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14.1 Introduction: pregnancy and foetal growth 

In his book, first printed in 1992, 1 Barker made a statement of 'foetal' or 
'metabolic' programming. Based on studies using medical records in Britain and 
other countries, 2 5 the basic hypothesis is that impaired development in utero, 
leading to babies of low birthweight, is a strong predictor of heart disease, arterial 
disease, hypertension or type 2 diabetes mellitus in later lifc. 6 8 The statement 
could now be extended to include slow growth in the first year of life.9

• 
10 It is the 

intention of this chapter to consider whether changes in the content of fat, or the 
composition of that fat, in the maternal diet may, by improving the development of 
the foetus or by some other mechanism, help prevent such problems. 

It is well known that the developing foetal brain has a definite requirement 
for the long-chain polyunsaturated fatty acid, docosahexaenoic acid (DHA), but 
other fatty acids arc required for structural purposes (membrane synthesis), as a 
source of precursors ( e.g. for eicosanoids, a group of compounds including 
prostaglandins and thromboxanes involved in cell-to-cell communication) or as 
the substrate for fat stores to be used after birth as a source of energy. 
Furthermore, the use of fats, as a source of energy for the mother, means that 
glucose is available for use by the foetus. 

In this chapter, we first examine the mechanisms underlying the materno
foctal relationship in terms of lipid metabolism so that the roles of the maternal 
diet during stages of pregnancy and or maternal dietary history may be 
understood. We also examine the complex interactions between the dietary fatty 
acids, their synthesis in vi\'O and other complicating factors, such as 
susceptibility to oxidative stress. We finish by summarizing the complexity or 
the situation and by suggesting some avenues for future research. 
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14.1.1 Changes occurring in the mother during pregnancy that help to 
sustain foetal growth under normal conditions 
Foetal development depends upon the continuous supply of metabolites, derived 
from the maternal circulation, across the placenta. Quantitatively, the most abundant 
nutrient crossing the placenta is glucose, followed by amino acids. 11

-
15 Placental 

transfer of lipid components is limited in comparison, 16
• 

17 but the lipid components 
also play a major role in foetal development. Changes in the availability of lipid 
components, such as those produced by changes in dietary fat composition, are 
known to have implications for foetal and postnatal development. 18 ln addition, the 
adaptations of maternal lipid metabolism during gestation also have major 
implications for foetal growth; for instance, it is known that deviations from normal 
maternal plasma lipid status, such as hypercholesterolaemia, even when temporary 
and limited to pregnancy, can trigger pathogenic events in the foetal aorta and may 
influence atherosclerosis later in life. 19 21 

From the metabolic point of view, there are two distinct stages of pregnancy. 
During the first two-thirds, foetal growth is small and the mother stores a large 
proportion of the nutrients she eats, which, in combination with her hyperphagic 
state, causes accumulation of fat stores. 22

• 
23 This condition is facilitated by 

hyperinsulinaemia and normal, or even enhanced, insulin sensitivity. 24
-

26 

During the last third of gestation foetal growth is very rapid, being sustained by 
an enhanced transfer of nutrients through the placenta. Hence the mother 
switches from the previous anabolic condition to a catabolic one. This change is 
seen most clearly in terms of an enhanced breakdown of lipid stores by lipolysis 
in adipose tissue,27

--
29 and is facilitated by the development of an overt insulin

resistant condition.30
-

32 

I 4.2 Carbohydrate, amino acid and maternal lipid 
metabolism in gestation 

14.2.1 Carbohydrate and amino acid metabolism 
During late pregnancy the mother tends to develop hypoglycaemia, which is 
especially evident during fasting. 33

