
A Modiied Agile Methodology for an ERP Academic Project Development 89

A Modiied Agile Methodology for an ERP Academic Project Development

Estellés, E., Pardo, J., Sánchez, F. and Falcó A.

X

A Modified Agile Methodology for an ERP
Academic Project Development

Estellés, E., Pardo, J., Sánchez, F. and Falcó A.

Physical Sciences, Mathematics and Computation Department
University CEU-Cardenal Herrera

Spain

1. Introduction

The economy and market globalization have forced all kind of enterprises (large, small and
medium enterprises, SME) to compete against their counterparts from other countries,
reaching high competence levels. This fact exposes a clear and essential need to be
continuously improving business processes for reaching high levels of competitiveness.
Regarding information management, Information Systems (IS) have responded to the
increasing necessity of organizations to improve their capabilities to process and manage
data. This need arises because the capability of providing the right information at the right
time brings tremendous rewards to those organizations (Hossain et al., 2002). In that kind of
competitive market, both big and SMEs need information systems for tackling the direct
rival pressing, keeping their position in the market (Valor et al., 2007) while improving
competitiveness by cost reduction and better logistics.
Due to this situation, a SME from la Comunidad Valenciana (Spain) called Chair’s
Collection S.L. (CC), contacted our university, Universidad CEU-Cardenal Herrera, in order
to establish a collaboration deal consisting in the creation of an Enterprise Resource
Planning (ERP). Being a great opportunity, the University suggested the Company that it
should consider the ERP as a final degree project for a last academic year student, which
was accepted.
Assuming the way the collaboration deal was going to be carried, it was necessary to plan
how to face the project. It was clear that a traditional software development approach
wouldn’t imply the programming features and flexibility needed. Considering the project as
a final degree project, there was a variable amount of time available for developing the
project (between 10 and 12 months at least), so a methodology which allowed to change
requirements and software features without a high effort and time cost was needed. Agile
methodologies were quickly taken into account.
These kinds of methodologies are people-centred (allowing the student guide and support
and the customer attention and care). They give more importance to software over
documentation (allowing us to develop a real project to be used after the final degree project
handing in) and respond to change over following a plan (which met one of our first needs:
the change acceptance) (Beck et al., 2001). Among all the existing agile methodologies, the

6

www.intechopen.com

New Achievements in Technology, Education and Development90

eXtreme Programming (XP) was the chosen one. This choice was taken because XP is made
up of easy practices that any student can understand and because it can be easily modelled.
It was also clear that the strict execution of the practices and principles of the XP
methodology wouldn’t be enough: although that kind of methodology was needed, the real
situation was special and couldn’t meet all the XP requirements. So it was decided to tailor
that XP methodology to the specific situation: roles were distributed, practices and processes
modified and an adapted agile methodology, which finally met the minimum situation
requirements, was designed.
The result of following the tailored XP methodology was a high modular ERP
comprehending all the enterprise areas. However and in spite of being a functional ERP
with a perfect task execution, the company didn’t use all of its potential, leaving some
modules unused, or used them with some constraints. In this chapter we will try to explain
the reasons why this happened.
The present chapter begins with a theoretic presentation about Information systems and
SME and about Information Systems and Agile Methodologies (Section 2 and 3
respectively). After this, in section 4, the project and the tailored methodology will be
explained in detail. In section 5, the results of the project will be shown. Finally, a conclusion
section will bring up the mistakes in the student attitude as well as in the methodology
exposition, and the lessons learned.

2. Information Systems and SME

2.1 Information Systems and ERP
The Information Systems (IS), as a discipline, is a pluralistic field founded on borrowed
knowledge from other, more established, source discipline. These disciplines consist of
Psychology (e.g. for the assessment of the impact on individual users) to Economics (e.g. to
cost-justify an IS to the organization’s management), passing through Mathematics,
Linguistics, Semiotics, Ethics, Political Science, Sociology and Statistics and Computer
Science. Counting with the influence of so many different disciplines, it seems logical that
the areas affected by the IS discipline and the products derived from it are many, obviously
business but others like health and government (King, 2006).
Nowadays almost all IS are supported by computer technology (although they existed
before it), that is the reason why the IS discipline is closely related to Information
Technology (IT). In fact, businesses around the world spend over 2$ trillion a year on IT
(Carr, 2003).
Regarding business, IS has responded to the increasing necessity of organizations to
improve their capabilities to process and to manage data. From the point of view of the IS, it
has been seen as an application of computers to help organizations process their data so that
they could improve their management of information (King, 2006). In this respect, Andreu,
Ricart & Valor [1996] define IS:

