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Abstract 

This paper analyzes the factor structure and cross-sectional variability of a set of expected 
excess returns extracted from option prices and a non-parametric and out-of-sample 
stochastic discount factor. We argue that the existing potential segmentation between the 
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expected equity risk premia. This set of expected risk premia forecast significantly future 
realized returns, and the first two principal components explain 94.1% of the variability 
of expected returns. A multi-factor model with the market, quality, funding illiquidity, 
the default premium and the market-wide variance risk premium as factors explain 
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1. Introduction 

A recent and fundamental research on the asset pricing literature deals with the 

estimation of expected returns from option prices. However, whether we can extract 

physical probabilities from option prices and derive the implied expected returns remains 

controversial. Indeed, the finance profession has recently witnessed the debate raised by 

the recovery theorem of Ross (2015).1 Using a less ambitious but insightful approach, 

Martin (2017) obtains a lower bound for the expected market risk premium by extracting 

forward-looking information from option data and, more specifically, from risk-neutral 

variances. The cost of this approach is that he does not obtain full recovery but can, at 

least, obtain a lower bound on the expected market excess return.2  

From the fundamental asset pricing equation, Martin (2017) derives the expected 

market risk premium as  

                      1mt1mt1t
P
t1mt

Q
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ft
ft1mt

P
t R,RMCovRVar
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1
RRE   ,             (1) 

where mt 1R   is the gross market return at time t+1, t 1M   is the stochastic discount 

factor (SDF) at time t + 1, ftR  is the gross risk-free rate from t to t+1 available at time t, 

 P
tE   and  P

tCov  are the expectation operator and the conditional covariance under 

the physical probability at time t, and  Q
tVar  is the risk-neutral conditional variance at 

time t. Martin (2017) points out that, if the relative risk aversion and the elasticity of 

                                                                                 
1 See the follow up papers by Bakshi, Chabi-Yo, and Gao (2017), Borovicka, Hansen, and Scheinkman 
(2016), Jackwerth and Menner (2018), Jensen, Lando, and Pedersen (2019), and Schneider and Trajani 
(2019).   
2 Under no-arbitrage assumptions, Chabi-Yo and Loudis (2018) propose bounds on the conditional expected 
market risk premium that are function of higher-order risk-neutral return moments. They show that their 
bound measures perform similarly to Martin’s (2017) measure at short forecasting horizons. In addition, 
and also using options prices, Schneider (2019) obtains a model-free decomposition of the realized forward 
market return to conclude that, at short horizons, the main component of the market return comes from 
downside risk, while at longer horizons variance risk dominates. 
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intertemporal substitution are greater than one under recursive preferences,3 the following 

negative correlation condition (NCC) holds for the market portfolio return 

                                     ,P
t t 1 mt 1 mt 1Cov M R R 0    .                                         (2) 

Thus, the risk-neutral variance normalized by the risk-free rate constitutes a lower 

bound for the expected market risk premium:4  

                                      1mt
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RRE   .                                   (3) 

The lower bound approach depends crucially on the time-varying behavior of the 

covariance term in expression (1). On theoretical grounds, for the NCC to be justified, we 

require not only that the inequality holds but also that this conditional covariance term be 

constant over time. In addition, the NCC must hold conditionally, as well as 

unconditionally. It is unclear how the unobservable SDF affects these properties 

throughout economic cycles. On top of that, there is convincing evidence of relative 

mispricing across the equity and option markets. Barras and Malkhozov (2016) reject the 

null hypothesis that the conditional market variance risk premium in the equity and option 

markets are equal. In addition, González-Urteaga and Rubio (2017) show that the default 

premium and the market variance risk premium are priced economically and statistically 

different in the volatility and return segments of the market. On average, common factors 

in both segments explain 90% of the variability of volatility risk premium portfolios, but 

only 65% of the variability of equity return portfolios. Indeed, the market variance risk 

premium is priced significantly in the volatility segment but not in the equity portfolios. 

                                                                                 
3 Martin (2017) discusses several examples for alternative preference specifications and return distributions, 
including the traditional CAPM. 
4 Kadan and Tang (2018) show the conditions under which expression (3) holds for individual stock returns.  
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These issues make unclear the appropriateness of lower bound expected returns or, 

alternatively, suggest that lower bounds without explicitly recognizing the time-varying 

effects of the stochastic discount factor might significantly bias the empirical results.  

Our paper contributes to the asset pricing empirical literature using, what we denote, 

the exact expected risk premium for any stock portfolio p: 

                  ,QP P
t pt 1 ft pt 1 t t 1 pt 1 pt 1t

ft

1
E R R Var R Cov M R R

R       ,          (4) 

and, therefore, recognizing explicitly the limitations of the lower bound assumption 

relative to the exact expression. To overcome the lower bound assumption, we employ 

the non-parametric estimation procedure of the out-of-sample Information Stochastic 

Discount Factor (ISDF) proposed by Ghosh, Julliard, and Taylor (2016). Hence, our 

analysis avoids the use of any parametric asset pricing model and facilitates a general and 

simply comparison of lower bound versus exact expected returns.  More precisely, we 

study the behavior of the factor structure, time-series drivers and cross-sectional risk 

premia of expected stock returns when using exact rather than lower bound expected 

returns. This issue is unexplored in the empirical literature of financial economics and it 

is the main research objective of this paper. 

Note that this approach also avoids the potential mispricing in the equity and 

option markets by recognizing the role of the SDF. It also avoids confounding the factor 

structure of stock return variances with the factor structure of expected returns. As shown 

by Kelly, Herkovic, Lusting, and van Nieuwerburgh (2016), the variance of stock returns 

has a strong factor structure. If we estimate expected returns using exclusively the lower 

bound, it is almost by construction that the expected returns will present a strong factor 

structure. This is especially important, given the insight raised by Cochrane (2017), who 

points out that the truly relevant question is, simply, what is the factor structure of 
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expected returns? Once again, to incorporate the effects of the covariance term in 

expression (4) is crucial to capture fully the behavior of expected risk premia. Moreover, 

as a way of an internally consistent estimation procedure, our time-series and cross-

sectionally analysis is driven precisely from the factor structure of expected returns. Thus, 

the reported findings about the factor structure of expected returns strongly guides our 

econometric approach, which makes relevant to avoid the use of lower bounds as the only 

approach when analyzing the pricing implications regarding expected returns extracted 

from option prices.  

Even before presenting the analysis of the factor structure of expected returns, it is 

important to understand the relation between the expected excess return proxies and the 

corresponding future realized returns. Indeed, our empirical results will be more relevant 

the better the expected returns predict future realized returns. Our evidence shows that 

the exact expected risk premia are powerful forecasters of one-month ahead future 

realized returns. Note that the one month is the maturity of the options from which we 

extract expected returns. The forecasting ability of exact expected returns is superior to 

alternative competitor approximations of expected risk premia, including lower bounds. 

