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We present a one-loop calculation of the obliqueS andT parameters within strongly-coupled

models of electroweak symmetry breaking with a light Higgs-like boson. We use a general ef-

fective Lagrangian, implementing the chiral symmetry breaking SU(2)L ⊗SU(2)R → SU(2)L+R

with Goldstones, gauge bosons, the Higgs-like scalar and one multiplet of vector and axial-vector

massive resonance states. The estimation is based on the short-distance constraints and a disper-

sive approach. The experimentally allowed range forces thevector and axial-vector states to be

heavy, with masses above the TeV scale, and suggests that theHiggs-like scalar should have a

WW coupling close to the Standard Model one.
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One-loop calculation of the oblique S and T parameters within strongly-coupled scenarios

1. Introduction

A new Higgs-like boson around 126GeV has just been discovered at the LHC [1]. Although its
properties are not well measured yet, it complies with the expected behaviour and therefore it is a
very compelling candidate to be the Standard Model (SM) Higgs. An obvious question to address is
to which extent alternative scenarios of Electroweak Symmetry Breaking (EWSB) can be already
discarded or strongly constrained. In particular, what arethe implications for strongly-coupled
models where the electroweak symmetry is broken dynamically?

The existing phenomenological tests have confirmed theSU(2)L ⊗SU(2)R → SU(2)L+R pat-
tern of symmetry breaking, giving rise to three Goldstone bosons which, in the unitary gauge, be-
come the longitudinal polarizations of the gauge bosons. When theU(1)Y couplingg′ is neglected,
the electroweak Goldstone dynamics is described at low energies by the same Lagrangian as the
QCD pions, replacing the pion decay constant by the EWSB scalev= (

√
2GF)−1/2 = 246GeV [2].

In most strongly-coupled scenarios the symmetry is nonlinearly realized and one expects the ap-
pearance of massive resonances generated by the non-perturbative interaction.

The dynamics of Goldstones and massive resonance states canbe analyzed in a generic way
by using an effective Lagrangian, based on symmetry considerations. The theoretical framework
is completely analogous to the Resonance Chiral Theory description of QCD at GeV energies [3].
Using these techniques, we have investigated in Ref. [4], and as an update of Ref. [5], the obliqueS
andT parameters [6], characterizing the electroweak boson self-energies, within strongly-coupled
models that incorporate a light Higgs-like boson. Adoptinga dispersive approach and imposing a
proper high-energy behaviour, it has been shown there that it is possible to calculateSandT at the
next-to-leading order,i.e., at one-loop. We have found that in most strongly-coupled scenarios of
EWSB a high resonance mass scale is required, above 1TeV, to satisfy the stringent experimental
limits. Previous one-loop analyses can be found in Refs. [7].

2. Theoretical Framework

We have considered a low-energy effective theory containing the SM gauge bosons coupled
to the electroweak Goldstones, one light scalar stateS1 with massmS1 = 126 GeV and the lightest
vector and axial-vector resonance multipletsVµν andAµν . We have only assumed the SM pattern
of EWSB,i.e. the theory is symmetric underSU(2)L ⊗SU(2)R and becomes spontaneously broken
to the diagonal subgroupSU(2)L+R. S1 is taken to be singlet underSU(2)L+R, whileVµν andAµν

are triplets. To build the Lagrangian we have only considered operators with the lowest number of
derivatives, as higher-derivative terms are either proportional to the equations of motion or tend to
violate the expected short-distance behaviour [3]. We haveneeded the interactions [4]

L=
v2

4
〈uµuµ〉

(
1+

2ω
v

S1

)
+

FA

2
√

2
〈Aµν f µν

− 〉+ FV

2
√

2
〈Vµν f µν

+ 〉+ iGV

2
√

2
〈Vµν [uµ,uν ]〉+

√
2λ SA

1 ∂µS1〈Aµνuν〉,
(2.1)

plus the standard gauge boson and resonance kinetic terms. We have followed the notation from
Ref. [5]. The first term in (2.1) gives the Goldstone Lagrangian, present in the SM, plus the scalar-
Goldstone interactions. Forω = 1 one recovers theS1 → ππ vertex of the SM.
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One-loop calculation of the oblique S and T parameters within strongly-coupled scenarios