 “IS is an integrated set of formal processes, developed in a user-computer environment, that
working with a set of structured data from an organization, summarize, process and distribute
selectively the necessary information for allowing the organization normal operations and the
management activities” (Andreu et al., 1996)

Assuming this definition and the support IS can provide to an organization, they can be
distinguished in the following types:

1. Transaction Processing Systems (TPS)
2. Management Information Systems (MIS)
3. Decision Support System (DSS)
4. Group Decision Support System (GDSS)
5. Executive Information Systems (EIS)
6. Expert Systems (EESS)

As TPS tool, highlights the Enterprise Resource Planning (ERP), term coined by Stanford
Gartner Group’s Computer-Integrated Manufacturing Service at the beginning of the 90s
although it existed long before that. The origin of actual ERPs appeared in the 60s and was
called Inventory Control Packages (ICP). This software developed through the years: in the
70s it was called Material Requirements Planning (MRP), in the 80s Manufacturing
Resources Planning (MRP II), in the 90s appeared the term ERP, and nowadays the ERP has
evolved to the ERP II or extended ERP (Hossain et al., 2002).
An ERP has been defined by many authors from different points of view. The American
Production and Inventory Control Society defines it as a “method for the effective planning
and control of all the necessary resources for producing, sending and accounting the orders
made by the customers in a manufacture, distribution or service company” (Ramirez, 2004).
Rather than listing and detailing all the ERP definitions found (Kumar & Van Hillsgersberg,
Markus et al., Shanks and Seddon, O’Leary, Nah et al between others) (Ramirez, 2004), a
combined definition is provided:

“An ERP is an extensive commercial packed software solution composed by some configurable
modules that firmly integrate, in an stand-alone system, the central business activities – finances,
human resources, manufacture, supply chain, customers management – through the information
streams automation and the use of a shared database. It also incorporates in this process the best
integration practices for fast making decision, costs reduction and directive control, getting with all
these the efficient and effective use of the business resources.”

Regardless of the definition used, an ERP system is required to have the following
characteristics:

 Modular design compromising many distinct business modules such as financial,
manufacturing, accounting or distribution.

 Use centralized common database management system (DBMS).
 The modules must be integrated and provide seamless data flow among the

modules, increasing operational transparency through standard interfaces.
 They are generally complex systems involving high cost.
 They are flexible and offer best business practices.
 They require time-consuming tailoring and configuration setups for being

integrated within the company’s business functions.
 The modules work in real time with online and batch processing capabilities.

www.intechopen.com

A Modiied Agile Methodology for an ERP Academic Project Development 91

eXtreme Programming (XP) was the chosen one. This choice was taken because XP is made
up of easy practices that any student can understand and because it can be easily modelled.
It was also clear that the strict execution of the practices and principles of the XP
methodology wouldn’t be enough: although that kind of methodology was needed, the real
situation was special and couldn’t meet all the XP requirements. So it was decided to tailor
that XP methodology to the specific situation: roles were distributed, practices and processes
modified and an adapted agile methodology, which finally met the minimum situation
requirements, was designed.
The result of following the tailored XP methodology was a high modular ERP
comprehending all the enterprise areas. However and in spite of being a functional ERP
with a perfect task execution, the company didn’t use all of its potential, leaving some
modules unused, or used them with some constraints. In this chapter we will try to explain
the reasons why this happened.
The present chapter begins with a theoretic presentation about Information systems and
SME and about Information Systems and Agile Methodologies (Section 2 and 3
respectively). After this, in section 4, the project and the tailored methodology will be
explained in detail. In section 5, the results of the project will be shown. Finally, a conclusion
section will bring up the mistakes in the student attitude as well as in the methodology
exposition, and the lessons learned.