• 
34 Indirect studies in women35 and direct 

experiments in rats34
• 
36 have shown that the rate of gluconeogenesis is enhanced 

during pregnancy under fasting conditions. Of the common gluconeogenic 
substrates, glycerol was converted into glucose even more rapidly than others 
such as pyruvate and alanine. 37 Thus, gestational hypoglycaemia must be a 
consequence of increased utilization of glucose: this is despite the decreased 
consumption of glucose by the insulin-resistant tissues and results from a rate of 
placental transfer much higher than for other metabolites, even amino acids. 11

• 
38 

The placental transfer of glucose is carried out by facilitated diffusion according 
to concentration-dependent kinetics 14

• 
39 and is therefore dependent on the 

positive materno-foetal glucose gradient. 12 The gradient is maintained by the 
low concentration of glucose in the foetal circulation and, on occasion, by active 
maternal gluconeogenesis. 
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In contrast, the concentration of amino acids in foetal plasma is even higher 
than in the mother, 12

' 
40

' 
41 because placental transfer of amino acids is carried 

out by an energy-dependent process, using selective transporters. 12
' 

14
,
42

-
44 This 

ensures the availability of these essential precursors in appropriate quantities to 
the foetus and can result in a tendency to maternal hypoaminoacidaemia. 1 1 

14.2.2 Maternal lipid metabolism 
Two consistent manifestations of altered maternal lipid metabolism during 
normal gestation are the accumulation of lipids in early-pregnant maternal 
tissues22

• 
45 as a result of major changes in adipose tissue metabolism and the 

later development of maternal hyperlipidaemia.46
•
47 

Adipose tissue metabolism: accumulation of body fat 
Fat accumulation is a characteristic feature of pregnancy, occurring in both 
women22

' 
45

• 
48 and experimental animals. 23

• 
49

' 
50 The accumulation of maternal 

fat in maternal depots takes place during the first two-thirds of gestation but 
stops or even declines during the last third, 45

· 
49

• 
51 

• 
53 as a consequence of 

enhanced adipose tissue lipolytic activity. 
Body fat accumulation during early pregnancy seems to be the result of both 

hyperphagia and increased lipid synthesis. Hyperphagia during pregnancy 
occurs in women54

• 
55 and rats. 50

· 
56 Both fatty acid synthesis and the conversion 

of glucose to form the 'glycerol backbone' of fat molecules have been found to 
increase progressively in rat adipose tissue until day 20 of gestation and then to 
decline sharply on day 21, just before parturition.38

• 
57 

Changes in adipose tissue lipoprotein lipase (LPL) activity could be a means 
by which fat accumulation is controlled during early pregnancy. This enzyme, 
present in the capillary endothelium of extra-hepatic tissues, hydrolyses 
triacylglycerols circulating in plasma in the form of triacylglycerol-rich 
lipoproteins,58 and the hydrolytic products, fatty acids and glycerol, are mostly 
taken up by the subjacent tissue. 59 In this way, LPL activity is a prerequisite for 
the uptake of circulating fat by adipose tissue. Some reports suggest that there is 
an increase in the activity of LPL in rat adipose tissue by day 12 of 
gestation,60

· 
61 but the change is small and not always reproduced. 29 

Furthermore, no significant change has been found in the postheparin LPL 
activity in pregnant women at mid-gestation.46 During late pregnancy, however, 
LPL activity in rat adipose tissue has consistently been found to be 
decreased. 52

• 
62

-
64 Postheparin LPL activity has also been found to decrease 

in pregnant women during the third trimester of gestation.46 

Thus, it is proposed that fat uptake by adipose tissue decreases during late 
pregnancy and that this change, together with the enhanced lipolytic activity (see 
below), results in the net accelerated breakdown of fat depots during the last 
trimester of pregnancy, which coincides with the phase of maximal foetal 
growth. :'i 2 ' 

65 



Adipose tissue metabolism: lipolytic activity 
Increased lipolysis of adipose tissue fat stores occurs both in women and rats 
during the last third of gestation.28' 66 -69 At the same time, increased activity of 
hormone-sensitive lipase (HSL, the key enzyme of adipose tissue lipoly:-.is), and 
increased concentrations of the mRNA that codes for it, are observed in pregnant 
rats.29 

