1. Investigación

Permanent URI for this communityhttps://hdl.handle.net/10637/1

Incluye cualquier documento producido por un miembro de la Fundación Universitaria San Pablo CEU fruto de su actividad investigadora: tesis doctorales, artículos, comunicaciones a congresos, capítulos, libros, etc.

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    Publication
    UCH
    "In silico" medicine and "-omics" strategies in nephrology: contributions and relevance to the diagnosis and prevention of Chronic Kidney Disease2024-07-05

    Chronic kidney disease (CKD) has been increasing over the last years, with a rate between 0.49% to 0.87% new cases per year. Currently, the number of affected people is around 850 million worldwide. CKD is a slowly progressive disease that leads to irreversible loss of kidney function, end-stage kidney disease, and premature death. Therefore, CKD is considered a global health problem, and this sets the alarm for necessary efficient prediction, management, and disease prevention. At present, modern computer analysis, such as in silico medicine (ISM), denotes an emergent data science that offers interesting promise in the nephrology field. ISM offers reliable computer predictions to suggest optimal treatments in a case-specific manner. In addition, ISM offers the potential to gain a better understanding of the kidney physiology and/or pathophysiology of many complex diseases, together with a multiscale disease modeling. Similarly, -omics platforms (including genomics, transcriptomics, metabolomics, and proteomics), can generate biological data to obtain information on gene expression and regulation, protein turnover, and biological pathway connections in renal diseases. In this sense, the novel patient-centered approach in CKD research is built upon the combination of ISM analysis of human data, the use of in vitro models, and in vivo validation. Thus, one of the main objectives of CKD research is to manage the disease by the identification of new disease drivers, which could be prevented and monitored. This review explores the wide-ranging application of computational medicine and the application of -omics strategies in evaluating and managing kidney diseases.

  • Thumbnail Image
    Publication
    UCH
    Obesity and oral health: the link between adipokines and periodontitis2024-04

    Periodontitis is a chronic inflammatory disease of the periodontium, or the supportive tissues around the tooth. This disease has been related to different risk factors, such as the presence of plaque and calculus, tobacco smoking, low socioeconomic status, and the immune state of the host. Importantly, the chronic inflammatory environment generated by periodontitis may lead to tooth loss and diverse systemic complications, such as cardiovascular disease, osteoarthritis and metabolic disease. Recent investigations have supported the role of obesity as a risk factor for periodontitis. Furthermore, studies have found obesity to compromise healing after periodontal therapy; however, the mechanisms underlying this association are not well understood. Proteins called 'adipokines' could be the factor linking obesity to periodontitis. Adipokines are bioactive molecules with hormonal properties and a structure similar to cytokines produced by the adipose tissue. Although adipokines have both pro- and anti-inflammatory effects, the shift towards pro-inflammatory actions occurs when the adipose tissue becomes pathological, as observe in the progression of conditions such as obesity or adiposopathy. This article reviews the role of adipokines in the pathophysiology and progression of periodontitis by focusing on their impact on inflammation and the molecular mechanisms through which adipokines contribute to the onset and development of periodontitis.

  • Thumbnail Image
    Publication
    UCH
    Pancreatic and hepatic injury in COVID-19: a worse prognosis in NAFLD patients?2024-01-26

    The novel disease produced by SARS-CoV-2 mainly harms the respiratory tract, but it has shown the capacity to affect multiple organs. Epidemiologic evidence supports the relationship between Coronavirus Disease 2019 (COVID-19) and pancreatic and hepatic injury development, identified by alterations in these organ function markers. In this regard, it is important to ascertain how the current prevalence of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) might affect COVID-19 evolution and complications. Although it is not clear how SARS-CoV-2 affects both the pancreas and the liver, a multiplicity of potential pathophysiological mechanisms seem to be implicated; among them, a direct viral-induced injury to the organ involving liver and pancreas ACE2 expression. Additionally, immune system dysregulation, coagulopathies, and drugs used to treat the disease could be key for developing complications associated with the patient’s clinical decline. This review aims to provide an overview of the available epidemiologic evidence regarding developing liver and pancreatic alterations in patients with COVID-19, as well as the possible role that NAFLD/NASH might play in the pathophysiological mechanisms underlying some of the complications associated with COVID-19. This review employed a comprehensive search on PubMed using relevant keywords and filters. From the initial 126 articles, those aligning with the research target were selected and evaluated for their methodologies, findings, and conclusions. It sheds light on the potential pathophysiological mechanisms underlying this relationship. As a result, it emphasises the importance of monitoring pancreatic and hepatic function in individuals affected by COVID-19.

  • Thumbnail Image
    Publication
    UCH
    Non-albuminuric Diabetic Kidney Disease phenotype: beyond albuminuria2022-11

    Diabetic kidney disease (DKD) is the leading cause of chronic and end-stage kidney disease worldwide. Its pathogenic mechanism is complex, and it can affect the entire structures of the kidneys such as the glomerulus, tubules and interstitium. Currently, the urinary albumin excretion rate and the estimated glomerular filtration rate are widely accepted as diagnostic criteria. However, some studies have reported a different or non-classical clinical course of DKD, with some patients showing declined kidney function with normal levels of albuminuria, known as the 'non-albuminuric DKD' phenotype. The pathogenesis of this phenotype remains unclear, but some clinical and pathological features have been postulated. This review explores the evidence regarding this topic.