We use principal component analysis to extract the factors that better explain the 

variability of the variance-covariance matrix of the exact expected excess returns of 20 

risk-neutral variance-sorted portfolios. The first two principal components are enough to 

capture 94.1% of the variability of expected excess returns. In contrast, when using 

realized returns, we find that the first two principal components explain only around 77% 

of their variability. A particularly relevant issue is to uncover the underlying determinants 

of the two first principal components of the factor structure of expected excess returns. 

We employ well-known aggregate risk factors that have been shown to be relevant priced 

factors in previous fully recognized research. The first principal component is strongly 

explained by the default premium, the quality minus junk factor (QMJ) of Asness, 
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Frazzini, and Pedersen (2014), the market variance risk premium, and the betting against 

beta factor (BAB) of Frazzini and Pedersen (2014). These four factors explain around 

39% of the temporal variability of the first principal component. Using all selected factors 

simultaneously increases the adjusted R-squared statistic only up to 41%. To signal 

further the relevance of the four factors, we note that the five Fama and French (2015) 

factors explain just 17% of the variability of the first principal component. On the other 

hand, regarding the second component, the return of small relative to big firms with a 

positive sign, the default premium with a negative sign, and the variance market risk 

premium with a positive sign are the factors that systematically show significant slope 

coefficients independently of the employed specification. These latter two factors by 

themselves explain 19% of the variability of the second principal component.  

We also analyze the cross-sectional variability of exact expected excess returns. We 

first employ the two first principal components to find that their betas, using the 

traditional cross-sectional R-squared statistic, explain 84.7% of the cross-sectional 

variability. We also use a multi-factor asset pricing model that includes the excess market 

return and the four factors that explain the time-varying behavior of the first principal 

component of expected returns. The betas of these five factors are significantly priced 

with the correct theoretical sign, and jointly explain 98.3% of the cross-sectional 

variability of expected excess returns. Moreover, we employ the standard errors 

suggested by Kan, Robotti, and Shanken (2013; KRS hereafter), which are adjusted by 

errors-in-variables and model misspecification, and the corresponding corrected R-

squared statistics. The cross-sectional results remain valid, with R-squared values of 

37.4% and 83.6% for the principal components and the multi-factor model, respectively. 

These modified R-squared values are in both cases (asymptotically) statistically different 

from zero. 
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This paper proceeds as follows. Section 2 discusses the data employed in the 

research. Section 3 presents the estimation and descriptive statistics of exact expected 

excess returns. In Section 4, we perform a panel forecasting analysis of future realized 

returns with alternative proxies of expected risk premia. In Section 5, we discuss the 

factor structure of exact expected excess returns and their economic drivers, while Section 

6 contains the analysis of their cross-sectional variability. Finally, Section 7 presents our 

conclusions.  

2. Data 

To estimate expected returns, we must extract the risk-neutral variance for any given asset 

j. As we explain in the next section, we calculate risk-neutral variances by integrating 

option prices for alternative strike prices. We employ daily data from OptionMetrics for 

the Standard & Poor’s (S&P) 100 Index options and for individual options on all stocks 

included in the S&P 100 Index at some point during the sample period from January 1996 

to August 2015. This yields 201 stocks used in our estimations. From the OptionMetrics 

database, we obtain all put and call options on individual stocks and the index with time 

to maturity τ between six days and 60 days. Given these are American options, it is 

convenient to work with short-term maturity options, whose early exercise premium tends 

to be negligible.5 We select the best bid and ask closing quotes to calculate the mid-quotes 

as the average of the bid and ask prices to avoid the well-known bid-ask bounce problem 

described by Bakshi, Cao, and Chen (1997). In selecting our final option sample, we apply 

the usual filters. We discard options with zero open interest, zero bid prices, missing 

option delta or implied volatility, and negative implied volatility. Regarding the exercise 

level, we follow Jiang and Tian (2005), Driessen, Maenhout, and Vilkov (2009), and 

Martin (2017) and exclude in-the-money options. In addition, we ignore options with 

                                                                                 
5 See the evidence reported by Driessen, Maenhout, and Vilkov (2009), who employ a similar database.  
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extreme moneyness, that is, puts with a delta higher than -0.05 and calls with a delta lower 

than 0.05.  

Fama and French (2015; FF hereafter) show that a five-factor model, which expands 

their popular three-factor model with profitability (robust minus weak, RMW) and 

investment (aggressive minus conservative, CMA) factors, explains anomalies associated 

with low betas, low share repurchases, and low volatility assets relative to high betas, 

high repurchases, and high volatility securities. However, their model is not able to 

explain the cross-sectional variability of momentum portfolios unless Carhart’s (1997) 

momentum factor (MOM) is included in the cross section. Thus, we collect from Kenneth 

French’s website (http://mba.tuck.darmouth.edu) monthly data on the five FF factors; the 

value-weighted stock market portfolio return; the risk-free rate; the MOM factor; the 25 

FF portfolios sorted by size and book-to-market ratio; the 32 FF portfolios sorted by size, 

book-to-market and profitability; and the 10 portfolios sorted by investment 

aggressiveness. In addition, we collect daily and monthly data on the 25 FF portfolios by 

size and investment aggressiveness, the 25 FF portfolios by book-to-market and 

profitability and the 10 portfolios sorted by momentum. 

We also use the QMJ factor of Asness et al. (2014), further explored recently by 

Asness, Frazzini, Israel, Moskowitz, and Pedersen (2017). These authors define a quality 

stock as an asset for which an investor would be willing to pay a higher price. These are 

stocks that are safe (low required rate of return), profitable (high return on equity), 

growing (high cash flow growth), and well managed (high dividend payout ratio). Asness 

et al. (2014) show that the QMJ factor, which buys high-quality stocks and shorts low-

quality (junk) stocks, earns significant risk-adjusted returns not only in the U.S. market 

but also in 24 other countries. The QMJ factor is downloaded from the AQR Capital 

Management Database (www.aqr.com).   
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Recent empirical evidence supports the presence of funding liquidity across a wide 

range of securities. Frazzini and Pedersen (2014) show that leverage constraints are strong 

and significantly reflected in the return differential between leveraged low-beta stocks 

and de-leveraged high-beta stocks. The authors argue that the positive and highly 

significant risk-adjusted returns relative to traditional asset pricing models shown by 

portfolios sorted by the level of market beta are explained by shadow cost-of-borrowing 

constraints.6 The authors illustrate their argument by proposing a market neutral BAB 

factor consisting of the difference between long-leveraged low-beta stocks and short de-

leveraged high-beta securities. The authors provide convincing evidence that the BAB 

factor generates high and consistent performance in each of the major global markets and 

asset classes, and that the results are independent of the asset pricing model employed in 

the analysis of performance. The BAB factor is downloaded from the AQR Capital 

Management Database. We also employ the market-wide illiquidity factor of Pastor and 

Stambaugh (2003), obtained from Lubos Pastor’s website 

(http://faculty.chicagobooth.edu/lubos.pastor/research/).   

We define the default premium (DEF) as the difference between Moody’s yield on 

Baa corporate bonds and the 10-year government bond yield. Both yields are obtained 

from the Federal Reserve Statistical Release.   

