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ABSTRACT Antimicrobial resistance (AMR) is an
important threat to public health worldwide. Furthermore,
different studies have demonstrated a close association be-
tween antibiotic use in animal production and AMR in
humans. It is well known that it is necessary to reduce
antibiotic administration in farms by finding effective
alternative treatments, using more resistant breeds and
improving animal welfare. However, to be able to assess the
alternatives proposed, it is essential to study the epidemi-
ology of AMR under production conditions. Hence, the aim
of this study was to investigate the AMR dynamic in 2 ge-
netic poultry breeds during the growing period. The study
was performed in 2 experimental poultry houses to simulate
real production conditions, and no antibiotics were
administered during the growing period. In addition, 2
poultry breeds were used, fast-growing and slow-growing.
To evaluate AMR evolution, Escherichia coli was selected
as indicator bacterium. To this end, animals from each
experimental group were sampled at different times: on day

of arrival, at mid-period, and at slaughter day. In the lab-
oratory, cecal content was removed and inoculated in se-
lective media. Then, biochemical tests were performed to
confirm FE. coli. Finally, antibiotic susceptibility was
assessed according to Decision 2013 /653. At the onset of the
cycle, significant differences were observed between breeds,
as the E. coli strains isolated from fast-growing 1-day-old-
chicks showed higher AMR rates. However, at the end of the
period, no significant differences were found between breeds
and their presence of resistant bacteria (above 95%).
Therefore, although no antibiotics were administered dur-
ing the growing period, a high level of AMR at slaughter day
was demonstrated. Further studies are necessary to deter-
mine the main risk factors that increase the level of AMR
throughout the productive cycle in broiler chickens. In
conclusion, it is important to highlight that although it is
crucial to control both antibiotic use and animal welfare
during the growing period, measures should be taken at all
levels of the production chain.
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INTRODUCTION

Antimicrobial resistance (AMR) has become a major
threat for public health worldwide (WHO, 2014). One
of the main factors contributing to the emergence of
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resistant bacteria has been the massive use of antimicro-
bials for growth promotion and disease prevention for
several years in animal production (Guo et al., 2018;
Mehdi et al., 2018). However, although nowadays the
use of antibiotics in poultry is a controlled practice
(ESVAC, 2017), different studies demonstrated a close
association between the antibiotic use in animal produc-
tion and AMR in humans (Marshall and Levy, 2011;
Chang et al., 2015; Founou et al., 2016; Horigan et al.,
2016; Liu et al., 2016; Sharma et al., 2018) by the
transfer of resistance from animal products to humans
(Chantziaras et al., 2013). As a result, commonly used
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antibiotics have become ineffective in the treatment of a
wide variety of bacterial diseases (I(hurana et al., 2017;
EFSA and ECDC, 2018). For that reason, society is
pressing for a reduction in antibiotic administration
and greater efforts to find effective alternatives to
control infectious diseases in farms (Alds, 2015; Gadde
et al., 2017).

Consequently, several classes of alternatives have been
proposed and tested in poultry production, including pro-
biotics, prebiotics, symbiotics, organic acids, enzymes,
phytogenics, metals, antibacterial vaccines, immunomod-
ulatory agents, antimicrobial peptides, bacteriophages,
and different broiler chicken growth systems (Hancock
et al.,, 2012; Cheng et al., 2014; Castellini and Dal
Bosco, 2017; Polycarpo et al., 2017; Alagawany et al.,
2018; Sevilla-Navarro et al., 2018; Suresh et al., 2018).

In response to the social pressure to reduce antibiotic
administration and find effective alternatives to control
the presence of bacterial infections in farms (Alds,
2015; Gadde et al., 2017; Lusk, 2018a), the alternative
poultry production system (organic, free-range) is
founded on a different approach, keeping sustainability
and animal welfare in consideration. Producers are
therefore motivated to choose breeds selected for their
ability to deal with the natural environment (Castellini
and Dal Bosco, 2017).

However, to be able to assess the effectiveness of these
alternatives, it is necessary to have better knowledge of
the epidemiology of AMR throughout the growing period
under animal production conditions (Sirri et al., 2011;
Lusk, 2018b). For this purpose, commensal Fscherichia
coli has typically been selected as AMR sentinel, as it
provides valuable data and constitutes a reservoir of
resistance genes, which can spread horizontally to
zoonotic and other bacteria (EFSA and ECDC, 2019).

