Trabajo realizado por el equipo de la Biblioteca Digital de CEU-Universidad San Pablo

Me comprometo a utilizar esta copia privada sin finalidad lucrativa, para fines de investigación y docencia, de acuerdo con el art. 37 de la M.T.R.L.P.I. (Modificación del Texto Refundido de la Ley de Propiedad Intelectual del 7 julio del 2006)
CHANGES IN PLASMA GLUCOSE, INSULIN AND GLUCAGON LEVELS, GLUCOSE TOLERANCE TESTS AND INSULIN SENSITIVITY WITH AGE IN THE RAT *

J. CODINA, M. VALL AND E. HERRERA

Catedra de Fisiologia General, Facultad de Biologia Universidad de Barcelona; and Departamento de Investigación, Centro « Ramón y Cajal » Madrid, Spain

SUMMARY

Glucose and insulin relationships with aging were studied in fed rats. Levels of basal circulating glucose did not change while those of RIA-insulin increased and RIA-glucagon decreased linearly with animal weight. The oral glucose tolerance test revealed a greater increase in blood glucose in adult and old rats than in prepuberals, while the rise in plasma insulin was faster and greater in the oldest group. After intravenous glucose load, plasma insulin increase was greater in adult than in prepuberal and old rats, and in the latter group values remained elevated for a longer period. The hypoglycemic response to i.v. insulin was greatest in the prepuberals with no difference between adult and old rats. In prepuberals, the augmented insulin sensitivity was counteracted by retarded insulino tropic glucose action and an enhanced basal glucagon level, while in the old animals normoglycemia was maintained due to an augmented secretory response of B cells, counteracted by reduced sensitivity to endogenous insulin.

RÉSUMÉ

Modifications du taux plasmatique du glucose, de l’insuline et du glucagon, du test de tolérance au glucose et de la sensibilité à l’insuline chez le rat en fonction de l’âge.

Les relations du glucose et de l’insuline ont été étudiées en fonction de l’âge chez les rats normalement nourris. Le taux basal de la glycémie n’était pas modifié tandis que celui de l’insuline s’élèvait et celui de la glucagonémie s’abaissait d’autant plus que le poids était plus élevé. Le test de tolérance au glucose par voie orale montrait une élévation de la glycémie supérieure chez les rats adultes ou âgés que chez les rats prépubères, tandis que l’élévation de l’insulinémie était plus précoce et plus marquée chez les rats âgés. Après charge glucosée intra-veineuse l’élévation de l’insulinémie était plus marquée chez les rats adultes que chez les rats prépubères ou âgés, mais chez ces derniers elle persistait plus longtemps. La réponse hypoglycémique à l’insuline injectée par voie veineuse était plus marquée chez les rats prépubères que chez les autres. Chez les rats prépubères, l’hypersensibilité à l’insuline était annulée par le retard de l’effet insulino-tropic du glucose et l’élévation de la glucagonémie basale : chez les animaux âgés la normoglycémie était maintenue par la réponse sécrétoire accrus de la cellule B qui s’opposait à la sensibilité réduite à l’insuline endogène.

* This study was presented in part at the 14th Annual Meeting of the European Association for the Study of Diabetes in Zagreb, Yugoslavia, Sept., 1978.

Reprint request: Dr Emilio Herrera, Departamento de Investigación, Centro « Ramón y Cajal », Ctra. de Colmenar km. 9, Madrid 34, Spain.

Received on 21-09-1979, revised on 21-01-1980.

Previously reported changes in carbohydrate tolerance with age are contradictory. Abnormally high plasma insulin levels have been observed in basal conditions and during oral glucose tolerance tests in old subjects (1-7) and senile rats (8), while other studies have indicated a decrease in tissue responsiveness to insulin in old subjects (1, 2, 9-11). Conversely, reduced
RESULTS

Basal values:

Circulating levels of glucose did not change while those of insulin showed a significant positive correlation to body weight ($p < 0.001$) (Figs 1a and 1b), with no differences between male and female rats. Total glucagon values in plasma were correlated significantly and negatively to weight (females: $p < 0.001$ and males, $p < 0.01$) (Fig. 1c), values in males being higher than those in females.