Finally, we estimate the variance risk premium (VRP) for the S&P 100 Index as the 

logarithm of the ratio between the realized variance and the risk-neutral variance on the 

index. The estimation details of risk-neutral variances for both individual stocks and the 

market are presented in the next section.  

 

                                                                                 
6 See also Asness, Frazzini, Gormsen, and Pedersen (2017) for additional evidence supporting this 
argument. 



10 
 
 

3. Estimation and Descriptive Statistics of Expected Risk Premia 

The estimation procedure consists of two steps. We first follow Martin (2013, 2017) to 

estimate risk-neutral variances and lower bound expected risk premia. In other words, we 

initially estimate the first term of the right-hand side of equation (4). Martin (2013) argues 

that, under stress market conditions, such as in October 1987 and the fall of 2008, there 

is no known way to replicate the payoff of a variance swap. This could be particularly 

severe for individual stocks, which can experience more frequent and larger jumps than 

market indexes. Martin (2013) proposes a “simple variance swap” that can be hedged at 

discrete points even if the underlying’s asset price jumps. The author develops a risk-

neutral variance as an equally-weighted portfolio of options rather than a portfolio of 

options weighted by the inverse of the square of their strike price and proposes SVIX, as 

an alternative to the CBOE Volatiliy Index (VIX). Martin shows that the risk-neutral 

variance of any asset is given by 

                 
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where  ,jt tP K  and  ,jt tC K are the prices at time t of maturity-τ put and call 

options with strike K on either an asset or an index j with price jtS , and ,jt tF   is the 

price of a future contract on the asset with the same maturity such that 

                                                  , ,jt t ft t jt jt F R S d    ,                                         (6) 

and jtd represents the present value of dividends paid during the life of the contract. 

We approximate expression (5) following the same steps carried out by Jiang and 

Tian (2005) to solve for their model free implied variance. Thus, we approximate the 

integrals of expression (5) by the following sums over a finite number of strikes: 
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where m equals 100, and K and ,jt tg   are given, respectively, by                    
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For each time-to-maturity τ from six to 60 days, we calculate the risk-neutral 

variance each day for each underlying asset that has at least three available options 

outstanding, using all the available options at time t.7 For the risk-free rate, we use the T-

bill rate of appropriate maturity (interpolated when necessary) from OptionMetrics, 

namely, the zero-coupon curve. For the dividend rate for the index, we employ the daily 

data on the dividend yield index from OptionMetrics. To infer the continuously 

compounded dividend rate for each individual asset, we combine the forward price with 

the spot rate used for the forward price calculations. We obtain the mean continuously 

compounded dividend rate by averaging the implied OptionMetrics dividends.  

In practice, we only observe options for some finite sample set of strikes. We 

transform the prices of listed options into implied volatilities using the Black-Scholes 

(1973) model, and we fit a smooth function to the implied volatilities using cubic splines. 

We then extract implied volatilities at strikes x
hK  from the fitted function. Finally, we 

employ equations (7), (8) and (9) to calculate the risk-neutral variance using the extracted 

                                                                                 
7 The window from six days to 60 days corresponds to the maximum range of time to maturity we allow in 
the necessary interpolation to have enough options every day in the sample with 30 days to maturity. 
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out-of-the-money option prices. At each time t, we focus on a 30-day horizon maturity, 

interpolated when necessary following the procedure of Carr and Wu (2009). 

We also calculate the market variance risk premium for each day in the sample. We 

first estimate the realized market variance over the same period for which risk-neutral 

variance is obtained for that day: 

                                                  ,
2

mt t mt s
s 1

1
 RV R


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

  ,                                        (10)  

where ,mt t RV  denotes the realized market variance. As Carr and Wu (2009), we define 

the market variance risk premium as,  
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.                                      (11) 

Once we have a time-series of daily risk-neutral variances for each asset and the 

market, we calculate the average risk-neutral variance across all days in each month for 

every available asset and compute the lower bound of expected excess returns following 

the equivalent of equation (3) for individual stocks. Next, we construct 20 risk-neutral 

variance-sorted portfolios including approximately the same number of assets in each 

portfolio. Portfolio 1 (P1) contains the assets with the lowest risk-neutral variance, while 

Portfolio 20 (P20) contains the stocks with the highest risk-neutral variance. The lower 

bound of the expected excess return and the realized excess return for each portfolio are 

computed imposing equal weights for the individual assets within the portfolio. 

In the second step, we estimate the covariance term of expression (4). Given that 

the SDF is not observable, we cannot calculate the covariance in the right-hand side of 

the expression unless we impose an asset pricing model. However, Ghosh et al. (2016) 
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propose a non-parametric estimation of an out-of-sample SDF that only depends on asset 

returns: it is known as the Information Stochastic Discount Factor (ISDF). 

The basic idea to obtain the ISDF is to minimize the relative entropy of the risk-

neutral measure with respect to the physical measure. This can be accomplished through 

the following maximization problem for M 1   

                          
 

0RM
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 ,                            (12) 

where tM  is the SDF that prices a given set of asset returns at time t and e
tR  is an N-

vector of excess returns over the risk-free rate. Ghosh et al. (2016) argue that the solution 

can be obtained by the corresponding duality 
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where ̂  is the vector of Lagrange multipliers that solve the unconstrained convex 

problem 
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which is the dual formulation of the entropy minimization problem. Note that the 

normalization M 1  produces the demeaned SDF. To obtain the ISDF for an 

economically reasonable magnitude, we employ the following expression: 
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We follow the out-of-sample rolling estimation procedure suggested by Ghosh, 

Julliard, and Taylor (2018). We employ the daily data of 60 portfolios, including 25 FF 

portfolios by size and investment aggressiveness, the 25 FF portfolios sorted by the book-

to-market ratio and profitability, and ten portfolios sorted by momentum.8 At the end of 

each year, we use a rolling window of the previous 30 years of daily data to estimate T̂

. These parameters remain constant to compute daily values for the ISDF in the next year. 

Then, the window rolls by one year to generate the complete daily series of the ISDF. The 

covariance on the right-hand side of expression (4) is estimated monthly using the daily 

data of the ISDF and realized returns within the month. 

Table 1 contains the descriptive statistics for the exact expected risk premia for each 

of the 20 portfolios and the market. The first column shows that the average expected risk 

premia range from 0.40% for P1 to 3.79% for P20. The market risk premium is 0.19%. 

From the Jensen’s inequality, the average expected risk premia across portfolios, which 

is equal to 1.14%, is higher than that for the market. The volatility of the expected risk 

premia maintains the same monotonic cross-sectional increase that we observe for the 

mean. Thus, P1 presents the lowest volatility of expected returns and P20 the highest. 

