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Chapter

Physiological and Clinical Aspects 
of the Endocrinology of the 
Estrous Cycle and Pregnancy in 
Mares
Katy Satué and Juan Carlos Gardon

Abstract

The use of advanced reproductive endocrinology can generate important 
economic benefits for equine breeding farms. Pregnancy in the mare involves con-
siderable endocrine changes, which can be explained in part by the development of 
different structures such as embryonic vesicles, primary and secondary CL, endo-
metrial cups and development of fetoplacental units. Both the pregnant mare and 
the fetus adapt to this development with unique mechanisms, such as alterations 
in the maternal endocrine metabolism and hormonal feedback. Since the ability to 
produce a viable foal is critical for the broodmare, the maintenance of the gestation 
implies almost a year of physiological effort. Therefore, the joint knowledge of 
basic reproductive science and current clinical endocrinology allows veterinar-
ians and breeders to be better positioned to achieve their objectives. This chapter 
reviews normal and abnormal endocrine patterns during the equine estrual cycle, 
pregnancy. We also consider hormonal evaluation related to placentitis, abortions, 
recurrent pregnancy loss, and premature deliveries. Also, several aspects associated 
with endocrinological control of the reproductive cycle, ovulation, parturition, 
high-risk mare, and hormone supplementation will be developed.

Keywords: estrous, clinical endocrinology, mare, pregnancy

1. Introduction

The gestation in the mare begins with the fertilization of the ovum, then the 
implantation of the blastocyst in the uterus followed by the development of the 
placenta and fetus until delivery. Therefore, gestation is a dynamic and coordinated 
process involving systemic and local changes in the mare that support the supply of 
nutrients and oxygen to the fetus for growth and development in the uterus [1]. In 
part, these changes occur through the secretion of hormones in the placenta, which 
in turn interact with each other and exert extensive effects on maternal tissues 
during gestation [2]. These endocrine changes in maternal physiology adaptations 
to gestational status result from modifications in the maternal environment of 
steroids such as progesterone (P4), estrogens, androgens, and other hormones such 
as relaxin and prostaglandins (PG). However, an inadequate adaptation of maternal 
physiology can lead to gestational complications, such as restriction or overgrowth 
of the fetus and premature delivery [3].
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Since an understanding of endocrinology in equine species is useful when con-
sidering hormone treatment of cyclic and pregnant mares, this chapter considers a 
basic review and applications of this information in clinical therapeutic situations. 
For this reason, this chapter aims to provide an overview of the endocrine changes 
that occur in the mare in response to gestation and to discuss the key role of hor-
mones in mediating pathological processes.

2. Neuroendocrine control of the estrus cycle in cycling mares

The estrous cycle is defined as the interval of time between two consecutive 
ovulations. The approximate length varies between 18 and 22 days, considering 
on average a period of 21 days [4, 5]. The current nomenclature stipulates that the 
estrous cycle consists of two differentiated stages: estrus or follicular phase and 
diestrus or luteal phase. These phases are characterized by internal modifications 
of the sexual organs and glandular system as well as behavioral alterations based on 
the levels of oestradiol (E2) and P4 [6, 7].

2.1 Follicular phase

Estrus, heat or follicular phase is characterized by the presence of follicles at 
different stages of development, and the simultaneous increase in the secretion of 
E2. It has a duration of about 5–7 days, with a variability of 3–9 days related to the 
season. Thus, estrus is extended in autumn (7–10 days) and is shortened consider-
ably, in late spring and early summer (4–5 days). During this period the mare is 
sexually receptive to the stallion genital tract and is ready to receive and transport 
of sperm and finally culminates with ovulation [5, 6, 8].

2.1.1 Follicular dynamics

Ovarian follicular development is a complex dynamic process, characterized by 
marked proliferation and differentiation of follicular cells, providing an optimal 
environment for oocyte maturation and preparation for fertilization after ovulation 
[9]. Among the recruited follicles in each follicular wave, dominance takes place 
and one follicle of the cohort acquires the ability to continue growing while oth-
ers undergo atresia. The regulation of each wave and follicular selection involves 
interactions between specific circulating gonadotropins and intrafollicular factors, 
ensuring that each follicle is properly stimulated to grow or regress at any stage of 
development [8]. From an experimental point of view, the occurrence of a wave 
is defined as follicular growth or simultaneous emergence of a variable number of 
follicles below 6–13 mm in diameter [10, 11]. In the mare, these follicular waves 
are classified depending on their ability to develop the dominant follicle (primary 
waves) or, in contrast, generate only small follicles (smaller waves). Thus, the main 
waves or greater originate several follicles subordinate and a dominant follicle, 
while smaller waves, the follicles are not larger than 30 mm in diameter and then 
regress [12, 13].

During each cycle produces 1 or 2 major follicular waves, differentiated accord-
ing to time of onset at primary and secondary. The primary major wave occurs near 
the middle of the diestrus, in which the dominant follicle ovulates at the end or near 
the end of estrus. The largest wave precedes the previous secondary and emerges 
during late estrus or early diestrus. There are two anovulatory follicular waves fol-
lowed by an ovulatory surge during the estrous cycle [14, 15].
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Steroidogenesis in the ovaries involves both theca and granulosa cells. The antral 
follicles acquire receptors for follicle-stimulating (FSH) and luteinizing (LH) hor-
mones in the membranes of the granular cells and theca, respectively. Cholesterol 
passes through theca cell plasma membrane attached to a lipoprotein, is stored in 
cytoplasmic vacuoles, and is transported to the outer membrane of the mitochon-
dria. The LH is released in a pulsating form from the anterior pituitary gland and 
binds to its receptor in the theca cell membrane, mobilizing cholesterol. Inside 
theca cells, the StAR protein helps transfer cholesterol to the internal mitochon-
drial membrane, where the cytochrome P450 (CYP) enzyme system divides cho-
lesterol into pregnenalone (P5), and subsequently, P5 becomes to androstenedione 
(A4). The A4 produced in theca cells is transported through the basal membrane to 
the granulose cells. There FSH supports the steroidogenic pathway and converts A4 
into E2 [16].

Increased concentrations of estrogen stimulate the secretion of LH, which in 
turn induces greater estrogen synthesis. This progressive increase in estrogen also 
promotes the onset of LH receptors in granulosa cells, which facilitates the transi-
tion from the antral stage to the preovulatory stage, when the oocyte reaches the 
final stage of maturation. At 6 days after the emergence of major follicular wave 
deviation occurs. This event relates to the growth rate difference of the preovula-
tory follicle size (22.5 mm) compared to the subordinate follicles (19 mm) [12, 13, 
17]. Deviation is related to inhibin secretion [12] and insulin-like growth factor-1 
(IGF-1) [13, 17]. Specifically, inhibin reduces FSH secretion, making it impossible 
to continue the development of the subordinate follicle. However, the dominant 
follicle continues to grow at a constant rate of 2.3 mm per day until reaching a size 
of 40 mm in response to the increased sensitivity to FSH. As has been mentioned, at 
this stage of development, granulosa cells also develop receptors for LH required for 
final oocyte maturation and ovulation after the LH surge [18].

