Dpto. Odontología

Permanent URI for this collectionhttps://hdl.handle.net/10637/10414

Search Results

Now showing 1 - 10 of 14
  • Thumbnail Image
    Publication
    UCH
    Collagen-depletion strategies in dentin as alternatives to the hybrid layer concept and their effect on bond strengthw a systematic review2022-07-29

    Strategies aiming to improve the longevity of resin–dentin adhesive interface developed so far have only been able to retard the problem. Different approaches are thus needed. The objective of this review was to determine whether the use of collagen-depletion strategies after acid-etching procedures may improve the bond strength of resin-based materials to dentin. A systematic review was planned following 2021 PRISMA statement guidelines, with a search strategy performed in five electronic databases: PubMed/Medline, Scopus, EMBASE, SciELO and IADR Abstract Archive (last search: 17/01/2022). Inclusion criteria encompassed studies which evaluated a collagen-depletion strategy in acid-etched human dentin and tensile/shear bond strength tests. Risk of bias assessment was carried out by two reviewers, working independently on an adapted five-domain risk of bias (RoB) checklist for laboratory studies. Results were synthesized qualitatively, as a meta-analysis was not possible due to limited number of studies and their RoB. A total of eight studies were eligible for inclusion in the systematic review after inclusion/exclusion criteria application. Out of these, two evaluated the effect of using NaOCl followed by an antioxidant, and the remaining six evaluated different enzymatic treatments (bromelain, chondroitinase ABC, papain, and trypsin). None of the studies reported a decrease of bond strength when a collagen-depletion strategy was used, in comparison to traditional hybrid layers (control). All enzymatic treatment studies which respected the inclusion criteria improved the bond strength to dentin. Some specific collagen-depletion strategies seem to play a favorable role in improving immediate bond strengths to dentin. Further research with sound methodology is required to consolidate these findings, since limitations in RoB and a low number of studies were found. The assessment of further proteolytic agents and long-term outcomes is also required.

  • Thumbnail Image
    Publication
    UCH
    Effect of bonding protocols on the performance of luting agents applied to CAD-CAM composites2022-08-31

    This in vitro study aimed to evaluate the effect of different bonding strategies on the microshear bond strength ( SBS) of luting agents to CAD–CAM composites. Surface scanning electron microscopy (SEM) and spectroscopy by energy-dispersive X-ray spectroscopy (EDS) were performed to analyze the surfaces of the composite before and after bonding treatment. Three CAD–CAM composites were evaluated: Lava Ultimate restorative (LU), Brava Blocks (BR), and Vita Enamic (VE). The LU and BR surfaces were sandblasted using aluminum oxide, while the VE surfaces were etched using a 5% hydrofluoric acid gel according to the manufacturers’ recommendations. All surfaces were subjected to the following bonding strategies (n = 15): adhesive with silane and MDP (ScotchBond Universal, 3M Oral Care, St Paul, MI, USA); adhesive with MDP (Ambar Universal, FGM, Joinville, Brazil); adhesive without silane or MDP (Prime&Bond Elect, Dentsply Sirona, Charlotte, NC, USA), pure silane without MDP (Angelus, Londrina, Brazil), and pure silane with MDP (Monobond N, Ivoclar Vivadent, Schaan, Liechtenstei). Afterwards, tygons were filled with RelyX Ultimate (3M Oral Care), AllCem (FGM), or Enforce (Dentsply Sirona), which were light-cured and subjected to the SBS test. Data were analyzed using two-way ANOVA and Bonferroni’s post hoc test ( = 0.05). Additional blocks (n = 15) were subjected to scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) before and after the surface treatment. The SBS values on VE surfaces were higher than those observed on LU and BR surfaces (p < 0.001). Silane without MDP (Allcem) promoted the highest SBS values, while silane with MDP (RelyX Ultimate) provided the highest values among all bonding strategies (p < 0.001). Enforce promoted no significant difference in SBS values. SEM and EDS analyses detected noticeable changes to the surface morphology and composition after the surface treatment. The effectiveness of the bonding strategy may vary according not only to the CAD–CAM composite but also to resin cement/bonding agent/silane used.