Moreover, in the third column of Table 1, we observe that the beta of the expected risk 

premia of each portfolio with respect to the expected market risk premium increases with 

the level of risk-neutral variance. Note how sensitive P20 is with respect to the expected 

market risk premium. Its beta is equal to 5.73. In the fourth column of Table 1, we show 

that the realized return market betas of the 20 portfolios presents a similar increasing 

behavior with risk-neutral variance. Portfolio P1, with the lowest risk-neutral variance, 

                                                                                 
8 Given that the ISDF values depend on the returns of the assets employed in their estimation, we use 
portfolios based on all factors of the FF five-factor model plus momentum in order to capture as many 
differential characteristics as possible. 
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has the lowest average market beta, 0.47, and portfolio P20 has the highest, 2.07, which 

is much lower than the corresponding beta estimated with expected returns.  

Figure 1.A shows the time-varying expected market risk premium, and Figure 1.B 

presents the expected risk premia for representative portfolios. The expected market risk 

premium tends to be counter-cyclical, although it becomes strongly negative just before 

highly negative realized market returns, especially during the Great Recession. All 

portfolios displayed in Figure 1.B tend to exhibit a counter-cyclical behavior with high 

peaks during bad economic times. As expected, this is especially the case for portfolio 

P20, which has the highest market beta and the highest average expected return. The 

drastic decline reported for the expected market risk premium just before market declines 

of the Great Recession is amplified in the case of portfolio P20. 

 4. The Relation between Expected Returns and Future Realized Returns 

Before discussing the factor structure of the expected risk premia and their time-series 

and cross-sectional variability that we report in the next sections, we must check whether 

our estimated expected returns actually contain information about future realized returns.  

To analyze the forecasting ability of the expected risk premia, we perform a one-

month ahead panel forecasting regression approach with fixed effects using the 20 risk-

neutral variance-sorted portfolios. We employ clustered standard errors, as suggested by 

Petersen (2009). This methodology relaxes the assumption of independent errors and 

substitutes it with the assumption of independent clusters. 

We compare the forecasting capacity of future realized returns using three 

alternative specifications for the expected risk premia. Our set of exact expected excess 

returns from equation (4), the corresponding lower bound of expected risk premia from 

the same expression without the covariance term, and the Martin and Wagner (2019) 

approach for individual stock returns, who extend Martin’s (2017) market risk premium 
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model to study expected excess returns at the individual level. They theoretically show 

that the expected excess return on a stock (normalized by the gross risk-free rate) is the 

risk-neutral variance of the market plus one half of the stock’s excess risk-neutral variance 

relative to the average stock. They claim that their expression is a direct measure of the 

expected stock return, which does not seem to depend on the negative covariance 

condition. However, in the derivation of their expression, Martin and Wagner (2019) 

argue that the risk-neutral variance can be used to forecast the equity premium and 

substitute the lower bound as the exact predictor of the future market premium.9 In any 

case, from our point of view, it is useful to discuss the relative differences of the Martin 

and Wagner (2019) approach with respect to the exact pricing expression. We estimate 

the expected portfolio risk premium from the Martin and Wagner (2019) key equation 

given by 

            .2 2 2
t pt 1 ft ft mt ft pt tE R R R SVIX R 0 5 SVIX SVIX

       
 

 ,          (16) 

where  Q2
mt mt 1 fttSVIX Var R R ,  Q2

pt pt 1 fttSVIX Var R R , and 2
tSVIX is the 

average 2
ptSVIX across all 20 portfolios with constant weights. 

In Panel A of Table 2, we report the results for the three specifications using a 

simple forecasting regression: 

                                         e e
pt 1 0 1 t pt 1 pt 1R E R        ,                                  (17) 

where e
pt 1R  is the realized excess return in month t+1 of portfolio p, and  e

t pt 1E R  is 

the expected risk premium of portfolio p as of time t for any of the three specifications.  

                                                                                 
9 Other relevant assumptions are fully discussed by Martin and Wagner (2019). 
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Given the one-month maturity of the options from which we extract expected 

returns, our forecasting horizon is only one-month ahead. Under this short horizon, we 

expect a low adjusted R-squared statistic. This is indeed the case in all three cases. 

However, the panel regression estimated coefficients suggest relevant differences among 

the three specifications. The lower bound does not predict future returns. The slope 

coefficient has the wrong sign and is not statistically different from zero. The intercept is 

relatively large, positive and highly significant. The Martin and Wagner (2019) 

expression performs much better than the lower bound specification. This is consistent 

with their own results. The slope coefficient has the expected sign and is statistically 

different from zero. On the other hand, it is also true that the intercept remains very high, 

positive and highly significant as in the lower bound case. The third column contains the 

results of our exact expected risk premia. Although the intercept remains positive, it 

becomes much lower than in other two cases suggesting a higher relative importance of 

the slope coefficient. Indeed, there is a highly positive and significant relation between 

future realized excess returns and our exact expected risk premia. Figure 2 displays the 

monthly differences between the Martin and Wagner (2019) and exact risk premia for 

portfolios P1, P10 and P20. These differences tend to be negative for the three portfolios 

and for most of the sample period. However, the risk premia given by equation (16) is 

much higher than the exact expected risk premia just before and during the Great 

Recession. The reason is that the covariance term of equation (4) is highly positive during 

that time, which implies that we subtract a high number to the lower bound term of 

equation (4). This time-varying behavior does not seem to be captured by the Martin and 

Wagner (2019) proxy. The results of Panel A of Table 2 suggest that the explicit 

recognition of the covariance term improves the prediction of future realized excess 

returns.  
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In Panel B of Table 2, we follow the forecasting exercise proposed by Jensen et 

al. (2019). The realized return at the end of each month t + 1 should be positively 

associated with the expectation at the end of month t and negatively associated with the 

revision of expectations at the end of the month. Therefore, the panel forecasting 

regression is now given by 

                                   e e
pt 1 0 1 t pt 1 2 t 1 pt 1R E R E           ,                         (18) 

where t 1E   represents the contemporaneous unpredictable innovation in the conditional 

expected excess return. Note that expression (18) ignores the effects of shocks on cash 

flow news and only considers shocks in discount rates. As Viceira, Wang, and Zhou 

(2017) make clear, it is important to distinguish between transitory shocks associated with 

discount rates and permanent shocks related to cash flows. Thus, shocks to discount rates 

are of special concern to short-run investors, while shocks to cash flows are of interest of 

long-run horizon individuals. Given that our horizon in the forecasting exercise is a one-

month horizon, it is reasonable to follow Jensen et a. (2019) and ignore cash flow news. 

We assume an AR(1)-process to estimate the predictable component. Therefore, t 1E   

is given by 

          e e e e
t 1 t 1 pt 2 t t 1 pt 2 t 1 pt 2 0 1 t pt 1E E R E E R E R E R         

       
. (19) 

In equation (18), as in expression (17), the expected excess return should be 

positively associated with the ex-post realized excess return, which implies that the 1  

slope coefficient should be positive. An upward contemporaneous revision of 

expectations should imply a drop in the price (and in realized returns), which suggests a 

negative 2  coefficient. The results confirm the evidence reported in Panel A of Table 2. 

Both the results using the exact expected risk premia and the Martin and Wagner (2019) 
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excess returns present very reasonable results, and the estimates of 1  and 2  have the 

theoretically expected signs and are statistically different from zero. But, once, again, the 

results are clearer when using exact expected risk premia.  

