)
dW (t)−

−
∫ t1
t0
g(t0, s)ds−

∫ t1
t0

(∫ s
t0
α(t, s)dt

)
ds−

∫ t1
t0

(∫ s
t0
β(t, s)dW (t)

)
ds

= H(t0, T ) +
∫ t1
t0

(∫ T
t α(t, s)ds

)
dt+

∫ t1
t0

(∫ T
t β(t, s)ds

)
dW (t)−

−
∫ t1
t0

(
g(t0, s) +

∫ s
t0
α(t, s)dt+

∫ s
t0
β(t, s)dW (t)

)
ds

∗ ∗ ∗ = H(t0, T ) +
∫ t1
t0

(∫ T
t α(t, s)ds

)
dt+

∫ t1
t0

(∫ T
t β(t, s)ds

)
dW (t)−

∫ t1
t0
g(s, s)ds

= H(t0, T ) +
∫ t1
t0

[∫ T
t α(t, s)ds− g(t, t)

]
dt+

∫ t1
t0

(∫ T
t β(t, s)ds

)
dW (t)

the differential for the process H(t, T ) may be deduced. We have used the Fubini
Theorem in its classical version and the extended version for Stochastic Integrals
–see Ikeda and Watanabe [36] and Heath et al. [31]. For the identity (***), the
equation (A.3) has been used. �

A.2 From HJM to Short-Rate Models

Proposition 2 Suppose that F (0, T ), α(t, T ) and σ(t, T ) are differentiable in T

with
∫ T

0 |∂uF (0, u)| du < ∞. Then the short-rate process is an Itô process of the
form

dr(t) = ζ(t)dt+ σ(t, t)dW (t), (A.4)

where

ζ(t) = α(t, t) + ∂tF (0, t) +
∫ t

0
∂tα(s, t) ds+

∫ t

0
∂tσ(s, t)dW (s)

Proof. Fix a time s with 0 ≤ s ≤ t <∞, we can rewrite α(s, t) and σ(s, t) vector
as follows,

α(s, t) = α(s, s) +
∫ t

s

∂α

∂z
(s, z)dz

σ(s, t) = σ(s, s) +
∫ t

s

∂σ

∂z
(s, z)dz

(A.5)
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With s = 0, we can express F (0, t) as

F (0, t) = r(0) +
∫ t

0

∂F

∂z
(0, z)dz. (A.6)

Recall now that

r(t) = F (t, t) = F (0, t) +
∫ t

0
α(s, t) ds+

∫ t

0
σ(s, t)dW (s). (A.7)

Thus, by substituting equations (A.5) and (A.6) into (A.7), we have

r(t) = r(0) +
∫ t

0

∂F

∂z
(0, z)dz +

∫ t

0
α(z, z)dz +

∫ t

0

(∫ t

s

∂α

∂z
(s, z)dz

)
ds+

+
∫ t

0

(∫ t

s

∂σ

∂z
(s, z)dz

)
dW (s) +

∫ t

0
σ(z, z)dW (z)

(A.8)

Applying the Fubini Theorem in its classical and extended version for Stochastic
Integrals, gives

r(t) = r(0) +
∫ t

0

∂F

∂z
(0, z)dz +

∫ t

0
α(z, z)dz +

∫ t

0

(∫ z

0

∂α

∂z
(s, z)ds

)
dz +

+
∫ t

0

(∫ z

0

∂σ

∂z
(s, z)dW (s)

)
dz +

∫ t

0
σ(z, z)dW (z),

(A.9)

and reordering:

r(t) = r(0) +
∫ t

0

[(
∂F

∂z
(0, z) + α(z, z) +

∫ z

0

∂α

∂z
(s, z)ds+

+
∫ z

0

∂σ

∂z
(s, z)dW (s)

)
dz + σ(z, z)dW (z)

]
=

= r(0) +
∫ t

0
(ζ(z)dz + σ(z, z)dW (z)) ,

(A.10)

the differential (A.4) can be finally deduced. �





Appendix B

Geometric Interest Rate Theory

B.1 Setup

Proposition 6 (The Musiela HJM formulation.) Under the martingale mea-
sure Q the f -dynamics are given by df(t, x) =

(
∂f(t,x)
∂x

+ σ̃(t, x)
∫ x

0
σ̃(t, u)T du

)
dt+ σ̃(t, x)dW (t)

f(0, x) = f o(0, x).
(B.1)

where σ̃(t, x) := σ(t, t+ x).

Proof.