As has been demonstrated in different horse breeds such as Quarter Horse, 
Arabian, Thoroughbred, and Spanish Purebred, the maximum diameter of the ovu-
latory follicle usually varies between 40 and 45 mm [19], although the range may be 
higher (30–70 mm) [7, 20]. Moreover, size differences were established concerning 
the breeding season or the presence of multiple ovulations. Thus, the follicles reach 
a size 5–8 mm higher in spring than in summer or autumn and are 4–9 mm lower in 
multiple ovulations compared to the simple [20, 21].

The highest concentrations of estrogen secreted by the granulosa cells of the 
preovulatory follicle also induce the appearance of typical behavioral manifesta-
tions of estrus. Estrogens are also responsible for reproductive changes that 
ensure the reception, transport of sperm and oocyte fertilization [4, 6]. After the 
preovulatory LH surge, ovulation occurs spontaneously 24–48 h before the end of 
the follicular phase. The ovulatory process brings rapid evacuation of the oocyte 
and follicular fluid after follicular rupture at ovulation fossa. Once completed, E2 
concentrations return to basal levels and at the same time completing the oestrus 
behavior in mares [11, 22–24].

2.2 Luteal phase

The diestrus or luteal phase begins at the time of ovulation with the formation 
of CL, which is responsible for the synthesis of P4. Unlike the follicular phase, 
the insensitivity of the corpus luteum (CL) photoperiod makes the length of this 
period more constant. Most research estimates an average duration of 14–15 days 
but can be more durable in mid-summer (16 days) than in spring or autumn 
(13 days) [5, 6].
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2.2.1 Formation of corpus luteum

The disorganization of the follicular wall after ovulation allows blood ves-
sels and fibroblasts invade the follicular cavity. Luteinization involves structural 
and functional changes in granulosa and theca cells. These are the same cells that 
initially produced E2 and become into luteal cells that produce P4. P4 remains high 
from day 5 post-ovulation until the end of the diestrus and exerts specific functions 
related to the preparation of the endometrium to accept and maintain pregnancy, 
endometrial gland development and inhibition of myometrial contractility [24].

Have been described two types of CL regarding the presence or absence of 
central blood clot. In a high percentage of cases (50–70%) in place of ovulation, a 
core clot develops surrounded by luteal tissue. This type of condition is defined as a 
corpus hemorrhagic. The cavity begins to fill with blood, fibrin, and transudate for 
the first 24 h, reaching the maximum size at 3 days. Around day 5 post-ovulation 
CLs that develop a central cavity usually, have a significantly higher size (32.8 mm) 
to those without it (26.0 mm). The ratio of the maximum diameter of the CL is 
65–80% compared to pre-ovulatory follicle size and has an outer wall thickness of 
4–7 mm corresponding to the portion of luteinized tissue. As happens with the size, 
texture also changes depending on the type of CL. The CL that develops the central 
cavity is denser than those that lack it, in which the structure is more spongy [25]. 
Usually, the ratio of non-luteal luteal tissue of the corpus hemorrhagic is minimal 
during the early diestrus and maximum in halfway of diestrus. These events are 
associated with the gradual decrease of fluid as a result of the production and 
organization of connective tissue associated with the clotting mechanism [26, 27]. 
Notably, the formation of one type or another of CL is a random event. The mor-
phology luteal repeatability is not always observed in subsequent ovulation [26–28].

Furthermore, continuous P4 levels during diestrus reduce the frequency and 
intensity of gonadotrophin-releasing factor (GnRH) pulses by a feedback mecha-
nism. However, because the pulses of FSH are higher than those of LH, a new 
follicular wave is developed during this period. In the absence of pregnancy, the end 
luteal phase culminates with the lysis of CL induced by the PGF2α of endometrial 
origin and decreased concentrations of P4 [5, 6]. Luteal regression involves several 
structural and functional events characterized by decreased vascularization, an 
increase of connective tissue, hyalinization, atrophy and fibrosis [29].

2.3 Neuroendocrine control of the estrus cycle

Physiological events that occur during the estrous cycle are regulated by the 
coordinated interaction of various hormones and releasing factors like GnRH, FSH, 
LH, E2, P4, and PGF2α, among others [22]. In this section we will describe a synthe-
sis of the most notable changes and the physiological participation that all these 
factors have during the estral cycle in the mare.

2.3.1 Gonadotrophin releasing factor

The increased photoperiod during spring and summer causes decreased secre-
tion of melatonin. This signal has a positive effect on the pulses of hypothalamic 
GnRH, which in turn controls the release of gonadotropins [27]. GnRH pulses 
produced every 45 min originate predominantly LH secretion whereas those occur 
every 6 h stimulate the secretion of FSH. The high-frequency pulses of GnRH (2 
pulses per hour) during estrus favors an increase in LH and FSH decline, while 
reducing the frequency to 2 pulses per day, leads an increase of FSH and LH inhibi-
tion [30]. These endocrine events, allowing the emergence of follicular waves, E2 
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synthesis, and ovulation during estrus and appearance of the CL with P4 release 
during diestrus [24].

2.3.2 Follicle stimulating hormone

Follicle-stimulating hormone describes two types of secretion patterns during 
the estrous cycle in the mare: uni or bimodal. The bimodal pattern occurs frequently 
during the spring transition period and the ovulatory season. The first peak of FHS 
appears between the 8th and 14th day of the cycle, the moment in which the largest 
follicle reached a diameter of 13 mm [18]. This initial increase precedes the begin-
ning of the deviation and is associated with increased synthesis of inhibin by the 
largest follicle [8, 13, 15, 18, 31] and persists until the preovulatory follicle reaches 
22 mm of diameter. The second peak of FSH begins on day 15 of the cycle and it is 
necessary to complete the development of the preovulatory follicle [19, 31]. Unlike 
the bimodal pattern, the first peak of FSH would be absent in the unimodal pattern 
[18]. In the latter pattern, FSH levels remain low during estrus, rise in times around 
ovulation, maintaining increased during diestrus [31].

FSH is also involved in the development of the LH receptors in the preovulatory 
follicle [32, 33]. At the start of follicular growth, low levels of estradiol exert nega-
tive feedback on the hypothalamic-hypophysis axis (HHA) controlling the tonic or 
basal release of gonadotropin. This mechanism controls the follicular growth and 
E2 synthesis continuously preventing ovarian overstimulation. After the period of 
follicular growth, once the dominant follicle has been selected, the E2 and inhibin 
levels are significantly increased. This elevation of E2 is responsible for the charac-
teristic changes of the genital tract and signs of heat during estrus. Furthermore, 
this response exerts positive feedback on the HHA, favoring the emergence of 
preovulatory LH surge, necessary to produce the ovulation. Additionally, the 
stimulatory effects of E2 on LH combined to the inhibitory action of inhibin on FSH 
create the ideal microenvironment for the final maturation of the oocyte, inhibiting 
the development of immature follicles [4].

2.3.3 Luteinizing hormone

LH levels gradually increase from day 5 to the day of ovulation, when it reaches 
the maximum concentration [7, 34]. The pre-ovulatory LH surge occurs as a result 
of the positive feedback mechanism exerted in the adenohypophysis by E2 concen-
trations secreted by the granulosa cells of the preovulatory follicle. However, the 
peak of E2 is reached 2 days before the LH surge. During diestrus, LH is released 
in a pulsatile manner, with a frequency of 1.4 pulses per 24 h and for a period 
of 20–40 min at the central level, or 2–4 h per pulse at the peripheral level [34]. 
Therefore, P4 secretion is maintained by basal levels of LH. The decline of LH at 
the end of diestrus is a result of the combined effect of decreased estrogen positive 
feedback, and the resurgence of negative feedback induced by P4 on the HHA. This 
gonadotropin not only participates in the development and maturation of the 
primary follicles but also in the development and maintenance of CL during the 
luteal phase [8, 13, 22].

