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During pregnancy, the mother adapts her metabolism to support the continuous draining of substrates by the fetus. Her increase 
in net body weight (free of the conceptus) corresponds to the accumulation of fat depots during the first two-thirds of gestation, 
switching to an accelerated breakdown of these during the last trimester. Under fasting conditions, adipose tissue lipolytic activity 
is highly enhanced, and its products, free fatty acids (FF A) and glycerol, arc mainly driven to maternal liver, where FF A are 
converted to ketone bodies and glycerol to glucose, which easily cross the placenta and sustain fetal metabolism. Lipolytic products 
reaching maternal liver are also used for triglyceride synthesis that are released in turn to the circulation, where together with an 
enhanced transfer of triglycerides among the different lipoprotein fractions, and a decrease in cxtrahepatic lipoprotein lipase 
activity, increase the content of triglycerides in all the lipoprotein fractions. Long chain polyunsaturated fatty acids (LCPUFA) 
circulate in maternal plasma associated to lipoprotein triglycerides, and in a minor proportion in the form of FF A. Despite the lack 
of a direct placental transfer of triglycerides, diffusion of their fatty acids to the fetus is ensured by means of lipoprotein receptors, 
lipoprotcin lipase activity and intracellular lipase activities in the placenta. Maternal plasma FF A are also an important source of 
LCPUF A to the fetus, and their placental uptake occurs via a selective process of facilitated membrane translocation involving a 
plasma membrane fatty acid-binding protein. This mechanism together with a selective cellular metabolism determine the actual 
rate of placental transfer and its selectivity, resulting even in an enrichment of certain LCPUF A in fetal circulation as compared 
to maternal. The degree to which the fetus is capable of fatty acid desaturation and elongation is not clear, although both term and 
preterm infants can synthesize LCPUF A from parental essential fatty acids. Nutritional status of the mother during gestation is 
related to fetal growth, and excessive dietary intake of certain LCPUFA has inhibitory effects on A-5- and A-6-desaturases. This 
inhibition causes major declines in arachidonic acid levels, as directly found in pregnant and lactating rats fed a fish oil-rich diet 
as compared to olive oil. An excess in dietary PUF A may also enhance peroxidation and reduce antioxidant capacity. Thus, since 
benefit to risks of modifying maternal fat intake in pregnancy and lactation arc not yet completely established, additional studies 
are needed before recommendations to increase LCPUF A intake in pregnancy are made. 
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INTRODUCTION 

Fetal metabolism, and consequently fetal growth, directly 
depend on the nutrients crossing the placenta, and therefore, 
the mother must adapt her metabolism in order to support this 
continuous draining of substrates. Glucose, which is the 
principal carbohydrate crossing the placenta, is transported by 
facilitative diffusion according to a concentration-dependent 
kinetics, whereas amino acids are transported through energy­
dependent processes, via selective transporters. However, 
knowledge about placental transport of lipids is still scant. 
Maternal triglycerides are not transported intact, since the 
mechanisms in the placenta only allow transfer of their 
esterified fatty acids to the fetus, which together with the 
transport of unestcrified fatty acids from maternal circulation, 
fulfill the requirements of essential fatty acids by the develop­
ing fetus. Dietary deviations in maternal fatty acids intake 
throughout pregnancy may affect the nature of fatty acids 
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crossing the placenta, having consequences to fetal neuronal 
maturation and postnatal development. Strategies have been 
proposed to modify maternal intake of certain essential fatty 
acids to warrant their availability to the fetus, but an excess of 
certain fatty acids may impair the availability of others, with 
undesirable consequences to the newborns. This article intends 
to review these aspects in order to attain a better understand­
ing of the implications of dietary fatty acids during perinatal 
development. 