Therefore, we conclude that the expected risk premia estimated with the exact 

formula contains a very relevant and robust information about future realized returns even 

at short horizons.  

5. Factor Structure of Expected Risk Premia and Their Economic Drivers 

This section discusses one of the key research questions in this paper: what is the factor 

structure of expected returns? We extract the principal components from the standard 

approach, which uses the N x N sample variance-covariance matrix of the expected excess 

returns of our sample of 20 risk-neutral variance-sorted portfolios.10 

Table 3 contains the percentage explained by the first five principal components 

estimated from both the expected risk premia and realized excess returns of our 20 

portfolios. The first two principal components of the expected returns turn out to explain 

94.1% of the variability of expected excess returns. It seems that two factors may be 

enough to explain the cross-sectional variability of expected returns. On the contrary, the 

first two principal components of realized returns explain only 76.8% of their variability. 

The time-varying behavior of the first two principal components of the expected excess 

returns during our sample period is displayed in Figure 3. The first principal component, 

which explains 84.4% of the variability of expected returns, closely follows the counter-

cyclical pattern of expected returns noted in the previous section. It also presents the 

strong decline shown by the market and by the portfolios with high average risk-neutral 

variances. The second principal component, which only explains an additional 9.7%, 

                                                                                 
10 In addition, we employ the approach of Connor and Korajczyk (1988). Given the similarity between the 
results under the two estimation procedures, we do not report the results. All of them are available from the 
authors upon request. 
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tends to become slightly negative during bad economic times and its variability is much 

lower relative to the first principal component.  

Next, we address the key issue of understanding the underlying risk factors that 

explain the temporal behavior of these two first principal components. We select a full 

battery of eleven candidates that have been shown to have explanatory power in the time-

series and cross-sectional variability of average returns in previous literature.11  Panels A 

and B of Table 4 show the time-series determinants of the first and second principal 

components, respectively. Below the regression-estimated coefficients, we report in 

parentheses the t-statistics based on traditional OLS standard errors, and in brackets the 

t-statistic based on HAC standard errors. Note that we estimate many alternative 

combinations of regressors, although we only show the most economically and 

statistically relevant results. 

In Panel A of Table 4, we first show the explanatory capacity of the five factor 

risks employed in the FF five-factor model. It turns out that the excess market return and 

the HML factor move negative and significantly with the first principal component. On 

the contrary, the SMB, RMW and CMA factors present a positive and significant relation 

with the first principal component, but the SMB factor loses statistical significance when 

we employ HAC standard errors. The adjusted R-squared value is approximately 17%.  

Then, we analyze the individual explanatory power of the quality (QMJ) and 

funding liquidity (BAB) factors, the default premium (DEF), and the market variance risk 

premium (VRP). The estimated coefficients are all statistically different from zero with 

relatively high HAC-based t-statistics and the expected theoretical sign. The positive 

relation between the first principal component of the expected risk premia and the QMJ 

                                                                                 
11 It is important to point out that we do not fish for factors. We guide our initial selection of candidates by 
using the 11 most popular and successful factors that have been employed in the analysis of the cross-
sectional variability of past average returns.  
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factor, the DEF premium, and the market VRP suggests that the variables tend to be high 

in bad economic times. Indeed, Asness et al. (2014) show that the QMJ factor displays 

large realized returns during downturns, which indicates that the quality-based factor does 

not exhibit bad-times risk. More specifically, the authors plot the risk-adjusted returns of 

the QMJ factor against market excess returns and show that the quality factor presents a 

mild positive convexity, which suggests that the QMJ factor benefits from flight-to-

quality during financial and economic crises. The funding liquidity BAB factor presents 

a negative and significant relation with the first principal component. Note that the way 

in which Frazzini and Pedersen (2014) construct the BAB factor implies that its low or 

negative returns are associated with times of poor funding liquidity or high borrowing 

constraints. The adjusted R-squared value of this four-factor model is 38.8% and the 

inclusion of the excess market return has practically no effect on the adjusted R-squared 

statistic. 

The next regression includes all variables together. None of the FF factors, neither 

the market illiquidity factor of Pastor and Stambaugh (2003), nor the MOM factor are 

statistically significant when using HAC standard errors. However, the estimates of the 

QMJ and BAB factors, the DEF premium and the market VRP are statistically different 

from zero, with relatively high HAC-based t-statistics. The adjusted R-squared value of 

the full model is 41.3%, which implies a small additional explanatory power of 2.5% over 

the four-factor model.  

The results in Panel B of Table 4 suggest that the behavior of the second factor is 

harder to explain than the behavior of the first component. The relative smooth behavior 

of the second principal component could explain this finding. There is a statistically weak 

positive relation with the HML factor and with market illiquidity. The estimated slopes 

are statistically different from zero with respect the SMB factor, the default premium, and 

the market VRP, even under the HAC-based t-statistics. In this occasion, the default 
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premium with a negative sign. Overall, the adjusted R-squared value is lower relative to 

the first principal component and is equal to 24.0%.  

6. The Cross-Sectional Variability of Expected Risk Premia 

Having documented the time-series determinants of the first two principal components of 

expected risk premia, we now turn to study the variability of expected excess returns in 

the cross-section. Our approach performs the traditional two-pass Fama-MacBeth (1973) 

cross-sectional regression with monthly data, using the exact expected risk premia of the 

20 risk-neutral variance-sorted portfolios as the left-hand side variable. We define the 

explanatory aggregate factors in the following subsections. We also employ the rigorous 

econometric methodology of KRS (2013), who provide standard errors of the risk 

premium estimators adjusted for errors-in-variable and model misspecification and derive 

the asymptotic distribution of the cross-sectional R-squared statistic.  

6.1 The Cross-Sectional of Principal Components 

Our first cross-sectional test performs the following cross-sectional regression: 

                          , , ; , ,e
t pt 1 0 1 p f 1 2 p f 2 ptE R e   p 1 20          K  ,                   (20) 

where  e
t pt 1E R   is the expected risk premium of portfolio p, 1f  and 2f  are the two first 

principal components, and the two betas for each portfolio are estimated using rolling 

time-series regressions of the observed returns of each portfolio on the two principal 

components using the past 59 months and the current month:12 

                                   , ,
e
pt p p f 1 1t p f 2 2t ptR f f         .                                (21) 

                                                                                 
12 In all the cross-sectional regressions reported in the next sections, we estimate betas using the same 
rolling window regressions of the realized returns on the risk factors with 60 months of data.    
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Panel A.1 of Table 5 shows the results using the exact expected risk premium of 

each portfolio as test assets. Below the risk premium estimators, we report the p-values 

associated with the traditional Fama-MacBeth (1973) standard errors in parentheses and, 

in brackets, the p-values of the standard errors adjusted for errors-in-variables and 

potential misspecification of the model due to KRS (2013). We provide two R-squared 

statistics as measures of the model’s goodness of fit: the standard cross-sectional R-

squared, and the R-squared statistic suggested by KRS (2013).  In parentheses, we provide 

the p-value for the null hypothesis that the estimated KRS R-squared equals zero. 