2. Information Systems and SME

2.1 Information Systems and ERP
The Information Systems (IS), as a discipline, is a pluralistic field founded on borrowed
knowledge from other, more established, source discipline. These disciplines consist of
Psychology (e.g. for the assessment of the impact on individual users) to Economics (e.g. to
cost-justify an IS to the organization’s management), passing through Mathematics,
Linguistics, Semiotics, Ethics, Political Science, Sociology and Statistics and Computer
Science. Counting with the influence of so many different disciplines, it seems logical that
the areas affected by the IS discipline and the products derived from it are many, obviously
business but others like health and government (King, 2006).
Nowadays almost all IS are supported by computer technology (although they existed
before it), that is the reason why the IS discipline is closely related to Information
Technology (IT). In fact, businesses around the world spend over 2$ trillion a year on IT
(Carr, 2003).
Regarding business, IS has responded to the increasing necessity of organizations to
improve their capabilities to process and to manage data. From the point of view of the IS, it
has been seen as an application of computers to help organizations process their data so that
they could improve their management of information (King, 2006). In this respect, Andreu,
Ricart & Valor [1996] define IS:

 “IS is an integrated set of formal processes, developed in a user-computer environment, that
working with a set of structured data from an organization, summarize, process and distribute
selectively the necessary information for allowing the organization normal operations and the
management activities” (Andreu et al., 1996)

Assuming this definition and the support IS can provide to an organization, they can be
distinguished in the following types:

1. Transaction Processing Systems (TPS)
2. Management Information Systems (MIS)
3. Decision Support System (DSS)
4. Group Decision Support System (GDSS)
5. Executive Information Systems (EIS)
6. Expert Systems (EESS)

As TPS tool, highlights the Enterprise Resource Planning (ERP), term coined by Stanford
Gartner Group’s Computer-Integrated Manufacturing Service at the beginning of the 90s
although it existed long before that. The origin of actual ERPs appeared in the 60s and was
called Inventory Control Packages (ICP). This software developed through the years: in the
70s it was called Material Requirements Planning (MRP), in the 80s Manufacturing
Resources Planning (MRP II), in the 90s appeared the term ERP, and nowadays the ERP has
evolved to the ERP II or extended ERP (Hossain et al., 2002).
An ERP has been defined by many authors from different points of view. The American
Production and Inventory Control Society defines it as a “method for the effective planning
and control of all the necessary resources for producing, sending and accounting the orders
made by the customers in a manufacture, distribution or service company” (Ramirez, 2004).
Rather than listing and detailing all the ERP definitions found (Kumar & Van Hillsgersberg,
Markus et al., Shanks and Seddon, O’Leary, Nah et al between others) (Ramirez, 2004), a
combined definition is provided:

“An ERP is an extensive commercial packed software solution composed by some configurable
modules that firmly integrate, in an stand-alone system, the central business activities – finances,
human resources, manufacture, supply chain, customers management – through the information
streams automation and the use of a shared database. It also incorporates in this process the best
integration practices for fast making decision, costs reduction and directive control, getting with all
these the efficient and effective use of the business resources.”

Regardless of the definition used, an ERP system is required to have the following
characteristics:

 Modular design compromising many distinct business modules such as financial,
manufacturing, accounting or distribution.

 Use centralized common database management system (DBMS).
 The modules must be integrated and provide seamless data flow among the

modules, increasing operational transparency through standard interfaces.
 They are generally complex systems involving high cost.
 They are flexible and offer best business practices.
 They require time-consuming tailoring and configuration setups for being

integrated within the company’s business functions.
 The modules work in real time with online and batch processing capabilities.

