1. Investigación
Permanent URI for this communityhttps://hdl.handle.net/10637/1
Search Results
- The relationship between VO2max, power management, and increased running speed : towards gait pattern recognition through clustering analysis
2021-04-01 Triathlon has become increasingly popular in recent years. In this discipline, maximum oxygen consumption (VO2max) is considered the gold standard for determining competition cardiovascular capacity. However, the emergence of wearable sensors (as Stryd) has drastically changed training and races, allowing for the more precise evaluation of athletes and study of many more potential determining variables. Thus, in order to discover factors associated with improved running efficiency, we studied which variables are correlated with increased speed. We then developed a methodology to identify associated running patterns that could allow each individual athlete to improve their performance. To achieve this, we developed a correlation matrix, implemented regression models, and created a heat map using hierarchical cluster analysis. This highlighted relationships between running patterns in groups of young triathlon athletes and several different variables. Among the most important conclusions, we found that high VO2max did not seem to be significantly correlated with faster speed. However, faster individuals did have higher power per kg, horizontal power, stride length, and running effectiveness, and lower ground contact time and form power ratio. VO2max appeared to strongly correlate with power per kg and this seemed to indicate that to run faster, athletes must also correctly manage their power.
- Wearable sensors detect differences between the sexes in lower limb electromyographic activity and pelvis 3D kinematics during running
2020-11-12 Each year, 50% of runners su er from injuries. Consequently, more studies are being published about running biomechanics; these studies identify factors that can help prevent injuries. Scientific evidence suggests that recreational runners should use personalized biomechanical training plans, not only to improve their performance, but also to prevent injuries caused by the inability of amateur athletes to tolerate increased loads, and/or because of poor form. This study provides an overview of the di erent normative patterns of lower limb muscle activation and articular ranges of the pelvis during running, at self-selected speeds, in men and women. Methods: 38 healthy runners aged 18 to 49 years were included in this work. We examined eight muscles by applying two wearable superficial electromyography sensors and an inertial sensor for three-dimensional (3D) pelvis kinematics. Results: the largest di erences were obtained for gluteus maximus activation in the first double float phase (p = 0.013) and second stance phase (p = 0.003), as well as in the gluteus medius in the second stance phase (p = 0.028). In both cases, the activation distribution was more homogeneous in men and presented significantly lower values than those obtained for women. In addition, there was a significantly higher percentage of total vastus medialis activation in women throughout the running cycle with the median (25th–75th percentile) for women being 12.50% (9.25–14) and 10% (9–12) for men. Women also had a greater range of pelvis rotation during running at self-selected speeds (p = 0.011). Conclusions: understanding the di erences between men and women, in terms of muscle activation and pelvic kinematic values, could be especially useful to allow health professionals detect athletes who may be at risk of injury.
- A random forest machine learning framework to reduce running injuries in young triathletes
2020-11-09 Background: The running segment of a triathlon produces 70% of the lower limb injuries. Previous research has shown a clear association between kinematic patterns and specific injuries during running. Methods: After completing a seven-month gait retraining program, a questionnaire was used to assess 19 triathletes for the incidence of injuries. They were also biomechanically analyzed at the beginning and end of the program while running at a speed of 90% of their maximum aerobic speed (MAS) using surface sensor dynamic electromyography and kinematic analysis. We used classification tree (random forest) techniques from the field of artificial intelligence to identify linear and non-linear relationships between di erent biomechanical patterns and injuries to identify which styles best prevent injuries. Results: Fewer injuries occurred after completing the program, with athletes showing less pelvic fall and greater activation in gluteus medius during the first phase of the float phase, with increased trunk extension, knee flexion, and decreased ankle dorsiflexion during the initial contact with the ground. Conclusions: The triathletes who had su ered the most injuries ran with increased pelvic drop and less activation in gluteus medius during the first phase of the float phase. Contralateral pelvic drop seems to be an important variable in the incidence of injuries in young triathletes.