According to classic standard errors, the two risk premia associated with each 

principal component are statistically significant. The significant empirical evidence is 

weaker for both principal components when adjusting the standard errors. In this case, 

the p-values are 0.149 and 0.095 for the first and second principal components, 

respectively. As expected, given the counter-cyclical pattern of the first principal 

component, the sign of its risk premium is negative. This principal component increases 

during times of high marginal utility, which explains the negative risk premium. On the 

other hand, the risk premium associated with the second principal component is positive 

and of similar magnitude than the first component. The principal component betas explain 

84.7% of the cross-sectional variability of the expected returns. Figure 4.1 illustrates the 

strong cross-sectional fit reflected in the high R-squared value. The most problematic 

portfolio is P20, with a high pricing error of 0.83%. This portfolio’s high variability 

explains why the cross-sectional R-squared value due to KRS is lower than the traditional 

cross-sectional R-squared, which is equal to 37.4%. This statistic is one minus the square 

of the pricing errors weighted by the inverse of the variance-covariance matrix of returns 

and it thus assigns a much larger weight to P20. In any case, the p-value is very low and 

the estimated R-squared is asymptotically different from zero.   
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Panel A.2 of Table 5 reports the results of the cross-section of the average realized 

excess returns on the betas of the principal components obtained from the variance-

covariance matrix of realized excess returns. Note that this is the usual empirical 

procedure of testing asset pricing models. The risk premia are not statistically different 

from zero, the classic cross-sectional R-squared value is very low, and the KRS R-squared 

is not statistically different from zero. The poor adjustment of the model is depicted in 

Figure 4.2. 

6.2 Five-Factor Multi-Beta Pricing Model 

In Section 5 of this paper, the results suggest that the return generating process underlying 

the first principal component of risk premia can be written as 

                 e
1t 1 mt 2 t 3 t 4 t 5 mt tf R QMJ BAB DEF VRP               ,             (23) 

where 
e
mR is the excess market portfolio return and the other factors are described as in 

Section 5. Independently of including the excess market return, recall that this 

specification explains approximately 39% of the time-series variability of the first 

principal component. Thus, to be internally consistent in our empirical tests, we now 

employ a multi-beta five-factor model, which is consistent with the first principal 

component generating process, 

  , , , , , ;

, ,

e
t pt 1 0 m p m qmj p qmj bab p bab def p def vrp p vrp ptE R e   

                  p 1 20

                 

 K

(24) 

Panel B.1 of Table 5 shows the results of employing expected excess returns as test 

assets. The model’s performance is striking. The cross-sectional R-squared is 98.3%. The 

corrected KRS R-squared value is slightly lower but equal to a high value of 83.6% and 
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is statistically different from zero. Figure 5.1 displays the clear strong fit between the 

exact expected risk premia across portfolios and the corresponding fitted values. Again, 

portfolio P20 presents the highest pricing error but it is equal to 0.22%, which is a much 

lower error than in the case of principal components.  

The market risk premium is positive and strongly significant. Moreover, it is equal 

to 8.2% on annual basis, which is an economically reasonable result. The risk premia 

associated with the QMJ and DEF variables are statistically different from zero with the 

correct negative sign. These results hold for both the classic and KRS standard errors. 

These two factors and the market VRP tend to increase during times of high marginal 

utility, which explains the negative and significant risk premium associated with these 

three state variables.13 The pricing of the DEF premium and the market VRP deserves a 

more detailed comment. First, González-Urteaga and Rubio (2016) show that the DEF 

premium is a key factor in explaining the cross-sectional variability of the volatility risk 

premia. They also show that this result reflects the very different behavior of the 

underlying components of their sample portfolios with respect to credit risk that generates 

significant dispersion of the volatility swap pricing of their portfolios. In our case, 

portfolio P20 has a high and negative return beta relative to the DEF premium. This result 

suggests that the underlying components of this portfolio have a high credit risk relative 

to the rest of the portfolios used in our sample, and investors are willing to pay a high 

variance swap price to hedge default risk. Second, González-Urteaga and Rubio (2017) 

show that the DEF premium and the market VRP are priced economically and statistically 

different in the volatility and return segments of the market. Indeed, the market VRP is 

priced significantly in the volatility segment but not in the equity portfolios. We now find 

that both factors, DEF premium and market VRP, are priced in the cross-section of 

                                                                                 
13 It is true, however, that the market VRP losses statistical significance when we employ adjusted standard 
errors.  
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expected excess returns. Note that the lower bound component of the exact expected risk 

premia of the test assets is extracted from the volatility segment of the market. In this 

sense, this new evidence is consistent with the findings of González-Urteaga and Rubio 

(2017). 

Finally, the risk premium of the BAB factor is also negative, even though funding 

liquidity deteriorate in bad economic times. It turns out that the betas of high expected 

returns, such as for portfolios P18 to P20, are highly negative with respect to the BAB 

factor, and positive with respect to portfolios P1 and P2. This result also holds for the 

QMJ factor and the default premium. The performance of portfolios P18 to P20 worsens 

when QMJ, BAB, and the default premium increase. This could explain the overall BAB 

negative risk premium, although it is being estimated with less precision relative to the 

QMJ and DEF variables. Indeed, the p-value of the BAB risk premium becomes 0.07 for 

the KRS standard errors. 

Panel B.2 of Table 5 shows the empirical results regarding average realized returns. 

The nice cross-sectional fit of expected returns strongly contrasts with the much poorer 

fit of the model when we employ average realized returns. Figure 5.2 illustrates this weak 

cross-sectional fit. None of the risk premia is statistically different from zero, and the 

traditional cross-sectional R-squared value is 35.9%. The magnitude of the intercept is 

equal to 9.9% on an annual basis, which does not seem to an economically sensible 

magnitude for the intercept even if 0̂  contains a compensation for market frictions or 

borrowing constraints. Indeed, it is much higher than the intercept in Panel B.1, which 

equals 3.7% on an annual basis. 
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The consistent significant behavior of the model in both the time-series and the 

cross-section makes this five-factor model a robust and clarifying model for explaining 

expected excess returns.14 

7. Conclusions 

After several decades of intense research using realized past returns to study the behavior 

of stock returns, we still have limited reliable information about the factor structure and 

cross-sectional variability of expected returns. Merton (1980) already shows how difficult 

estimating the mean market return is and argues that we can adequately approximate 

means by only extending the sample over time. Sampling at higher frequencies does not 

help with the precise estimation of mean returns.  

This paper partially covers this gap using a combination of option pricing results 

from Martin (2013, 2017) and insights of the recent SDF literature due to Ghosh et al. 

(2016, 2018) to estimate expected risk premia under the exact equation and not under the 

lower bound approximation. We evaluate the performance of the expected risk premia 

estimates working with 20 risk-neutral variance-sorted portfolios. The first important 

result is that, unlike the lower bound estimates, our exact estimates of the expected risk 

premia are powerful predictors of future realized excess returns. 