METABOLIC CHANGES OCCURRING IN THE 
MOTHER TO SUSTAIN FETAL GROWTH 

Fetal metabolism, and consequently fetal growth, directly 
depend on the nutrients crossing the placenta, and therefore, 
the mother adapts her metabolism in order to support this 
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continuous draining of substrates. From early gestation, the 
mother <len:lops hyperphagia which together with endocrine 
changes, allow to increase her net body weight (free of the 
conceptus), corresponding mainly to the accumulation of fat 
depots in the first two-thirds of gestation, both in women 
(Hytten and Leitch, 1971; King ct al., 1994; Villar ct al., 1992) 
and in rats (Lbpcz-Luna, Munoz an<l Herrera, 1986; Lbpcz­
Luna, Maier an<l Herrera, 1991; Herrera et al., 1994). This fat 
accumulation plays a key role in maternal metabolic adapta­
tion, since it is maintained even under conditions of severe 
malnutrition, despite of the decrease of energetic cost of 
maternal maintenance to practically zero, as it is the case in 
poor countries (Prentice an<l Golberg, 2000). During the last 
trimester of gestation, maternal lipid metabolism switches to a 
catabolic condition, as shown by an accelerated breakdown of 
fat depots. An enhanced adipose tissue lipolytic activity has 
been reported in women (Williams and Coltart, 1978; Elliott, 
197 5), being this change responsible for the increase in plasma 
free fatty acid (FF A) levels seen <luring the last weeks of 
gestation (Burt, 1960; Bcnassayag· et al., 1997). In the rat, there 
is also an enhanced adipose tissue lipolytic activity during late 
gestation (Knopp, Herrera and Frcinkel, 1970; Chaves and 
Herrera, 1978) which has been related to an increase in mRNA 
expression and activity of the hormone sensitive lipase 
(Martin-Hidalgo et al., 1994 ), the key enzyme for the lipolytic 
cascade. 

Although in view of the above, an intense transfer of 
maternal adipose tissue lypolytic products, free fatty acids 
(f'FA) and glycerol, to the fetus would he expected, this is not 
the case. Studies in rats and sheep have shown that glucose is 
the substrate crossing the placenta in the greatest amount 
followed by amino acids (Lasunci6n et al., 1987; Aldoretta and 
Hay,Jr., 1994; Hay,Jr., 1994), "hereas FFA cross the placenta 
in smaller proportion, followed even at a lower rate by 
the second lipolytic product, glycerol (Herrera, Bonet and 
Lasuncion, 1998). To explain the high body fat content in 
humans at birth, a differential behaviour has been proposed, 
indicating that during early gestation, embryonic and fetal 
lipids are derived from maternal FF A crossing the placenta, 
whereas in advanced gestation, there is a gradual shift to de 
nmo synthesis in fetal tissue (Van Aerde, Feldman and 
Clandinin, 1998). 

What is then the main fate of the lipolytic products of 
maternal adipose tissue?. The answer is in plasma of the 24 h 
fasted pregnant rats, where lipolytic activity is highly enhanced 
(Herrera ct al., 1988). Figure 1 shows that, as result of such 
enhanced lipolytic activity, plasma FFA level is higher in 
fasted pregnant than in virgin rats. Besides, and probably due 
to the limited capability of the placenta for FF A transfer, the 
Jew! of FFA found in fetal plasma is low. Plasma FF A arc 
therefore mainly directed to the liver, as it was previously seen 
under conditions of hepatectomy-nephrectomy in the rat, 
where plasma FFA levels increased more rapidly and more 
intensely in pregnant than in virgin rats (Mampel, Villarroya 
and Herrera, 1985). Circulating FF A reaching maternal liver 
can be used for either esterification in the synthesis of 
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Figure 1. Plasma level of free fatty acids (FFA), ketone bodies and glycerol 
in 24 h fasted 20 day pregnant rats and their fetuses. Different letters indicate 
significant differences between groups for each nriabk. Methodological 
details as in Herrera, Gomez Coronado and Lasunci{m (1987). 

glycerides or oxidation and ketone body synthesis. Both of 
these pathways are known to be enhanced in the fasted late 
pregnant rat (Scow, Chernick and Brinley, 1964; Herrera, 
Knopp and Freinkel, 1969; Zorzano and I Icrrera, 1988), and 
consequently, plasma ketone bodies level increase to values 
that are much higher than in virgin rats (Figure 1). Despite 
that ketogenesis is not active in the fetus (Scow, Chernick and 
Smith, 1958; Shambaugh, 1985), ketone bodies in fetal plasma 
reach the same level as in the mother (Figure 1) since they 
easily cross the placenta. The fetus therefore, benefits from 
this product of maternal fatty acid metabolism, since ketone 
bodies may be used not only as fuels (Shambaugh, 1985) but 
also as lipogcnic substrates (Edmond, 1974; Patel et al., 1975). 

As commented above, placental transfer of glycerol is also 
very limited, and together with the active adipose tissue 
lipolytic activity during late gestation, justifies the increase in 
plasma glycerol level seen in the 24 h fasted 20 day pregnant 
rat, as well as its low concentration in fetal plasma (Figure 1 ). 
Maternal glycerol is however being used as a preferential 
substrate for glucose synthesis in the late pregnant rat 
(Zorzano, Lasuncion and Herrera, 1986; Zorzano and Herrera, 
1986; Herrera et al., 1992). This mechanism not only warrants 
the availability of glucose for placental transfer, but also saves 
the use of other gluconeogenic substrates like amino acids, 
which, as shown in women, are less available in maternal 
circulation (Cetin et al., 1996; Metzger, Unger and Freinkel, 
1977) but are essential for fetal growth. 