The oblique parameterS receives tree-level contributions from vector and axial-vector ex-
changes [6], whileT is identically zero at lowest-order (LO):

SLO = 4π
(

F2
V

M2
V

− F2
A

M2
A

)
, TLO = 0. (2.2)

To compute the one-loop contributions we have used the dispersive representation ofS introduced
by Peskin and Takeuchi [6], whose convergence requires a vanishing spectral function at short
distances:

S =
16π

g2 tanθW

∫ ∞

0

dt
t

[ρS(t) − ρS(t)
SM ] , (2.3)

with ρS(t) the spectral function of theW3B correlator [4, 5, 6]. We have worked at lowest order in
g andg′ and only the lightest cuts have been considered,i.e. two Goldstones or one Goldstone plus
one scalar resonance.Vπ andAπ contributions were shown to be suppressed in Ref. [5].

The calculation ofT is simplified by noticing that, up to corrections ofO(m2
W/M2

R), T =

Z(+)/Z(0)−1, beingZ(+) andZ(0) the wave-function renormalization constants of the charged and
neutral Goldstone bosons computed in the Landau gauge [8]. Afurther simplification occurs by
setting to zerog, which does not break the custodial symmetry, so only theB-boson exchange
produces an effect inT. This approximation captures the lowest order contribution to T in its
expansion in powers ofg andg′. Again only the lowest two-particle cuts have been considered, i.e.
theB boson plus one Goldstone or one scalar resonance.

Requiring theW3B correlator to vanish at high energies leads to a good convergence of the
Goldstone self-energies, at least for the cuts we have considered. Then, their difference obeys an
unsubtracted dispersion relation, which enables us to computeT through the dispersive integral [4],

T =
4π

g′2 cos2 θW

∫ ∞

0

dt

t2 [ρT(t) − ρT(t)SM ] , (2.4)

with ρT(t) the spectral function of the difference of the neutral and charged Goldstone self-
energies.

3. The calculation

The spectral functions of Eqs. (2.3) and (2.4) read:

ρS(s)|ππ =
g2 tanθw

192π2

(
1+ κV

s

M2
V −s

)2

θ(s) , (3.1)

ρS(s)|Sπ = − g2 tanθw

192π2 ω2
(

1+ κA
s

M2
A−s

)2(
1−

m2
S1

s

)3

θ(s−m2
S1

) , (3.2)

ρS(s)|SM =
g2 tanθW

192π2

[
θ(s) −

(
1− m2

H

s

)3

θ(s−m2
H)

]
, (3.3)

ρT(s)|Bπ = − g′2s

64π2

[
(3−2ŝκV)θ(s)+ κV

(
1− 1

ŝ

)2

(3κV +2ŝ−2)θ(ŝ−1)

]
, (3.4)

ρT(s)|BS =
g′2ω2s

64π2

[(
3

(
1−

m4
S1

s2

)
−2s̃κA

(
1−

m2
S1

s

)3)
θ(s−m2

S1
)
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One-loop calculation of the oblique S and T parameters within strongly-coupled scenarios

+κA

(
1− 1

s̃

)2

(3κA +2s̃−2)θ(s̃−1)

]
, (3.5)

ρT(s)|SM =
3g′2s

64π2

[
−θ(s)+

(
1− m4

H

s2

)
θ(s−m2

H)

]
, (3.6)

beingκV = FVGV/v2, κA = FAλ SA
1 /(ωv), ŝ= s/M2

V and s̃= s/M2
A. Terms ofO(m2

S1
/M2

V,A) have
been neglected in Eq. (3.5).

Fixing mS1 = 126 GeV, one has 7 undetermined parameters:MV , MA, FV , GV , FA, ω andλ SA
1 .