![Graph of blood glucose and plasma RIA-insulin and glucagon levels in female and male rats as related to their body weight.](image_url)

Fig. 1. — Blood glucose and plasma RIA-insulin and glucagon levels in female and male rats as related to their body weight.

<table>
<thead>
<tr>
<th>a) Glucose:</th>
<th>b) Insulin:</th>
<th>c) Glucagon:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = 137.8 - 0.0121x, r = -0.130, p = \text{N.S.}$</td>
<td>$y = 129.0 + 0.0132x, r = 0.144, p = \text{N.S.}$</td>
<td>$y = 56.5 + 0.255x, r = 0.585, p < 0.001$</td>
</tr>
<tr>
<td>$y = 57.5 + 0.265x, r = 0.635, p < 0.001$</td>
<td>$y = 0.715 - 0.0011x, r = 0.474, p < 0.01$</td>
<td>$y = 0.739 - 0.00206x, r = 0.623, p < 0.001$</td>
</tr>
</tbody>
</table>
Glucose tolerance tests:

Oral and intravenous responses to 2 g/kg glucose were studied in three groups of male rats: prepuberal, weighing 80-100 g (about four weeks old), adults of 180-200 g (eight to ten weeks old), and old animals of 400-500 g (over one year old). Blood glucose levels after the oral glucose load (Fig. 2a) revealed a greater increase in adult and old rats than in prepuberals. In this latter group, the glucose values 15 min after glucose administration were significantly lower than those of adults (p < 0.01) and old (p < 0.05) rats, and the values did not differ from those in controls receiving saline up to 30 min after glucose administration. Plasma insulin levels in old animals (Fig. 2b) peaked 7.5 min after glucose load. At this time these were higher than levels in adults (p < 0.05) while the peak in prepuberal rats did not appear until the 15 min time point, its size being not different than that observed in the old animals at 7.5 min. Plasma insulin values 60 min after oral glucose load in old rats and in adults did not differ but were significantly higher (p < 0.01) than in the prepuberals.

After i.v. glucose administration, the 3 min blood glucose level was highest in prepuberals (Fig. 3a) (p < 0.01, vs. adults) followed by the old and adults groups while at 60 min it was lowest in the youngest group (p < 0.05 vs. adults). Calculated as glucose disappearance coefficients, Kg was 5.13 ± 0.26 for prepuberals, 6.04 ± 0.34 for adults (no significant difference when compared with prepuberals: p > 0.05) and 3.70 ± 0.40 for olds (p < 0.05, vs. prepuberals and p < 0.01 vs. adults). Plasma insulin (Fig. 3b) increased more in the adult than in prepuberal and old rats, as early as 3 min after glucose load (p < 0.01 and p < 0.05 respectively vs. the values in the adults) and remained higher in the older group 60 min after glucose administration (p < 0.01 vs. both adults and prepuberals).

Insulin Sensitivity Test:

The drop in blood glucose levels after i.v. administration of monoclonal porcine insulin (10 IU/kg b.w.) was faster and greater in prepuberal than in

Fig. 2. — Blood glucose (a) and plasma RIA-insulin (b) concentrations in prepuberal (80-100 g, b.w.) (□—□), adult (180-200 g, b.w.) (●——●) and old rats (400-500 g) (△—△) after oral glucose administration (2 g/Kg), compared with controls (shadowed area). P values vs controls: * = p < 0.05, ** = p < 0.01, *** = p < 0.001 Means ± SEM of 7-10 rats/group. Control values are from 7 rats from each age group, receiving saline.