Hence, the objective of this study was to investigate
the AMR and multidrug resistance (MDR) dynamic in
2 genetic poultry breeds, fast-growing, and slow-
growing, during the growing period, using commensal
E. coli as sentinel bacterium.

MATERIALS AND METHODS

In this experiment, all animals were handled according
to the principles of animal care published by Spanish
Royal Decree 53/2013 (Spain, 2013).

Experiment Design

The study was performed in 2 poultry houses of an
experimental poultry house in the Centre for Animal
Research and Technology (in its Spanish acronym,
Valencian Institute for Agrarian Research, IVIA,
Segorbe, Spain) to simulate the real conditions of
poultry production. Two commercial breeds were used,
one fast-growing (Ross) and the other slow-growing
(Hubbard), the latter being a more animal-friendly alter-
native and increasingly demanded by consumers. The
fast-growing breed is characterized by efficient feed con-
version and a good meat yield (Ross, 2019). In contrast,
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the slow-growing breed is focused on the criteria of ani-
mal welfare, meat quality, and absence of antibiotics
(Valls, 2017).

To this end, 576 broilers (males and females) pro-
vided from the same hatchery were located in 2 iden-
tical poultry rooms (replica A and B), and 288
animals were housed in each room (144 of fast-
growing and 144 for slow-growing). The animals
were randomly housed in 24 pens (12 pens for each
breed) of 1.3 m? in a final stocking density of
35 kg/mQ, with wood shavings as bedding material.
The house was supplied with programmable electrical
lights, automated electric heating, and forced ventila-
tion. The environmental temperature was gradually
decreased from 32°C (1 D) to 19°C (42 D) in line
with common practice in poultry production. The
experimental pelleted feed was commercial feed ac-
cording to standard diets for broilers. Two different
age diets were offered to the birds: starter (1 D to
21 D) and grower (21 D to 42 D/63 D). Only one
batch of feed per age (starter and grower) was manu-
factured. The starter diet was the same for both
breeds, while the grower feed was the standard diet
specific for each breed. Nutritional and product anal-
ysis was assessed before the arrival of animals. Feed
was weighed, manually distributed, and added ad libi-
tum. Furthermore, the mortality and the presence of
diarrhea were recorded daily. Finally, animals were
weighed at weekly intervals, and feed consumption
per pen was recorded.

Sample Collection

To assess the dynamic of AMR rates in the microbiota
of broilers throughout the growing period, commensal F.
coli was selected as sentinel (EFSA and ECDC, 2018).
To this end, 30 animals from each experimental group
were randomly selected and sampled at different points
during the growing period: on arrival (one-day-old
chicks), at the mid-period (21-day-old), and before
slaughter (42 D of age in fast-growing, and 63 D in
slow-growing). Cecum samples were taken individually
and placed in sterile jars. The samples were processed
within 24 h after collection.

E. coli Isolation

Cecal content was removed and homogenized. After-
ward, pools of 6 animals from each replica were prepared
(5 pools/treatment), and the pools content was cultured
directly onto a nonspecific medium: blood agar (Schar-
lab, S.L., Barcelona, Spain) in aerobic and anaerobic
conditions, and 2 gram-negative specific media: Mac-
Conkey agar (Scharlab, S.L.) and Coliform chromogenic
agar (Scharlab, S.L.). Agar plates were incubated at
37°C = 1°C for 24 h. After incubation, suspected col-
onies were streaked into a nutrient medium (Scharlab,
S.L.) and incubated at 37°C £ 1°C for 24 h. Then,
API-20E test (Biomerieux, S.L.) was performed to
confirm E. coli.
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Antimicrobial Susceptibility Testing