www.intechopen.com

New Achievements in Technology, Education and Development92

2.2 Small and medium enterprises scene
It’s accepted that small and medium enterprises (SMEs) represent a vast portion of the firm
tissue of almost every developed country irrespective the sizes adopted for considering a
business as a SME.
As showed in the 2008 report “The Small Business Economy. A Report to the President”, in the
U.S.A. there were more than 20 million non-employees firms plus around 6 million more
that employed less than 500 employees. This means that more than the 99% of all the
enterprises in the U.S.A. were SMEs in 2008 (USA report, 2008).
In the European Union there is a similar scene: micro and SMEs play a central role in the
European economy. In the Eurostat report “European Business. Facts & Figures” is shown
that in 2004 there where almost 19 million enterprises in the EU-27, of which 99.8% were
SME. These SMEs, which number is increasingly growing, provide around 75 million jobs
(EUROSTAT, 2007). Inside the EU the records for Spain are in line with the European ones:
there were more than 3 million firms of which the 99.87% were SMEs. Of those SMEs, only
the micro enterprises provided the 50.5% of the jobs of the country. As for the Comunidad
Valenciana the numbers were similar to the Spanish and European ones: the 99.91% of the
firms were SMEs (DGPYME, 2007).
Due to the economy and market globalization all these SME are forced to compete against
counterparts from other countries that often produce cheaper products (although of variable
quality) and get into the markets in a strong position. In the Spanish case, and according to
the “Furniture Sector Results Report 2006” by ANIEME (National Association of Furniture
Industrials and Exporters in Spain), in the year 2006 there was a decrease of the 2.5% (€1,467
million)in the number of exportations and an increase of the 3.8% in the importations
(€2,328 million). These data reveal that the Spanish furniture market is being supplied by
high-medium quality furniture from the EU (38.1% of the importations) and economical but
worst quality from China (31% of the importations) (ANIEME, 2006). This global market
and the competence that it implies, exposes a clear and essential need of being continuously
improving the business processes for reaching high competitiveness levels.

2.3 Small and medium enterprises & information systems
As it was said before, IS has responded to the increasing necessity of organizations to
improve their capabilities to process and manage data. This need arises because the
capability of providing the right information at the right time brings tremendous rewards to
organizations in a global competitive world of complex business practices, which is
recognized by big and SME companies (Hossain et al., 2002). In that kind of competitive
market, both big and SMEs need information systems for tackling the direct rival pressing,
keeping their position in the market (Valor et al., 2007) and improve competitiveness by cost
reduction and better logistics.
All these IS benefits have been well-taken by large organizations until recently. IS, ERP in
particular, have been always used only by large organizations which were able to pay the
great amount of money that this kind of systems costs. Nowadays the commercial ERP
vendors have taken into account the SME and they are developing products according to
their size: less modules, adapted to their needs and, obviously, less money costs and
implantation time. However, and in spite of the adapted ERP systems, actual literature
shows that the organization size plays an important role in the main key dimensions of the
ERP system implantation.

Some studies agree that there are some differences between large and SME’s companies
(Ramirez, 2004):

 The ERP system introduced by small enterprises represents big resources
compromise, whereas big enterprises can take advantages to the scale economies.

 Big organizations implant ERP systems by modules but SME’s use to make a
complete ERP implantation.

 For SME’s the ERP system success is associated with the implantation
accomplishing the time and budget forecast.

 In SME’s the implantation time is shorter, which can indicate that it depends on the
enterprise size and complexity.

Before finishing this section, the origin of the strategic value of the IS has to be delimited
and clarified. Because what makes a resource truly strategic is not ubiquity but scarcity, it’s
not the IT that supports the IS (available and affordable to all) the most important feature.
The same reason can be used for discarding the software generic applications as the key of
the IS strategic value. Obviously, when companies buy a generic application, they buy
generic processes as well, so these aren’t the key either (Carr, 2003). As for ERP IS, people
who will use it play an important role, specially their attitude towards change (the adoption
of ERP systems usually involves radical organizational change) and the perceived
usefulness and perceived ease of use (Kee-Young, 2006), but even being an important factor,
people aren’t the key either. As it can be inferred from above, the IS strategic value depends
on many variables and it is only the combination of all of them together what makes the IS
that valuable.