Stage 1:
Recall the integral representation for the instaneous spot rate given by equation
(A.7)

r(t) = F (0, t) +
∫ t

0
α(s, t)ds+

∫ t

0
σ(s, t)dW (s),

and (A.8)

r(t) = r(0) +
∫ t

0
∂zF (0, z)dz +

∫ t

0
α(z, z)dz +

∫ t

0
σ(z, z)dW (z)+

+
∫ t

0

(∫ u

0
∂uα(z, u)dz +

∫ u

0
∂uσ(z, u)dW (z)

)
du

(B.2)

On the other hand, we have the following integral representation for the in-
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stantaneous forward rate

F (t, T ) = F (0, T ) +
∫ t

0
α(z, T )dz +

∫ t

0
σ(z, T )dW (z)

Let us fix T = t = u. By taking partial differentials, we have the following
expression:

∂2F (u, u)− ∂uF (0, u) =
∫ u

0
∂uα(z, u)dz +

∫ u

0
∂uσ(z, u)dW (z), (B.3)

where the operator ∂2 means partial differentiation with respect to the second
argument. By substituting into (B.2), we have

r(t) = r(0) +
∫ t

0
(α(s, s) + ∂2F (s, s)) ds+

∫ t

0
σ(s, s)dW (s), (B.4)

where it should be emphasized that s is a “mute” variable of the same type as u
in equation (B.3).
Stage 2: Consider us given an arbitrary x ≥ 0, the parametrization

f(t, x) := F (t, t+ x)

as well as the definitions

F̂ (t, T ) := F (t, T + x)
α̂(z, T ) := α(z, T + x)
σ̂(z, T ) := σ(z, T + x)

It should also be noted that f(t, x) = F̂ (t, t) := r̂(t). Now, from equation (B.4),
an analogous integral equation for the new redefined spot rate, r̂(t), may be easily
inferred:

r̂(t) = r̂(0) +
∫ t

0

(
α̂(s, s) + ∂2F̂ (s, s)

)
ds+

∫ t

0
σ̂(s, s)dW (s). (B.5)

Returning to the old variables we have:

f(t, x) = f(0, x) +
∫ t

0
(α(s, s+ x) + ∂xf(s, x)) ds +

+
∫ t

0
σ(s, s+ x)dW (s).

(B.6)
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Let us introduce right now the modified volatility process σ̃(t, x) := σ(t, t + x).
Then

α(s, s+ x) = σ(s, s+ x)
∫ s+x

s
σ(t, z)dz =

= σ̃(s, x)
∫ x

0
σ̃(t, z)dz := α̃(s, x)− ∂xf(s, x),

(B.7)

which combined with (B.6), brings us the formal differential given in (B.1). Sim-
ilar arguments are followed by Björk in [12] or Musiela in [42]. �

B.2 The Invariance Conditions

Theorem 4 (Consistency Conditions.) The forward curve manifold G is f
invariant for the forward rate process f(t, x) in M iff

Gx(z, ·) + σ(t, ·)
∫ ·

0
σ(t, u)T du+ φ(t, ·) ∈ Im [Gz(z, ·)] , (B.8)

σ(t, ·) ∈ Im [Gz(z, ·)] . (B.9)

∀(t, z) ∈ R+ × Z. Here, Gz and Gx denote the Jacobian of G w.r.t. to z and x,
provided some minimal smoothness of the mapping G.

Proof. Let us start with the prove of sufficiency. Thus, we assume (B.8)-(B.9).
We may select γ : R+ ×Zd and ψ : R+ × Rd×q satisfying

Gx(z, ·) + σ(t, ·)
∫ ·

0 σ(t, u)T du+ φ(t, ·) = Gz(z, ·)γ(z, t),
σ(t, ·) = Gz(z, ·)ψ(z, t).

∀ (t, z) ∈ R+ × Z. Let ys(·) ∈ G, thus for some zo ∈ Z, ys(·) = G(zo, ·).
Define Z as the solution to (4.10) with initial condition Z(s) = zo and define the
infinite-dimensional process yt(x) by the relation yt(x) = G(Z(t), x). Then

dyt(x) = Gz(Z(t), x)γ(Z(t), t)dt+Gz(Z(t), x)ψ(Z(t), t) ◦ dW (t)
=

(
Gx(Z(t), x) + σ(t, x)

∫ x
0 σ(t, u)T du+ φ(t, x)

)
dt+ σ(t, x) ◦ dW (t)

=
(
∂
∂x
yt(x) + σ(t, x)

∫ x
0 σ(t, u)T du+ φ(t, x)

)
+ σ(t, x) ◦ dW (t).

(B.10)
Thus, y solves the Fisk-Stratonovich SDE (4.8) with drift defined as in (4.9).

Now, let us prove necessity. Then, we have to assume f -invariance. If we take
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the differential

dyt(x) = d(G(Z(t), x) = Gz(Z(t), x)γ(Z(t), t) dt+Gz(Z(t), x)ψ(Z(t), t) ◦ dW (t).