Antimicrobial susceptibility was tested according to
the European Committee on Antimicrobial Susceptibil-
ity Testing guidelines (Matuschek et al., 2014). The
source for zone diameters used for interpretation of the
test was http://www.eucast.org/clinical breakpoints/.
E. coli strains were inoculated into Mueller-Hinton
agar (Scharlab, S.L.) to form a bacterial lawn, the anti-
biotic discs were added, and plates were incubated at
37°C for 24 h. The antibiotics selected were those set
forth in Decision 2013/653 (European Union, 2013),
including 2 quinolones: ciprofloxacin (CIP, 5 pg) and
nalidixic acid (NAL, 30 pg); 3 b-lactams: ampicillin
(AMP, 10 pg), cefotaxime (CTX, 30 pg), and ceftazi-
dime (CAZ, 30 pg); one phenicol: chloramphenicol
(CHL, 5 pg); one potentiated sulfonamide:
trimethoprim-sulfamethoxazole (SXT, 1.25/23.75 pg);
one polymyxin: colistin (CST, 10 pg); one macrolide: azi-
thromycin (AZM, 15 pg); one glycylcycline: tigecycline
(TGC, 15 pg); one aminoglycoside: gentamycin (GEN,
10 pg); and one pyrimidine: trimethoprim (TMP,
5 png). MDR was defined as acquired resistance to at least
one agent in 2 or more antimicrobial classes (EFSA and
ECDC, 2016).

Statistical Analysis

A generalized linear model was used to compare the
AMR rates between breeds (fast-growing vs. slow-
growing breed) and between antibiotics throughout the
growing period (beginning, mid-period, and slaughter
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day). A P-value < 0.05 was considered to indicate a sta-
tistically significant difference. Analyses were carried out
using a commercially available software application
(SPSS 24.0 software package; SPSS Inc., Chicago, IL,
2002).

RESULTS

During this study, all the productive parameters ob-
tained corresponded to the breed standards, and no clin-
ical signs were observed. During growing, a total of 50
pools of cecal content were examined in 4 agar plates,
of which 199 (n = 200) were culture positive for E. coli
(100 for fast-growing breed and 99 for slow-growing
breed).

Prevalence of Antibiotic Resistance

AMR rates of E. coliisolates from both breeds are pre-
sented in Figure 1. For all strains isolated, 98.0% (n =
98) and 91.9% (n = 91) from fast-growing and slow-
growing breed, respectively, were resistant to at least
one out of the 12 antibiotics tested. Moreover, statisti-
cally significant differences in AMR rates were shown
throughout the growing period according to the breed
studied (P-value < 0.05). At the onset of the growing
period, 100.0% (n = 12) and 63.6% (n = 11) of the iso-
lates from fast-growing and slow-growing breed were
antibiotic resistant, and the strains isolated from fast-
growing animals presented a higher AMR rate, with sta-
tistical differences between breeds (P-value < 0.05).
However, by the end of the growth period, these
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Figure 1. Antimicrobial resistant E. coli strains dynamic in fast-growing and slow-growing breed throughout the growing period. * * ©: different

superscripts means significant differences with a P-value < 0.05.
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Table 1. Antibiotic resistance rates according to the antibiotic and the moment of the growing period in fast-growing and slow-growing

breed.

Breed Sample moment n CIP NAL CTX CAZ AMP CHL SXT CST AZM TGC GEN TMP

Fast-growing breed  Beginning 12 50° 91.7 83 333 917 8.3 41.7 0 8.3% 0 8.3 50
Mid-period 43 95.4¢ 83.7 11.6 11.6° 55.8" 2.3 58.1 9.3 9.3% 0 2.3 55.8
End 45 20" 71.1 0 0" 53.3" 44 35.6 8.9 82.2" 0 0 51.1

Slow-growing breed  Beginning 11 0* 0* 0 27.3 27.3% 0 0 0 0 0 0 9.1
Mid-period 35 914> 571" 171 57  429* 0 286 0 2.9° 0 0 31.4
End 53 11.3*  86.8° 7.6 9.4 66.9" 5.7 26.4 9.4 41.5" 0 1.9 45.3

by ¢, different superscripts in each column means significant differences with a P-value<0.05.

Bold values indicate total number of strains per each sampling moment.

Abbreviations: AMP, ampicillin; AZM, azithromycin; CAZ, ceftazidime; CHL, chloramphenicol; CIP, ciprofloxacin; CST, colistin; CTX, cefotaxime;
GEN, gentamycin; NAL, nalidixic acid; SXT, trimethoprim-sulfamethoxazole; TGC, tigecycline; TMP, trimethoprim.

differences disappeared; the fast-growing breed reached
an AMR rate of 95.6%, and the slow-growing breed
reached an AMR rate of 96.2%.

For the fast-growing and slow-growing breed, E. coli
AMR rates obtained against different antibiotics tested
over time are summarized in Table 1.