Lipolytic products reaching the liver can be also used for 
triglyceride synthesis and released into the circulation as 
VLDLs. This pathway is also enhanced during late pregnancy, 
as directly shown by the enhanced liver production of VLDL­
triglycerides in the rat (Wasfi, Weinstein and Hcimberg, 1980), 
and by the increase in plasma VLDL-triglyceridcs lcYels seen 
in pregnant women, which disappears after parturition 
(Alvarez et al., 1996). This enhanced liver production of 
VLDL occurs in the presence of: (i) an increase in the transfer 
of triglycerides among the different lipoprotein fractions, due 
to an increase in the cholesterol ester transfer protein (Iglesias 
ct al., 1994 ), (ii) an increase in the intestinal absorption of 
dietary lipids (Argiles and Herrera, 1989), (iii) a reduced 
clearance of triglyceride-rich lipoproteins due to decreased 
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Figure 2. Schematic representation of major interactions of lipoprotein metabolism during late pregnancy. Activated steps ( +) and inhibited steps ( - ); 
LR., insulin resistance; Phi, phospholipids; FC, free cholesterol; EC, esterified cholesterol; TG, triglycerides; LPL, lipoprotcin lipase; HL, hepatic lipase; 
CETP, cholesteryl ester transfer protein; LCAT, lecithin cholesterol acyltransfcrasc. Adapted from Alvarez et al. (1996), with permission. 

extrahepatic lipoprotein lipase (LPL) activity (Alvarez et al., 
1996; Martin-Hidalgo et al., 1994), and iv) a decrease in 
hepatic lipase activity (Alvarez et al., 1996). In late pregnant 
women these changes leads to an increase in the content of 
triglycerides not only in VLDL but also in those lipoproteins 
that normally transport them in very small proportion, LDL 
and HDL (Alvarez et al., 1996; Montelongo et al., 1992). The 
accumulation of triglycerides in HDL alters the plasma profile 
of its subfractions in pregnant women, with a specific incre­
ment in the large triglyceride-enriched HDL2h particles, and a 
decrease in the smaller HDL3• and HDL3h particles (Alvarez 
et al., 1996). It is proposed that all these changes are conducted 
by two factors, the insulin resistant condition developed during 
the last trimester of pregnancy (Freinkel, 1980; Catalano et al., 
1993; Cousins, 1991), and the increase in circulating estrogens 
(Knopp et al., 1992a; Montelongo et al., 1992). In fact, the 
reversion of maternal insulin resistance in the late pregnant rat, 
has shown that insulin resistance is responsible for both the 
enhanced adipose tissue lipolytic activity (Ramos and Herrera, 
1995) and the decrease in adipose tissue lipoprotein lipase 
activity (Martin, Ramos and Herrera, 1993; Herrera, Ramos 
and Martin, 1990). In women, the enhanced liver production 
of VLDL during late pregnancy has been attributed to 
estrogens (Knopp et al., 1992a), and although no studies have 
been carried out in pregnant women to determine the respon­
sible factor for their decreased hepatic lipase activity, a 
therapeutic increment in estrogens in postmenopausal women 
has been associated to declines in hepatic lipase activity Qulius 
et al., 1994; Brinton, 1996). Figure 2 summarizes schematically 

major interactions taking place in lipoprotein metabolism 
during late pregnancy. The insulin-resistant condition that 
normally takes place at this stage of pregnancy seems to be 
responsible for both the decline in adipose tissue LPL activity 
and the enhanced adipose tissue lipolytic activity. The later 
change provokes an enhancement in the arrival of FF A and 
glycerol to the liver, increasing the availability of substrates for 
liver triglyceride synthesis. In this condition, estrogens exert 
their stimulatory effects on the release of VLDL-triglycerides, 
which together with their action in decreasing hepatic lipase 
activity, seem to actively contribute no only to the circulating 
increase in VLDL but to the accumulation of triglycerides in 
those lipoproteins of higher density than VLDL during late 
pregnancy (Alvarez et al., 1996; Montelongo et al., 1992). 