2.3.4 Estradiol-17β

The ability of estrogen synthesis is dependent on the effect of FSH on granulosa 
cells. In the absence of P4, estrogens begin to be actively secreted by the preovula-
tory follicle 5–7 days before ovulation. This event coincides with the time of depar-
ture and reaches the peak 2 days before ovulation [5, 22], and will be responsible for 
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the preovulatory release of LH. After ovulation, E2 levels begin to decrease, reach-
ing basal levels at day 5 post-ovulation [13, 19].

Although estrogen levels are directly related to the degree of ovarian activ-
ity, sexual receptivity and reproductive tract changes [4, 6, 13, 31, 35] there is no 
evidence of a direct relationship between the intensity of endometrial edema and E2 
concentration. This situation is much clearer on P4. Swelling occurs when P4 levels 
are <1 ng/ml, so this hormone could be responsible in principle on the intensity 
of edema, among other behavioral and morphological changes of the cervix and 
uterus [35]. However, at the time of ovulation inverse correlations are established 
between E2 and FSH levels associated with the negative feedback effect of inhibin, 
as previously referred [31].

2.3.5 Progesterone

The steroidogenic activity of P4 depends on the action of LH on theca cells. As 
noted above, levels of P4 are <1 ng/ml during estrus [19, 36]. After ovulation, it 
increases progressively and significantly to the 5th or 6th day, with values similar to 
those of pregnant mares during the first 14 days of gestation. At this time the CL is 
fully functional and P4 levels remain high until day 9 [35, 37], consistent with the 
maximum diameter reached by the CL [7, 20, 35, 37]. However, peripheral concen-
trations of P4 are highly variable between mares. This variability is associated with 
secretory capacity CL and hormonal catabolic rate. Perhaps this fact may explain 
the differences in P4 levels between different breeds during the first 5 days of the 
luteal period, despite the similarity in length of estrous cycles. Among other factors 
related to variations in levels of P4 highlights the number of ovulations. In fact, 
double ovulations induce higher concentrations of P4 compared to simple ones [35].

P4 inhibits the secretion and pulsatile release of GnRH and LH but does not 
modify the pattern of FSH [7, 13, 15]. This event, unlike what happens in other 
species, enabling a new wave of follicular growth and in some cases the presence of 
ovulation during diestrus related to high levels of this hormone [18, 22, 38]. After 
lysis of the CL at the end of diestrus, P4 is drastically reduced to levels <1 ng/ml, a 
fact which promotes the mare returns to estrus [19, 36].

2.3.6 Prostaglandin F2α

In the absence of pregnancy, the average life span of the CL is controlled by the 
release of endometrial PGF2α source, establishing a bimodal pattern of discharge 
around day 13–16 of diestrus. While the first 4-h peak precedes the decline of P4, 
the second occurs during and after luteolysis. Luteolysis involves decreased blood 
supply, leukocyte infiltration, cell disruption and loss of lutein steroidogenic capac-
ity by apoptotic or non-apoptotic mechanisms intended to disintegrate the CL and 
therefore secretion P4 [39, 40].

3. Recent advances in hormonal control of estrous cycle

In mares, the natural breeding season extends from spring to early autumn. 
Until now, various methods have been used to advance the onset of the breeding 
season or to synchronize the estrus during the reproductive season. Ovulation 
induction protocols have also been developed for use in artificial insemination or 
embryo transfer programs [41, 42].
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3.1 Gonadotropin releasing hormone

Seasonal reproductive inactivity in mares is due to reduced synthesis and storage 
in the hypothalamus of GnRH and decreased amounts of FSH and LH in the ante-
rior pituitary gland [27]. Taking this physiological basis into account, it would be 
expected that the administration of gonadotropins to anestrous mares will restart 
reproductive capacity.

The administration of a single dose of GnRH to mares causes an increase in the 
circulating concentrations of FSH and LH [43]. However, constant infusions result 
in a continuous release of both hormones [44]. An experience conducted in the 
late 1980s reported that 50% of mares treated during the seasonal anestrous had 
fertile estrous after infusion of GnRH for 28 days (100 ng/kg; SC). However, this 
same experiment showed that mares with transitional anestrous were more likely to 
respond to GnRH than mares with deep anestrous [45].

In another study, daily but not continuous administration of GnRH to induce 
ovulation in anestrous mares only induced the development of preovulatory follicles 
[46]. Also, another report [47] showed that the administration of 0.5 mg GnRH 
three times daily for 7 or 7.5 days induced normal follicular maturation and normal 
luteinization in anestrous mares. From these studies, it has been demonstrated that 
the administration of GnRH in diverse protocols is not profitable and requires a lot 
of manpower. It also results in variable response to treatment among mares, espe-
cially deep anestrous mares.

3.2 GnRH agonists

GnRH is known to be responsible for the secretion of FSH and LH, but studies 
performed to evaluate the efficacy of GnRH-agonists are conflicting. GnRH ago-
nists were used as injections or slow-releasing implants to induce estrus and ovula-
tion in anestrous and transitional mares. The GnRH agonists available for mares 
include deslorelin, buserelin, and historelin [48].

According to Allen et al. [49] two injections of GnRH agonists each day or 
continuous administration of GnRH agonists were able to induce follicular develop-
ment and ovulation in acyclic mares. In the same way, Bergfelt and Ginther [26], 
demonstrate the same result where mares where about 60% of treated mares with 
GnRH-agonist ovulated within a 21-day long treatment.

In a study conducted in transition mares for 28 days, Harrison et al. [50] 
administered buserelin twice daily (40 μg, IM, q 12 h) for 28 days, or as SC 
implants releasing 100 μg/day. 45% of the mares ovulated between the 10th and 
25th day after the start of treatment, in response to the two daily injections. 
However, 60% of the mares ovulated between 4 and 30 days after implant treat-
ment. The same results were observed when the GnRH agonist was combined 
with E2 [51].

Deslorelin has also been used to induce cycle and ovulation in mares. Slow 
liberation subcutaneous deslorelin implants are effective in increasing LH and 
accelerating ovulation in mares [52, 53].

It is important to indicate that the response is in correlation with the follicular 
size at the beginning of the treatment and the depth of anestrus. This means that 
due to the insensitivity of GnRH, mares that are already in the transition period are 
more likely to respond to the treatment compared to those who are in deep anestrus 
[54]. Another negative aspect of GnRH treatment in anestrous mares is the risk of 
early pregnancy losses due to inadequate luteal function [26].
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3.3 Progesterone and progestins

The administration of P4 suppresses the release of LH from the anterior pituitary 
gland. Once P4 supplementation ceases, the so-called “rebound effect” induces 
follicular maturation and ovulation. Its use in equine reproduction is a common 
practice and the available protocols include progestogens administered orally or 
parenterally. However, its use in mares with seasonal anestrous is questionable.

Different studies indicate that mares in deep anestrous or early transition do not 
anticipate the first ovulation of the year with P4 treatments [30, 55]. However, it has 
been shown that, if treatment is carried out at the end of the transition period and 
the mares have at least one follicle of more than 20 mm in diameter in the ovaries, 
they show regular post-treatment cycles [56].

