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Both, mathematical knowledge and mastering function analysis lock the door to success when 

analyzing the structural behavior of simple and continuous beams. 

Each of the sections of those structural members shows variable shear forces, bending 

moments, rotation and deflection. The image below shows some of these changing functions. 

 

 

These functions are related to one another: The rotation function (represented with a dark 

blue curve is the derivative of the elastic deflection (purple). Similarly, the bending moment 

function (light blue) is the derivative of the rotation function; the shear-force function (green) 

is the derivative of the bending moment one, and the loading function (grey) is the derivative 

of the shear-force function. 

If the opposite way is followed, starting with the applied load's function, the shear force, 

bending moment, rotation and deflections functions can be obtained through sequential 

integrations. Here it is where understanding different simplified integration methods become 

more than useful. 

In the image above, it can be observed that the maximum and minimum values, and points of 

inflection of each of the functions appear where the corresponding first or second derivative 

vanishes. If we study the shear diagram, an abrupt change in the slope of the bending moment 

function happens where the shear diagram shows a discontinuity. The ability to obtain all 

these critical values in functions is based on functions analysis. 
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The examples that have been gathered in this collection are aimed to first- or second-year 

students, in an attempt to foster the students’ understanding of the practical application -in 

the area of structural design- of the knowledge they will be obtaining during their elemental 

training in functions. 

Solving these examples requires, solely, mathematical skills. No previous knowledge related to 

structural design is required. The explanations linked to this area are already included in each 

of the statements. 

The previous mentioned mathematical skills will be widely demanded during the years of 

training that follow the initial courses – mainly in Physics or Structural Design courses -, thus 

this training in the use of functions must be as thorough and concise as possible. 
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Index 

Example Section Mathematical skill 

V01 
A Determine explicit line functions 

B Determine explicit parabola functions 

V02 
 

A Process for indefinite integrals 

B Determine integration constants 

C Determine integral functions 

D Obtaining the critical value 

V03 
 

A Area of a parabola using an integral 

B Applied example: rotation of one section in a beam 

C Verifying values in the derivative function 

V04 
 

A Determine parabolas using explicit equations 

B Indefinite integration: Process 

C Determine constants of integration 

D Determine the integral function 

E Obtain the middle value 

V05 
 

A Area of a parabola using definite integration 

B Use when obtaining the rotation of beam sections 

C Verifying the value in the derivative function 

V06 
 

A Position and value of maximum relative points 

B Determine the integral function 

C Position and value of maximum relative points 

D Value of the relative maximum points 

V07 
 

A Position and value of maximum relative points 

B Determine the integral function 

C Values of the derivative functions at the endpoints of the interval 

V08 
A Integration on an Interval: Process 

B Integration on an Interval: Process 

V09 A Definite integrals of the product of 2 functions using area formulas 

V10 A Simpson’s method for integration of polynomials < 4th degree 
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Problem V01 

The beam in the image is simply supported at its ends. Its length is L; its cross-section is even - 

with an I value of the moment of inertia -. The value of the Young’s Modulus of the material is 

E. 

  

 

When the beam is loaded with a vertical, point load P in the middle of the span, each of its 

sections is subjected to a different value of internal bending force. The figure below represents 

the function of this internal bending force M(x), that affects every section located at x distance 

from the origin.  

  

 

The variation of this function is linear on both intervals. The left interval (0, L/2) M(x) passes 

through the points (0, 0) y (L/2, PL/4). The right one passes through (L/2, PL/4) y (L, 0) 

a) Obtain the explicit expression of M(x) for each of the intervals, using the provided 

coordinate system (ordinates axis oriented downwards). 

 

When the beam is subjected to an evenly distributed load q, the M(x) function is a 2nd-degree 

polynomial whose graph is a parabola, with vertical axis, that goes through points (0,0) and (0, 

L). Its vertex is located on point (L/2, qL2/8) 

    

 

b) Obtain the explicit expression of M(x), using the provided coordinate system (y-axis 

oriented downwards).  
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Problem V02 

The distributed load q on the beam that was analyzed in problem V01 produces the deflection 

represented on the image below. This deflection is defined by its Deflection Equation y(x): 

  

 

The y(x) expression can be obtained from the equation d2y(x)/dx2 = M(x)/EI, where M(x) is the 

same found in section b), problem V01. Taking all the previous into consideration: 

 

a) Work the two indefinite integration stages and: Find y(x) as a function of q, L, E, I 

(constants), the variable x and both integration constants, C1 y C2. 

 

b) Solve the initial value problem: Obtain the values of C1 y C2 imposing the following 

condition: the graph of y(x) must pass through (0, 0) and (L, 0), which are the points 

where the external supports are located. 

 

c) Substitute C1 y C2 in y(x) and obtain its final expression as a function of q, L, E, I, x  

 

d) Find the value of the maximum displacement f (maximum deflection) that, due to 

symmetry conditions, in this case, happens in the middle of the span. 
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Problem V03 

The elastic deflection that the distributed load, q, produced in problem V01 shows rotation of 

the beam on its left end. The value of this rotation is g, as shown in the image below: 

  

 

This rotation can be calculated dividing the area of the parabola M(x) (that was obtained in 

V01) by the constant value 2EI with a negative sign (counterclockwise rotation is considered 

positive by sign convention). Answer the following questions: 

 

a) Find the area A bounded by the parabola and the interval (0, L) in the x-axis (use an 

integral). 