Maternal triglycerides do not directly cross the placenta 
(Herrera, Bonet and Lasuncion, 1998). Besides being a source 
of essential fatty acids for the fetus (see below), they may be 
used as a source of oxidative substrates, although in an indirect 
rnanner and under a metabolic emergency condition, such as 
starvation. Despite that the adult liver lacks LPL expression, 
24 hour starvation causes a marked increase in liver LPL 
activity in pregnant rats, although not in the nonpregnant rats 
(Testar, Llobera and Herrera, 1985; Vilaro et al., 1990), and 
such change is paralleled by a similar increase in liver triglyc­
erides and plasma ketone body concentrations (Herrera et al., 
1988). Such LPL activity in the liver of the starved pregnant 
rat seems to have an extrahepatic origin, and serves a certain 
purpose. Through this mechanism, the liver, a triglyceride­
exporter organ under normal conditions, becomes an enhanced 



SIZ 

acceptor of circulating triglycerides, thus allowing increased 
consumption of triglycerides as ketogenic substrates, and 
therefore contributing to the enhanced maternal ketonemia 
under fasting conditions. This situation not only provides 
ketone bodies availability to the fetus, but their use by maternal 
tissues must contribute to a reduced utilization of other 
substrates, like glucose and amino acids, which arc preserved 
for their placental transfer to the fetus, where they arc 
essential. 

AVAILABILITY OF ESSENTIAL FATTY ACIDS TO 
THE FETUS 

All eucaryotic organisms contain polyenoic fatty acyl chains in 
the complex lipids of their membranes, and although most 
mammalian tissues can modify acyl chain composition by 
introducing more than one double bond, specific limitations 
exist ( Cook, 1991 ): 

(a) The first double bond introduced into a saturated acyl 
chain is generally in the A9 position. 

(b) Whereas plants and insects can introduce double bonds 
beyond the A9 position, this cannot be done by higher 
animals. Consequently, in animals double bonds arc 
inserted only at the A9, A6, AS and A4 positions, since 
well-established evidence confirms their respective 
dcsaturases in a variety of tissues. 

(c) The reaction catalyzed by these desaturases requires oxy­
gen and either NADH or NADPH, and they consist of 
three component proteins, NADH-cytochrome b5 

reductasc, cytochrome b5, and a cyanide-sensitive desatu­
rase containing nonheme iron. Throughout these systems, 
cis double bonds are always introduced. 

(d) Gi,en the limitations of mammalian desaturases, chain 
elongation usually alternates with desaturation to maintain 
methylene interruption in polyunsaturated fatty acyl 
chains. 

Thus, throughout the combination of desaturation and chain 
elongation humans may convert linoleic acid (18: 2, w-6) to 
arachidonic acid (20: 4, w-6) or a-linolenic acid (18 : 3, w-3) to 
eicosapcntacnoic acid (20 : 5, co-3) and clocosahexaenoic acid 
(22 : 6, co-3), and this is the reason why linoleic (18: 2, co-6) 
and a-linolenic ( 18 : 3, w-3) are the only fatty acids known to 
be essential for the complete nutrition, and must be supplied in 
the diet. 

All of the w-6 and w-3 fatty acid structure acquired by the 
fetus must therefore come from the mother, crossing the 
placenta, either in the form of those two essential fatty acids, or 
their long-chain polyunsaturated fatty acid (LCPUFA) deriva­
tives, of which, arachidonic acid (20 : 4, w-6) and docosahex­
acnoic acid (22 : 6, w-3) are metabolically the most important. 
Intrauterine requirements for w-6 and w-3 fatty acids in the 
human fetus during the last trimester of fetal development 
through the early weeks of life have been estimated to be 
400 mg/kg/ clay and SO mg/kg/ day, respectively (Clanclinin 
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et al., 1981; Van Aercle, Feldman and Clandinin, 1998). In 
tissues such as the brain, where lipids constitute around 50 per 
cent dry weight, almost half of the total lipid content is 
composed of LCPUFA (Gurr, 1993). Both arachiclonic acid 
and clocosahexaenoic acid are readily incorporated into the 
structural lipids of the developing brain (Crawford et al., 
1976), where besides their role in maintaining fluidity, per­
meability and conformation of the membranes, they play an 
important functional role. Once released from phospholipicls 
by the action of phospholipase A2, arachidonic acid is the main 
precursor for eicosanoids, prostaglanclins and leukotriens, 
(Sellmayer and Koletzko, 1999) and is essential for neonatal 
growth (Carlson et al., 1992), whereas clocosahexaenoic acid 
has been given a key role in the brain development and visual 
function (Birch et al., 1993; Carlson, Werkman and Pepples, 
1993; Innis et al., 1996). Although the relative rates of 
desaturation by rat liver and brain differ between those of adult 
and 10 day old animals (Cook, 1991), the degree to which the 
human fetus is capable of desaturation and elongation is not 
clear. It is normally believed that the supply of essential fatty 
acids and LCPUF A is critical and central to the synthesis of 
structural lipids and, hence, to normal fetal development 
(Clandinin et al., 1980; I ,eaf et al., 1996; Hornstra ct al., 1995). 