The majority of the products of adipose tissue lipolysis, fatty acids ( often 
called non-esterified fatty acids or NEFA) and glycerol, are released into the 
circulation. Since the placental transfer of these products is quantitatively low, 17 

their main destination is the maternal liver70 where, after conversion into active 
forms acyl-CoA and glycerol-3-phosphate respectively, they are re-esterified for 
the synthesis of triacylglycerols that are released into the circulation as part of 
very low-density lipoproteins (VLDLs). Since insulin inhibits both adipose 
tissue lipolytic activity71 ' 72 and hepatic VLDL secretion73 but increases LPL 
activity,74 the insulin-resistant condition of late pregnancy contributes to both 
the increased lipolysis of fat stores 75 and the increased VLDL production, 
although for the latter the enhanced oestrogen concentration at late pregnancy 
seems to be its major activator.47 

During late pregnancy, the lipolytic activity of maternal adipose tissue 
increases markedly under ( experimental) fasting conditions. 27· 28· 69· 76 In 
addition to the use of the lipolytic products in the resynthesis of triacylglycerols 
described above, glycerol may be used for glucose synthesis (required for brain 
function) and NEF A for ,B-oxidation to acetyl-CoA, leading to energy 
production and synthesis of ketone bodies; these pathways also mcrease 
markedly under fasting conditions in late pregnancy.34·36· 77

• 
78 

The preferential use of glycerol for gluconeogenesis and the efficient 
placental transfer of the newly formed glucose may be of major importance to 
the foetus under such fasting conditions, where the availability of other essential 
substrates such as amino acids is reduced.36·61 The enhanced maternal 
ketogenesis during fasting also benefits the foetus in two ways: ketone bodies 
are used by maternal tissues, thus sparing glucose for essential functions and 
delivery to the foetus; placental transfer of ketone bodies is very efficient, 79 

attaining the same concentration in foetal plasma as is found in the maternal 
circulation.8° Consequently, ketone bodies may be used by the foetus as 
oxidative fuels81 as well as substrates for brain lipid synthesis.82 

Maternal hyperlipidaemia 
The catabolic condition of maternal adipose tissue during late gestation is 
associated with hyperlipidaemia, mainly corresponding to rises in triacyl
glycerols, with smaller rises in phospholipids and cholesterol in the circula
tion.47 Although the greatest increase in plasma triacylglycerols corresponds to 
VLDL, there is also an enrichment of triacylglycerols in other lipoprotein 
fractions that normally do not transport them, such as low-density lipoprotcins 
(LDL) and high-density lipoproteins (HDL).46 This increase in plasma VLDL 
triacylglycerols during gestation results from enhanced production by the 
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• liver83
• 
84 and decreased removal from the circulation as a consequence of 

reduced adipose tissue LPL activity.29
•
46 

The abundance of VLDL triacylglycerols in the presence of an increase in 
cholesteryl ester transfer protein (CETP) activity taking place at mid-

. 46 85 'b h 1 . f . l 1 1 . ·gestat10n ' contn utes to t e accumu at10n o tnacy g ycero s m the 
lipoprotein fractions of higher density, LDL and HDL.46

• 
86 Another factor 

contributing to the same effect is the decrease in the hepatic lipase activity, 
which also occurs during late pregnancy.46 The decrease in this enzyme's 
activity decreases the conversion of buoyant HDL2 triacylglycerol-rich particles 
into smaller, denser, triacylglycerol-poor HDL3 particles, allowing a 
proportional accumulation of the former.46 