 

b) Find the value of the rotation g on the left end of the beam. 

 

c) Prove that the rotation corresponds to the derivative of the y(x) function at the origin 

(this function was obtained in problem V02) 
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Problem V04 

An L long fixed supported on its right end, cantilever beam, will be studied. The beam’s cross-

section is even - with an I value of the moment of inertia - and the value of the Young’s 

Modulus of the material is E. 

The beam is subjected to an evenly distributed load q, that produces a rate of the internal 

bending force of M(x) on each of the sections, located at a distance x from the origin. This M(x) 

function is a 2nd-degree polynomial whose graph is a parabola. At the free end of the 

cantilever, the value of this polynomial is zero, and the slope of the parabola is 0 (the tangent 

is horizontal). On the right end, the value is negative, as shown in the image below: 

    

 

The bending behavior produces the deflection represented on the image below. This 

deflection is defined by its Deflection Equation y(x). The maximum deflection f appears on the 

free end of the beam. 

  

 

Considering the Deflection Equation d2y(x)/dx2 = M(x)/EI, answer the following: 

 

a) Obtain the explicit expression of the M(x) parabola, observing the given conditions. 

 

b) Work the two indefinite integration stages and find y(x) as a function of q, L, E, I, 

constants, the variable x and both integration constants, C1 y C2. 

 

c) Obtain the values of C1 y C2 imposing the following conditions: y(x) must pass through 

(L, 0) and its derivative must be zero on (L, 0)  

 

e) Substitute C1 y C2 in y(x) and obtain its final expression as a function of q, L, E, I, x  

 

f) Find the value of the maximum displacement f (maximum deflection) that happens on 

the left end of the cantilever. 
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Problem V05 

The elastic deflection that the distributed load, q, produced in problem V04 shows rotation of 

the beam on its left end. The value of this rotation is g, as shown in the image below: 

 

  

 

This rotation can be calculated dividing the area below the parabola y=M(x) (that was obtained 

in V04) by the constant value EI with a negative sign (counterclockwise rotation is considered 

positive by sign convention). Answer the following questions: 

 

a) Find the area A of the parabola by integration of the (0, L) interval. 

 

b) Find the value of the rotation g on the left end of the beam. 

 

c) Prove that the rotation corresponds to the derivative of the y(x) function at the origin 

(this function was obtained in problem V04)  
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Problem V06 

The beam in the image is simply supported at its ends. Its length is L; its cross-section is even - 

with an I value of the moment of inertia -. The value of the Young’s Modulus of the material is 

E. 

A triangular, distributed load is applied to it. The value of the load on the beam’s left end is 0; 

the value on the right end is q. Each of the sections of the beam is subjected to a different 

value of internal bending force. The figure below represents the function of this internal 

bending force M(x), that affects every section located at x distance from the origin. The 3rd 

degree polynomial function that express this bending behavior is M(x) = q (Lx – x3/L) / 6. 

The image below represents the deflection produced by the triangular loading situation. 

 

  

 

The load is not symmetrical. Thus neither M(x) nor y(x) are symmetrical. Hence, the maximum 

internal bending force and the maximum deflection will not appear in the middle of the beam. 

Answer the following: 

 

a) Find the xmmax position where function M(x) presents its relative maximum. Value of 

this Mmax 

 

b) Deflection Equation y(x) obtained from d2y(x)/dx2 = M(x)/EI and values of the 

integration constants imposing the following condition: the graph of y(x) must pass 

through (0, 0) and (L, 0) 

 

c) Find the xmmax position where function y(x) presents its relative maximum. Do the 

maximum bending, and the maximum deflection coincide on the same x position? 

 

d) Value of the maximum deflection fmax.  

  



EPS USP CEU                                                                                 Examples of mathematical functions in structural analysis 

  
Page 11 

 
  

Problem V07 

The beam in the image is simply supported at its ends. Its length is L, with an additional 

cantilever. The length of this element is L/2. The cross-section of the beam is even - with an I 

value of the moment of inertia -. The value of the Young’s Modulus of the material is E. 

The beam is subjected to an evenly distributed load q, that produces an internal bending force. 

This bending is expressed by the parabolic function M(x) = q (3Lx/8 – x2/2) along the (0, L) 

interval. The image shows the graphs of M(x) and y(x) functions: 

 

 

 

Answer the following: 

a) Find the xmmax position where function M(x) presents its relative maximum. Value of 

this Mmax 

 

b) Deflection Equation y(x) obtained from d2y(x)/dx2 = M(x)/EI and values of the 

integration constants imposing the following condition: y(x) must pass through (0, 0) 

and (L, 0) 

 

c) Rotation values gi and gd on both left and right supports. 
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Problem V08 

An L long fixed supported on its left end, cantilever beam, will be studied. The beam’s cross-

section is even - with an I value of the moment of inertia - and the value of the Young’s 

Modulus of the material is E. 