Prevalence of Multidrug Resistance

According to the MDR rates observed in fast-growing
E. coli strains, on arrival day, 75.0% of the antibiotic
resistant strains showed an MDR pattern, and this
pattern was maintained until the end of the growing
period (83.7%) (P-value>0.05).

Conversely, for slow-growing breed, none of the E. coli
strains isolated at the start of the growth period showed
an MDR pattern (0%), although this percentage
increased to 84.3% (43/51) before slaughter (P-value
< 0.05) (Figure 2).

Antibiotic Resistance Patterns

For the fast-growing breed, no AMR was observed in 2
(2.0%) of the isolates, and 12 E. coli strains were
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resistant to only one antibiotic, 18 (18.0%) to 2, 13
(13.0%) to 3, 21 (21.0%) to 4, 25 (25.0%) to 5, 3
(3.0%) to 6 and to 7, and 2 (2.0%) to 8. Only one isolate
was resistant to 10 of the 12 antibiotics tested (Table 2).

For the slow-growing breed, 8 (8.1%) E. coli isolates
were completely susceptible to all the antibiotics tested,
25 (25.3%) isolates were resistant to only one antibiotic
and 13 (13.1%) to 2, 21 (21.2%) to 3, 18 (18.2%) to 4, 7
(7.1%) to 5, and 3 (3.0%) to 6 and to 7. Only one isolate
was resistant to 9 of the 12 antibiotics tested (Table 2).

Overall, 59 different resistance patterns were
observed. The combination of CIP-NAL-AMP-SXT-
TMP (n = 21, 20%) was the most frequently observed
pattern, followed by CIP alone (n = 13, 6.5%), the com-
bination of NAL-AMP-SXT-TMP (n = 11, 6.5%) and
NAL-AMP-TMP (n = 11, 6.5%).

AMR to the combination NAL-AMP was found in
56.0% and 46.5% of fast-growing and slow-growing F.
coli strains, respectively, followed by resistance to the
combination CIP-NAL (48.0% for fast-growing breed
and 25.3% for slow-growing breed). Finally, it is impor-
tant to highlight that 35.0% of fast-growing isolates and
18.2% of slow-growing isolates showed resistance to the
combination CIP-AMP-NAL.
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Figure 2. Multidrug-resistant E. coli strains dynamic in fast-growing and slow-growing breed throughout the growing period. ® ™ ¢ different

superscripts means significant differences with a P-value < 0.05.
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Table 2. Number of E. coli strains isolated resistant to the different number of antibiotics tested
according to the sampling moment in fast-growing and slow-growing breeds.

Number of AMR to the indicated number of antibiotics

Breed Sampling moment 0 1 2 3 4 5 6 7 8 9 10 Total

Fast-growing breed  Beginning 0 1 2 3 1 31 0 1 0 0 12
Mid-period 0 3 7 6 11 13 0 2 0 O 1 43
End 2 8 9 4 9 9 2 1 1 0 0 45
Total 2 12 18 13 21 25 3 3 2 O 1 100

Slow-growing breed  Beginning 4 7 0 0 0 0O 0 0 0 O 0 11
Mid-period 2 10 7 3 6 4 2 1 0 0 O 35
End 2 8 6 18 12 31 2 0 1 0 53
Total 8 25 13 21 18 7 3 3 0 1 0 99

Abbreviation: AMR, antimicrobial resistance.

Bold values indicate E. coli strains isolated resistant to the different number of antibiotics.

DISCUSSION

The present study assessed the AMR. dynamic in fast-
growing and slow-growing breeds throughout the growing
period under commercial farms conditions. To our best
knowledge, this is the first study in the scientific literature
to evaluate the relationship between both breeds on AMR
evolution under the same production conditions.

Social pressure against intensive production systems
demands the prohibition of antibiotic administration
during the growing period and the use of new welfare-
friendly breeds, which means chickens genetically adapt-
ed to less intensive production conditions (Castellini and
Dal Bosco, 2017). However, our results demonstrated
that although nonantibiotics were administered during
the growing period, the same AMR rates were observed
in both breeds (fast-growing and slow-growing) at the
end of the growing period.

In 2016, the EFSA reported that 77.8% of E. coli iso-
lated from broilers in European Union (EU) were resistant
to antibiotics. However, there were large differences in
AMR rates between EU Member States, being notably
lower in Nordic countries and higher in Southern coun-
tries, especially Spain (EFSA and ECDC, 2018).

