
JAXB Cheatsheet
Rodrigo García Carmona (v1.0.2)

Project setup
We don’t need to import any library to use JAXB, since it’s included in the JDK.

To marshall (Java2XML) and unmarshall (XML2Java) using JAXB we need to annotate the data classes and
write some code to do the actual (un)marshalling.

JAXB Annotations
We must annotate the Java classes that will represent the data contained in the XML documents. These data
classes must:

Implement Serializable.
Have a parameter-less constructor.
Have a constructor without parameters.
Have public getters and setters for all annotated attributes.

We must annotate every class that will be part of a XML document as follows:

@XmlAccessorType(XmlAccessType.FIELD)

public class Employee implements Serializable {

...

}

With XMLAccessorType we’re indicating that the JAXB will look inside the class for XML annotations, and
with FIELD that those will be found in the class attributes (also called fields), instead of in the methods.

Annotating Attributes
Since we chose the FIELD annotation method, we must annotate every class’ attribute with one of the
following annotations:

XmlAttribute: If the attribute is going to appear as an attribute in the XML.
XmlElement: If the attribute is going to appear as a tag in the XML.
XmlTransient: If the attribute is not going to appear in the XML at all.

In both XmlAttribute and XmlElement we can specify a particular name by using the name property. If we
don’t, the Java attribute name will be used by default. We can also use the required property (set to true or
false) to indicate if the attribute or tag is mandatory. By default it’s true.

Here’s an example of these annotations:

@XmlTransient

private Integer id;

@XmlAttribute

private String name;

@XmlElement(name = "Contents", required = "false")

private String content;

@XmlElement(name = "Employee")

private List<Employee> authors;

This will produce an XML like this one:

<Report name="External Sales Report">

 <Contents>Eh, better than expected!</Contents>

 <Employee>

 ...

 </Employee>

 <Employee>

 ...

 </Employee>

</Report>

It’s important to note that the Employee class must also be annotated, since it’s also a part of the XML
document.

Also note that this applies to Lists too, like the one we had with Employee objects. In this case, each
Employee will be inside its own Employee tag. If we want to surround all of them with a wrapper tag, we must
add the XMLElementWrapper annotation:

@XmlTransient

private Integer id;

@XmlAttribute

private String name;

@XmlElement(name = "Contents")

private String content;

@XmlElement(name = "Employee")

@XmlElementWrapper(name = "Authors")

private List<Employee> authors;

Which will produce an XML like this one:

<Report name="External Sales Report">

 <Contents>Eh, better than expected!</Contents>

 <Authors>

 <Employee>

 ...

 </Employee>

 <Employee>

 ...

 </Employee>

 </Authors>

</Report>

Element order
Optionally, we can use the propOrder property of the XmlType annotation to specify the children tag ordering
in the XML document. Inside propOrder we must put the Java attribute names, not the XML element names.

Here’s an example:

@XmlAccessorType(XmlAccessType.FIELD)

@XmlType(propOrder = { "name", "dob", "address", "salary" })

public class Employee implements Serializable {

}

Root element
Every XML document must have a root element: the first tag of the document. We must annotate every class
that needs to fulfil this role in at least one of our XML documents with the XMLRootElement annotation. Like
this:

@XmlAccessorType(XmlAccessType.FIELD)

@XmlRootElement(name = "Employee")

public class Employee implements Serializable {

}

Marshalling
To marshall Java objects into a XML document we must follow these steps:

1. Create a JAXBContext object.
2. Create a Marshaller using the JAXBContext object.
3. Call the marshall method of the Marshaller.

// Create the object

Book book = new book();

book.setName(“Dune”);

Book.setAuthor(“Frank Herbert”)

// Create the JAXBContext

JAXBContext jaxbC = JAXBContext.newInstance(Book.class);

// Create the JAXBMarshaller

Marshaller jaxbM = jaxbC.createMarshaller();

// Pretty formatting

jaxbM.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,Boolean.TRUE);

// Write to a file

jaxbM.marshal(book, XMLfile);

// Printout

jaxbM.marshal(book, System.out);

Unmarshalling
To unmarshall a XML document into Java objects we must follow these steps:

1. Create a JAXBContext object.
2. Create an Unmarshaller using the JAXBContext object.
3. Call the unmarshall method of the Unmarshaller.

// Create the JAXBContext

JAXBContext jaxbC = JAXBContext.newInstance(Book.class);

// Create the JAXBMarshaller

Unmarshaller jaxbU = jaxbC.createUnmarshaller();

// Create the object by reading from a file

Book book = (Book) jaxbU.unmarshal(XMLfile);

// Printout

System.out.println(book);