Fig. 3. — Blood glucose (a) and plasma RIA-insulin (b) concentrations in prepuberal (80-100 g, b.w.) (□—□), adult (180-200 g, b.w.) (●——●) and old rats (400-500 g) (△—△) after intravenous glucose administration (2 g/Kg), compared with controls (shadowed area). P values vs control: * = p < 0.05, ** = p < 0.01, *** = p < 0.001. Means ± SEM of 6-8 rats/group. Control values are from 6 rats from each age group, receiving saline.
glucose concentration is reportedly similar in young and old rats although the pancreatic insulin pool in young animals is much greater (25); this finding indicates a higher prepupal threshold for insulin response. Plasma immunoreactive glucagon levels are also significantly but negatively correlated to body weights. The high plasma glucagon levels in the young animals could contribute to a diabetogenic situation, but it is known that tissue sensitivity to glucagon is reduced in young versus adult animals due to lowered affinity to receptor sites (26). This effect, combined with the augmented insulin sensitivity in these animals, may counteract their augmented diabetogenic factors, producing normal glycemia.

In old rats, the high circulating levels of insulin correspond to their normal or enhanced response to the glucose load, a situation that has also been observed in older humans (1, 6, 27). The elevated levels of circulating insulin in the presence of normal glycemia in old animals signify either an augmented sensitivity to the direct glucose insulinoenic stimulus (contrary to the conclusions in another in vitro study) (25); or to an enhanced response of gastrointestinal, insulinoetric factors. Present results support the second possibility because, under the same oral glucose stimulus, old rats produced a greater peak of circulating insulin than did the younger animal, while this was not the case after i.v. glucose administration. A prolonged half-life of circulating insulin may also influence the maintained increase of this hormone in plasma under basal, fed conditions. The prolonged enhancement of plasma insulin levels after glucose administration (both per os and intravenously) observed in this study and the reduced insulin-degrading activity in different tissues recently reported (28) in old rats would support this explanation. On the other hand, augmented circulating levels of insulin would cause reduced glucose concentrations which, in confirmation of an earlier report (14), were not found in our old rats in spite of their normal response to exogenous insulin. These results, in the presence of the normal or reduced carbohydrate tolerance in the aging process, may well be attributed to reduced activity of the endogenous hormone, as proposed by several investigators (1, 10, 11, 13). The mechanism by which this phenomenon develops may be the result of alterations in the nature of circulating insulin antagonists, or other yet unknown mechanisms. Thus the prolonged half-life of the insulin together with the low basal plasma glucagon levels seem to be counteracted by reduced sensitivity to endogenous insulin, allowing maintenance of normoglycemia in old animals. This balanced equilibrium may, however, be broken down when the pancreas B-cell is unable to continue augmented activity, in which case hyperglycemia would appear, as is frequently the case in humans.

Acknowledgments: This study was supported in part by a grant from the Comisión Asesora de Investigación Científica y Técnica, Presidencia del Gobierno, Spain. The authors wish to express their gratitude to Caroline S. Delgado for her editorial help.
REFERENCES

1. Cholouverakis, C., Jarrett, R.J., Keen, H.: Glucose tolerance, age and circulating insulin.
Lancet, 1967, 1, 806-809.

G. Geront., 1970, 18, 475-482.

4. Langs, H.M., Andres, R., Pozefsky, Th., Gregor, R.I.: Responses in serum insulin concentration to the cortisone glucose tolerance test (CGTT): the importance of age.
Diabetes (abst.), 1966, 15, 539.

Gerontologia (Basel), 1972, 18, 176-184.

Diabetes, 1965, 14, 579-583.

11. Frolikis, V.V., Bogatskaya, L.N., Bogus, S.V., Shevechuk, V.G.: Content and activity of insulin in the blood and the sensitivity of tissues to it during aging.
Geriatrics, 1971, 26, 118-129.

Acta Diabet. Lat., 1975, 12, 303-308.

Metabolism, 1977, 26, 33-41.

Diabetologia, 1971, 7, 10-19.

Diabetologia, 1972, 8, 260-266.

22. Blazquez, E., Sugase, T., Blazquez, M., Foa, P.P.: Neonatal changes in the concentration of rat liver cyclic AMP and of serum glucose, free fatty acids, insulin, pancreatic and total glucagon in man and in the rat.

24. Faber, O.K., Madsbad, S., Kehlet, H., Binder, Ch.: Pancreatic beta cell secretion during oral and intravenous glucose administration.

Endocrinology, 1976, 98, 1014-1023.

Diabetes, 1979, 28, 324-325.