Intravaginal devices containing P4 (CIDR, PRID, and intravaginal sponges) have 
been used in mares. Indeed, Hanlon and Firth [57] examined the effect of intravagi-
nal devices placed during 10 days in transitional Thoroughbred mares. The results 
of the experiment showed that the use of P4 has a positive effect in bringing forward 
the first estral cycle of the breeding season. Compared to control mares, in the first 
21 days of the season, 95.2% treated mares were served and conceived sooner after 
the start of the breeding season.

Regumate is the most commonly used orally administered progestogen. Its active 
ingredient is allyl trenbolone, also called Altrenogest. Allen et al. [55] evaluated the 
effect of oral P4 treatment in mares with seasonal anestrous. Within 8 days, 88% of the 
treated mares showed estrous behavior and within 18 days of treatment interruption, 
84% had ovulated. Based on these figures, the treatment gave a positive result in the 
acceleration of cyclicity in mares, but its response depends on the depth of the anestrus.

3.4 Recombinant equine FSH (reFSH) and LH (reLH)

The use of recombinant equine FSH (reFSH) has been reported to induce 
follicular growth in cyclic mares [58, 59]. A study reviewed in 2013 however deter-
mined the efficacy of it in deep anestrous mares to be very successful with ovulation 
rate of 76.7% in response to FSH treatment followed by human chorionic gonado-
tropin (hCG) administration [60].

Mares in deep anestrous treated with reFSH alone or reFSH and reLH in com-
bination under natural photoperiod showed a significant increase in follicular 
development within 6 days on average and all of them ovulated within 10 days. 
In comparison, the control group needed a significantly longer time for follicular 
growth and only 30% of the control mares had ovulated at the end of the 14 days 
used for the experiment [61].

3.5 Dopamine antagonists and prolactin

Studies in sheep found that dopamine antagonists are effective in increasing LH 
secretion during estrus by inhibiting the release of dopamine in the brain [62]. In 
mares, the increased release of dopamine during winter anestrous has been con-
firmed in studies measuring a higher concentration of dopamine in the cerebrospi-
nal fluid during deep anestrous. It has also been shown that inhibition of dopamine 
D2 receptors may accelerate the onset of the ovulatory season in mares. Sulpiride, 
domperidone, and perphenazine have been studied [63].

Mari et al. [64] compared the efficacy of sulpiride and domperidone, two long-
acting dopamine antagonists, to induce ovarian activity in mares with deep anes-
trous. The results showed that sulpiride administration was effective in accelerating 
the transition period and first ovulation in mares with deep anestrous.
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On the other hand, as daylight increases, the concentration of prolactin (PRL) 
also increases. Dopamine is an inhibitor of PRL release, and it has been suggested 
that the administration of this hormone may help stimulate cycling in mares in 
anestrus [65]. Various studies have confirmed that the administration of recom-
binant prolactin from different animal species (equine, porcine and ovine) has a 
stimulating effect on mares in anestrus. Thompson et al. [66] examined the effect 
of subcutaneous administration of recombinant porcine prolactin (rpPRL) pony 
mares for 45 days. About 17 days after the start of treatment, a high percentage 
of treated mares showed signs of heat and ovulation accelerated by more than 1 
month. However, another study examined the effect of a single dose of recombinant 
ovine prolactin (ovPRL). As a result, significant stimulation of follicular develop-
ment was observed, but only one mare ovulated [67].

3.6 Induction of ovulation in mares

A reliable ovulation-inducing drug is one that can trigger ovulation within a 
certain “fixed” period of time. This pharmacological action can provide enormous 
advantages in anticipating the right time for artificial insemination. Several phar-
macological agents such as GnRH and GnRH agonist, hCG, recombinant equine 
LH, and equine pituitary extracts, prostaglandins and kisspeptin have been used to 
determine their efficacy in ovulation induction [68].

3.6.1 GnRH

The frequency of GnRH pulses is the main regulator of LH secretion by the 
adenohypophysis [69]. Because of this stimulation, they can be used as an ovulatory 
agent and therefore can be used to induce ovulation in mares. On the other hand, 
due to its natural origin, it does not cause an immune response after being admin-
istered in several sessions. There is also little risk of contamination as GnRH is a 
synthetic product. In the 1990s, several experiments were conducted to evaluate the 
efficacy of GnRH in ovulation induction in cyclic mares [70, 71]. In one of them, 
the effect of a single administration of 2 mg of synthetic GnRH was tested but did 
not affect ovulation induction. However, daily injections of the same compound 
from day 2 of heat to ovulation resulted in a shortening of the duration of heat and 
the time for ovulation [72]. Likewise, Duchamp et al. [73] conducted a study to try 
to identify a more suitable ovulatory agent. To do that, they compared the effect of 
an intramuscular injection of 2.500 i.u. hCG and 2 mg GnRH (not synthetic). The 
use of hCG, injected when the follicle reached 35 mm in diameter, induced ovula-
tion in 24 or 48 h. However, GnRH was not effective in shortening ovulation time 
compared to the control group.

On the other hand, the pulsatile infusion of endogenous GnRH was effective 
in advancing ovulation time in cyclic mares [70]. Treatments with low doses of 
endogenous GnRH (2.5 μg) continuous infusion for 14 days demonstrated increased 
LH and ovulation in all treated mares compared to controls [74].

3.6.2 GnRH-agonist

3.6.2.1 Deslorelin (ovuplant and other products)

Deslorelin is a potent GnRH agonist and is marketed as a controlled-release 
subcutaneous implant under the trade name Ovuplant™. In the past, several 
authors have investigated the efficacy of Deslorelin in inducing ovulation in mares 
[29, 75, 76].
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It has been shown that between 84 and 93% of mares ovulate after 2 or 3 days of 
treatment, respectively [77]. However, adverse effects have been reported for this 
drug. Mares treated with Ovuplant™ showed a prolonged interovulatory interval 
and estrual cycles of 3–7 days longer than controls [78]. In this sense, it was sug-
gested that the GnRH agonist may cause a decrease in the regulation of the pituitary 
gonadotropic cells [79]. Besides, additional studies reported suppression of follicu-
lar growth and decreased FSH levels in mares treated with Ovuplant™ [80]. A study 
conducted by McCue et al. [81] showed that the extraction of Ovuplant™ after 
48 h prevented a prolonged interovulatory interval. These authors also observed 
an alteration in ovulation rates. However, Ovupant™ is currently not commercially 
available.

A short-term release product of deslorelin was developed in a biocompatible 
liquid vehicle called BioRelease™ [82]. This product releases deslorelin for approxi-
mately 6–36 h. An increase in the number of ovulations within 48 h has been 
demonstrated (75% vs. 7% for controls). There was also no effect of fertility and the 
number of coverages per conception decreased in treated mares (1.6 vs. 2.9).

Subsequently, a greater number of injectable deslorelin products have been 
developed. Many of them are suspensions in saline or sterile water and do not 
contain any slow-release mechanism. McCue et al. [83] compared several deslorelin 
formulations and reported that all of the formulations tested in their study resulted 
in a shortening of the follicular phase, acceleration of ovulation and a similar 
response to human chorionic gonadotropin (hCG). It is important to note that these 
studies were conducted in the middle of the breeding season.