AS- and A6-desaturase activities are not detectable in human 
placenta (Chambaz et al., 1985; Kuhn and Crawford, 1986). 
This is consistent with the inability of the placenta to convert 
y-linolcnic acid (18 : 3, w-6) into arachidonic acid (20 : 4, w-6) 
(Booth et al., 1981 ). Thus, the ability of the placenta to extract 
LCPUF A from maternal circulation and deliver them to the 
fetus becomes highly important. In fact, numerous studies 
have shown that the percentage of LCPUF A is even higher in 
human fetal or neonatal than in maternal circulation (Innis, 
1991; Hornstra et al., 1995; Coleman, 1989; Crawford et al., 
1989), although the underlying biochemical mechanisms con­
trolling this phenomenon arc not completely understood. 
Plasma free fatty acids (FF A), which increase rapidly during 
the last trimester of pregnancy (Burt, 1960; Bcnassayag et al., 
1997), have been proposed as the main class of naturally 
occurring lipids transferred across the placenta, irrespective of 
species or the source from which they originate in the maternal 
circulation (Innis, 1991; Crawford, Hassan and Stevens, 1981; 
Stephenson, Stammers and Hull, 1993). However, as shown in 
Figure 3, when the amount of PUFA in the different lipid 
fractions in plasma of pregnant women at the 3rd trimester of 
pregnancy and postpartum is estimated, they are mainly 
esterified and associated to circulating lipoprotcins rather than 
in the form of FF A, which practically represent a negligible 
amount. In fact, if the change of PUF A content in the different 
lipoprotein fractions between the 3rd trimester and postpar­
tum is considered, it appears that those present in triglycerides 
of VLDL, LDL and HDL are the lipidic moieties that show 
the greater decline at postpartum, whereas the chain found in 
phospholipids or esterifiecl cholesterol arc milder, and even 
absent as is the case of HDLs. In fact, the greatest effect 
produced by pregnancy as compared to postpartum, on circu­
lating PUF A concentrations is found in those present in both 
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Figure 3. Concentration of PUFA in plasma lipidic fractions of lipoproteins 
and FFA in women during the 3rd trimester of pregnancy and postpartum. 
TG, triglycerides; Phi, phospholipids; EC, esterified cholesterol. Lipoproteins 
were isolated by sequential ultracentrifugation and PUF A quantified as 
preYiously described (Montelongo et al., 1992; Arranz, 1993). Solid bars: third 
trimester; open bars: post partum. 

VLDL- and LDL-triglycerides, whereas those present in FF A 
did not show any significant change (Figure 3). 

Thus, in spite of the lack of a direct placental transfer of 
triglycerides (Herrera, Bonet and Lasuncion, 1998; Shand and 
Noble, 1979), essential fatty acids derived from maternal diet, 
which are transported as triglycerides in triglyceride-rich 
lipoproteins in maternal plasma, have to become available to 
the fetus. This occurs thanks to the presence of lipoprotein 
receptors in the placental trophoblast cells, located at the 
interface with maternal blood, that function both as endo­
thelium and transporting epithelium. Hence, trophoblast cells 
are positioned to bind maternal lipoproteins and mediate their 
metabolism and subsequent transfer of the PUF A they deliver 
to the fetal circulation. Human placental tissue has been shown 
to express very low density lipoprotein/ apo E receptor 
(VLDLR) as well as LDL receptor (LDLR) and LDL 
receptor-related protein (Cummings et al., 1982; Winkel, 
MacDonald and Simpson, 1981; Winkel et al., 1980; Gafvels 
et al., 1993; Albrecht et al., 1995; Overbergh et al., 1995; Alsat 
et al., 1982, 1984; Malassine et al., 1987). It has been shown 
even that maximal capacity of VLDL binding was 4.5 greater 
than that of LDL, and that the relative abundance ratio of 
VLDLR/LDLR mRNA is greatest at term (Wittmaack et al., 
1995). Although the presence of a putative HDL receptor (that 
binds apo A-1) in placental membrane preparations (Graham 
and Oram, 1987) that could be implicated in the efflux rather 
than the influx of cholesterol to the cells (Brinton et al., 1985; 
Schmitz et al., 1985) was also reported, it was also shown that 
HDL2 cholesterol is taken up by trophoblast cells through a 
receptor-independent mechanism, which may contribute to the 
supply of cholesterol to the placenta for progesterone synthesis 
(Lasuncion, Bonet and Knopp, 1991). Specific HDL3 binding 
without internalization has been demonstrated in human 
placental microvilli (Alsat and Malassine, 1991). 