We find that the factor structure of expected risk premia can be summarized with 

the two first principal components. The first principal component explains 84.4% of the 

variability of expected excess returns. This first principal component presents a 

reasonable and counter-cyclical behavior and with a drastic decline before the collapse of 

                                                                                 
14 We perform two robustness analysis. In the first exercise, we use a different sorting procedure and 
construct 20 portfolios using the market betas of realized returns, as in the traditional tests of the cross-
sectional pricing literature. The cross-sectional results are also highly significant, although they are not as 
impressive as in Table 5. The KRS R-squared value is 66.4% instead of the 83.6% reported in Table 5. In 
a second exercise, we repeat the analysis using the Jiang and Tian (2005) procedure to estimate the model-
free implied variances. The difference with respect to Martin (2017) is that the out-of-the-money options 
are weighted by the inverse of the square of their strikes. Overall, the results do not change significantly 
relative to the ones reported in this paper. The results are available from the authors upon request. 
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stock prices during the Great Recession. The second principal component explains an 

additional 9.7% of the variability of expected returns. These percentages are clearly 

higher than the percentages found when employing realized returns. 

We also show that both the time-series and cross-sectional variability of exact 

expected risk premia are mainly explained by the same risk factors. These aggregate 

variables are the differences between high and lower quality stocks, the differences 

between leveraged and deleveraged beta stocks (funding liquidity or the tightness of 

borrowing constraints), the default premium, and the market variance risk premium. All 

risk premia are negative and statistically significant. The market risk premium is positive 

and statistically different from zero. Overall, our results suggest that expected returns are 

time-varying in a strong counter-cyclical way and vary much more than what is usually 

accepted, which is consistent with the results reported by Martin and Wagner (2019). The 

robust identification of the set of factors that significantly explain a very large percentage 

of their variability is an important step in understanding the behavior of expected returns. 

As pointed out above, this is especially relevant given that expected excess returns, and 

changes in their conditional expectations, contain useful information about future realized 

returns.  

Our results suggest that future research should further clarify whether extract 

expected risk premia only from option prices is the most appropriate way of exploiting 

available information. The empirical results we report indicate that the simultaneous 

information from both equity and option markets may be a more robust procedure. 
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Table 1. Descriptive Statistics of Expected Risk Premia for 20 Portfolios Sorted by Risk-
Neutral Variance: January 1996 to July 2015 

 Average 
Expected Risk 

Premium 

Volatility 
Expected Risk 

Premium 

Market Expected 
Risk Premium 

Beta 

Realized Market 
Beta 

P1 0.0040 0.0028 0.4780 0.4722 
P2 0.0049 0.0033 0.6317 0.5393 
P3 0.0054 0.0037 0.6893 0.5844 
P4 0.0061 0.0042 0.6396 0.6206 
P5 0.0065 0.0043 0.7706 0.6681 
P6 0.0070 0.0044 0.5936 0.8187 
P7 0.0072 0.0048 0.9542 0.8274 
P8 0.0078 0.0047 0.6828 0.7627 
P9 0.0083 0.0053 0.5768 0.9955 

P10 0.0085 0.0055 1.0482 0.9717 
P11 0.0093 0.0055 0.6703 1.0429 
P12 0.0100 0.0061 0.6468 0.9932 
P13 0.0105 0.0063 0.6846 1.1528 
P14 0.0116 0.0070 0.8745 1.0879 
P15 0.0124 0.0078 1.0870 1.1576 
P16 0.0142 0.0088 1.0614 1.1855 
P17 0.0154 0.0100 1.9496 1.2998 
P18 0.0181 0.0021 2.5723 1.5392 
P19 0.0224 0.0147 2.7651 1.6151 
P20 0.0379 0.0252 5.7257 2.0688 

MARKET 0.0019 0.0029 1.0000 - 
This table presents the descriptive statistics of 20 portfolios sorted by risk-neutral variance, where the 
market is the S&P 100 Index. The first two columns show the mean and volatility of the expected risk 
premia, respectively. The third column is the sensitivity of the expected risk premia of the 20 portfolios to 
the expected market risk premium, and the fourth column reports the market beta of realized returns of the 
components of the 20 portfolios. All statistics are estimated using the exact expected risk premia expression 
rather than lower bounds. 
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Table 2. One-Month Ahead Panel Forecasting Performance of Alternative Specifications 
of Expected Risk Premia for 20 Portfolios Sorted by Risk-Neutral Variance: January 1996 
to July 2015 

Panel A: Predicting Regressions 

 e e
pt 1 0 1 t pt 1 pt 1R E R        

 Lower Bound Martin and Wagner Exact 

ˆ
0  

 
0.015 

(21.24) 

 
0.010 

(17.42) 

 
0.004 
(4.20) 

ˆ
1  

 
-0.018 
(-0.55) 

 
0.250 
(2.42) 

 
0.638 
(7.33) 

Adjusted R-squared 0.0001 0.0002 0.0043 

Panel B: Predicting Regressions 

 e e
pt 1 0 1 t pt 1 2 t 1 pt 1R E R E            

 Lower Bound Martin and Wagner Exact 

ˆ
0  

 
0.011 

(27.98) 

 
0.010 

(13.24) 

 
0.004 
(3.89) 

ˆ
1  

 
0.033 
(1.42) 

 
0.386 
(2.67) 

 
0.655 
(7.05) 

ˆ
2  

 
-3.462 
(-6.42) 

 
-7.840 
(-6.31) 

 
-1.031 

(-13.98) 

Adjusted R-squared 0.149 0.194 0.180 

Panel A of this table presents the intercept and slope estimated coefficients from panel regressions of one-
month ahead future realized returns on lower bound, the Martin and Wagner (2019), and the exact expected 

risk premia of 20 portfolios sorted by risk-neutral variance:  e e
pt 1 0 1 t pt 1 pt 1R E R       . Panel B 

contains similar results, but the panel forecasting regression includes now ex-post innovations in expected 
returns for a one-month horizon, and the regression is therefore given by

 e e
pt 1 0 1 t pt 1 2 t 1 pt 1R E R E           . In all cases, we perform a panel regression with fixed 

effects and clustered standard error estimates. In parentheses, we report the associated t-statistics. 
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Table 3. Factor Structure of Expected Risk Premia for 20 Portfolios Sorted by Risk-
Neutral Variance (Percentage Explained by the First Five Principal Components): 
January 1996 to July 2015 

 Exact Expected Risk Premia Realized Risk Premia 

Factor (PC) 1 84.36 66.74 

Factor (PC) 2 94.10 76.75 

Factor (PC) 3 96.20 80.50 

Factor (PC) 4 97.19 83.47 

Factor (PC) 5 98.05 85.73 

The two columns show the percentage of the variability of the 20 x 20 variance-covariance matrix of the 
expected and realized risk premia of our 20 portfolios explained by the first five principal components, 
respectively.  
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Table 4. Determinants of the Factor Structure of Expected Risk Premia: January 1996-
July 2015.  

