

Índice

- 1. Atacantes y ataques
- 2. Ejemplo práctico. MitM
- 3. Hardening Protege tu sistema
- 4. Bibliografía y referencias

Atacantes. Quién y por qué

¿Quién nos ataca?

- Delincuentes
- Oponentes (empresariales, políticos, ...)
- Vándalos
- Empleados descontentos

Por qué lo hace?

- Beneficio económico (robo, extorsión, ...)
- Venganza
- Vandalismo
- Reto intelectual, afán de protagonismo

Atacantes. Cómo

- Configuración inadecuada
 - Configuración por defecto
 - Contraseñas débiles
 - Vulnerabilidades no corregidas (parches)
 - Vulnerabilidades sin corrección o desconocidas (zero-day attack)
- Ejecución de malware (código malicioso)
- Errores en el software
 - Desbordamientos de *buffer*, combinaciones inesperadas de entrada, bombas lógicas, inyección de código, …
- Debilidades en los algoritmos o protocolos de seguridad

Ingeniería social (son las debilidades "humanas")

El triángulo de la intrusión (fraud triangle)

 La realización de un ataque requiere la combinación de tres elementos: medios técnicos, motivación y oportunidad (el conocido como *Triángulo de la Intrusión*).

Tipos de ataques

- Análisis de tráfico (*sniffing*)
- Ataques de repetición (*replay attacks*)
- Suplantación de identidad (*spoofing*)
- Inyección de código
- Cross-Site Scripting (XSS)
- Denegación de servicio (*DoS*)
- Denegación de servicio distribuida (DDoS)
- Fraudes, engaños y extorsiones

Índice

- 1. Atacantes y ataques
- 2. Ejemplo práctico. MitM
- 3. Hardening Protege tu sistema
- 4. Bibliografía y referencias

Ataque MitM – Man in the Middle

- Ataque de ámbito local: Red de área Local (LAN) o Wifi
- El tráfico legítimo se desvía hacia el atacante alterando las tablas de direcciones MAC (ARP spoofing / ARP poisoning)

Funcionamiento de la red

ARP. Conversión entre direcciones MAC e IP

- La dirección MAC (48 bits) es una dirección física única, asignada por el fabricante de la tarjeta de red. La dirección IP (32 o 128 bits) es una dirección lógica, asignada por el administrador de la red.
- Para poder enviar un mensaje (datagrama) a otra dirección IP es necesario obtener la dirección MAC del siguiente salto. Se realiza mediante el protocolo ARP (*Address Resolution Protocol*).
 - Ejemplo: A quiere conocer la dirección MAC de B

ARP Spoofing

Un host X envía muchos *ARP Responses* al host A diciendo que la IP de B corresponde a la MAC de X (la suya): el tráfico dirigido a B se enviará a X

Secuencia de un ataque MitM

- Identificar a la pareja de víctimas a atacar (*targets*). También pueden seleccionarse múltiples targets.
- Iniciar un proceso de suplantación de identidad (ARP spoofing, ICMP redirect, ...) en uno o ambos sentidos de la comunicación.
- Analizar el tráfico capturado en busca de información sensible.
- Opcionalmente, es posible interrumpir la comunicación en un momento de la misma y suplantar a un interlocutor, redirigir el tráfico HTTPS a HTTP (*SSLStrip*), falsear una conexión HTTPS, inyectar código malicioso dentro de una secuencia intercambiada, etc.

Los peligros del MitM

Bettercap

- Bettercap^[1] es un conjunto de herramientas open source para interceptar y analizar tráfico en una red cableada o Wifi.
- Automatiza tareas como la detección de equipos en la LAN, el ataque MitM contra uno o varios objetivos, la captura de tráfico y recolección de información sensible (contraseñas, números de cuenta,...), el filtrado y la sustitución de tráfico, la sustitución de conexiones seguras (*SSLStrip*), etc.
- Usa distintas técnicas para conseguir la suplantación o desvío del tráfico:
 - ARP spoofing
 - ICMP redirect
 - DNS spoofing

^[1] <u>https://www.bettercap.org/</u>

Tareas a realizar (I)

1. Abrir sesiones en los equipos (atacante, objetivo y *router*). En el laboratorio tenemos los siguientes usuarios y contraseñas:

	Windows	Linu	х	Cisco IOS
usuario	alumno	alumno	root	cisco
password	[sin pw]	ceu	root	cisco

2. Identificar las direcciones IP y MAC de los tres equipos y anotarlas sobre el esquema anterior. Comandos necesarios:

Windows	Linux	Cisco IOS
ipconfig	ifconfig eth0	show interface fa0
arp -a	arp -n	show arp

Nota: para acceder al *router* puede usar el comando sudo minicom en una ventana del equipo Objetivo (este equipo está conectado al *router* a través de un cable de consola de color azul). Para finalizar la sesión de consola: Ctrl + A, q

Tareas a realizar (II)

3. Abrir un terminal como *root* en la máquina atacante (sudo su -). A continuación, lanzar una primera ejecución de bettercap. No se realizará ARP *spoofing* (MitM) ni visualización (*sniffing*), sólo se identificarán los equipos presentes:

bettercap --no-spoofing

- Ver las máquinas detectadas y también los indicadores de las funciones activadas en el programa (aparecen en verde y rojo en la parte superior). Finalizar la ejecución pulsando la combinación *Ctrl+C*.
- 5. Lanzar un ataque MitM con *ARP spoofing* sobre toda la red y en ambos sentidos:

bettercap -X --full-duplex

Para comprobar que se está interceptando el tráfico abra un navegador en el equipo Objetivo y navegue por Internet.