3.6.2.2 Buserelin

Different works have also tested Buserelin for its effect of inducing ovulation 
in mares [84]. Treatment with 40 μg de buserelin (4 doses/12 h) caused ovulation 
without altering fertility in mares [84, 85]. Also, the effect of treatments with 20 μg 
or 13.3 μg of buserelin (4 doses/12 h; or 3 doses/6 h respectively) was comparable 
with treatment with 2.500 IU of hCG (iv).

However, some problems with Buserelin to induce ovulation were also reported 
[86]. Mares treated with 40 μg iv. of Buserelin (2 times daily), 2.500 IU of hCG 
(single dose iv) and 2 ml of water distilled as placebo (iv) were compared. The high-
est ovulation rate was found in hCG treatments where 88% of the mares ovulated 
between 36 and 48 h. However, Buserelin treatment caused only 22.7% ovulation 
within 48 h.

Buserelin has also been given during early diestrus to pregnant mares as a means 
of improving pregnancy rates [87, 88]. These studies used doses of 20–40 mg of 
Buserelin between days 8 and 12. The results showed that pregnancy rates after 
ovulation increased by approximately 10%. The exact mechanism of how GnRH 
increases pregnancy rates is unclear since P4 does not appear to be increased.

3.6.2.3 Human chorionic gonadotropin

hCG is a glycoprotein hormone and has a biological function like LH. It is com-
posed of two subunits (α-subunit and β-subunit). The biological activity of hCG 
is determined by β-subunit, which is composed of 145 amino acids [89]. Several 
experiments have been conducted to test the efficacy of hCG in ovulation induction 
[73, 90, 91]. The results of these studies showed that administration of 1.500–
3.300 IU of hCG to mares with a follicle in the ovary 35 mm in diameter, or after 
estrus day 2, induced ovulation within 48 h. The administration of hCG to mares 
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with a follicle in the ovary 35 mm in diameter, or after estrus day 2, induced ovula-
tion within 48 h. The administration of hCG to mares with a follicle in the ovary 
35 mm in diameter, or after estrus day 2, induced ovulation within 48 h. However, 
the adverse effect of consecutive administration of hCG has been reported. The 
results demonstrate a null effect from the second administration of hCG.

On the other hand, significant levels of antibodies to hCG were also observed 
after repeated injections [91, 92]. However, there is much conflicting evidence as to 
whether antibody formation affects the efficacy of hCG [93].

3.6.2.4 Equine recombinant LH

The recombinant equine LH (reLH) was successfully developed and tested for both 
in vitro and in vivo efficacy [94, 95]. To test the efficacy of reLH in ovulation induction, 
a study was performed in mares with 35 mm follicles that were treated with 0.3, 0.6, 
0.75, 0.9 mg reLH, 2.500 IU hCG and the number of ovulations within 48 h of injection 
was monitored. With a total of 84 mares of various breeds 28.6, 50, 90, and 80% ovu-
lated within 48 h in response to 0.3, 0.6, 0.75, and 0.9 mg reLH, respectively. Changes in 
hormonal profiles (LH, FSH, P4, E2) in response to 5, 0.65, or 10 mg reLH were similar 
to those of mares of the control group, except for the early increase in LH after reLH 
injection. The result of this study indicates that reLH is a drug that induces ovulation in 
mares with a follicle size of 35 mm in 48 h. It is important to point out that as a synthetic 
product it offers good potential by having, for example, a low production cost.

3.6.2.5 Equine pituitary extracts

The raw extract of equine gonadotropin (CEG) from the pituitary, contains FSH 
and LH. These extracts have been tested to determine if they can be used as agents 
to control the estrual cycles of mares. Also, due to their LH content, the effect of 
CEG for ovulation induction has been tested. Duchamp et al. [73] showed that 80% 
of ponies and 57% of mares ovulated 2 days after the administration of 50 mg and 
25 mg of CEG, respectively. However, there is one major obstacle to these results; 
the FSH and LH relationship in cEG is not always consistent. Another important 
factor to keep in mind is that CEG may be contaminated with other pituitary 
hormones. Also, the potential transmission of certain associated diseases between 
animals or between animals and humans [96–98].

3.6.2.6 Prostaglandins

Savage and Liptrap [99], reported on the use of PGF2α was able to induce ovula-
tion in mares. By administering 250 μg PGF2α synthetic (Fenprostalene) 60 h after 
the onset of estrus, the interval between treatment and ovulation and the duration 
of estrus were significantly reduced.

Despite these good results, no other PGF2α could be found that could give similar 
results [100]. It is therefore believed that the prolonged action of Fenprostalene was 
responsible for these results. Another PGF2α (Luprostiol), has also been shown to 
induce a release of LH from the anterior pituitary gland [101].

3.6.2.7 Kisspeptin

Kisspeptin is a neuropeptide that induces the secretion of gonadotropins through 
the stimulation of GnRH secretion and has also been described as having a role in 
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triggering the onset of puberty [102, 103]. A study in pony mares demonstrated the 
anticipated ovulation when treated with 10 mg of kisspeptin. Another report identi-
fied that the administration of 500 μg and 1.0 mg of kisspeptin induces indistinguish-
able LH and FSH responses to 25 μg GnRH. However, a single injection of 1.0 mg of 
kisspeptin (iv) was insufficient to induce ovulation in the mare in heat [104].

4. Hormonal regulation of pregnancy in normal mares

4.1 Progesterone

“Maternal recognition of gestation-MGR” it is essential to establish a complete 
and uninterrupted interaction between the uterus and the conceptus to prevent 
the regression of primary CL as a result of the blocking of luteolysis. The mobility 
of the conceptus within the uterine lumen between days 11 and 15 (or “first luteal 
response of pregnancy”); [27] seem to compensate for the reduced contact sur-
face due to the relatively small size of the equine trophoblast, demonstrating that 
restriction of movement only partially leads to early embryo loss [105]. The PGs 
synthesized and secreted by the concept itself stimulate myometrial contractions 
that promote their migration through the uterus, avoiding premature regression 
of CL. Additionally, the longitudinal direction of the uterine folds, as well as the 
spherical shape of the embryo due to the persistence of the glycoprotein capsule, 
contribute to facilitating this movement [106, 107]. During the mobility phase and 
its subsequent fixation uterine high amounts of estrogen, mainly oestrone sulfate 
(E1S) by the equine conceptus are synthesized, related to the development of the 
embryonic and endometrial vasculature and local effects on myometrial activity, 
uterine mobility and endometrial gland secretion [108, 109].

Embryo implantation begins around day 36 post-ovulation and involves the 
development of the chorionic band from the trophoblast, whose cells invade the 
maternal endometrium giving rise to endometrial cups [110]. Ginther [28] reported 
that the embryonic cup cells produce a hormone called equine chorionic gonadotro-
pin (eCG), formerly known as pregnant mare’s serum gonadotropin. This hormone 
is first detectable systemically between days 35 and 40 of pregnancy. The cups are 
mature and robustly secreting eCG at approximately days 50–60, but they will sub-
sequently undergo sloughing by days 100–150 in most mares This resurgence phase 
of P4 secretion by the primary CL is termed the “secondary luteal phase or output 
2,” whereas the production by supplementary CL is termed the “third luteal phase” 
or “output 3”. These accessory CLs formed, respectively, causing an increase in P4 
secretion around the 75th day of gestation [27, 28, 111]. Thus, during this period, 
two secretion peaks of P4 are described, which gradually decreasing to undetectable 
levels at the 200 days of gestation [112, 113].