Placental tissue from different species has been shown to 
express lipoprotein lipase (LPL) activity (Elphick and Hull, 
1977; Rotherwell and Elphick, 1982; Bonet et al., 1992) as well 
as phospholipase A2 (Farrugia et al., 1993; Rice et al., 1998) 
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and intracellular lipase activities (Biale, 1985; Kaminsky ct al., 
1991; Mochizuki et al., 1975). Through this mechanism, 
maternal plasma triglycerides are hydrolyzed and taken up by 
the placenta, where reesterification and intracellular hydrolysis 
facilitates diffusion of the released fatty acids to the fetus, and 
their subsequent transport to fetal liver. In fact, the use of 
cultured placental trophoblast cells has shown that csterified 
cellular lipids provide a reservoir of fatty acids that can be 
released into the medium (Coleman and Haynes, 1987). 
The overall picture of the placental transfer of PUF A 
from maternal to fetal circulation has been schematically 
summarized (Figure 4). 

Placental released FF A at the fetal side are transported in 
fetal blood bound to a specific oncofetal protein, the alpha­
fctoprotein (AFP) (Parmelee, Evenson and Deutsch, 1978; 
Benassayag et al., 1980, 1997). Those fatty acids are rapidly 
taken up by fetal liver, where they are esterified and released 
back into circulation as triglycerides. Thus, a significant linear 
correlation is developed for certain LCPUF A between 
maternal plasma and cord plasma triglycerides during late 
gestation in human (Berghaus, Demmelmair and Koletzko, 
2000). Also a linear correlation between maternal and fetal 
plasma triglycerides was also found in the rat, when maternal 
plasma triglycerides concentration are modified by a strepto­
zotocin diabetic condition and treated with different insulin 
schedules (Figure 5). This correlation between maternal and 
fetal triglycerides may also have important implications in 
newborn weight, since a direct relationship has been consist­
ently found in human between maternal plasma triglycerides 
and newborn weight (Kitajima et al., 2001; Skryten et al., 
1976; Knopp et al., 1992b). 

Although in a smaller proportion than lipoprotein triglycer­
ides, maternal plasma FF A are also an important source of 
PUF A to human fetus (Kuhn and Crawford, 1986; Coleman, 
1989; Benassayag et al., 1997). There is now evidence that 
cellular uptake of FF A occurs through facilitated membrane 
translocation involving a plasma membrane fatty acid-binding 
protein (F ABP pm) (Abumrad, Park and Park, 1984; Goresky 
et al., 1994 ). It has been shown that F ABP pm is present both in 
sheep (Campbell, Gordon and Dutta-Roy, 1996) and human 
placental membranes (Campbell, Gordon and Dutta-Roy, 
2000), being also responsible for the preferential uptake of 
LCPUF A by the human placenta (Campbell, Gordon and 
Dutta-Roy, 1996; Campbell et al., 1997). The preference for 
human placental transfer from the maternal to the fetal 
circulation has been reported to be docosahexaenoic>a­
linolenic> linoleic> oleic> arachidonic acid (Haggarty et al., 
1997). Arachidonic acid was however the fatty acid showing 
the highest accumulation by the placenta (Haggarty ct al., 
1997), and a recent study has shown that arachidonic acid 
uptake by placental syncytiotrophoblast membranes is highly 
dependent on ATP and sodium (Lafond et al., 2000) implying 
an active transport mechanism for this fatty acid. A selectivity 
in the LCPUF A placental transfer may also be exerted at the 
level of cellular metabolism, as evidenced by other authors, 
reporting that a certain proportion of arachidonic acid is 
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Figure 4. Schematic representation of the placental transfer of fatty acids to the fetus. 
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Figure 5. Linear correlation between maternal and fetal plasma triglycerides 
in 20 d pregnant rats haYing different degrees of diabetes in order of attaining 
different plasma leYels of triagl)cerides. Rats were treated only once with 
45 mg streptozotocin i. ,·./kg body \\'eight before mating and supplemented 
with s.c. insulin ( 1.5 IC/ day per I 00 hody weight) for different periods of time 
during pregnancy in order of de,cloping different degrees of diabetes, as 
preYiollsh described (l\fartin and Herrera, I 991 ). 

comerted to prostaglandins (Kuhn and Crawford, 1986). Also, 
a selective incorporation of certain fatty acids into phospholi­
pids has been found in the ovine placenta (Shand and Noble, 
1985), and even a selective placental fatty acid oxidation 
(Zimmermann et al., 1979; Robertson, Sprecher and Karp, 
1971) and lipid synthesis (Tulenko and Rabinowitz, 1981; 
Coleman and Haynes, 1987; Robertson and Sprecher, 1967) 
have been reported. 

The combination of all those processes determines the actual 
rate of placental fatty acids transfer and its selectivity. 
Through these mechanisms, the placenta selectively transports 
arachidonic acid and docosahexaenoic acid from the maternal 
to the fetal compartment, resulting in an enrichment of these 
LCPUFAs in circulating lipids in the fetus (Crawford et al., 
1976 ). This occurs during the third trimester, when fetal 
demand for neural and vascular growth are greater (Innis, 
1991; Simopoulos, 1991; Uauy et al., 2000). 