The beam is subjected to an evenly distributed load q, that produces a rate of the internal 

bending force of M(x) on each of the sections, located at an x distance from the origin. This 

bending can be expressed by the parabolic function M(x) = - q (L – x)2/2 which has been 

plotted on the image below, as well as the elastic deflection and the maximum values of 

deflection and rotation. 

  

 

The maximum g rotation appears on the right end of the cantilever. Its value can be obtained 

with a definite integral between 0 and L of the function that results from dividing M(x) by the 

EI constant. 

a) Determine the definite integral and the value of the maximum rotation g 

 

The maximum deflection f appears on the right end of the cantilever, too. Its value can be 

obtained with a definite integral between 0 and L of the product M(x) (L-x), divided by the EI 

constant. 

b) Determine the definite integral and the value of the maximum deflection f  
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Problem V09 

The beam in the image is simply supported at its ends. Its length is L, with two additional 

cantilevers. The length of these elements is 3L/4. The cross-section of the beam is even - with 

an I value of the moment of inertia -. The value of the Young’s Modulus of the material is E. 

The beam is subjected to an evenly distributed load q, that produces an internal bending force. 

This bending is expressed by a parabolic function. The value of this function on points (0, 0) 

and (L, 0) is -9qL2/32. On point (L/2, 0) the value is -5qL2/32 in (L/2, 0).  

Also, an N(x) linear function between (0, -1) y (L, 0) represents the power of bending over the 

rotation of the section located on point (0, 0). 

 

 

 

In this case, the g rotation on the left support can be obtained with a definite integral between 

0 and L of the function that results from dividing the product of M(x) N(x) by the EI constant. 

Find the value of the g rotation, using a geometrical procedure based on the following 

mathematical property: 

“The definite integral on an interval of the product of two functions, a generic one and a linear 

one, equals the product of the area under the generic function in the interval times the value of 

the linear function at the position where the centroid of the generic function is located” 

Moreover, it can be considered that the area beneath a parabola similar to the one stated as 

M(x) is one-third of the rectangle that circumscribes it, plus the area of the rectangle with L 

width and height equal to the height of the parabola’s vertex. 
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Problem V10 

Let us consider the beam with two cantilevers that was defined in problem V09, subjected to 

the same distributed load. 

The functions that were defined in that problem, M(x) y N(x), and that have been plotted in 

the image below are to be considered too, as well as the expression that was applied to find 

the g rotation on the left support. 

 

 

 

Find the value of the g rotation, using this time the Simpson’s method to solve the definite 

integral: 

“The definite integral of a less than 4th degree polynomial function in an interval between 

coordinates xa and xb , equals the product of one-sixth of the length of the interval times the 

sum of the values of the function at its ends plus four times the value of the function in the 

middle of the interval”. 

 

Definite integral of f(x) in a given interval = (xb – xa) (f(xa) + f(xb) + 4f((xa+xb)/2)) / 6 

 

Keep in mind that the polynomial function must be equivalent to the product of both M(x) and 

N(x) functions. 
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Answers 

Problem Section Answers 

V01 
A En [0, L/2] M(x) = P x / 2;    En [L/2, L] M(x) = P (L – x) / 2 

B M(x) = q (Lx – x2) / 2 

V02 
 

A M(x) = q (2Lx3 – x4) / 24 EI + C1x + C2 

B C1 = - qL3 / 24 EI     C2 = 0 

C M(x) = q (2Lx3 - L3x – x4) / 24 EI 

D f = - 5 qL4 / 384 EI 

V03 
 

A A = qL3 / 12 

B g = - qL3 / 24 EI 

C g = dy(x)/dx (x= 0) = C1 = - qL3 / 24 EI 

V04 
 

A M(x) = - q x2 / 2 

B M(x) = - q x4 / 24 EI + C1x + C2 

C C1 = qL3 / 6 EI     C2 = - qL4 / 8 EI 

D M(x) = - q (x4 – 4L3x + 3L4) / 24 EI 

E f = - qL4 / 8 EI 

V05 
 

A A = qL3 / 6 

B g = qL3 / 6 EI 

C g = dy(x)/dx (x= 0) = qL3 / 6 EI 

V06 
 

A Xmmax = L / √𝟑     Mmax = qL2 / 9 √𝟑 

B M(x) = q (10Lx3 – 3x5/L - 7L3x) / 360 EI 

C Xfmax = 0.5193  (no coincide con Xmmax) 

D fmax = - 0.006522 qL4 / EI 

V07 
 

A Xmmax = 3L / 8     Mmax = 9qL2 / 128 

B M(x) = q (3Lx3 – 2x4 - L3x) / 48 EI 

C gi = - qL3 / 48 EI    gd = 0 

V08 
A g = - qL3 / 6 EI 

B f = - qL4 / 8 EI 

V09 A g = - 19 qL3 / 192 EI 

V10 A g = - 19 qL3 / 192 EI 

 