Ovarian P4 is necessary for the early maintenance of gestation in the mare 
until 150 days of pregnancy. After the regression of CLs, the placenta is then the 
organ in charge of maintaining gestation [114]. Several studies describe maxi-
mum levels of P4 during the second and third months of gestation, followed by a 
significant decrease to minimum values (<1 ng/ml) from mid-gestation to term 
[115]. Additionally, the presence of eCG causes a change in luteal steroidogenesis. 
In this case, CL changes from synthesizing only P4 to secreting also estrogens and 
androgens, increasing plasma levels rapidly and tripling the basal values [116]. 
However, it is not until approximately day 35 that systemic estrogen rises. The 
source of this estrogen is the ovary, more specifically, the CL and possibly fol-
licles. The stimulation of the ovaries by eCG is responsible for the timing of this 
increase in estrogen. It appears that estrogen is not actually necessary for pregnancy 
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maintenance, because ovariectomized mares administered only exogenous pro-
gestins will maintain pregnancy without the administration of estrogens [28]. The 
origin of both steroids is found in the primary CL, since their increase takes place 
before the formation of the secondary CLs and is absent in mares without func-
tional CL. Although the mechanism by which gonadotropin exerts this activity is 
unknown, an increase in the expression of the enzyme 17α-hydroxylase in charge of 
the conversion of P5 into dehydroepiandrosterone (DHEA) and P4 into A4 has been 
described. Both events coincide with the secretion of eCG, they seem to be limited 
to the first period since they are not detected towards the middle of gestation [116]. 
The increase in P4 responds primarily to the growth of primary CL and the develop-
ment of secondary and accessory CLs [4, 117].

During the period of endometrial cups activity, secretion peaks are described 
for testosterone (T) and A4 [118, 119], whose activity may be decisive in uterine 
processes related to cell transformation associated with decidualization [120]. In 
addition, estrogen production depends on the increased synthesis and availability 
of androgens that are subsequently metabolized by the enzyme aromatase, pres-
ent in luteal tissue even before eCG secretion. Thus, total estrogen levels are like 
right-handed during the first 35 days of gestation and increase around day 40 due 
to follicular development before the formation of CL [121]. Additionally, primary 
gestational CL produces E1S in response to eCG stimulation [113, 115, 118].

The regression of the endometrial cups to 100–120 days of gestation causes 
the cessation of eCG secretion and luteal development, observing a progressive 
decrease in plasma levels of P4 to reach basal values around 200 days of gestation 
[115]. Currently, all the luteal structures present in the ovary have completely 
involuted [27]. From this moment onwards, various metabolites derived from P4 
(progestins) increase in the systemic circulation, that exceed 500 ng/ml during the 
last weeks of gestation, which subsequently fall in the 24–48 h prior to birth [122].

4.2 Progestagens

Progestins can be subclassified as pregnenes and 5α-pregnenes. The pregnenes 
includes P5, P4 and 5-pregnene-3β,20β-diol (P5ββ), while 5α-pregnenes includes 
5α-pregnane-3,20-dione (5αDHP), 3β-hydroxy-5α-pregnan-3-one (3β5P), 
20α-hydroxy-5α-pregnan-3-one (20α5P), 5α-pregnane-3β,20β-diol (ββ-diol) and 
5α-pregnane-3β,20α-diol (βα-diol). Of them, the most important ones in maternal 
plasma during this period are the 5αDHP and its derivatives, 20α5P, and βα-diol. 
The origin of all of them is found in P5, synthesized mainly in the fetal adrenal 
gland, with a production rate exceeding 10 μmol/min. In the placenta, P5 is con-
verted to P4 and this is transformed into 5αDHP in the endometrium [123]. The 
pattern of secretion of 5αDHP at beginning of gestation runs parallel to that of P4, 
while around 90 days the onset of P4 decline gives way to fetoplacental synthesis of 
the different progestogens whose concentrations continue to increase during the 
second half of gestation. Thus, 20α5P, which is initially at 5 ng/ml, reaches 69 ng/
ml at 200 days of gestation and 300 ng/ml at term. In addition, the concentrations 
of βα-diol increase to 484 ng/ml [112], while 3β5P, P5ββ and ββ-diol reach values of 
100, 10 and 100 ng/ml, respectively, towards the end of gestation [124].

The 5αDHP is found primarily at the uterine level during midgestation, but as 
labor approaches, its distribution changes and is predominantly in fetal circula-
tion. This metabolite is an immediate precursor of allopregnanolone, a potent 
gamma-aminobutyric acid (GABA) receptor agonist with activity on myometrial 
relaxation in other species [125–127]. Serum allopregnanolone increases similarly to 
its precursor, reaching maximum values at the middle of gestation and a term [112]. 
However, both P4 and 5αDHP prevent weakly myometrial contractions induced by 
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oxytocin in vitro, suggesting the intervention of the other hormones in the main-
tenance of uterine quiescence [128]. On the other hand, an umbilical increase of P4 
after 300 days of gestation related to a greater expression in the trophoblast of the 
enzyme necessary for the conversion of P5 into P4 has been described [129].

Simultaneously with the production of progestagens, the feto-placental unit 
(FPU) synthesizes phenolic estrogens, E1S and E2 17β and 17α, through the aroma-
tization of dihydroandrosterone (DHA), DHEA and its precursors (3β-hydroxyl 
C-19). The estrogens β unsaturated, equilin and echinelin, specific to the equine 
species, derive from farnesyl pyrophosphate, through a noncholesterol-dependent 
pathway. In general, the pattern of estrogen secretion during gestation is character-
ized by the first peak of secretion around day 40 in relation to follicular develop-
ment before the formation of secondary and accessory CLs and a subsequent 
increase from day 80, reaching maximum levels around 210 days of gestation 
[130–132]. Thus, the initial plasma concentrations of E1S, corresponding to ovarian 
synthesis and are affected by ovariectomy. On the contrary, the subsequent peak 
of liberation comes only from fetoplacental synthesis, descending drastically after 
fetal death [108, 113, 115, 133].

This increase in estrogens temporarily coincides with the hypertrophy of fetal 
gonads, which together with local expression of the enzyme 17α-hydroxylase, lead 
to elevated umbilical levels of P5, T and DHEA [134]. At the same time, maternal 
plasma concentrations of T and DHEA increase after 100 days of gestation, reach-
ing maximum values at 6 months [116, 135] to promote greater perfusion in the fetal 
compartment and the uterine tonicity [27, 136]. Legacki et al. [112] describe DHEA 
values that increase since the first 2 months of gestation to at 6–8 months, decreas-
ing afterward.

The mitochondrial cytochrome P450 side-chain cleavage enzyme (P450scc), 
necessary for the conversion of cholesterol into P5 is present in the glomerulosa 
and reticularis zone of the fetal adrenals from 150 days of gestation. However, its 
expression increases noticeably at the end of gestation, is also found in the fascicu-
lata zone, in the placenta, and the utero-placental tissues. At the same time, fetal 
plasma levels of P5 and its uteroplacental diffusion are doubled and tripled between 
200 and 300 days of gestation and that subsequently descend in the days prior to 
birth [132, 137]. One of the main metabolites of P4, the 5α-DHP, returns to umbilical 
circulation after synthesis in the endometrium, excreting only 30% of its produc-
tion to the maternal circulation. Thus, it has been suggested that it could play a 
relevant role within fetoplacental tissues [137].

