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Introduction

Multiple studies of next-generation sequencing (NGS) have shown that up to 90% of patients with
myelodysplastic syndromes (MDS) carry 1 or more somatic oncogenic mutations in genes involved in
RNA splicing, DNA methylation, chromatin modification, transcription regulation, DNA repair, or signal
transduction.1 The advances that these and other molecular techniques are bringing are so great that
many might think we have become crazy for accepting this counterpoint role. We would like to start by
paraphrasing a sentence from the famous Twin Peaks television series: “Nothing is what it seems.” In
this article, we advise that it is still premature to incorporate the results of NGS techniques into the
diagnostic work-up or decision-making process of patients with MDS.

Main expected benefits for patients withMDS by using NGS results in daily practice

To make a strong recommendation for the use of NGS results in the clinical daily routine regarding
patients with MDS, they should be reproducible, have diagnostic value, have an independent prognostic
effect on outcomes (in both untreated and treated patients), be useful for choosing among different
treatments, and be capable of improving outcomes.

Reproducibility of NGS results in MDS

NGS techniques are not standardized. Each laboratory sets up their criteria for considering a variant
allele as pathogenic and for setting the variant allele frequency threshold. In some instances, true
somatic mutations may be missed, whereas in others, a polymerase chain reaction/sequencing artifact
may be reported as mutations. The latter has been already shown for ASXL1 mutations.2 Moreover,
the molecular report could be misinterpreted. The Association for Molecular Pathology and the
College of American Pathologists have stated that there is a high variability in how the molecular
genetics community establishes and validates bioinformatics pipelines, and that improperly developed
and validated techniques may generate inaccurate results, which may have negative consequences
for patient care.3 Others have been even more critical.4 Further, a careful assessment of bone marrow
and peripheral blood smear morphology is essential. Patients may coincidentally carry on 2 different
blood disorders, such as chronic lymphocytic leukemia and MDS, and a particular mutation (eg,
SF3B1) may portray a completely different prognosis depending on whether it is present in the chronic
lymphocytic leukemia or MDS cells. To date, there has been no study showing the reproducibility of NGS
results in MDS among different laboratories, and only 1 consensus guidelines publication (in Spanish)
is available.5 Thus, the risk that a patient be assigned to a wrong mutational category, with deleterious
implications, is high.

Value of NGS results for the diagnosis of MDS

None of the more than 40 different somatic mutations found in patients with MDS is pathognomonic of
MDS.6 Further, given the relatively common finding of somatic mutations in blood cells of elderly
healthy people,7,8 a condition termed clonal hematopoiesis of indeterminate potential,9 the presence
of a somatic mutation is insufficient for the diagnosis. Individuals with clonal hematopoiesis of
indeterminate potential are at increased risk of progressing to different hematologic malignancies;
however, the rate of progression is only 0.5% to 1% per year. Moreover, the presence of clonal
cytopenias of undetermined significance (idiopathic cytopenias of undetermined significance plus clonal
hematopoiesis of indeterminate potential) does not inevitably lead to MDS. In a recent series, only patients
with clonal cytopenias of undetermined significance showing on peripheral blood granulocyte mutation
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patterns highly predictive of myeloid neoplasms, defined as the
presence of spliceosome gene mutations (especially SF3B1) and
mutations in TET2, ASXL1, or DNMT3A with additional mutations,
had a risk for progression to myeloid neoplasms close to 100% at
6 years.10 The number of mutations and a variant allele frequency
above 10% also showed a high correlation with the presence of
a myeloid malignancy. These findings are encouraging and
suggest that mutational analysis would be valuable for improving
the diagnosis of subjects with unexplained cytopenias, but require
confirmation. Until now, the only somatic mutation correlated with
a MDS subtype, MDS with ring sideroblasts (RS), is SF3B1.11

Therefore, in the current World Health Organization classification
of myeloid neoplasms, the threshold in the bone marrow
proportion of RS for the diagnosis of MDS with RS can be
lowered from 15% to 5% if the SF3B1 mutation is present.
However, whether the outcomes of these 2 cohorts of differently
defined patients is the same remains unproven. Thus, the
diagnostic value of NGS results is scarce.