The hormonal factors responsible for the metabolic changes, which result in 
the development of maternal hypertriacylglycerolaemia, are the insulin-resistant 
condition and the increase in plasma oestrogen concentrations, both occurring 
during late pregnancy. The insulin-resistant condition contributes to the 
enhanced adipose tissue lipolytic activity, which, as described above, speeds 
the transport of glycerol and NEF A to the liver, to their subsequent conversion 
into circulating VLDL-triacylglycerols,75 and to decreased LPL activity. 74 The 
increase in plasma oestrogen concentrations during gestation87

• 
88 also 

contributes to maternal hypertriacylglycerolaemia since it enhances hepatic 
production of VLDL 89

• 
90 and decreases the expression and activity of hepatic 

lipase.91
' 
92 

14.3 Placental transfer of lipid metabolites 

14.3.1 Availability of essential fatty acids to the foetus 
Essential fatty acids (EF A) are fatty acids containing double bonds either six or 
three ( or both) carbons from their methyl end, the so-called n-6 and n-3 positions 
(often referred to as w-6 and w-3) respectively. As animals are incapable of 
inserting such double bonds themselves, EF A can be obtained only from the diet 
and it follows that the foetus can obtain them only from the maternal circulation 
via the placenta. The simplest n-6 polyunsaturated fatty acid (PUF A) is linoleic 
acid with 18 carbons and two double bonds (18:2 in shorthand), which is a 
precursor of arachidonic acid (20:4 or AA). The simplest n-3 PUF A is 
0:-linolenic acid (18:3), a precursor of docosahexaenoic acid (22:6 or DHA). 

Triacylglycerols circulating in plasma lipoproteins do not directly cross the 
placental barrier, 17 but EF A from maternal diet, which are transported as 
triacylglycerols in triacylglycerol-rich lipoproteins in maternal plasma,93 must 
be made available to the foetus. The presence of both the VLDL/apo-E receptor 
and the LDL receptor-related proteins in placental trophoblast cells94 99 allows 
these lipoproteins to be taken up by the placenta. In addition, the trophoblasts 
also express at least three different lipolytic activities including LPL, 100 102 

phospholipasc A2
103

• 
104 and an intracellular lipase. 105 107 Thus, maternal 

triacylglycerols in plasma lipoprotcins arc either taken up intact by the placenta 
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by receptors or, after hydrolysis, their constituent fatty acids arc taken up by the 
placenta, where the fatty acids arc re-esterified to synthesize glycerolipids to 
provide a reservoir of fatty acids. 108 Subsequent intracellular hydrolysis of the 
glyccrolipids releases fatty acids to diffuse to foetal plasma, where they bind to 
the alpha-foeto protein_ 10

9
, 

110 In this way, they are transported to the foetal liver, 
where they are re-esterified and released back into the foetal circulation in the 
form of lipoprotein-triacylglycerols. 

Thus, maternal hyperlipoproteinaemia seems to play a key role in the 
availability of EFA to the foetus, and reductions in maternal hypertriacyl
glycerolaemia, such as that caused by treatment with hypolipidaemic drugs, 
have detrimental effects on foetal development. 111

' 
112 

Transport of non-esterified fatty acids 
There are important differences among mammalian species in the net flux of 
fatty acids across the placenta. In species with placentas that comprise both 
maternal and foetal layers, such as sheep, pig and cat, the maternal foetal fatty 
acid transfer is small, 113

~
116 whereas species where the placenta is formed by 

layers of foetal origin, such as the rabbit, 117 guinea pig, 118 primates 119 and 
rat, 120

• 
121 the amount of fatty acid crossing the placenta exceeds even that 

needed to provide an adipose store of lipids sufficient to support postnatal 
growth and development. 122 In humans, although small in proportion to 
lipoprotein triacylglycerols, maternal plasma NEF A are an important source of 
PUFA to the foetus. 123