3. Software development methodologies

3.1 Agile methodologies as good solution for ERP projects
In the late 60s many and different software development methodologies got into the
software scene placed by the software engineering community. Each of these methodologies
attempted to solve different programming issues and many of them reached a mature and
stable level. Among all these traditional methodologies, the waterfall model is the oldest one
(Huo et al., 2004).
This model was introduced by Dr. Winston W. Royce in 1970. Thanks to his experience
about managing large software developments, he could propose a complete computer
program model development, which starts from the two basic steps required for a simple
program (analysis and coding) evolving to a more complex set of linear steps (including
requirements, design and testing) finishing in an pseudo-iterative model that implies nearly
the return to the origin if an error occurs (Royce, 1970).
Its principles are rooted in the Tayloristic paradigm which promotes a strong conformance
to a plan through upfront requirements gathering an upfront systems design and
encourages strict division of labor and the use of role-based teams (Mauer et al., 2007).
Generally understood as a strict linear stepped model with backward step possibility, where
the output of one step is the input of the next one, and any stage can’t start until the
previous step has finished and its results have been approved, this model has been widely
used (Huo et al., 2004) and it’s still used nowadays in enterprises of many kinds: defense,

www.intechopen.com

A Modiied Agile Methodology for an ERP Academic Project Development 93

2.2 Small and medium enterprises scene
It’s accepted that small and medium enterprises (SMEs) represent a vast portion of the firm
tissue of almost every developed country irrespective the sizes adopted for considering a
business as a SME.
As showed in the 2008 report “The Small Business Economy. A Report to the President”, in the
U.S.A. there were more than 20 million non-employees firms plus around 6 million more
that employed less than 500 employees. This means that more than the 99% of all the
enterprises in the U.S.A. were SMEs in 2008 (USA report, 2008).
In the European Union there is a similar scene: micro and SMEs play a central role in the
European economy. In the Eurostat report “European Business. Facts & Figures” is shown
that in 2004 there where almost 19 million enterprises in the EU-27, of which 99.8% were
SME. These SMEs, which number is increasingly growing, provide around 75 million jobs
(EUROSTAT, 2007). Inside the EU the records for Spain are in line with the European ones:
there were more than 3 million firms of which the 99.87% were SMEs. Of those SMEs, only
the micro enterprises provided the 50.5% of the jobs of the country. As for the Comunidad
Valenciana the numbers were similar to the Spanish and European ones: the 99.91% of the
firms were SMEs (DGPYME, 2007).
Due to the economy and market globalization all these SME are forced to compete against
counterparts from other countries that often produce cheaper products (although of variable
quality) and get into the markets in a strong position. In the Spanish case, and according to
the “Furniture Sector Results Report 2006” by ANIEME (National Association of Furniture
Industrials and Exporters in Spain), in the year 2006 there was a decrease of the 2.5% (€1,467
million)in the number of exportations and an increase of the 3.8% in the importations
(€2,328 million). These data reveal that the Spanish furniture market is being supplied by
high-medium quality furniture from the EU (38.1% of the importations) and economical but
worst quality from China (31% of the importations) (ANIEME, 2006). This global market
and the competence that it implies, exposes a clear and essential need of being continuously
improving the business processes for reaching high competitiveness levels.

2.3 Small and medium enterprises & information systems
As it was said before, IS has responded to the increasing necessity of organizations to
improve their capabilities to process and manage data. This need arises because the
capability of providing the right information at the right time brings tremendous rewards to
organizations in a global competitive world of complex business practices, which is
recognized by big and SME companies (Hossain et al., 2002). In that kind of competitive
market, both big and SMEs need information systems for tackling the direct rival pressing,
keeping their position in the market (Valor et al., 2007) and improve competitiveness by cost
reduction and better logistics.
All these IS benefits have been well-taken by large organizations until recently. IS, ERP in
particular, have been always used only by large organizations which were able to pay the
great amount of money that this kind of systems costs. Nowadays the commercial ERP
vendors have taken into account the SME and they are developing products according to
their size: less modules, adapted to their needs and, obviously, less money costs and
implantation time. However, and in spite of the adapted ERP systems, actual literature
shows that the organization size plays an important role in the main key dimensions of the
ERP system implantation.

Some studies agree that there are some differences between large and SME’s companies
(Ramirez, 2004):

 The ERP system introduced by small enterprises represents big resources
compromise, whereas big enterprises can take advantages to the scale economies.

 Big organizations implant ERP systems by modules but SME’s use to make a
complete ERP implantation.

 For SME’s the ERP system success is associated with the implantation
accomplishing the time and budget forecast.