Effect of NGS results on prognosis

Several studies have shown that NGS results are relevant for
prognostication.6,11,12 First, outcomes progressively worsen as
the number of oncogenic mutations increases. In addition, several
mutations predict overall survival (OS) in univariable analyses, with
TP53, EZH2, ETV6, RUNX1, ASXL1, and SRSF2 mutations
associated with poor OS and SF3B1 mutations with a better
outcome.6,11,12 Nonetheless, combining molecular mutations
with the revised International Prognostic Scoring System (IPSS-
R) and age only modestly improves the predictive value of the
IPSS-R.6 Further, as many somatic mutations are closely
associated with other well-recognized prognostic variables, their
independent prognostic value remains disputed and relevant
issues unsolved. First, with the exception of TP53 (high-risk)
and SF3B1 (low-risk) mutations, there is no consensus on which
mutations should be assigned to a particular risk mutational
category. Further, the added prognostic value offered by TP53 and
SF3B1 mutations is scarce in clinical practice. In a large series of
patients undergoing allogeneic hematopoietic cell transplantation (allo-
HCT), TP53 mutations were present in only 13% of patients with low-
or intermediate-risk IPSS at transplantation,13 and the incidence of
these mutations in lower-risk MDS is below 5% because of its strong
correlation with poor-prognosis chromosomal abnormalities and bone
marrow blasts percentage. Thus, only a very small fraction of lower-
risk patients by the IPSS or IPSS-R would be reclassified to
a higher-risk category by TP53 mutations alone. Even the re-
finement in prognosis yielded by the presence of TP53 mutations in
patients with a complex karyotype (55%)14 is meaningless for
therapy planning. Regarding SF3B1 mutations, their independent
prognostic value remains disputed both in MDS with RS,15-17 and in
MDS as a whole.18 Patients with MDS with RS carrying SF3B1
mutations have a lower proportion of poor-risk chromosomal
abnormalities and a lower platelet count.19

The prognostic value of somatic mutations is even more blurred
after taking into account new recent and relevant findings. The case
for TP53 mutations is particularly noteworthy. The very poor
prognosis of TP53 mutations in MDS seems to be restricted to
patients carrying TP53 biallelic mutations, which are far more
common in patients with complex karyotypes. In sharp contrast,
monoallelic TP53 mutations do not seem to alter the course of

the disease (E. Bernard, G.F.S., M.I., and E.S., manuscript
submitted October 2019).

Finally, the prognostic value of co-occurring mutations is unclear,
and the results of a multinational task force supported by the MDS
Foundation to develop a molecular IPSS-R are eagerly awaited.
Therefore, NGS results alone are inadequate for assessing
prognosis.

NGS results for predicting response to and for

planning treatment

No single somatic mutation except the TP53 mutation has been
enabled to accurately predict outcomes after treatment with
hypomethylating agents, with multiple studies offering discrepant
results (Table 1).20-30 Again, no single mutation has shown a clear
association with response to erythropoiesis-stimulating agents
(ESAs). A higher response rate to ESAs has been reported for
patients harboringSF3B1mutations in 1 series,31 but not in another,32

and the higher but not statistically significant response rate after
luspatercept in a clinical trial in red blood cell transfusion-dependent
lower-risk MDS with RS or presence of SF3B1mutations33 is pending
confirmation. In fact, luspatercept has recently shown to be
superior to supportive care in lower-risk transfusion-dependent
patients with MDS with RS who are refractory or have lost
response to ESAs.34 The fact that another phase 3 clinical trial
currently under way is comparing luspatercept with ESAs as the
first line of lower-risk transfusion-dependent patients with MDS
irrespective of the presence of RS or SF3B1 mutations, however,
suggests that the efficacy of this drug may not be restricted to
MDS with RS.

In contrast, although the presence of TP53 mutations in lenalidomide-
treated patients does not decrease the likelihood of achieving red
blood cell transfusion independence, and its effect on the cytogenetic
response rate is debatable, it consistently reduces OS and increases
the risk for progression to AML.35.36 In those instances, allo-HCT
should be promptly considered. Regarding the effect of somatic
mutations on the outcomes after allo-HCT (Table 2), only TP53
mutations have universally demonstrated a clear independent
association with OS and relapse risk.13,37-41 However, OS of
patients with TP53 mutations is clearly better for those without
complex karyotypes,38 suggesting that TP53mutational status per
se should not be considered as a contraindication for allo-HCT.
The relative contribution of somatic mutations for predicting OS
after allo-HCT in a large series was only 8% after considering
other clinical and biological prognostic characteristics.38

