1. Investigación
Permanent URI for this communityhttps://hdl.handle.net/10637/1
Search Results
- Characterization of platelet rich plasma in feline immunodeficiency virus-infected cats: cell, and PDGF-BB and TGF-ß1 growth factor analysis
2024-03 Autologous platelet-rich plasma (PRP) contains growth factors (GFs) that modulate the expression of inflammatory cells; thus, these products could be considered a good strategy to favor tissue regeneration in feline immunodeficiency (FIV) positive cats. However, there is no scientific documentation on obtaining PRP in FIV-positive cats. Authors hypothesized that PRP can be obtained in FIV cats following the PRGF®-Endoret® methodology. The objectives of this study were to compare the platelet, erythrocyte, and leukocyte concentration between whole blood (WB) and the PRP; and determine the concentration of platelet-derived growth factor BB (PDGF-BB) and transforming growth factor β1 (TGF-β1) in FIV-positive cats. Sixteen adults FIV-positive asymptomatic cats were included in the study. WB samples were drawn and the PRP was obtained by centrifugation at 265g for 10 min. Erythrocyte and leukocyte, platelets, and mean platelet volume (MPV) were determined both in WB and in PRP. PDGF-BB and TGF-β1 concentrations were additionally determined in PRP. Platelet concentration increased 1.1 times in PRP fraction compared to WB, but no significant differences were reported. MPV was statistically higher in WB than in PRP (p = 0.001). Erythrocytes and leukocytes counts were decreased by 99% and 92%, respectively in the PRP fraction (p < 0.001). Regarding TGF-ß1, a higher concentration was shown in the PRP (p < 0.02). Although the product obtained could not be classified as PRP according to the PRGF®-Endoret® methodology, based on the drastic reduction of RBC and WBC, the PLT concentrate is of high purity.
- Multilineage-differentiating stress-enduring cells (Muse Cells): the future of human and veterinary regenerative medicine
2023-02-20 In recent years, several studies have been conducted on Muse cells mainly due to their pluripotency, high tolerance to stress, self-renewal capacity, ability to repair DNA damage and not being tumoral. Additionally, since these stem cells can be isolated from different tissues in the adult organism, obtaining them is not considered an ethical problem, providing an advantage over embryonic stem cells. Regarding their therapeutic potential, few studies have reported clinical applications in the treatment of different diseases, such as aortic aneurysm and chondral injuries in the mouse or acute myocardial infarction in the swine, rabbit, sheep and in humans. This review aims to describe the characterization of Muse cells, show their biological characteristics, explain the differences between Muse cells and mesenchymal stem cells, and present their contribution to the treatment of some diseases.
- The autologous chondral platelet-rich plasma matrix implantation: a new therapy in cartilage repair and regeneration: macroscopic and biomechanical study in an experimental sheep model
2023-12-11 Introduction: Articular cartilage injuries are a severe problem, and the treatments for these injuries are complex. The present study investigates a treatment for full-thickness cartilage defects called Autologous Chondral Platelet Rich Plasma Matrix Implantation (PACI) in a sheep model. Methods: Chondral defects 8 mm in diameter were surgically induced in the medial femoral condyles of both stifles in eight healthy sheep. Right stifles were treated with PACI and an intraarticular injection with a plasma rich in growth factors (PRGF) solution [treatment group (TRT)], while an intraarticular injection of Ringer’s lactate solution was administered in left stifles [Control group (CT)]. The limbs’ function was objectively assessed with a force platform to obtain the symmetry index, comparing both groups. After 9 and 18 months, the lesions were macroscopically evaluated using the International Cartilage Repair Society and Goebel scales. Results: Regarding the symmetry index, the TRT group obtained results similar to those of healthy limbs at 9 and 18 months after treatment. Regarding the macroscopic assessment, the values obtained by the TRT group were very close to those of normal cartilage and superior to those obtained by the CT group at 9 months. Conclusion: This new bioregenerative treatment modality can regenerate hyaline articular cartilage. High functional outcomes have been reported, together with a good quality repair tissue in sheep. Therefore, PACI treatment might be a good therapeutic option for full-thickness chondral lesions.
- Intra-osseous infiltration of adipose mesenchymal stromal cells and plasma rich in growth factors to treat acute full depth cartilage defects in a rabbit model serum osteoarthritis biomarkers and macroscopical assessment
2022-12-20 Introduction: Intra-articular infiltration of plasma rich in growth factors (PRGF) and adipose mesenchymal stromal cells (AMSCs) are known to inhibit osteoarthritis progression. However, in severely aected patients, the treatment cannot reach the deeper layers of the articular cartilage; thus, its potential is limited. To overcome this limitation, intra-osseous infiltrations have been suggested. The purpose of this study is to assess the impact of intra- osseous infiltration therapies on serum biomarkers of osteoarthritis and to assess cartilage regeneration macroscopically. Materials and methods: A total of 80 rabbits were divided into four groups based on the intra-osseous treatment administered on the day of surgery: control, PRGF, AMSCs and a combination of PRGF + AMSCs. In addition, all groups received a single intra-articular administration of PRGF on the same day. Serum biomarker levels were measured before infiltration and 28-, 56-, and 84-days post infiltration, and macroscopical assessment was conducted at 56- and 84-days follow-up post infiltration. Results: In the PRGF + AMSCs group, significantly lower concentrations of hyaluronic acid and type II collagen cleavage neoepitope were recorded at all time points during the study, followed by PRGF, AMSCs and control groups. Regarding macroscopical assessment, lower scores were obtained in PRGF + AMSCs group at all study times. Discussion: The results suggest that the combination of intra-articular PRGF with intra-osseous PRGF or AMSCs achieves better results in rabbits with acute chondral defects and that intra-osseous infiltration is a safe procedure.
- «
- 1 (current)
- 2
- 3
- »