Comparing the latter differential with (4.6) and equating the drift and volatility
coefficients yields (B.8)-(B.9) for any t ≥ s, but with z = Z(t). Since time and
initial point over the manifold may be chosen arbitrarily, (B.8)-(B.9) are general
results. �



Appendix C

Pricing Options with a
Consistent HJM Model

Digital Caps

Consider a general HJM model under the risk-neutral measure Q specified by
(2.1). We also assume that

σ(t, T ) = [ σ1(t, T ) . . . σq(t, T ) ]

are deterministic functions of (t, T ), and hence forward rates F (t, T ) are Gaussian
distributed. Let us consider now a European-style binary option, with expiration
date T and exercise price K, on an underlying bond with maturity S (where of
course T < S). The following general pricing formula may be derived:

Proposition 7 The price, at t = 0 of the security

h(T ) = P (T, S)1{P (T,S)−K≥0}

is given by
V (h, 0) = P (0, S)N(d+) (C.1)

where

d+ :=
log

(
P (0,S)
KP (0,T )

)
+ 1

2ϑ
2(T, S)

ϑ(T, S) ,

ϑ2(T, S) :=
∫ T

0
‖ς(u;T, S)‖2 du ;

(C.2)
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and,
ς(t;T, S) := S(t, S)− S(t, T ) = −

∫ S

T
σ(t, s) ds. (C.3)

Proof. Let us start with the fundamental arbitrage-free equation

V = E
[
D(0, T )P (T, S)1{P (T,S)≥K}

]
(C.4)

where we are taking the expectations with respect the equivalent martingale
measure Q associated to the money-market numeraire B(·).

The Radon-Nikodym derivative that changes S-forward measure QS into the
money-market measure Q will be given by

λS(T ) = dQS

dQ
= P (T, S)/P (0, S)

B(T )/B(0) = D(0, T )P (T, S)
P (0, S) .

Substituting into (C.4), and combining with the measurability at t = 0 of P (0, S)

V = E
[
P (0, S)λS(T )1{P (T,S)≥K}

]
=

= P (0, S)QS (P (T, S) ≥ K) .

Now we have the value V for the call option in terms of the forward measure QS.
For computing the probability QS, first, note the following:

QS(P (T, S) ≥ K) = QS

(
P (T, T )
P (T, S) ≤

1
K

)
= QS

(
log P (T, T )

P (T, S) ≤ − logK
)
.

We remark that it is enough to introduce the auxiliary processes,

WT,S(t) := P (t, T )
P (t, S) ,

and,
ZT,S(t) := logWT,S(t),

to conclude that ZT,S(T ) distributes like

ZT,S(T ) ∼ N
(

log P (0, T )
P (0, S) −

1
2ϑ

2(T, S), ϑ2(T, S)
)
,

and then
QS(ZT,S(T ) ≤ − logK) = N(d+).
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�

Lemma 5 The price at t = 0 of the security

h(T ) = P (T, S)1{P (T,S)−K<0}

is given by
Π(h, 0) = P (0, S)N(−d+) (C.5)

where the quantities d+ are completely determined by the identities (2.17) to
(2.18).

Proof. First consider the identity option at time t = 0

V + Π = E
[
D(0, T )P (T, S)

(
1{P (T,S)−K≥0} + 1{P (T,S)−K<0}

)]
= E [D(0, T )P (T, S)] ,

under the risk-neutral martingale measure. By using the Change of Numeraire
Theorem in an identical way to that shown by Proposition 7 in this appendix,
recall first that the likelihood

λS(T ) = dQS

dQ
= P (T, S)/P (0, S)

B(T )/B(0) = D(0, T )P (T, S)
P (0, S) ,

induces the change of the S-forward measure into the risk-neutral measure. There-
fore we have:

E [D(0, T )P (T, S)] = E
[
λS(T )P (0, S)

]
= ES [P (0, S)] ,

and then the relation:
V + Π = P (0, S) (C.6)

is inferred. Finally,

Π = P (0, S)− V = P (0, S) (1−N(d+)) = P (0, S)N(−d+) (C.7)

�

Corollary 4 (Digital Caplet Pricing for Gaussian Forward Rates.) The price
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at t = 0 of the binary j-caplet, δj, with payoff:

hδj
(xj) = 1{Lj(xj−1)−K}

is given by
δj(hδj

, 0) = (1 + τjK)Pj(0)N(−d+) (C.8)

where

d+ :=
log

(
Pj(0)

κPj−1(0)

)
+ 1

2ϑ
2(0, xj−1)

ϑ(0, xj−1) , (C.9)

ϑ2(0, xj−1) :=
∫ xj−1

0
‖ς(u;xj−1, xj)‖2 du ; (C.10)

ς(t;xj−1, xj) := −
∫ xj

xj−1
σ(t, s) ds. (C.11)
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