Regarding AMR rates obtained for the different anti-
biotics assessed, it is important to highlight the results
obtained for TGC and CST, as they are the last-resort
drugs used to treat human infectious diseases caused
by multiresistant bacteria (Kern, 2018). On the one
hand, in this study, the AMR to TGC was not detected
in any isolate strain. This result agrees with that re-
ported by the EFSA, in the EU, where only 4 countries
presented AMR to this antibiotic (EFSA and ECDC,
2018). The total susceptibility to TGC might be
explained by its restricted use to human hospital treat-
ments (PRAN, 2018). On the other hand, resistance to
CST was found in both breeds. These results are also
similar to those reported by the EFSA, in which only 7
countries, including Spain, reported AMR to CST
(EFSA and ECDC, 2018). Moreover, in other countries
such as China, CST AMR rates reported were also
very high (Zhang et al.; 2019). This fact can be explained
by its use in animal production for several years, espe-
cially in swine, to treat infectious diseases and as a
growth promotor (ESVAC, 2017). Thus, the use of

CST as a growth promoter has resulted in a high AMR
to CST worldwide. It is important to highlight that
the use of antibiotics as a growth promotor is a produc-
tion technique that has been banned in the EU since
2006 (European Union, 2003).

The AMR rates shown in this study to CTX, CAZ,
CHL, and GEN were low, in accordance with results ob-
tained in previous studies in EU (EFSA and ECDC,
2018; MAPA, 2018). However, Koga et al. (2015)
recorded higher resistance rates in commercial broiler
production in Brazil to all these antibiotics, except to
CAZ.

It is important to highlight the high AMR obtained to
CIP, NAL, AMP, SXT, AZM, and TMP in this study
(Koga et al., 2015; Hussain et al., 2017; Ayandiran
et al., 2018; EFSA and ECDC, 2018). Slight variations
in AMR rates among isolates in these studies could be
because of the different analysis methods employed,
the different management systems set up, level of
AMR in hatcheries, and use of antibiotics in the study
areas (Okorafor et al., 2019). Specifically for AMP,
TMP, and SXT, one hypothesis that could explain the
results obtained in this study is that these antibiotics
are permitted in Spain as therapeutic agents for bacterial
infections, and as reported above for CST, they have
been used as a growth promoter in animal production
systems for several years (PRAN, 2018).

The results obtained in this study demonstrated the
importance of AMR shedding from breeders to 1-day-
old chicks. Several authors have shown that 1-day-old
chicks are potential reservoirs of multiresistant entero-
bacteria obtained vertically from breeders (Jiménez-
Belenguer et al.,, 2016; Projahn et al., 2017a,b;
Okorafor et al, 2019). MDR bacteria could be
transmitted through contaminated eggshells and/or
from parent stock to hatchery (Projahn et al., 2017a;
Daehre et al., 2017; Osman et al., 2018). Indeed,
different reports have demonstrated that vertical
transmission to chicks from the top of the production
pyramid resulted in the introduction and spread of
resistance genes in poultry (Borjesson et al., 2016;
Osman et al., 2018).

On the other hand, horizontal transmission of AMR
seems to be an important concern for the poultry indus-
try (Szmolka and Nagy, 2013; Bengtsson-Palme et al.,
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2018; Agyare et al., 2018). Genomic analysis of the
bacteria indicates that they could acquire their
resistance profiles by incorporating different genetic
elements through horizontal gene transfer (Agyare
et al., 2018). For that reason, different scientific studies
underline the importance of developing sanitary mea-
sures at the interface between the environment and live-
stock farming (Allen et al., 2010; Bengtsson-Palme et al.,
2018; Westphal-Settele et al., 2018). However, it is
important to highlight that in this study, the animals’
origin is from the same hatchery. For this reason,
further studies are necessary to compare the AMR
dynamics from different companies.

In conclusion, the fact that the same AMR rates were
observed, regardless of the breed studied, strongly sug-
gests the possibility of vertical transmission from hatch-
eries and dissemination spread through the environment
between flocks. Further studies are needed to confirm
this hypothesis, and innovative-cost effective tools
should be implemented at farm level to avoid antibiotic
administration whenever possible throughout the broiler
production chain.
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