Panel A: Determinants of the First Principal Component 

Const. Market SMB HML RMW CMA MOM QMJ BAB P&S DEF VRP Adj R2 

0.024 
(13.17) 
[8.32] 

-0.168 
(-3.68) 
[-2.97] 

0.110 
(2.05) 
[1.82] 

-0.233 
(-2.91) 
[-2.70] 

0.228 
(3.04) 
[2.55] 

0.307 
(2.92) 
[2.78] 

- - - - - - 0.166 

0.002 
(0.43) 
[0.39] 

- - - - -  
0.242 
(4.38) 
[3.31] 

-0.098 
(-2.48) 
[-1.92] 

 
1.121 
(6.20) 
[4.88] 

0.020 
(6.62) 
[3.16] 

0.388 

-0.000 
(-0.08) 
[-0.08] 

0.015 
(0.30) 
[0.27] 

0.080 
(2.50) 
[1.50] 

0.044 
(0.52) 
[0.42] 

-0.100 
(-0.87) 
[-0.73] 

0.158 
(1.61) 
[1.60] 

0.060 
(2.13) 
[1.80] 

0.344 
(2.71) 
[2.66] 

-0.143 
(-3.06) 
[-2.59] 

-0.013 
(-0.68) 
[-0.56] 

1.162 
(6.08) 
[5.19] 

0.018 
(5.54) 
[2.65] 

0.413 

Panel B: Determinants of the Second Principal Component 

Const. Market SMB HML RMW CMA MOM QMJ BAB P&S DEF VRP Adj R2 

0.009 
(7.25) 
[4.73] 

- - - - - - - - - 
-0.206 
(-4.25) 
[-2.75] 

0.005 
(6.62) 
[4.90] 

0.192 

0.010 
(7.48) 
[4.69] 

- - - - - - - - 
0.012 
(1.95) 
[1.53] 

-0.220 
(-4.53) 
[-2.79] 

0.005 
(6.22) 
[4.88] 

0.201 

0.009 
(7.49) 
[5.07] 

- 
0.039 
(3.36) 
[3.26] 

0.029 
(2.40) 
[1.75] 

- - - - - 
0.013 
(2.13) 
[1.80] 

-0.221 
(-4.63) 
[-3.09] 

0.005 
(6.19) 
[4.76] 

0.240 

This table shows the estimated coefficients of time-series regressions of each of the two first principal 
components from the variance-covariance structure of expected risk premia on alternative factor risks and 
state variables. The first six variables are the intercept and the Fama and French (2015) factors, MOM is 
the Momentum Factor of Carhart (1997), QMJ is the quality minus junk Factor of Asness, Frazzini, and 
Pedersen (2014), BAB is the betting-against-beta factor of Frazzini and Pedersen (2014), P&S is the Pastor 
and Stambaugh (2003) illiquidity factor, DEF is the default premium, and VRP is the market variance risk 
premium defined as the logarithm of the realized variance divided by the risk-neutral variance. OLS t-
statistics are reported in parenthesis and t-statistics based on HAC standard errors are in brackets. 
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Table 5. The Cross-Section of Expected Risk Premia and Average Realized Excess 
Returns for 20 Portfolios Sorted by Risk-Neutral Variance: January 1996 to July 2015 

Panel A. The Cross-Section of Principal Components as Factors 

Panel A.1: 
Exact 
Expected 
Risk Premia 

0  1f
  

2f
     R-squared 

 
0.0048 
(0.000) 
[0.000] 

-0.0007 
(0.012) 
[0.149] 

0.0006 
(0.000) 
[0.095] 

   
   0.847 
   0.374 
   (0.00) 

Panel A.2: 
Average 
Realized 
Returns 

0  1f
  

2f
     R-squared 

 0.0097 
(0.013) 
[0.004] 

-0.0020 
(0.733) 
[0.725] 

-0.0007 
(0.861) 
[0.875] 

   
0.105 
0.011 
(0.93) 

Panel B. The Cross-Section of a Multi-Factor Asset Pricing Model 

Panel B.1: 
Exact 
Expected 
Risk Premia 

0  m  qmj  bab  def  vrp  R-squared 

 
0.0031 
(0.000) 
[0.000] 

0.0068 
(0.000) 
[0.000] 

-0.0075 
(0.000) 
[0.000] 

-0.0032 
(0.000) 
[0.073] 

-0.0008 
(0.000) 
[0.002] 

-0.0335 
(0.027) 
[0.130] 

0.983 
0.836 
(0.00) 

Panel B.2: 
Average 
Realized 
Returns 

0  m  qmj  bab  def  vrp  R-squared 

 0.0083 
(0.070) 
[0.085] 

-0.0003 
(0.955) 
[0.957] 

0.0011 
(0.706) 
[0.762] 

-9.0e-5 
(0.986) 
[0.991] 

-0.0007 
(0.583) 
[0.740] 

-0.0750 
(0.425) 
[0.630] 

0.359 
0.063 

    (0.99) 

Panel A of this table reports the risk premia estimates from the two-pass cross-sectional regression using 
the betas of the principal components as explanatory variables. Panel B shows the results employing the 
five-factor model based on the economic drivers of the time-series analysis. Panels A.1 and B.1. contain 
results using expected excess returns of the 20 risk-neutral-based portfolios while panels A.2 and B.2 use 
past average realized results on the 20 portfolios as the dependent variable. In this table, m represents the 
market excess return, qmj is the quality minus junk factor of Asness, Frazzini, and Pedersen (2014), bab 
denotes the betting-against-beta factor of Frazzini and Pedersen (2014), def is the default premium, and vrp 
is the market variance risk premium defined as the logarithm of the realized variance divided by the risk-
neutral variance. We report standard p-values in parentheses and the Kan, Robotti, and Shanken (2013) 
adjusted p-values in brackets. The cross-sectional R-squared value reported in the first line is computed as 
one minus the cross-sectional variance of average pricing errors divided by the cross-sectional variance of 
the average dependent variable. The R-squared statistic reported in the second line is the one proposed by 
Kan, Robotti, and Shanken (2013) and its corresponding (asymptotically valid) p-value is below in 
parentheses. 
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Figure 1.A Expected Market Risk Premium: January 1996 to July 2015 

 
 
 
 
Figure 1.B Expected Risk Premia for Representative Portfolios: January 1996 to July 
2015 
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Figure 2. Differences between the Martin and Wagner (2019) and Exact Expected Risk 
Premia for Representative Portfolios: January 1996 to 2015 
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Figure 3. Principal Components from the Variance-Covariance Matrix of Expected Risk 
Premium: January 1996 to 2015 
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Figure 4.1. Cross-Section of Expected Excess Returns. Two Principal Components 
Model: January 1996 to July 2015 
 

 
 

 
Figure 4.2. Cross-Section of Average Realized Excess Returns. Two Principal 
Components: January 1996 to July 2015 
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Figure 5.1. Cross-Section of Expected Excess Returns. Multi-Factor Model: January 1996 
to July 2015 
 

 
 

Figure 5.2. Cross-Section of Average Realized Excess Returns. Multi-Factor Model: 
January 1996 to July 2015 
 

 

 
 
 
 
 
 
 
 