The number of unknown couplings can be reduced using short-distance information [4]:

1. Vector form factor . The two-Goldstone matrix element of the vector current defines the
vector form factor (VFF). Imposing that it vanishes ats→ ∞, one finds thatFVGV = v2 [3].

2. Weinberg sum rules at leading order. Assuming the two Weinberg sum rules (WSRs) [9]
at leading order one gets

F2
V − F2

A = v2 , F2
V M2

V − F2
A M2

A = 0. (3.7)

This impliesMA > MV and determinesFV andFA in terms of the resonance masses. Note
that the second WSR is questionable in some scenarios.

3. Weinberg sum rules at one loop. At next-to-leading order the computed spectral functions
of Eqs. (3.1) and (3.2) should behave also as dictated by thispattern. Once the constraint
coming from the VFF has been used, the first and the second WSRsprovide respectively [4]

FAλ SA
1 = ωv, ω = M2

V/M2
A . (3.8)

After imposing the short-distance conditions on the spectral function, one has to apply the
same constraints to the real part of the correlator, reaching the next-to-leading extension of
the first and second Weinberg sum rules [5], respectively,

F r 2
V − F r 2

A = v2(1 + δ (1)
NLO

) , F r 2
V Mr 2

V − F r 2
A Mr 2

A = v2Mr 2
V δ (2)

NLO
, (3.9)

whereδ (1)
NLO

andδ (2)
NLO

parameterizes the high-energy expansion of the one-loop contribution.
It is then possible to fix the couplingsF r

V andF r
A up to NLO.

4. Phenomenology

We have taken the SM reference point atmH = mS1 = 126 GeV, so the global fit gives the
resultsS= 0.03±0.10 andT = 0.05±0.12, with a correlation coefficient of 0.891 [10].

1. LO . Considering the first and the second WSRsSLO becomes [6]

SLO =
4πv2

M2
V

(
1+

M2
V

M2
A

)
. (4.1)
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Figure 1: NLO determinations of S and T, imposing the two WSRs and the VFF constraint (left).
The approximately vertical curves correspond to constant values ofMV , from 1.5 to 6.0 TeV at intervals of
0.5 TeV. The approximately horizontal curves have constant values ofω : 0.00, 0.25,0.50,0.75,1.00. The
ellipses give the experimentally allowed regions at 68%, 95% and 99% CL.Scatter plot for the 68% CL
region, in the case when only the first WSR and the VFF constraint are assumed (right). The dark blue
and light gray regions correspond, respectively, to 0.2 < MV/MA < 1 and 0.02< MV/MA < 0.2.

Since the WSRs implyMA > MV , the prediction turns out to be bounded by 4πv2/M2
V <

SLO < 8πv2/M2
V . If only the first WSR is considered, and assumingMA > MV , one obtains

for S the lower bound

SLO = 4π
{

v2

M2
V

+F2
A

(
1

M2
V

− 1

M2
A

)}
>

4πv2

M2
V

. (4.2)

The resonance masses need to be heavy enough to comply with the experimental bound.

2. NLO with the 1st and the 2nd WSRs and the VFF constraint.With these constraints five
of the seven resonance parameters are fixed andSandT are given in terms ofMV andMA [4]:

S = 4πv2
(

1

M2
V

+
1

M2
A

)
+

1
12π

[
log

M2
V

m2
H

− 11
6

+
M2

V

M2
A

log
M2

A

M2
V

− M4
V

M4
A

(
log

M2
A

m2
S1

− 11
6

)]
,

T =
3

16π cos2θW

[
1+ log

m2
H

M2
V

− M2
V

M2
A

(
1+ log

m2
S1

M2
A

)]
, (4.3)

wheremH is the SM reference Higgs mass adopted to define the oblique parameters and
terms ofO(m2

S1
/M2

V,A) have been neglected.

