Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/10637/10673
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.other | UCH. Departamento de Farmacia | - |
dc.contributor.other | Producción Científica UCH 2018 | - |
dc.creator | Lahuerta Zamora, Luis | - |
dc.creator | Martín Algarra, Rafael Vicente | - |
dc.creator | Antón Fos, Gerardo Manuel | - |
dc.creator | Costa Piles, Sara | - |
dc.creator | Bueso Bordils, José Ignacio | - |
dc.creator | Alemán López, Pedro | - |
dc.creator | Duart Duart, María José | - |
dc.date | 2018 | - |
dc.date.accessioned | 2019-10-29T05:00:12Z | - |
dc.date.available | 2019-10-29T05:00:12Z | - |
dc.date.issued | 2018-11 | - |
dc.identifier.citation | Bueso-Bordils, J.I., Aleman-López, P.A., Costa-Piles, S., Duart, M.J., Lahuerta-Zamora, L., Martin-Algarra, R., & Anton-Fos, G.M. (2018). Obtaining microbiological and pharmacokinetic highly predictive equations. Current Topics in Medicinal Chemistry, 18(11), 908–916. https://doi.org/10.2174/1568026618666180712092326 | - |
dc.identifier.issn | 1568-0266 | - |
dc.identifier.issn | 1873-4294 (Electrónico) | - |
dc.identifier.uri | http://hdl.handle.net/10637/10673 | - |
dc.description | Este artículo se encuentra disponible en la siguiente URL: http://www.eurekaselect.com/163701/article | - |
dc.description | En este artículo también participan Pedro A. Alemán-López, Sara Costa-Piles, María J. Duart, Luis Lahuerta-Zamora, Rafael Martín-Algarra, Gerardo M. Antón-Fos. | - |
dc.description | Este recurso no está disponible en acceso abierto por política de la editorial. | - |
dc.description.abstract | In this paper, a multilinear regression (MLR) analysis has been carried out in order to accurately predict physicochemical properties and biological activities of a group of antibacterial quinolones by means of a set of structural descriptors called topological indices. The aim of this work is to develop prediction equations for these properties after collecting the maximum number of data from the literature on antibacterial quinolones. The five regression functions selected by presenting the best combination of various statistical parameters, subsequently validated by means of internal validation (intercorrelation, Y-randomization and leave-one-out cross-validation tests), allowed the reliable prediction of minimum inhibitory concentration 50 versus Staphylococcus aureus (MIC50Sa), Streptococcus pyogenes (MIC50Spy) and Bacteroides fragilis (MIC50Bf), mean residence time (MRT) after oral administration and volume of distribution (VD). We conclude that the combination of molecular topology methods and MLR provides an excellent tool for the prediction of pharmacological properties. | - |
dc.format | application/pdf | - |
dc.language.iso | es | - |
dc.language.iso | en | - |
dc.relation | UCH. Financiación Universidad | - |
dc.relation | Este artículo de investigación ha sido financiado por la Universidad CEU Cardenal Herrera. | - |
dc.relation.ispartof | Current Topics in Medicinal Chemistry, 18 (11) | - |
dc.subject | Microbiología farmacéutica - Modelos matemáticos. | - |
dc.subject | Farmacología molecular - Modelos matemáticos. | - |
dc.subject | Pharmaceutical microbiology - Mathematical models. | - |
dc.subject | Molecular pharmacology - Mathematical models. | - |
dc.subject | Biología molecular - Modelos matemáticos. | - |
dc.subject | Quinolone antibacterial agents - Mathematical models. | - |
dc.subject | Molecular biology - Mathematical models. | - |
dc.subject | Quinolonas - Modelos matemáticos. | - |
dc.title | Obtaining microbiological and pharmacokinetic highly predictive equations | - |
dc.type | Artículo | - |
dc.identifier.doi | https://doi.org/10.2174/1568026618666180712092326 | - |
dc.centro | Universidad Cardenal Herrera-CEU | - |
Aparece en las colecciones: | Dpto. Farmacia |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.