1. Investigación
Permanent URI for this communityhttps://hdl.handle.net/10637/1
Search Results
- Glutathione and a pool of metabolites partly related to oxidative stress are associated with low and high myopia in an altered bioenergetic environment
2024-04-27 Oxidative stress forms part of the molecular basis contributing to the development and manifestation of myopia, a refractive error with associated pathology that is increasingly prevalent worldwide and that subsequently leads to an upsurge in degenerative visual impairment due to conditions that are especially associated with high myopia. The purpose of our study was to examine the interrelation of potential oxidative-stress-related metabolites found in the aqueous humor of high-myopic, low-myopic, and non-myopic patients within a clinical study. We conducted a cross-sectional study, selecting two sets of patients undergoing cataract surgery. The first set, which was used to analyze metabolites through an NMR assay, comprised 116 patients. A total of 59 metabolites were assigned and quantified. The PLS-DA score plot clearly showed a separation with minimal overlap between the HM and control samples. The PLS-DA model allowed us to determine 31 major metabolite differences in the aqueous humor of the study groups. Complementary statistical analysis of the data allowed us to determine six metabolites that presented significant differences among the experimental groups (p < 005). A significant number of these metabolites were discovered to have a direct or indirect connection to oxidative stress linked with conditions of myopic eyes. Notably, we identified metabolites associated with bioenergetic pathways and metabolites that have undergone methylation, along with choline and its derivatives. The second set consisted of 73 patients who underwent a glutathione assay. Here, we showed significant variations in both reduced and oxidized glutathione in aqueous humor among all patient groups (p < 0.01) for the first time. Axial length, refractive status, and complete ophthalmologic examination were also recorded, and interrelations among metabolic and clinical parameters were evaluated.
- Mathematical model for glutathione dynamics in the retina
2023-07-07 The retina is highly susceptible to the generation of toxic reactive oxygen species (ROS) that disrupt the normal operations of retinal cells. The glutathione (GSH) antioxidant system plays an important role in mitigating ROS. To perform its protective functions, GSH depends on nicotinamide adenine dinucleotide phosphate (NADPH) produced through the pentose phosphate pathway. This work develops the first mathematical model for the GSH antioxidant system in the outer retina, capturing the most essential components for formation of ROS, GSH production, its oxidation in detoxifying ROS, and subsequent reduction by NADPH. We calibrate and validate the model using experimental measurements, at different postnatal days up to PN28, from control mice and from the rd1 mouse model for the disease retinitis pigmentosa (RP). Global sensitivity analysis is then applied to examine the model behavior and identify the pathways with the greatest impact in control compared to RP conditions. The findings underscore the importance of GSH and NADPH production in dealing with oxidative stress during retinal development, especially after peak rod degeneration occurs in RP, leading to increased oxygen tension. This suggests that stimulation of GSH and NADPH synthesis could be a potential intervention strategy in degenerative mouse retinas with RP.