4.3 Estrogens

Estrogen production can likewise be determined in serum obtained from 
the mare and used as an indicator of feto-placental health [136]. Although total 
estrogen levels decrease in term gestation, E2 increases dramatically hours before 
parturition with accentuated myoelectric activity at the uterine level, suggesting the 
involvement of E2 in myometrial activation [132, 138]. In fact, estrogens promote 
PGs synthesis and increase endometrial sensitivity to oxytocin, stimulating myo-
metrial contractile activity during delivery [137].

4.4 Cortisol

A few days before parturition, fetal adrenals change from mainly synthesiz-
ing P5 to producing cortisol in response to the stimulation of adrenocorticotropic 
hormone (ACTH). The increase of fetal cortisol is related to preparing the fetus for 
extra-uterine life by stimulating different processes necessary for the maturation of 
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organs such as the liver, thyroid gland, lungs, digestive system, bone marrow and 
cardiovascular system [137]. In addition, cortisol activates the enzymes responsible 
for the synthesis of PGs which, without the presence of progestogens, increase con-
tinuously stimulating the onset of myometrial contractions. In addition, E2 favors 
the uterine response to PGs and may also promote their synthesis [139].

4.5 Prostaglandins

PGF2α play an important role during delivery by promoting myometrial con-
tractibility, along with oxytocin, and cervical ripening and relaxation (PGE2). 
Utero-placental tissues are capable of synthesizing PGs and can be found in 
maternal plasma, fetal plasma and allantoic fluid [140]. However, its bioactivity is 
controlled by the enzyme 15-hydroxyprostaglandin dehydrogenase (PGDH), which 
converts the PGs into inactive metabolites, present in the maternal endometrium 
since approximately 150 days of pregnancy. Since the labile nature of PGs makes it 
difficult to measure one of these metabolites, 13,14-dihydro-15-keto-prostaglandin 
F-2α (PGFM) remained at low levels until day 200, then increased to peak preg-
nancy levels by day 300 and remained at this value until parturition. PGFM uses 
one of its metabolites as an indicator of its circulating levels, with a term increas-
ingly being described, although it is during the second labor stage when its value 
increases up to 50 times [141].

4.6 Relaxin

Relaxin is produced by the trophoblastic cells of the placenta and its activity is 
related to myometrial [137] as well as of the cervix and pelvic ligaments relaxation 
[142]. Maternal plasma levels increase at the end of gestation and during the second 
labor stage. After the expulsion of the placenta, it returns to basal values below the 
detection limit at 36 h, remaining elevated in cases of placental retention [143].

5. High-risk mares and hormone supplementation

5.1 Progesterone

P4 concentrations above 4.0 ng/ml are considered adequate to support early 
pregnancy. However, when levels are <2.0 ng/ml, P4 supplementation is considered 
[137]. Several types of P4 products have been used to maintain pregnancies in 
mares. After oral administration altrenogest is readily absorbed, reaching peak 
levels after 3–6 h [144]. Altrenogest acts by binding to the P4 receptors but has little 
effect on endogenous plasma total progestagen concentrations. Specifically, altreno-
gest is not metabolized to 5α-pregnanes in the horse [128]. For this reason, the only 
scientific evidence that altrenogest prevents loss pregnancy in mares is during the 
first trimester, when it prevented abortion induced by repeated administration of 
PGF2α (cloprostenol) [145]. P4 may exert its effects by interfering with PG produc-
tion stimulated by proinflammatory cytokines. Daels et al. [146] demonstrated 
that the rise in endogenous PGF2α concentrations was inhibited by altrenogest 
treatment. Indeed, when early pregnant mares (21–35 days post-ovulation) were 
exposed to Salmonella typhimurium endotoxin all mares supplemented with 
altrenogest until day 70 remained pregnant, whereas 6 out of 7 mares aborted when 
altrenogest therapy was discontinued on day 50 [147].

Mares with suspected luteal insufficiency can be supplemented with altrenogest 
(0.044 mg/kg per os once or twice daily) or P4 (150 mg/day IM) starting on day 
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3 after ovulation and continuing until 100–120 days of pregnancy. Long-acting 
injectable formulations of P4 and altrenogest are available in some countries [148]. 
Administration of the GnRH analog, buserelin (40 μg), 10 or 11 days after ovula-
tion has been reported to improve luteal function and reduce early pregnancy loss 
[149]. Panzani et al. [150] showed that the use of altrenogest improved recipient 
pregnancy rates compared to untreated controls. A recent clinical study showed a 
positive effect of altrenogest supplementation on embryonic growth rates between 
35 and 45 days after ovulation in Warmblood mares older than 8 years [151]. P4 may 
need to be supplemented generally in early pregnant mares showing estrus signs, 
with a history of repeated pregnancy loss in case of endotoxemia and of stressful 
events. In mares under P4 supplementation continuation of pregnancy has to be 
monitored regularly, since many will lose their pregnancy despite supplementation 
of P4 and this will prevent those mares return to estrus [152].

The latter sentence has been checked. It has been reported that the administra-
tion of a single dose of 20–40 μg of buserelin between day 9 and day 10 after ovula-
tion increases the number of multiple ovulations and gestation up to 5–10% [153]. 
Buserelin does not increase circulating P4 levels or preventing the luteolysis, acting 
independently of CL in the mare [154]. These effects preventing pregnancy loss that 
operating between day 9 to day 10 and day 13 to day 14 of pregnancy.

In a recent study Köhne et al. [155] reported that hCG administration for 
induction of ovulation in mares increased progestin concentration in plasma of 
early pregnancy as well as the embryo size at the time of the start of placentation. 
Periovulatory treatment of mares with hCG may thus be a valuable tool to enhance 
conceptus growth during early pregnancy by stimulation of endogenous P4 secre-
tion. However, Biermann et al. [156] report that hCG-treatment of mares on day 5 
or day 11 post-ovulation influenced peripheral P4 concentrations due to secondary 
luteal tissue but did not alter ovarian and uterine blood flow or increase pregnancy 
rates.

5.2 Progestagens

Several pathological conditions as placentitis, placental separation or fetus as, 
alteration in umbilical blood flow attributable to a cord pathologic condition stimu-
lates inflammatory and immune responses leading disrupt the endocrine capacity 
of the FPU and alterations in endocrine profile in plasma maternal attributed to 
disturbances to the normal synthetic pathway for these pregnanes [126, 157].

Fetal death or imminent fetal expulsión due to uterine torsion, colic, maternal 
stress, or acute cases of experimentally induced placentitis when the mares abort 
rapidly (within 7 days of infection) are related with the rapidly declining of P5 and 
P4 (less than the 95%), consistent with failure of the fetus and feto-placental tissues 
to produce and metabolize progestagens [158, 159].

In mares with chronic placentitis, placental edema, and placentas with poorly 
developed or sparse microvilli [159, 160] unusually high concentrations of all the 
progestagens. This pattern indicates that the fetus and the uteroplacental tissues are 
metabolically active despite the presence of bacteria or their products. In addition, 
Shikichi et al. [157] demonstrated that mares with a high concentration of proges-
tins and low concentration of estrogens after day 241 of pregnancy were likely to 
deliver aborted/dead foals with placentitis. These authors demonstrated elevated 
and low concentrations of progestins and estrogens in the maternal sera of all cases 
with placentitis in pregnant mares, respectively.

