León Espinosa, Gonzalo
Research Projects
Organizational Units
Job Title
Faculty
University of origin
Name
Search Results
- Protein tau phosphorylation in the proline rich region and its implication in the progression of Alzheimer's disease
2024-11-14 Tau has a wide variety of essential functions in the brain, but this protein also plays a determining role in the development of Alzheimer's disease (AD) and other neurodegenerative diseases called tauopathies. This is due to its abnormal aggregation and the subsequent formation of neurofibrillary tangles. Tau hyperphosphorylation appears to be a critical step in its transformation into an aggregated protein. However, the exact process, including the cellular events that trigger it, remains unclear. In this study, we employed immunocytochemistry assays on hippocampal sections from AD cases and from tauopathy cases (Braak stage III) with no evidence of cognitive decline, and the P301S mouse model to investigate the colocalization patterns of Tau phosphorylated (p) at specific residues (S202-T205, S214, and T231) within the proline-rich region. Our results show pyramidal neurons in the hippocampus of P301S mice in which Tau is intensely phosphorylated at residues S202 and T205 (recognized by the AT8 antibody), but with no detectable phosphorylation at S214 or T231. These non-colocalizing neurons displayed intensely labeled aggregated pTau deposits distributed through the soma and dendritic processes. However, most of the hippocampal pyramidal neurons are labeled with pTauS214 or pTauT231 antibodies and typically showed a homogeneous and diffuse pTau distribution (not aggregated). This different labeling likely reflects a Tau conformational step, potentially related to the transition from a diffuse tau phosphorylation phenotype (Type 2) into an NFT-like or Type 1 phenotype. We further observed that dendrites of CA3 pyramidal cells are intensely labeled with pTau214 in the stratum lucidum, but not with AT8 or pTauT231. By contrast, analysis of tissue from AD patients or other human tauopathy cases (Braak stage III) with no evidence of cognitive decline revealed extensive colocalization with both antibody combinations in CA1. The complete or mature tangle development may follow a different mechanism in the P301S mouse model or may require more time to achieve the maturity state found in AD cases. Further studies would be necessary to address this question.
- Metabolomic Study of Hibernating Syrian Hamster Brains: In Search of Neuroprotective Agents
2019-01-09 Syrian hamsters undergo a reversible hyperphosphorylation of protein τ during hibernation, providing a unique natural model that may unveil the physiological mechanisms behind this critical process involved in the development of Alzheimer’s disease and other tauopathies. The hibernation cycle of these animals fluctuates between a pair of stages: 3–4 days of torpor bouts interspersed with periods of euthermia called arousals that last several hours. In this study, we investigated for the first time the metabolic changes in brain tissue during hibernation. A total of 337 metabolites showed statistically significant differences during hibernation. Based on these metabolites, several pathways were found to be significantly regulated and, therefore, play a key role in the regulation of hibernation processes. The increase in the levels of ceramides containing more than 20 C atoms was found in torpor animals, reflecting a higher activity of CerS2 during hibernation, linked to neurofibrillary tangle generation and structural changes in the Golgi apparatus. Our results open up the debate about the possible significance of some metabolites during hibernation, which may possibly be related to τ phosphorylation and dephosphorylation events. In general, this study may provide insights into novel neuroprotective agents because the alterations described throughout the hibernation process are reversible.
- Phosphorylated Tau at T181 accumulates in the serum of hibernating Syrian hamsters and rapidly disappears after arousal
2024-09-04 The search for biomarkers for the early diagnosis of neurodegenerative diseases is a growing area. Numerous investigations are exploring minimally invasive and cost-effective biomarkers, with the detection of phosphorylated Tau (pTau) protein emerging as one of the most promising fields. pTau is the main component of the paired helical filaments found in the brains of Alzheimer’s disease cases and serves as a precursor in the formation of neurofibrillary tangles (NFTs). Recent research has revealed that analysis of p-Tau181, p-Tau217 and p-Tau231 in blood may be an option for detecting the preclinical stage of Alzheimer’s disease. In this study, we have analyzed the values of pTau 181 in the serum of Syrian hamsters during hibernation. Naturally, over the course of hibernation, these animals exhibit a reversible accumulation of pTau in the brain tissue, which rapidly disappears upon awakening. A biosensing system based on the interferometric optical detection method was used to measure the concentration of pTau181 protein in serum samples from Syrian hamsters. This method eliminates the matrix effect and amplifies the signal obtained by using silicon dioxide nanoparticles (SiO2 NPs) biofunctionalized with the αpTau181 antibody. Our results indicate a substantial increase in the serum concentration of pTau in threonine-181 during hibernation, which disappears completely 2–3 h after awakening. Investigating the mechanism by which pTau protein appears in the blood non-pathologically may enhance current diagnostic techniques. Furthermore, since this process is reversible, and no tangles are detected in the brains of hibernating hamsters, additional analysis may contribute to the discovery of improved biomarkers. Additionally, exploring drugs targeting pTau to prevent the formation of tangles or studying the outcomes of any pTau-targeted treatment could be valuable.
