
JPA Inheritance
Rodrigo García Carmona (v1.1.3)

Relational databases don’t feature object-oriented inheritance, so using super and subclasses with JPA can
be tricky. There is no standard way to implement inheritance in a database, and therefore we must choose
how we’re going to represent this feature in the relational model.

JPA supports three inheritance models, defined trough the Inheritance annotation:

One table for all classes: SINGLE_TABLE
One table for each class: JOINED
One table for each subclass: TABLE_PER_CLASS

Single Table Inheritance
This is the default inheritance strategy used if none is specified. It’s the simplest and typically the best
performing solution… if you can tune your tables to add a discriminator column.

In this strategy, a single table is used to store all instances of the entire inheritance hierarchy. The table will
have a column for every attribute of every class in the hierarchy and a discriminator column; used to
determine which class the particular row belongs to. This column will contain a value specific to each class.

A single table looks like this:

project

id proj_type name budget

1 L Marketing 5000.0

2 S Legal null

And is implemented using these classes:

@Entity

@Inheritance(strategy=InheritanceType.SINGLE_TABLE)

@DiscriminatorColumn(name="proj_type")

@ForceDiscriminator

@Table(name="projects")

public abstract class Project {

 @Id

 // Other Id annotations as needed

 private Integer id;

 ...

}

@Entity

@DiscriminatorValue("L")

public class LargeProject extends Project, implements Serializable {

 private Double budget;

}

@Entity

@DiscriminatorValue("S")

public class SmallProject extends Project, implements Serializable {

}

One Table Per Class Inheritance
This inheritance strategy is used when we have a relational model that closely follows the object model, so
it’s usually employed when the object model is designed first.

With this strategy, a table is defined for each class in the inheritance hierarchy, including the parent class.
Each table only contains the attributes specific to the class it represents, and the parent class’ table must
contain a discriminator column, like in the single table strategy.

Each table must also store the object’s primary key, but this is only defined in the root class. All classes in the
hierarchy must share the same id attribute.

A set of tables for this strategy look like this:

projects

id proj_type name

1 L Marketing

2 S Legal

smallprojects

id

2

largeprojects

id budget

1 5000.0

And are implemented using these classes:

@Entity

@Inheritance(strategy=InheritanceType.JOINED)

@DiscriminatorColumn(name="proj_type")

@Table(name="projects")

public abstract class Project {

 @Id

 // Other Id annotations as needed

 private integer id;

 ...

}

@Entity

@DiscriminatorValue("L")

@Table(name="largeprojects")

public class LargeProject extends Project, implements Serializable {

 private Double budget;

}

@Entity

@DiscriminatorValue("S")

@Table(name="smallprojects")

public class SmallProject extends Project, implements Serializable {

}

One Table Per Subclass Inheritance
This inheritance strategy is used when we want to keep the relational model oblivious to it, since no
discriminator column is required and each class is in a different, completely separated, table.

In this strategy, we use an abstract parent class and several children classes. Each child class is realized as
a table that stores all the attributes of that class and the superclass.

Here’s an example of a possible table structure:

smallprojects

id name

2 Legal

largeprojects

id name budget

1 Marketing 5000.0

Which is implemented using these classes:

@Entity

@Inheritance(strategy=InheritanceType.TABLE_PER_CLASS)

public abstract class Project {

 @Id

 // No other Id annotations should be put here

 protected Integer id;

 @Column(name="name")

 private String name;

 ...

}

@Entity

@Table(name="largeprojects")

public class LargeProject extends Project, implements Serializable {

 @Id

 // Other Id annotations as needed

 private Integer id;

 private Double budget;

 ...

 // Get and set this id attribute, not the one in the superclass

}

@Entity

@Table(name="smallprojects")

public class SmallProject extends Project, implements Serializable {

 @Id

 // Other Id annotations as needed

 private Integer id;

 ...

 // Get and set this id attribute, not the one in the superclass

}