' 
124 

In human placenta there is a membrane fatty acid-binding protein 
(FABPµm) I25

• 
126 which is responsible for the preferential uptake of long-chain 

polyunsaturated fatty acids (LC-PUFA) and allows the preferential transfer of 
certain LC-PUFA: docosahexaenoic > o:-linolenic > linoleic > oleic · > 
arachidonic acid. 127 In the case of arachidonic acid, its uptake by 
syncytiotrophoblast membranes has been shown to occur by an ATP-dependent 
active process. 128 This selective transport of certain fatty acids may contribute to 
the efficacy of the overall placental transfer process and may contribute to a 
degree of selective metabolism such as the conversion of a proportion of 20-
carbon fatty acids to prostaglandins and other eicosanoids, 124 the relative 
proportions of 2-series and 3-series prostaglandins being fonned, 129

· 
130 the 

incorporation of some fatty acids into membrane phospholipids, 131 placental 
fatty acid oxidation 132 and placental fatty acid synthesis. 133 Thus, the 
combination of all these processes determines the actual rate of placental fatty 
acid transfer and its selectivity, resulting in the proportional enrichment of 
certain LC-PUF A, such as arachidonic acid and docosahexaenoic acid in the 
foetal compartment compared to maternal compartment. 134 

An interesting point here is that that thromboxane A3, a prostaglandin-like 
messenger derived from n-3 fatty acids, has been reported to be a less effective 
vasoconstrictor than thromboxane A2 , derived from n-6 fatty acids, and that this 
could provide a link between diet and hypertension. 135 
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Cholesterol 
The remaining major lipid, cholesterol, is an essential component of cell 
membranes, where it affects the fluidity and passive permeability. 136 It is the 
precursor of bile acids, used in the digestion of dietary lipids, of steroid 
hormones, required for cell proliferation 137

' 
138 and development of the growing 

body ( e.g. sexual differentiation), 139
' 

140 cell differentiation and cell-to-cell 
communication, 141 and of oxysterols, which regulate certain metabolic 
processes. 142 Consequently, the demand for cholesterol in the embryo and the 
foetus is relatively high. 

Placental transfer of maternal cholesterol has been shown to be effective in 
different species, such as the rat, 143 guinea pig144 and rhesus monkey. 145 

Cholesterol synthesis in foetal tissues, and especially in foetal brain, has also 
been shown to be highly active in some species, 146

-
150 and the expression of the 

genes for the enzymes involved in cholesterol synthesis, as measured by mRNA 
contents and by enzyme activities, is elevated in foetal tissues. 151

-
153 

Cholesterol can be transferred by the placenta and it can be synthesized from 
a simple two-carbon precursor by a complex biochemical pathway. In the rat, the 
foetus receives little or no cholesterol from its mother and satisfies its need for 
cholesterol through endogenous synthesis149

' 
150 as illustrated by the following 

experiment. Feeding late-pregnant rats with cholesterol, sufficient to increase 
the maternal plasma cholesterol concentration and to reduce maternal 
cholesterol synthesis, had no effect on these same parameters in the 
foetus 146

• 
147

' 
154

' 
155 or on foetal development. 156 However, some circumstantial 

evidence exists for a role for maternal cholesterol during the early stages of 
gestation. Treatment of pregnant rats during early pregnancy with an inhibitor of 
the enzyme 6. 6 -reductase, A Y 9944, resulted in foetal teratogenesis, whereas 
simultaneous administration of oral cholesterol prevented this effect. 157

-
159 

In humans, comparison of concentrations of lipoprotein-cholesterol in 
maternal plasma with umbilical cord blood cholesterol gave positive correlations 
in some experiments 160

· 
161 and no correlation in others. 162

-
165 Gestational age 

could influence these comparisons, since plasma foetal cholesterol levels arc 
higher in 5-month than in 7-month-old foetuses, and in foetuses younger than 
6 months, plasma cholesterol concentration is significantly correlated to the 
maternal concentration, 19 suggesting that, at these early stages of gestation, 
maternal cholesterol actively contributes to foetal cholesterol. At term, umbilical 
venous concentrations of HDL-, LDL- and total cholesterol were higher than in 
umbilical arterial plasma, indicating the delivery of cholesterol from placenta to 
the foetus; however, the contribution of such cholesterol to the foetal plasma 
cholesterol pool is very small. 162 