In contrast, the presence of AML-specific mutations (NPM1, FLT3)
might in the future influence the choice of treatment. NPM1
mutations are associated with a rapid progression to AML, likely
because they should be considered early-stage AML rather than
MDS. Those NMPM1-mutated patients might have a good re-
sponse to high-dose cytarabine schedules. In the same way,
patients with FLT3 mutations, infrequent in MDS (5%-10%) but
present in up to 30% of patients with MDS evolved to AML, could
benefit from tyrosine kinase inhibitors already approved for AML,42

but this potential advantage remains to be proven in MDS. Whether
the use of IDH inhibitors, particularly active in patients with AML
with IDH1 or IDH2 mutations, could be a potentially useful
treatment of patients with MDS with those mutations (5%-10%)
also remains to be demonstrated.
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Table 1. Effect of somatic mutations on outcomes after treatment with hypomethylating agents

Gene mutation

Effect on OS Effect on ORR

Number of patients with mutations/overall

number of patients (reference)

Number of patients with mutations/overall

number of patients (reference)

Shorter OS* No differences Lower ORR No differences

TP53 39/213 (20) 21/116 (30)† 21/116 (30)†‡ 39/213 (20)

20/134 (21) 20/134 (21)

13/107 (22)* 13/107 (22)*

38/168 (23) 38/168 (23)

10/114 (24) 10/114 (24)

11/84 (25) 11/84 (27)

38/213 (29) 38/213 (29)

TET2 13/86 (25) 58/213 (20) 58/213 (20) 26/134 (21)

26/134 (21) 13/86 (25) 17/107 (22)*

17/107 (22)* 17/92 (26) 29/79 (23)

29/79 (23) 33/114 (24)

33/114 (24) 32/84 (27)

17/92 (26) 86/357 (28)

32/84 (27) 58/213 (29)

86/357 (28)

58/213 (29)

DNMT3A 9/107 (23)* 34/213 (20) 34/213 (20)

10/134 (21) 10/134 (21)

6/168 (23) 9/107 (22)*

7/114 (24) 6/168 (23)

8/92 (26) 7/114 (24)

18/84 (27) 8/92 (26)

34/213 (29) 18/84 (27)

34/213 (29)

ASXL1 99/213 (21) 20/107 (22)* 99/213 (20)

29/134 (22)§ 17/79 (23) 20/134 (21)

24/92 (27) 23/114 (24) 20/107 (22)*

11/84 (27) 17/79 (23)

96/357 (28) 23/114 (24)

98/213 (29) 24/92 (26)

11/84 (27)

96/357 (28)

98/213 (29)

RUNX1 18/84 (27) 17/134 (21) 42/213 (20)

42/213 (20) 12/107 (22)* 17/134 (21)

20/79 (23) 12/107 (22)*

16/114 (24) 20/79 (23)

43/213 (29) 16/114 (24)

18/84 (27)

43/213 (29)

EZH2 17/84 (27) 10/107 (22)* 21/213 (20)

12/134 (21)§ 2/168 (23) 12/134 (21)

ORR, overall response rate.
*Azacitidine-treated patients.
†Decitabine-treated patients (type of hypomethylating agent used not specified in remaining series).
‡Higher ORR.
§Longer OS.
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Targeting TP53 mutation could also prove beneficial in patients
with MDS carrying those mutations. In a recent clinical trial with
APR-246 and azacitidine (NCT03745716) in TP53mut patients,
the response rate was 100% (11 of 11 evaluable patients; 9
complete remission [CR] and 2 marrow CR), and the median OS
has not been reached at a median follow-up of 7 months. The
most common adverse events were grade 3/4 hematological
toxicity and grade 1/2 nausea and vomiting, dizziness, head-
ache, and neuropathy, suggesting that this combination could
be better than the current standard of care.43 However, these
preliminary results need confirmation in phase 3 trials. A 10-day
schedule of decitabine in a series including 21 patients with TP53
mutation (12 AML and 9 MDS), 20 of them showing a complex
karyotype, all patients responded to decitabine with both BM blast
clearance to less than 5% and reduction in variant allele frequency
to levels less than 5%, and median OS was 12.7 months.30 The
reproducibility of these encouraging results requires confirmation.

Thus, at this time, the presence of specific mutations for decision-
making regarding therapy is small and restrained to biallelic TP53
mutations.

