Facultad de Medicina
Permanent URI for this communityhttps://hdl.handle.net/10637/56
Search Results
- Potential Use of Wearable Inertial Sensors to Assess and Train Deep Cervical Flexors: A Feasibility Study with Real Time Synchronization of Kinematic and Pressure Data during the Craniocervical Flexion Test
2023-04-12 The aim of the study was to develop a novel real-time, computer-based synchronization system to continuously record pressure and craniocervical flexion ROM (range of motion) during the CCFT (craniocervical flexion test) in order to assess its feasibility for measuring and discriminating the values of ROM between different pressure levels. This was a descriptive, observational, crosssectional, feasibility study. Participants performed a full-range craniocervical flexion and the CCFT. During the CCFT, a pressure sensor and a wireless inertial sensor simultaneously registered data of pressure and ROM. A web application was developed using HTML and NodeJS technologies. Forty-five participants successfully finished the study protocol (20 males, 25 females; 32 (11.48) years). ANOVAs showed large effect significant interactions between pressure levels and the percentage of full craniocervical flexion ROM when considering the 6 pressure reference levels of the CCFT (p < 0.001; 2 = 0.697), 11 pressure levels separated by 1 mmHg (p < 0.001; 2 = 0.683), and 21 pressure levels separated by 0.5 mmHg (p < 0.001; 2 = 0.671). The novel time synchronizing system seems a feasible option to provide real-time monitoring of both pressure and ROM, which could serve as reference targets to further investigate the potential use of inertial sensor technology to assess or train deep cervical flexors.
- A novel use of inertial sensors to measure the craniocervical flexion range of motion associated to the craniocervical flexion test: an observational study
2020-11-19 The craniocervical flexion test (CCFT) is recommended when examining patients with neck pain related conditions and as a deep cervical retraining exercise option. During the execution of the CCFT the examiner should visually assess that the amount of craniocervical flexion range of motion (ROM) progressively increases. However, this task is very subjective. The use of inertial wearable sensors may be a user-friendly option to measure and objectively monitor the ROM. The objectives of our study were (1) to measure craniocervical flexion range of motion (ROM) associated with each stage of the CCFT using a wearable inertial sensor and to determine the reliability of the measurements and (2) to determine craniocervical flexion ROM targets associated with each stage of the CCFT to standardize their use for assessment and training of the deep cervical flexor (DCF) muscles.