Tareas a realizar (III)

- 6. Comprobar el efecto del ataque sobre las tablas ARP del objetivo y del *router*. En ambas tablas debería aparece la dirección MAC del atacante asociada a la dirección IP del otro extremo.
- 7. También puede verse cómo el atacante realiza el envenenamiento enviando continuamente respuestas ARP. Abrir un nuevo terminal en el equipo atacante nuevamente como *root* y ejecutar el siguiente comando:

tcpdump -i eth0 arp

8. Lanzar un nuevo ataque MitM pero más específico, dirigido sólo al Objetivo (opción –T seguida de la dirección IP del Objetivo). Al no indicar el modo full-dúplex sólo se intercepta un sentido de la comunicación, desde el Objetivo al *router*.

bettercap -X -T <IP del objetivo>

Tareas a realizar	(IV)	
-------------------	------	--

 Verificar que bettercap obtiene las credenciales de usuario intercambiadas a través de las conexiones en abierto. Puede probar los siguientes enlaces desde el equipo Objetivo:

http://		(taller / Segurid4D)
http://	(taller@	/ Segurid4D)

10. Alteración de los datos intercambiados en una conexión en abierto. Ejecutar bettercap con los siguientes parámetros:

bettercap --proxy --proxy-module flip-image --no-sslstrip

Probar a visualizar una página web desde el objetivo ¿qué ocurre?

Nota: también puede usar el módulo HackGif ¿qué función realiza?

Tareas a realizar (y V)

11. Análisis de tráfico HTTPS por ataque *SSLStrip*: La conexión que debería ser segura (por HTTPS) se tramita como insegura (por HTTP). Todo el intercambio será visible para el atacante.

bettercap --proxy -P POST

Conecte a algún dominio seguro y vea el resultado.

12. Análisis de tráfico HTTPS por falsificado de conexión (*proxy https*). Nota: En el navegador del objetivo saltará una alerta al no reconocer el certificado digital que envía el atacante.

bettercap --proxy-https

Conecte a algún dominio seguro y vea el resultado.

Cómo protegernos frente al MitM

- En el switch
 - Dynamic ARP Inspection (DAI). El switch verifica la autenticidad de todos los mensajes ARP entregados, bloqueando los inválidos.
 - DHCP Snooping. El switch analiza los mensajes DHCP y aprende la MAC de cada usuario, para evitar que se entreguen tramas hacia puertos no asociados a las MAC. También evita la suplantación de los mensajes DHCP.

En el servidor

 Empleo de HSTS (HTTP Strict Transport Security) para informar al cliente de que requiere conexión cifrada. Ya hay muchos navegadores que tienen sitios HTTPS precargados.

En el host

- Uso de conexiones cifradas. No aceptar certificados digitales no reconocidos por nuestro sistema.
- En la red
 - Usar sistemas de detección de intrusiones (IDS/IPS), que analizan el tráfico intercambiado en la red y detectan patrones de ataque.

Índice

- 1. Atacantes y ataques
- 2. Ejemplo práctico. MitM
- *3. Hardening* Protege tu sistema
- 4. Bibliografía y referencias

Consejos para fortalecer nuestro host

- Objetivo: mantener la seguridad y dificultar el trabajo al atacante.
 - Aplicar parches de seguridad en el sistema y las aplicaciones (y reiniciar...).
 - Instalar una suite de seguridad (cortafuegos, antivirus, ...).
 - Cambiar las contraseñas por defecto.
 - Usar contraseñas robustas.
 - Instalar software sólo de fuentes fiables.
 - Usar siempre conexiones seguras. Desconfiar si no se reconoce el certificado del servidor o si el navegador indica que no es fiable
 - No abrir correo sospechoso. No pinchar sobre sus adjuntos.
 - Mantener copias de seguridad en almacenamiento off-line y/o con versionado.
 - Activar el bloqueo automático del sistema.
 - Tener presente los ataques de ingeniería social.

Seguridad en entornos wifi

- Cambiar la contraseña por defecto de acceso al Access Point (AP).
 Debe ser robusta frente a ataques. Limitar el acceso de administración al AP (ej: sólo por SSH o HTTPS, y desde el interface cableado).
- Usar WPA2, con 802.11x/EAP (*Enterprise*) si es posible. En modo personal, configurar una PSK (*Pre Shared Key*) compleja para evitar ataques por fuerza bruta o diccionario, y cambiarla periódicamente.
- Aislar las estaciones *wireless* (si es posible).
- Deshabilitar WPS (*Wi-fi Protected Setup*). Tiene varias debilidades.
- Ubicar los AP en lugares seguros.
- Si se trabaja con usuarios estables, habilitar el filtrado de MAC.
 ¿Ocultar el SSID?
 - No conectar a redes wifi en las que no se confía.

Índice

- 1. Atacantes y ataques
- 2. Ejemplo práctico. MitM
- 3. Hardening Protege tu sistema
- 4. Bibliografía y referencias

Bibliografía y referencias

- Fundamentals of Information Systems Security.
 David Kim and Michael G. Solomon
 Jones & Bartlett Learning, LLC. 2012
- Proyecto bettercap <u>https://www.bettercap.org/</u>
- Documentación bettercap <u>https://www.bettercap.org/legacy/</u>