  • Thumbnail Image
    Publication
    UCH
    Compressive strength and porosity evaluation of innovative bidirectional spiral winding fiber reinforced composites2022-11-15

    The aim of this in vitro study was to investigate the compressive strength and the bulk porosity of a bidirectional (bFRC) and an experimental bidirectional spiral winding reinforced fiber composite (bswFRC). Cylindrical-shape specimens were prepared for each material group and processed for the evaluation of compressive strength after different storage conditions (dry, 1 and 3 months) in distilled water at 37 C. The specimens were also assessed for the degree of bulk porosity through X-ray tomography. A scanning electron microscope (SEM) was used to determine the fracture mode after a compressive strength test. Data were statistically analyzed using Two-Way Analysis of Variance (ANOVA). A significantly lower compressive strength was obtained in dry conditions, and after 1 month of water immersion, with the specimens created with bFRC compared to those made with bswFRC (p < 0.05). No significant difference (p > 0.05) was found between the two groups after 3 months of water immersion. However, the presence of water jeopardized significantly the compressive strength of bswFRC after water storage. The type of fracture was clearly different between the two groups; bswFRC showed a brutal fracture, whilst bFRC demonstrated a shear fracture. The bswFRC demonstrated higher pore volume density than bFRC. In conclusion, bswFRC is characterized by greater compressive strength compared to bFRC in dry conditions, but water-aging can significantly decrease the mechanical properties of such an innovative FRC. Therefore, both the novel bidirectional spiral winding reinforced fiber composites (bswFRC) and the bidirectional fiber reinforced composites (bFRC) might represent suitable materials for the production of post-and-core systems via CAD/CAM technology. These findings suggest that both FRC materials have the potential to strengthen the endodontically treated teeth.

  • Thumbnail Image
    Publication
    UCH
    A micro-CT analysis of initial and long-term pores volume and porosity of bioactive endodontic sealers2022-09-26

    The evaluation of the porosities within the interface of root canals obturated with endodontics materials is extremely important for the long-term success of endodontic treatments. The aim of this study was to compare initial and long-term volume of pores (total, open, closed) and porosity (total, regional) of three bioactive endodontic sealers: GuttaFlow Bioseal, Total Fill BC Sealer, and Bio- Root RCS. Root canals were obturated with three “bioactive” sealers using the single-cone technique. The volume of open and closed pores and porosity were calculated using a micro-computed tomography (MCT) method. The measurements were performed after 7 days (initial) and after 6 months (long-term) of incubation. Statistical significance was considered at p < 0.05. The total volume of pores remained unchanged after the 6-month storage. GuttaFlow Bioseal exhibited significantly higher long-term volume in open pores than Total Fill BC Sealer. The total porosity in all the tested sealers presented no statistically significant change after the 6-month storage, except for BioRoot RCS. The total porosity values of this latter material significantly increased after long-term incubation, especially in the apical region. In conclusion, the use of bioactive sealers with excessive tendency to create porosities both in shorth- and long-term periods of storage may compromise the long-term success of endodontic treatments.

  • Thumbnail Image
    Publication
    UCH
    Impacts of resveratrol and pyrogallol on physicochemical, mechanical and biological properties of epoxy-resin sealers2022-02-22

    This study aimed at evaluating the physicochemical and biological properties of experimental epoxy-resin sealers containing polyphenols such as resveratrol and pyrogallol. A conventional epoxy resin (OB) was modified by adding different concentrations of resveratrol (RS) or pyrogallol (PY) to its composition. Antibacterial and antioxidant activities, mechanical properties, along with wettability and morphological changes were investigated. The results were statistically analyzed using ANOVA and multiple comparison tests ( = 0.05). The incorporation of the tested polyphenols into the epoxy resin enhanced its mechanical properties. PY demonstrated much better antioxidant and antibacterial activities than RS, which were associated with a higher release of PY. In contrast, PY showed a higher cytotoxicity than OB and OB doped with RS. OB containing PY presented a rougher surface and higher water absorption than OB doped with RS. Both tested polyphenols caused no notable changes to the overall porosity of OB. Resveratrol and pyrogallol may not only influence the morphology and mechanical properties of epoxy-resin sealers, but could also enhance antioxidant activity and antibacterial effects against Enterococcus faecalis. Most epoxy-resin sealers currently available in the market can be considered as “passive” materials. Thus, doping their composition with specific polyphenols may be a suitable strategy to confer some antibacterial properties, antioxidant potential, along with improvement of some mechanical properties.