  • Thumbnail Image
    Publication
    UCH
    Etelcalcetide and Paricalcitol in Chronic Kidney Disease: when the target is inflammation2023-01-26

    Introduction: Secondary hyperparathyroidism (SHP) is frequent in patients with chronic kidney disease (CKD), particularly in those in dialysis. To treat this complication, the current options available include phosphorus restriction, phosphate binders, the inhibition of parathyroid hormone (PTH) synthesis and secretion by the supplementation of vitamin D or VDR activators, or the use of calcimimetics. Beyond the control of PTH, the effects of the treatment of SHP on other biomarkers of risk may represent an additional benefit for this population. In this study, we explore the benefits of current SHP treatment options, mainly paricalcitol and/or etelcalcetide in the inflammatory state of hemodialysis (HD) patients. Results: the study finally included 142 maintenance HD patients (5 patients were excluded) followed for 6 months (dialysis vintage 26 ± 30 months, mean age 70 years old, 73% women, 81% Spanish white, 47% diabetic). In this case, 52 patients were on regular treatment with paricalcitol for SHP and 25 patients were eligible to initiate etelcalcetide. The baseline serum levels of Ca, P, PTH, Ferritin, albumin, C-reactive protein (CRP), and other variables were measured. We found serum PTH levels showed an improvement after the treatment with etelcalcetide again paricalcitol and no treatment (p < 0.04). Of note, serum levels of CRP were significantly lower in a small group of patients (n = 11) receiving paricalcitol + etelcalcetide compared to paricalcitol or etelcalcetide alone. The proportion of patients with CRP within target ranges (≤1.0 mg/dL) increased significantly after combined treatment (p < 0.001). Conclusions: etelcalcetide proved to safely reduce the PTH levels without significant adverse events and the possibility of a synergic anti-inflammatory effect with the simultaneous use of Paricalcitol in HD patients.

  • Thumbnail Image
    Publication
    UCH
    Finerenone: a potential treatment for patients with Chronic Kidney Disease and Type 2 Diabetes Mellitus2021-11

    Type 2 diabetes mellitus (T2DM) affects an estimated 463 million people worldwide, equivalent to 1 in 11 adults. Moreover, the rapid growth of this disease has resulted in a high incidence of diabetic kidney disease (DKD), which, together with hypertension, is the main cause of chronic kidney disease (CKD). Hyperglycaemia, low-grade inflammation, altered lipid metabolism and hyperactivation of the renin–angiotensin–aldosterone system (RAAS) seem to be interrelated mechanisms contributing to both T2DM and microvascular complications. The introduction of drugs such as sodium–glucose cotransporter 2 inhibitors and glucagon-like peptide 1 receptor agonists has improved the ability to slow the progression of DKD, and has also demonstrated benefits in cardiovascular disease. Beyond the effects of these novel antidiabetic drugs, a body of evidence suggests that the overactivation of the mineralocorticoid receptor also contributes to CKD progression. Moreover, new and ongoing trials have demonstrated that the selective nonsteroidal mineralocorticoid receptor antagonist (MRA) finerenone improves the risk of CKD progression and cardiovascular events in patients with CKD and T2DM and optimized RAAS blockade. We review the rationale for the development and use of MRA drugs to slow CKD progression in patients with DKD, as well as other pleiotropic effects, and highlight the warnings associated with these agents.

  • Thumbnail Image
    Publication
    UCH
    SGLT2i and GLP-1RA in cardiometabolic and renal diseases: from glycemic control to adipose tissue inflammation and senescence2021

    Background. Over the last few years, the use of sodium-glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists (GLP-1RA) has increased substantially in medical practice due to their documented benefits in cardiorenal and metabolic health. In this sense, and in addition to being used for glycemic control in diabetic patients, these drugs also have other favorable effects such as weight loss and lowering blood pressure, and more recently, they have been shown to have cardio and renoprotective effects with anti-inflammatory properties. Concerning the latter, the individual or associated use of these antihyperglycemic agents has been linked with a decrease in proinflammatory cytokines and with an improvement in the inflammatory profile in chronic endocrine-metabolic diseases. Hence, these drugs have been positioned as first-line therapy in the management of diabetes and its multiple comorbidities, such as obesity, which has been associated with persistent inflammatory states that induce dysfunction of the adipose tissue. Moreover, other frequent comorbidities in long-standing diabetic patients are chronic complications such as diabetic kidney disease, whose progression can be slowed by SGLT2i and/or GLP-1RA. The neuroendocrine and immunometabolism mechanisms underlying adipose tissue inflammation in individuals with diabetes and cardiometabolic and renal diseases are complex and not fully understood. Summary. This review intends to expose the probable molecular mechanisms and compile evidence of the synergistic or additive anti-inflammatory effects of SGLT2i and GLP-1RA and their potential impact on the management of patients with obesity and cardiorenal compromise.