IMPLICATIONS OF DIETARY FATTY ACIDS 
DURING PREGNANCY AND LACTATION IN THE 
OFFSPRING 

The supply of essential fatty acids and I ,CPUFA is critical and 
central to the synthesis of structural lipids and hence, to 
normal development of the fetus (Clandinin et al., 1980; 
Foreman-van Drongelen et al., 1995; Leaf ct al., 1992a; 
Neuringer and Connor, 1986). Although formation of arachi­
donic acid and docosahexaenoic acid from parent essential fatty 
acid precursors has been shown in term and prctcrm infants 
(Sauerwald et al., 1997; Demmelmair et al., 1995; Salem, Jr. 
et al., 1996; Carnielli et al., 1996; Uauy et al., 2000), the degree 
to which the fetus is capable of fatty acid desaturation and 
elongation is not clear. Fetal baboons have been shown to 
effectively synthesize both docosahcxacnoic acid (22 : 6, co-3) 
and arachidonic acid (20: 4, co-6) from their precursors, 
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a-linolenic acid (18 : 3, co-3) and linoleic acid (18: 2, co-6) 
respectively (Su et al., 1999, 2001). However, the small 
contribution of endogenous synthesis of arachidonic acid to the 
plasma arachidonic acid pool in newborn infants during the 
first week of life has been demonstrated (Szitanyi et al., 1999). 
A low enzymatic activity of A-5-desaturation has been pro­
posed as one factor limiting arachidonic acid synthesis 
(Demmelmair et al., 1998), and although high AS- and 
A6-desaturase activities in the liver of one 18 week and two 22 
week fetuses (Chambaz ct al., 1985), which were close to 
those found in adult liver (De Gomez Dumm and Brenner, 
197 5) have been reported, human fetal liver desaturase­
elongasc chain reaction has not been clearly demonstrated in 
physiological conditions. 

The nutritional status of the mother during gestation has 
been related to fetal growth, and, in general, reduced nutri­
tional status with respect to co-6 and co-3 essential fatty acids 
has been correlated with reduced neonatal growth and head 
circumference in humans Qumpsen, Van Aerde and Clandinin, 
1997). Significant lineal correlations between the mother and 
fetus or newborn has been found for both LCPUF A co-3 or 
co-6 fatty acids in untreated healthy women (Crastcs de Paulet 
et al., 1992; Al et al., 1990; Matorras et al., 1999). Parallel 
increases in plasma docosahexaenoic acid in the mothers and 
newborns were also found after fish-oil supplementation dur­
ing pregnancy (Van Houwelingen et al., 1995; Connor, 
Lowensohn and Hatcher, 1996). These show the importance of 
maternal dietary fatty acids controlling the availability of 
LCPUF A to the fetus and newborn. In fact, since it is 
considered that the developing fetus depends mainly, or 
completely, on the maternal supply for essential fatty acids, the 
supplement with LCPUF A-rich oils during the last trimester 
of pregnancy to increase levels in neonates, has been advised 
(Van Houwelingen ct al., 1995; Connor, Lowensohn and 
Hatcher, 1996). However, the competitive desaturation of the 
co-3 and co-6 series by A6- and AS-desaturases is of major 
significance because of their controlling role in the desaturating 
and elongating pathways of the parent essential fatty acids 
(Uauy-Dagach and Mena, 1995). Thus, whereas excessive 
dietary intake of linoleic acid from vegetable oils may inhibit 
A6-desaturase, particularly safflower, sunflower, and corn oils, 
that would result in a decrease in the formation of docosa­
hexacnoic acid from a-linolenic acid, arachidonic acid forma­
tion is lower when excessive linoleic acid is provided, as seen in 
enterally or parenterally fed infants receiving corn or safflower 
oil as the predominant source of fatty acids (Brenner and 
Peluffo, 1969; Innis, 1991; Simopoulos, 1991; Sprecher, 2000). 
Besides, the inhibitory effect of eicosapentaenoic acid on 
AS-desaturase activity has been considered responsible for the 
lower plasma arachidonic acid found when fish oil, high in 
eicosapentanoic acid and docosahexaenoic acid, is consumed 
(Uauy-Dagach and Mena, 1995). Also, inhibition of A6 
desaturase activity by fish oil has been demonstrated, being 
also responsible for major declines in arachidonic acid levels 
(Garg, Thomson and Clandinin, 1990; Raz et al., 1997). The 
consumption of fish oils modifies membrane phospholipid 
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composition, increasing eicosapentaenoic and docosahecaenoic 
acids concentrations at the expense of arachidonic acid content, 
and adverse effects of low arachidonic acid concentration in 
serum and red blood cell phospholipids on growth during 
infancy have been reported (Koletzko and Braun, 1991; 
Carlson et al., 1991; Carlson, Werkman and Pepples, 1993). In 
fact, at birth, arachidonic acid status in preterm infants has 
been correlated with their body weight (Koletzko and Braun, 
1991; Leaf et al., 1992b), and it has been proposed that it is 
related rather to intra-uterine growth than to post-natal growth 
(Woltil et al., 1998). 