Do NGS results improve patients’ outcomes?

Unfortunately, the major handicap we face when treating patients
with MDS is the lack of effective and harmless treatment
alternatives. Allo-HCT remains the only proven curative treatment.
ESAs and lenalidomide for lower-risk and hypomethylating drugs for
higher-risk MDS are of certain but limited value. Until now, no single
drug specifically targeting a somatic mutation has proven in phase 3
clinical trials to be of value in MDS. Further, there is no single
somatic mutation that favors the use of any treatment alternative. It
has been argued that early or preemptive interventions, including
withdrawal of immunosuppression, infusion of donor lymphocytes,
or the use of azacitidine, in transplanted patients at high risk for
relapse, such as those harboring TP53 mutations or with measur-
able disease by NGS techniques at early times after transplant,44

could be valuable. However, prospective clinical trials to establish
this benefit are lacking.

Conclusions

In summary, we consider that at this time, it is premature to
incorporate NGS results to the diagnostic work-up or the

Table 1. (continued)

Gene mutation

Effect on OS Effect on ORR

Number of patients with mutations/overall

number of patients (reference)

Number of patients with mutations/overall

number of patients (reference)

Shorter OS* No differences Lower ORR No differences

21/213 (20) 5/114 (24) 10/107 (22)*

2/168 (23)

5/114 (24)

17/84 (27)

RAS 12/107 (22)* 24/213 (20) 8/168 (23) 24/213 (20)

12/134 (21) 12/134 (21)

8/168 (23) 12/107 (22)*

8/114 (24) 8/114 (24)

14/84 (27) 14/84 (27)

SRSF2 35/213 (20) 35/213 (20)

24/134 (21) 24/134 (21)

1/107 (22)* 1/107 (22)*

11/53** (23) 11/53** (23)

27/114 (24) 27/114 (24)

34/213 (24,29) 34/213 (29)

U2AF1 29/213 (20) 21/107 (22)* 29/213 (20)

5/134 (21) 5/134 (21)

21/107 (22)* 13/53 (23)

13/53 (23) 6/114 (24)

6/114 (24) 12/84 (25)

12/84 (27) 53/357 (28)

53/357 (28) 30/213 (29)

30/213 (29)

ORR, overall response rate.
*Azacitidine-treated patients.
†Decitabine-treated patients (type of hypomethylating agent used not specified in remaining series).
‡Higher ORR.
§Longer OS.
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decision-making process regarding treatment of patients with MDS.
NGS techniques are still not standardized and may yield inaccurate
results, leading to misdiagnosis and wrong therapeutic decisions.
Further, recent evidence, such as that concerning the prognostic
value of biallelic, but not monoallelic, TP53mutations, clearly show that
our knowledge about molecular genetics in MDS must be refined.
Apart from biallelic TP53 mutations, the value of other somatic
mutations for prognostic stratification and therapy planning is quite
limited. Finally, NGS results do not lead to improved outcomes. Thus,
we believe that the results of NGS mutation screening should be put
on hold and not be used in our daily practice until stronger evidence is
available and those results can be safely and properly used.
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Hospital Universitario y Politécnico La Fe, Torre F, Planta 7, Av de
Fernando Abril Martorell 106, 46026 Valencia, Spain; e-mail
address: sanz_gui@gva.es.

References

1. Cazzola M, Della Porta MG, Malcovati L. The genetic basis of
myelodysplasia and its clinical relevance. Blood. 2013;
122(25):4021-4034.

2. Abdel-Wahab O, Kilpivaara O, Patel J, Busque L, Levine RL.
The most commonly reported variant in ASXL1 (c.1934dupG;
p.Gly646TrpfsX12) is not a somatic alteration. Leukemia.
2010;24(9):1656-1657.

3. Roy S, Coldren C, Karunamurthy A, et al. Standards and
guidelines for validating next-generation sequencing
bioinformatics pipelines: A joint recommendation of the
Association for Molecular Pathology and the College of
American Pathologists. J Mol Diagn. 2018;20(1):4-27.

4. Wilson BJ, Miller FA, Rousseau F. Controversy and debate on
clinical genomics sequencing-paper 1: genomics is not
exceptional: rigorous evaluations are necessary for clinical
applications of genomic sequencing. J Clin Epidemiol. 2017;
92:4-6.
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