14.4 Foetal development: the role of dietary fatty acids 

Essential fatty acids (EFA) and their LC-PUFA derivatives are required during 
normal foetal development to support the synthesis of structural lipids, notably 
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the phospholipids of brain and retinal tissue. 166
-

169 Although both term and 
preterm infants seem able to form arachidonic acid (20:4 n-6 or AA) and 
docosahexaenoic acid (22:6 n-3 or DHA) from their respective EFA precursors, 
linoleic acid ( 18:2 n-6) and a-linolenic acid (18:3 n-3) by a process of sequential 
desaturations and elongations, 170 

-I 7
5 the degree to which the foetus is capable of 

carrying out these processes is not clear. In fact, it has been shown in the 
newborn infant during the first week of life that the endogenous synthesis of AA 
seems to contribute very little to the plasma AA pool, 174 the limiting factor 
being a low ~5-desaturation activity, although foetal baboons have been shown 
to synthesize both AA and DHA from their respective EF A precursors. 176

• 
177 

In humans, a reduced nutritional status with respect to EF A during gestation 
has been correlated with reduced neonatal growth 178 and, in untreated healthy 
women, maternal plasma concentrations of LC-PUF A have been consistently 
correlated with those in the foetus or newborn. 179

-
181 Furthermore, 

supplementation with fish oil during pregnancy increases DHA in both mothers 
and newborns. 182

• 
183 These results have led to the issue of advice that maternal 

diets should be routinely supplemented with fish oil during the last trimester of 
pregnancy. 182

• 
183 However, care must be exercised because the competitive 

inhibition of the ~6- and ~5-desaturases (two enzymes that control the 
conversion of EFA into LC-PUFA by the n-3 and n-6 pathways), by specific 
fatty acids present in excess, may inhibit the synthesis of other specific LC
PUF A that could be essential for foetal growth. 184 In fact, when fish oil is 
consumed, low plasma AA levels are found, 184

• 
185 the effect being caused by the 

abundance of both eicosapentaenoic acid (20:5 n-3 or EPA) and DHA (22:6 n-3) 
in this oil, which specifically inhibit the ~6 desaturase activity -- an obligatory 
step in the conversion of dietary linoleic acid into AA. 186

• 
187 

During the perinatal period, the inhibitory effects of an excess of certain 
dietary fatty acids on LC-PUF A synthetic pathways may acquire major 
relevance, since plasma AA concentrations have been correlated to body weight 
in preterm infants188

-
190 and adverse effects of low AA concentrations on 

growth during infancy have been reported. 188
• 

191
• 

192 

An excess of LC-PUFA may also increase the susceptibility to lipid 
peroxidation. The susceptibility of LDLs to oxidative modification in vitro was 
reported to increase when the LDL were isolated from animals given diets rich 
in n-6 PUFA. ' 93

-
195 Also, an increase in plasma thiobarbituric acid-reacting 

substances (TBARS - a measure of lipid peroxidation) was found after periods 
of dietary enrichment with n-6 PUFA. 196 Whether or not a diet high in n-3 
PUF A also increases lipid peroxidation is controversial. 197 

• 
198 Whereas several 

studies in humans have shown that dietary supplementation with fish oil rich in 
n-3 PUF A does not increase lipid peroxidation in vivo, 199

-
202 studies in rats and 

in cell culture have shown that this same treatment reduces the antioxidant 
capacity 185