- Hypothalamic orexinergic neuron changes during the hibernation of the Syrian hamster
2022-09-09 Hibernation in small mammals is a highly regulated process with periods of torpor involving drops in body temperature and metabolic rate, as well as a general decrease in neural activity, all of which proceed alongside complex brain adaptive changes that appear to protect the brain from extreme hypoxia and low temperatures. All these changes are rapidly reversed, with no apparent brain damage occurring, during the short periods of arousal, interspersed during torpor—characterized by transitory and partial rewarming and activity, including sleep activation, and feeding in some species. The orexins are neuropeptides synthesized in hypothalamic neurons that project to multiple brain regions and are known to participate in the regulation of a variety of processes including feeding behavior, the sleep-wake cycle, and autonomic functions such as brown adipose tissue thermogenesis. Using multiple immunohistochemical techniques and quantitative analysis, we have characterized the orexinergic system in the brain of the Syrian hamster— a facultative hibernator. Our results revealed that orexinergic neurons in this species consisted of a neuronal population restricted to the lateral hypothalamic area, whereas orexinergic fibers distribute throughout the rostrocaudal extent of the brain, particularly innervating catecholaminergic and serotonergic neuronal populations. We characterized the changes of orexinergic cells in the different phases of hibernation based on the intensity of immunostaining for the neuronal activity marker C-Fos and orexin A (OXA). During torpor, we found an increase in C-Fos immunostaining intensity in orexinergic neurons, accompanied by a decrease in OXA immunostaining. These changes were accompanied by a volume reduction and a fragmentation of the Golgi apparatus (GA) as well as a decrease in the colocalization of OXA and the GA marker GM-130. Importantly, during arousal, C-Fos and OXA expression in orexinergic neurons was highest and the structural appearance and the volume of the GA along with the colocalization of OXA/GM-130 reverted to euthermic levels. We discuss the involvement of orexinergic cells in the regulation of mammalian hibernation and, in particular, the possibility that the high activation of orexinergic cells during the arousal stage guides the rewarming as well as the feeding and sleep behaviors characteristic of this phase.
- Differential Structure of Hippocampal CA1 Pyramidal Neurons in the Human and Mouse
2019-07-02 Pyramidal neurons are the most common cell type and are considered the main output neuron in most mammalian forebrain structures. In terms of function, differences in the structure of the dendrites of these neurons appear to be crucial in determining how neurons integrate information. To further shed light on the structure of the human pyramidal neurons we investigated the geometry of pyramidal cells in the human and mouse CA1 region—one of the most evolutionary conserved archicortical regions, which is critically involved in the formation, consolidation, and retrieval of memory. We aimed to assess to what extent neurons corresponding to a homologous region in different species have parallel morphologies. Over 100 intracellularly injected and 3D-reconstructed cells across both species revealed that dendritic and axonal morphologies of human cells are not only larger but also have structural differences, when compared to mouse. The results show that human CA1 pyramidal cells are not a stretched version of mouse CA1 cells. These results indicate that there are some morphological parameters of the pyramidal cells that are conserved, whereas others are species-specific.
- The Golgi Apparatus of Neocortical Glial Cells During Hibernation in the Syrian Hamster
2019-11-19 Hibernating mammals undergo torpor periods characterized by a general decrease in body temperature, metabolic rate, and brain activity accompanied by complex adaptive brain changes that appear to protect the brain from extreme conditions of hypoxia and low temperatures. These processes are accompanied by morphological and neurochemical changes in the brain including those in cortical neurons such as the fragmentation and reduction of the Golgi apparatus (GA), which both reverse a few hours after arousal from the torpor state. In the present study, we characterized – by immunofluorescence and confocal microscopy – the GA of cortical astrocytes, oligodendrocytes, and microglial cells in the Syrian hamster, which is a facultative hibernator. We also show that after artificial induction of hibernation, in addition to neurons, the GA of glia in the Syrian hamster undergoes important structural changes, as well as modifications in the intensity of immunostaining and distribution patterns of Golgi structural proteins at different stages of the hibernation cycle.