The mare’s exposure to ergopeptine alkaloids from the endophyte fun-
gus found on tall fescue grass (fescue toxicosis), ergot alkaloids inhibit fetal 
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corticotropin-releasing hormone (CRH), inhibiting the normal function of the 
adrenal gland to produce the cortisol surge and associated changes in pregnane 
metabolism [137]. In mares with fescue toxicosis, prepartum total plasma progesta-
gen concentrations remain low, their foals have low cortisol concentrations, indicat-
ing suppression of fetal adrenocortical activity and P5 production [161].

Recent studies demonstrated that altrenogest, when given in combination with 
antimicrobials, pentoxifylline and nonsteroidal anti-inflammatory (NSAIDs) 
drugs to mares with placentitis, decreased the incidence of abortion [162]. In these 
cases, altrenogest counteracts uterine contractility induced by inflammation of 
the fetal membranes. In the same way, in bacterial placentitis, a combination of 
trimethoprim sulfamethoxazole, pentoxifylline and a double dose of altrenogest 
(0.088 mg/kg bwt per os s.i.d.) were successful in maintaining pregnancies to term 
[163], while that untreated control mares aborted. When mares were treated with 
trimpethoprim sulfamethoxazole and pentoxifylline without altrenogest, only one 
live foal was born [163, 164]. Despite this, it is not clear what role, if any, altrenogest 
plays within this multi-treatment approach. However, the mares can still abort 
while receiving altrenogest treatment in the last trimester of pregnancy.

5.3 Estrogens

In late gestation total estrogen (including E1S, E2, and its metabolites, equilin, 
and equilenin) may be used for fetal and placental health monitoring. However, it is 
doubtful that total estrogen concentration can predict fetal death as the fetal gonads 
are unlikely to respond to fetal stress [157, 165].

Since the production of estrogens requires both contributions by the fetus and 
placental, reduced concentrations in maternal circulation may indicate or predict 
a stressed or hypoxic fetus that is not producing the estrogen precursors [165]. 
Indeed, E2 [166] and E1S [167] concentrations decreased sharply in mares with 
placental dysfunction and after the induction of abortion. If the fetus is severely 
compromised or die in the uterus, maternal plasma E1S are baseline because 
of the absence of the C19 precursors secreted by the fetal gonads. However, 
pregnancies compromised by equine herpesvirus-1 infection or severe colic can 
present normal or transiently decreased E1S concentrations [168]. Compared 
with the adrenal glands, the gonads are unlikely to respond to fetal stress; 
consequently, so it is doubtful that total estrogen concentrations can predict fetal 
death. Frequent blood sampling of mares induced to abort with PG between 90 
and 150 days of pregnancy indicated that E1S levels did not decline until within 
5 h of abortion [145].

In cases of placentitis at gestational ages between 150 and 280 days, Douglas 
[169] and Shikichi et al. [157] showed hormonal alterations common as elevated 
progestogens and low estrogens in mares that aborted. Although the decline in 
E2 associated with placental dysfunction is thought to reflect placental disease 
per se, Esteller-Vico et al. [170] recommended the estrogen supplementation as a 
means to reduce the risk of abortion associated with placentitis in mares. Recently, 
Curcio et al. [171] showed that in addition to basic treatment with trimethoprim-
sulfamethoxazole and flunixin meglumine, mares with experimentally induced 
ascending placentitis benefited from E2 cypionate supplementation. Conversely, 
altrenogest did not appear to make a difference in outcomes.

After fetal death and stress or fetal weakness, androgens and estrogens levels 
drop rapidly. For better determination of the health state of the fetus, due to the 
metabolism of both steroids, it is recommended to monitor androgens and estro-
gens simultaneously [126].
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5.4 Relaxin

Relaxin is a useful biomarker to assess placental health and can be monitored 
in high-risk mares. Ryan et al. [172] reported a positive relationship between 
circulating levels of relaxin and poor outcomes in high-risk pregnancies. Relaxin is 
detectable in the blood after the 80th day of pregnancy without any changes until 
the second stage of labor. In mares with impaired placental function, in cases of 
placentitis, placental abruption, hydroallantois, and hydramnios relaxin concentra-
tions decrease below 4 ng/mL [143, 172]. Low circulating levels of relaxin have been 
reported both in pony mares affected by fescue toxicosis associated with placental 
disease and agalactia and in Thoroughbred mares, with other forms of placental 
disease or insufficiency [172].

In the case of placental hydrops, the risk of spontaneous rupture of the fetal 
membranes increases significantly [173]. Relaxin has been explored as a potential 
marker of treatment success in placentitis due to its level decrease in cases of spon-
taneously occurring and experimentally induced pregnancy loss [174].

5.5 Prostaglandins

Placentitis is characterized by the production of proinflammatory cytokines 
(such as IL-6 and IL-8) and PGs [175, 176]. PG release increases uterine contractility 
and consequently the risk of premature delivery [138]. Proinflammatory cytokines 
and the PGs of the FPU increases both in response to inflammation/infection, 
inducing premature activation of the fetal hypothalamic-pituitary-adrenal (HPA) 
axis [177], accelerating fetal maturation before parturition [138, 178]. The fetal 
adrenal produces both progestins and, once sufficiently mature, cortisol. Fetal 
cortisol, in turn, enhances placental and uterine PGs production, further enhanc-
ing uterine contractility and resulting in fetal delivery. Since the maturation of the 
equine fetus occurs later in gestation [137] this implies that placentitis or maternal 
disease could be devastating to the newborn foal. However, early fetal maturation 
likely counterbalances premature delivery and may help improve the chances for 
foal survival [138, 178]. The supplementation with progestin and PG synthetase 
inhibitor can maintain equine pregnancy in the presence of PGF2 insults [146, 147]. 
In addition, Esteller-Vico et al. [170] showed that estrogen suppression resulted in 
a decrease in circulating PGFM, which suggests that estrogens partially regulate 
PG production during pregnancy since PGFM concentrations were lower but still 
increased during the last trimester of equine gestation in letrozole-treated mares.

6. Conclusions

Knowledge of the physiological basis of the estrous cycle allows us to understand 
the interaction of reproductive hormones and the factors or events that interact in 
the cyclicity of mares. These basic studies have made possible the correct manipu-
lation of the estrous cycle, the advancement of the reproductive season or the 
synchronization of ovulation. A great contribution in this sense has been possible 
through the description of the follicular dynamics and the study of the different 
structures present in the ovaries of the mares throughout the year.

Likewise, the adequate interaction between the ovary, the placenta, and the fetus 
guarantees the secretion of the correct hormonal patterns necessary for a successful 
pregnancy. Measurements of progestogens, estrogens, and relaxin, among other 
hormones, are useful for monitoring the health status of the placenta and fetal 
viability. This is mainly because placental pathologies or fetal death are mainly due 
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to alterations of these hormones. On the other hand, the hormonal diagnosis allows 
temporizing and early detection of pathological conditions to propose an adequate 
treatment for the maintenance of gestation and with it, the production of a viable 
foal. Substantial progress has been made in recent years in the identification of risk 
pregnancies and their treatment.

All this knowledge helps greatly to improve the work of professionals and 
achievements for the improvement of reproductive outcomes. It is important to 
bear in mind that the constant production of basic knowledge and applied in equine 
reproduction will allow in the future to improve and generate new guidelines in 
reproductive technologies.
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