•
203 and increases susceptibility to oxidative damage.204

-
206 

That increased lipid peroxidation is a 'bad thing' is not in doubt. 
Experimental studies in diabetic pregnancy have shown that increased reactive 
oxygen species and lipid peroxidation result in foetal damage, the effect being 



prevented by treatment with the anti-oxidant vitamin E.207 - 213 The detrimental 
effect on offspring of high dietary fish oil intake during pregnancy could be 
mediated either by the reported consequent decrease in AA 214- 216 or by an 
increased usage of o:-tocopherol ( a form of vitamin E) to protect the high LC
PUF A content of fish oil. Experiments, in which pregnant and lactating rats were 
fed diets supplemented with 10 per cent fish oil or olive oil, concluded that low 
AA, rather than low o:-tocopherol, was responsible for the delayed postnatal 
development seen in the offspring of the rats fed the fish oil diet. 185 

14.4.1 Possible effects of dietary fat on 'foetal programming' 
The role of foetal and childhood nutrition in the development of long-term 
effects on its health has been firmly documented during the past years. 217

-
227 

Although most problems in foetal nutrition may be rapidly corrected after birth, 
as recently reviewed,228 there are conditions such as maternal hyper
cholesterolaemia during the early stages of pregnancy that may promote lesion 
formation in the foetus, increasing the susceptibility to atherosclerosis later in 
life. Hypercholesterolaemia is known to be accompanied by increased lipid 
peroxidation, 229

-
231 and evidence for a role for oxidative stress in the effects of 

maternal hypercholesterolaemia has been obtained in a rabbit model,2° where 
plasma concentrations of cholesterol in offspring were unchanged but lipid 
peroxidation end products increased. Thus, it may be hypothesized that 
conditions enhancing the susceptibility of oxidative stress, such as the 
exaggerated proportional increase in certain dietary LC-PUFA referred to 
above, could also increase the susceptibility to atherosclerosis later in life. 

Several studies have addressed the question of whether early fat-feeding 
practices are relevant in the development of atherosclerosis (for a recent review 
see Viikare et al.). 225 Breast milk has a high cholesterol content, and prolonged 
breastfeeding in infancy was related to impaired arterial distensibility 20 years 
later. 232 However, other studies have proposed a protective effect of exclusive 
and prolonged periods of breastfeeding against type 2 diabetes, dyslipidaemia 
and overweight in adults233 or in adolescents. 234 

14.5 Dietary recommendations for the avoidance of heart 
disease later in life 

In order to avoid future heart disease it is possible to take two approaches. On 
the one hand, simply addressing the Barker Hypothesis 1 and aiming to improve 
(increase) birth weight by better foetal nutrition is predicted to improve the 
cardiac outcomes. On the other hand, identifying a mechanism by which a 
specific fat may predispose to, or protect from, cardiac disease could lead to 
much more precise advice. 

Given the complexity of the physiology of fat transfer to the foetus from the 
maternal circulation, it is difficult to make precise recommendations for dietary 
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modifications for the pregnant mother. The question may be broken down into 
three components: 'how much dietary fat?', 'what type of fat?' and 'at what 
stage of pregnancy should it be taken?' 

By its very nature, pregnancy is a time of growth and therefore a time of 
greater energy requirement. In the first two-thirds of gestation this is seen mostly 
as fat storage in the mother and in the last third by mobilization of those stores to 
satisfy the requirements of the now rapidly growing foetus. Greater energy 
requirements are met most easily by consumption of the most energy-dense 
nutrient, fat, and it seems sensible that the total proportion of fat in the diet 
should rise, above that normally recommended for an adult, to meet these 
requirements. If fat can be used to meet normal energy requirements, maternal 
hypoglycaemia and ketosis can be avoided and the materno-foetal glucose 
concentration gradient, enabling glucose transport to the foetus, can be 
maintained. The more glucose that can be 'spared', the more that can be used 
directly to fulfil foetal needs. 