In Fig. 1 (left) we show the compatibility between the “experimental” values and these deter-
minations [4]. The Higgs-like scalar should have aWW coupling very close to the SM one.
At 68% (95%) CL, one getsω ∈ [0.97,1] ([0.94,1]), in nice agreement with the present LHC
evidence [1], but much more restrictive. Moreover, the vector and axial-vector states should
be very heavy (and quite degenerate); one findsMV > 5 TeV (4 TeV) at 68% (95%) CL.
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One-loop calculation of the oblique S and T parameters within strongly-coupled scenarios

3. NLO with the 1st WSR and the VFF constraint. If only the first WSR is considered, one
can still determineT and obtain a lower bound ofS in terms ofMV , MA andω [4]:

S ≥ 4πv2

M2
V

+
1

12π

[
log

M2
V

m2
H

− 11
6

−ω2
(

log
M2

A

m2
S1

− 17
6

+
M2

A

M2
V

)]
,

T =
3

16π cos2θW

[
1+ log

m2
H

M2
V

−ω2

(
1+ log

m2
S1

M2
A

)]
, (4.4)

whereMV < MA has been assumed and again terms ofO(m2
S1

/M2
V,A) have been neglected.

Fig. 1 (right) gives the allowed 68% CL region in the space of parametersMV andω , varying
MV/MA between 0 and 1 [4]. Note, however, that values ofω very different from the SM
can only be obtained with a large splitting of the vector and axial-vector masses. In general
there is no solution forω > 1.3. Requiring 0.5 < MV/MA < 1, leads to 1−ω < 0.16 at 68%
CL, while the allowed vector mass stays above 1.5 TeV.

In summary, strongly-coupled electroweak models with massive resonance states are still al-
lowed by the current experimental data. Nonetheless, the recently discovered Higgs-like boson with
massmS1 = 126 GeV must have aWW coupling close to the SM one (ω = 1). In those scenarios,
such as asymptotically-free theories, where the second WSRis satisfied, theS andT constraints
forceω to be in the range[0.94,1] at 95% CL. Larger departures from the SM value can be accom-
modated when the second WSR does not apply, but one needs to introduce a correspondingly large
mass splitting between the vector and axial-vector states.

References

[1] S. Chatrchyanet al. [CMS Collaboration], Phys. Lett. B716(2012) 30; CMS-PAS-HIG-12-045;
G. Aadet al. [ATLAS Collaboration], Phys. Lett. B716(2012) 1; ATLAS-CONF-2012-170.

[2] T. Appelquist and C. Bernard, Phys. Rev. D22 (1980) 200.

[3] G. Ecker, J. Gasser, A. Pich and E. de Rafael, Nucl. Phys. B321(1989) 311;
G. Eckeret al., Phys. Lett. B223(1989) 425;
V. Cirigliano et al., Nucl. Phys. B753(2006) 139.

[4] A. Pich, I. Rosell and J. J. Sanz-Cillero, arXiv:1212.6769 [hep-ph].

[5] A. Pich, I. Rosell and J. J. Sanz-Cillero, JHEP1208(2012) 106.

[6] M. E. Peskin and T. Takeuchi, Phys. Rev. D46 (1992) 381; Phys. Rev. Lett.65 (1990) 964.

[7] S. Matsuzaki, R. S. Chivukula, E. H. Simmons and M. Tanabashi, Phys. Rev. D75 (2007) 073002;
R. Barbieri, G. Isidori, V.S. Rychkov and E. Trincherini, Phys. Rev. D78 (2008) 036012;
O. Cata and J.F. Kamenik, Phys. Rev. D83 (2011) 053010;
R. Foadi and F. Sannino, arXiv:1207.1541 [hep-ph];
A. Orgogozo and S. Rychkov, JHEP1203(2012) 046; arXiv:1211.5543 [hep-ph].

[8] R. Barbieriet al., Nucl. Phys. B409(1993) 105.

[9] S. Weinberg, Phys. Rev. Lett.18 (1967) 507.

[10] http://gfitter.desy.de/; LEP Electroweak Working Group, http://lepewwg.web.cern.ch/LEPEWWG/.

6