Foods containing lipid peroxides are potentially toxic, and 
the higher content in PUF As in the diet, the more likely will 
pcroxidation occur (Halliwell and Chirico, 1993; Esterbauer, 
1993; Berry et al., 1991). Thus, excess intake of PUFA may 
reduce antioxidant capacity (Cho and Choi, 1994), enhancing 
susceptibility to oxidative damage (Maziere et al., 1998), a 
condition that has been shown to be responsible for fetal 
damage during pregnancy in rats (Viana, Herrera and Bonet, 
1996; Sim.in and Eriksson, 1997; Viana et al., 2000). Thus, the 
potential negative effect of high dietary fish oil intake on 
offspring during pregnancy could be modulated not only 
by decreased arachidonic acid concentrations but also by 
decreased vitamin E concentrations. 

Different to fish oil, dietary olive oil protects the co-3 PUFA 
series (Navarro et al., 1994), does not affect arachidonic acid 
concentrations (Giron et al., 1989; Periago, Suarez and Pita, 
1990; Rao, Zang and Reddy, 1993) and is much more resistant 
to lipid peroxidation (Scaccini et al., 1992; Oztezcan, Toker 
and Uysal, 1996; Berry et al., 1991 ). Thus, the effect of a diet 
supplemented with 10 per cent fish oil as the only nonvitamin 
lipid component versus the same amount of olive oil during 
pregnancy on the fatty acid profile and vitamin E concentration 
was studied in the rat. A decrease in both arachidonic acid and 
a-tocopherol concentrations as well as a delayed postnatal 
development was found in the offspring of rats fed the fish 
oil-rich diet (Amusquivar et al., 2000). The study was 
extended to determine whether dietary supplementation with 
either vitamin E or y-linolenic acid (18 : 3, co-6), as a precursor 
of arachidonic acid, could ameliorate these changes. Whereas 
arachidonic acid concentrations and postnatal development 
indexes, although not a-tocopherol concentrations, were 
recovered when the fish-oil diet was supplemented with 
y-linolenic acid, postnatal development indexes were not 
recovered when the fish oil-rich diet was supplemented with 
sufficient exogenous vitamin E to normalize a-tocophcrol 
levels (Amusquivar et al., 2000). Thus, it was concluded that 
although feeding a fish oil-rich diet during pregnancy and 
lactation decreased both a-tocopherol and arachidonic acid 
concentrations, the latter deficiency rather than the former 
seemed to be responsible for delayed postnatal development of 
rat pups. In this same study, another group of pregnant and 
lactating rats fed the fish oil-rich diet received a supplement 
with arachidonic acid instead of y-linolenic acid, and although 
both treatments restored brain phospholipid arachidonic acid 
content in pups, the effect restoring delayed growth rate and 
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neurodc,clopmcnt indexes was more efficient in the latter than 
in the former group. The only difference between them was 
the absence of linolcic acid (18 : 2, w-6) in brain phospholipids 
when rats were supplemented with arachidonic acid, whereas it 
was present at a normal level in those supplemented with 
y-linolcnic acid (Amusquivar ct al., 2000). These findings 
agree with those previously found in humans fed diets rich in 
arachidonic acid, in which the proportion of linoleic acid in 
plasma phospholipids decreased (Sinclair and Mann, 1996 ), 
the effect being likely a consequence of replacing linoleic acid 
by arachidonic acid in tissues (Whelan, 1996). It is therefore 
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worth emphasizing the exquisite sensitivity of endogenous 
LCPUF A metabolism to changes in maternal dietary fatty 
acid compos1t10n during perinatal development, and its 
consequences to postnatal development. 

Since benefits and risks of modifying maternal fat intake in 
pregnancy and lactation are not yet completely established, and 
the safety of high intakes ofLCPUFA during pregnancy is still 
unclear (Brown and Kahn, 1997; Hamosh, 1998; Eritsland, 
2000; Lauritzen ct al., 2001 ), confirmation of results is 
required before recommendations to increase LCPUFA intake 
in pregnancy can be made. 
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