In terms of foetal growth and development, specific fatty acids - DHA and 
AA - are required, especially at times of brain and retinal development. As 
neither of these fatty acids are available by synthesis de novo, the maternal diet 
must be sufficient to ensure adequate supply to the placenta. As a dietary 
supplement, the n-3 acid, DHA is most readily available as part of the 
triacylglycerols constituting the oils of oily fish. Oils rich in its precursor, a

linolenic acid, are less common. There is no obvious dietary source of AA; so 
shorter n-6 acids such as linoleic acid, found in most vegetable oils, or "Y
linolenic acid of the fashionable oil of evening primrose or blackcurrant oil can 
provide precursors for subsequent desaturation and elongation. The fact that, as 
stated above, other acids of fish oils can interfere with these enzymic processes 
illustrates just how complex the situation is. 

The timing of dietary manipulations, if required, is complicated by the role of 
adipose tissue in the process. Maternal mobilization of adipose stores in late 
pregnancy means that the fatty acids available to the placenta, which itself 
selectively transports those most required, depends not only upon her current 
diet but also on her diet during the anabolic phase of pregnancy and even on her 
dietary history as reflected in the fatty acid composition of her stores. This 
argues for intervention on a woman-by-woman basis rather than the issuing of 
blanket advice for a whole population. Hence, a woman with low reserves of 
DHA and AA (or their precursors) may well be advised to supplement their diets 
appropriately and a woman with low total fat reserves could be advised to 
increase her fat intake from the time of becoming pregnant. 

Although the studies reported above in Section 14.4.1 together indicate that 
early fat-feeding can have a significant influence on future vascular health, the 
mechanisms are not yet understood and more studies are required to establish the 
safety window for an appropriate quantity and quality of fat components before 
dietary supplements with high intakes of LC-PUFA, with or without 
supplements of antioxidant vitamins, can be recommended with confidence. 



Dietary fat, pregnancy and the prevention of heart disease 293 

14.6 Future trends 

After reviewing the literature above, the questions asked at the outset might be 
revised. Instead of looking for a 'functional food' which may, at a stroke, 
improve foetal growth and development, or elicit some protective mechanism, 
thereby reducing the likelihood of future arterial disease, we perhaps should be 
looking for particular sets of circumstances for which individual dietary 
treatments are more or less appropriate. 

If future advances in technology make it possible to monitor in detail the fatty 
acid status of a potential mother prior to and during her pregnancy (without 
resorting to numerous and painful biopsies) and given a knowledge of how 
dietary fats affect adipose stores, in early pregnancy, and plasma lipids in later 
pregnancy and of how placental transfer responds to changes in the available 
substrates, it may become possible to design regimes that maximize the benefits 
for the growing foetus and to avoid the distinct syndromes, such as 
hypercholesterolaemia, which predispose to later problems. 

In the more immediate future, research work is likely to concentrate on the 
unknowns identified above. What are the complex interactions between n-3 and 
n-6 acids in the diet and how can a diet containing an optimum mix of the two be 
devised? When and by how much should diets be supplemented with antioxidant 
vitamins? Experiments with animal models have been useful in examining the 
effects of a single lipid source on the animals' subsequent physiology but we 
need to develop those models to give answers about more complex and variable 
mixtures as consumed by humans. 

14. 7 Sources of further information and advice 

The references cited throughout this chapter provide details that we have 
sometimes only been able to summarize. Some of the references are to review 
articles which provide substantial information on the subject. Some of the 
questions herein analysed, as well as being addressed by several research groups 
throughout the world, are the subject of a project funded by the European Union 
called PERILIP, a collaboration of groups in six European countries in which 
both authors are active partners. In the website of this project, at http:// 
www.perilip.org, besides a detailed account of the background to the project and 
news of recent developments, there is an extensive list of references in the 
bibliography section. Under 'Useful links' there is a list of other websites that 
we judge to be useful and carefully prepared. These sites cover such topics as 
intrauterine development, placental research, lipid research, nutrition in 
pregnancy and lactation, and neonatal care. The site is revised and updated at 
regular intervals. 
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