- Changes in neocortical and hippocampal microglial cells during hibernation
2018 Mammalian hibernation proceeds alongside a wide range of complex brain adaptive changes that appear to protect the brain from extreme hypoxia and hypothermia. Using immunofluorescence, confocal microscopy, quantitative analysis methods and intracellular injections, we have characterized microglia morphological changes that occur in the neocortex and hippocampus of the Syrian hamster during hibernation. In euthermic hamsters, microglial cells showed the typical ramified/resting morphology with multiple long, thin and highly-branched processes homogeneously immunostained for Iba-1. However, during torpor, microglial cell process numbers increase significantly accompanied by a shortening of the Iba-1 immunoreactive processes, which show a fragmented appearance. Adaptative changes of microglial cells during torpor coursed with no expression of microglial cell activation markers. We discuss the possibility that these morphological changes may contribute to neuronal damage prevention during hibernation.
- Evaluation of the Safety and Efficacy of the Therapeutic Potential of Adipose-Derived Stem Cells Injected in the Cerebral Ischemic Penumbra
2018-07-18 Introduction: Stroke represents an attractive target for cell therapy. Although different types of cells have been employed in animal models with variable results, the human adipose-derived stem cells (hASCs) have demonstrated favorable characteristics in the treatment of diseases with inflammatory substrate, but experience in their intracerebral administration is lacking. The purpose of this study is to evaluate the effect and safety of the intracerebral application of hASCs in a stroke model. Methods: A first group of Athymic Nude mice after stroke received a stereotactic injection of hASCs at a concentration of 4 × 104/ L at the penumbra area, a second group without stroke received the same cell concentration, and a third group had only stroke and no cells. After 7, 15, and 30 days, the animals underwent fluorodeoxyglucose-positron emission tomography and magnetic resonance imaging; subsequently, they were sacrificed for histological evaluation (HuNu, GFAP, IBA-1, Ki67, DCX) of the penumbra area and ipsilateral subventricular zone (iSVZ). Results: The in vitro studies found no alterations in the molecular karyotype, clonogenic capacity, and expression of 62 kDa transcription factor and telomerase. Animals implanted with cells showed no adverse events. The implanted cells showed no evidence of proliferation or differentiation. However, there was an increase of capillaries, less astrocytes and microglia, and increased bromodeoxyuridine and doublecortin-positive cells in the iSVZ and in the vicinity of ischemic injury. Conclusions: These results suggest that hASCs in the implanted dose modulate inflammation, promote endogenous neurogenesis, and do not proliferate or migrate in the brain. These data confirm the safety of cell therapy with hASCs.
- Phospho-Tau Changes in the Human CA1 During Alzheimer's Disease Progression
2019-04-01 Despite extensive studies regarding tau phosphorylation progression in both human Alzheimer’s disease cases and animal models, the molecular and structural changes responsible for neurofibrillary tangle development are still not well understood. Here, by using the antibodies AT100 (recognizes tau protein phosphorylated at Thr212 and Ser214 in the proline-rich region) and pS396 (recognizes tau protein phosphorylated at serine residue 396 in the C-terminal region), we examined phospho-tau immunostaining in neurons from the hippocampal CA1 region of 21 human cases with tau pathology ranging from Braak stage I to VI. Our results indicate that the AT100/pS396 ratio decreases in CA1 in accordance with the severity of the disease, along with its colocalization. We therefore propose the AT100/pS396 ratio as a new tool to analyze the tau pathology progression. Our findings also suggest a conformational modification in tau protein that may cause the disappearance of the AT100 epitope in the late stages of tau pathology, which may play a role in the toxic tangle aggregation. Thus, this study provides new insights underlying the stages for the formation of neurofibrillary tangles in Alzheimer’s disease.
- Changes in the Golgi apparatus of neocortical and hippocampal neurons in the hibernating hamster
2015-12-15 Hibernating animals have been used as models to study several aspects of the plastic changes that occur in the metabolism and physiology of neurons. These models are also of interest in the study of Alzheimer's disease because the microtubule-associated protein tau is hyperphosphorylated during the hibernation state known as torpor, similar to the pretangle stage of Alzheimer's disease. Hibernating animals undergo torpor periods with drops in body temperature and metabolic rate, and a virtual cessation of neural activity. These processes are accompanied by morphological and neurochemical changes in neurons, which reverse a few hours after coming out of the torpor state. Since tau has been implicated in the structural regulation of the neuronal Golgi apparatus (GA) we have used Western Blot and immunocytochemistry to analyze whether the GA is modified in cortical neurons of the Syrian hamster at different hibernation stages. The results show that, during the hibernation cycle, the GA undergo important structural changes along with differential modifications in expression levels and distribution patterns of Golgi structural proteins. These changes were accompanied by significant transitory reductions in the volume and surface area of the GA elements during torpor and arousal stages as compared with euthermic animals.