  • Thumbnail Image
    Publication
    UCH
    Effects of dentine pretreatment solutions containing flavonoids on the resin polymer-dentine interface created using a modern universal adhesive2021-04-02

    The aim of the present study was to evaluate the influence of several experimental pretreatment crosslinker solutions on the resin polymer–dentine interface created using a representative universal adhesive system, by means of microtensile bond strength testing ( TBS), nanomechanical properties and ultramorphology confocal laser scanning microscopy (CLSM). Five experimental solutions containing different flavonoids were applied as dentine pretreatment after acid etching. A control pretreatment group containing no flavonoid was also employed. A representative modern universal adhesive was then applied, followed by a 3 mm thick composite built up. Specimens were sectioned into sticks and submitted to a TBS test or nanoindentation analysis along the interface (24 h or 25,000 thermocycles). The ultramorphology of the polymer–resin interface was also evaluated using CLSM. The results were analyzed using two-way ANOVA and Bonferroni’s post hoc test ( = 0.05). All flavonoids improved short- and long-term TBS values (p < 0.01), while only some specific such solutions improved the nanomechanical properties (p < 0.05) and preserved the structural morphology of the interface after aging. Pretreatment of acid-etched dentine using specific flavonoid-containing solutions may be a promising approach to improve both the nanomechanical properties and the durability of modern universal adhesive systems.

  • Thumbnail Image
    Publication
    UCH
    Does multi-fiber-reinforced composite-post influence the filling ability and the bond strength in root canal?2021-11-29

    (1) Background: This study investigated the effect of the adhesive layer thickness and the length of resin tags on dentin bond strength of five universal adhesives applied in self-etch mode. (2) Methods: One hundred and fifty extracted human third molars were used. Five different universal adhesives were applied in self-etch mode on the dentin surface. Half of the specimens were subjected to an aging procedure for six months. A shear bond strength (SBS) test was performed and the results were statistically analyzed with a t-test and one-way ANOVA test. Scanning electron microscopy (SEM) was executed to measure the adhesive layer thickness and tag depth. (3) Results: No statistical differences were found between the five adhesive systems after a 24 h storage period, regardless of layer thickness and tag depth (p < 0.05). After 6 months of aging in water at 37 C, Iperbond Max and Scotchbond Universal preserved the bond strength over time (p < 0.05), whilst the SBS of Iperbond Ultra, FuturaBond M+, and Ibond Universal decreased significantly after the aging period. No relation was observed between the adhesive thickness or tags’ length on SBS. (4) Conclusions: Within the limitation of this study, the stability over time of the bond strength of universal adhesives depends on their compositions regardless of the adhesive layer thickness and/or tags’ length.

  • Thumbnail Image
    Publication
    UCH
    Resin-based cement applied to enamel and dentin pre-treated with phytic acid : an in vitro study2021-12-16

    Phytic acid (IP6) has the ability to etch tooth structure due to its acidity and chelating properties. This study aimed to evaluate the micro-tensile bond strength ( TBS) of resin-based cement to enamel and dentin using manufacturer-provided etchants, phosphoric acid (PA) for enamel and a mixture of 10% citric acid and 3% ferric chloride (CAF) for dentin and compare them to IP6. Enamel surfaces were etched for 30 s with either PA or IP6 (1%, 5% or 10%). Dentin surfaces were etched for 15 s with either CAF or 1% IP6. Pre-polymerized composite blocks were bonded to enamel and dentin surfaces. After 24 h, the specimens were sectioned into beams and subjected to TBS testing. De-bonded specimens and smear layer removal were analyzed with a scanning electron microscope. Etching enamel with 1% and 5% IP6 resulted in TBS values that are comparable to the control (PA) (p > 0.05), while 10% IP6 negatively affected the TBS (p < 0.05). The TBS to dentin etched with 1% IP6 was higher compared to the control (CAF) (p = 0.001). IP6 effectively removed enamel and dentin smear layer, and at specific concentrations, it may be a suitable alternative conditioner agent for bonding resin-based cement to enamel and dentin.

  • Thumbnail Image
    Publication
    UCH
    Analysis of the residual monomer content in milled and 3D-printed removable CAD-CAM complete dentures : an in vitro study2022-05-08

    Objective: The study aimed to quantitatively evaluate the elution of methylmethacrylate from CAD-CAM manufactured removable complete dentures (RCDs) using high performance liquid chromatography (HPLC). Methods: Thirty-two RCDs were manufactured following either the CNC-milling (Milled: n=8) or the 3D-printing (n=24) protocols. The 3D-printed dentures were further categorized into three groups based on their postproduction rinsing cycles [Extended wash cycle (EWC), Standard wash cycle (SWC), and SWC with an additional Dur´econ coating (SWC2)]. HPLC was used to evaluate the methylmethacrylate concentrations (MMCs) eluted from the dentures in each group for different time periods (1, 2, 4, 8, and 24 hours). Mean and standard deviations were calculated for the MMCs; data was verified for normal distribution, ANOVA and post hoc tests were applied for statistical analyses (⍺=0.05). Results: The HPLC revealed that all the denture groups recorded some amounts of MMCs, with significant differences [F (3, 31) = 23.646, p<0.0001]. The milled denture group had the highest MMCs at 24 hours when compared to the EWC (p<0.0001), SWC (p=0.001), and SWC2 (p<0.0001) denture groups. SWC had a higher MMC than EWC (p=0.032) and SWC2 (p=0.015). No differences were found in MMCs when comparing EWC and SWC2 (p=0.989). Conclusion: Methylmethacrylate concentrations were significantly lower in 3D-printed RCDs than in milled RCDs when using the resins employed in this study. Furthermore, the MMCs can be further decreased in 3D-printed RCDs when coated with an additional thin protective layer (Dur´econ) by following the manufacturerrecommended rinsing protocol or when an extended isopropanol wash cycle is adopted.

  • Thumbnail Image
    Publication
    UCH
    Lack of neutralization of 10-MDP primers by zirconia may affect the degree of conversion of dual-cure resin cement2021-01-07

    Objective: To assess the effects of different concentrations of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) included in experimental ceramic primers on the degree of conversion (DC) and microshear bond strength (μSBS) of a dual-cure resin cement, and on the acidity neutralization potential of zirconia (ZrO2) in comparison to hydroxyapatite (HAp). Methods: Experimental ceramic primers were formulated using 5 wt%, 10 wt%, 20 wt%, or 40 wt% 10-MDP as an acidic functional monomer and camphorquinone (CQ)/amine or 1-phenyl-1,2- propanedione (PPD) as a photoinitiator system. Clearfil Ceramic Primer (Kuraray Dental, Tokyo, Japan) was used as the commercial control. Micro- Raman spectroscopy was used to assess the DC of uncured and light-cured resin cements applied onto primer-treated ZrO2 surfaces. The μSBS and pH of primers were assayed in a universal testing machine and by a digital pH meter (Tec-3MP; Tecnal, Piracicaba, Brazil), respectively. Statistical analysis was performed by one-way analysis of variance (ANOVA) and Tukey’s test (p<0.05). Results: DC was not affected until a concentration of 10% 10-MDP in CQ primer and 5% 10-MDP in PPD primer was reached, when compared with the positive control (p>0.05). Groups 10-MDP 5% in CQ and PPD primers showed the highest μSBS compared with the positive control (p>0.05); however, higher concentrations of 10-MDP induced significant DC and μSBS reduction (p<0.05). HAp neutralized 10-MDP primers, but ZrO2 provided higher acidity to the primers’ pH. Conclusion: 10-MDP monomer should be used in low concentrations in ZrO2 primers to avoid reduction of the polymerization and bond strength of resin cement.