 In SME’s the implantation time is shorter, which can indicate that it depends on the
enterprise size and complexity.

Before finishing this section, the origin of the strategic value of the IS has to be delimited
and clarified. Because what makes a resource truly strategic is not ubiquity but scarcity, it’s
not the IT that supports the IS (available and affordable to all) the most important feature.
The same reason can be used for discarding the software generic applications as the key of
the IS strategic value. Obviously, when companies buy a generic application, they buy
generic processes as well, so these aren’t the key either (Carr, 2003). As for ERP IS, people
who will use it play an important role, specially their attitude towards change (the adoption
of ERP systems usually involves radical organizational change) and the perceived
usefulness and perceived ease of use (Kee-Young, 2006), but even being an important factor,
people aren’t the key either. As it can be inferred from above, the IS strategic value depends
on many variables and it is only the combination of all of them together what makes the IS
that valuable.

3. Software development methodologies

3.1 Agile methodologies as good solution for ERP projects
In the late 60s many and different software development methodologies got into the
software scene placed by the software engineering community. Each of these methodologies
attempted to solve different programming issues and many of them reached a mature and
stable level. Among all these traditional methodologies, the waterfall model is the oldest one
(Huo et al., 2004).
This model was introduced by Dr. Winston W. Royce in 1970. Thanks to his experience
about managing large software developments, he could propose a complete computer
program model development, which starts from the two basic steps required for a simple
program (analysis and coding) evolving to a more complex set of linear steps (including
requirements, design and testing) finishing in an pseudo-iterative model that implies nearly
the return to the origin if an error occurs (Royce, 1970).
Its principles are rooted in the Tayloristic paradigm which promotes a strong conformance
to a plan through upfront requirements gathering an upfront systems design and
encourages strict division of labor and the use of role-based teams (Mauer et al., 2007).
Generally understood as a strict linear stepped model with backward step possibility, where
the output of one step is the input of the next one, and any stage can’t start until the
previous step has finished and its results have been approved, this model has been widely
used (Huo et al., 2004) and it’s still used nowadays in enterprises of many kinds: defense,

www.intechopen.com

New Achievements in Technology, Education and Development94

pharmaceutical, chemical, telecommunications, banking and government industries
(including several Fortune 500 companies list) (Neill et al., 2003).
Despite this data and the fact that it has reported success with large and complex systems, it
has a well known and literature exposed number of drawbacks due to the Tayloristic
paradigm principles (Mauer et al., 2007) (Sommerville, 2006). These drawbacks appeared
clearly when in the 90s the programmers tried to apply this heavyweight, plan-based
development approach to small and medium-sized business systems (Sommerville, 2006).
They are mainly two: the highly ceremonious processes and mainly the inflexibility in the
face of changing requirements.
The waterfall model assumes that all the requirements can be accurately gathered at the
beginning of the project, assumption that in medium or large projects is impossible to take
because of the stakeholder users. They cannot tell developers everything about the system at
the beginning of the project, most of the times they don’t say once and for all exactly what
they want or need, they contradict themselves or they change their minds (Beck, 1999)(Woi,
2006). This requirement drawback resulted in high costs of change in terms of time and
money as can be shown in the Barry Boehm cost of change curve (Ambler & Scott, 2004).
Due to the problems of applying the waterfall model to small and medium-sized business
systems and taking the high cost of changing software as a challenge, the academic software
engineering community started to use different and new practices in combination with older
ones and to create technologies like relational databases, modular programming, and
information hiding (Beck, 1999) (Sommerville, 2006).
The result of these efforts was a more humanistic and collaborative approach to software
development known as “agilism” (Mauer et al., 2007) that led to methodologies as that of
Scrum (1986), Dynamic Systems Development Method (1995) or Extreme Programming
(1996) among others. The “agilism” is a lightweight process that employs short iterative
cycles, actively involve users to establish, prioritize, and verify requirements, and rely on
team’s tacit knowledge as opposed to documentation (Woi, 2006). It’s important to remark
that many of the practices involved in these methodologies are not new; for example
software inspections were introduced in 1970s and rapid prototyping in 1980s (Beck,
1999)(Mauer et al., 2007).
The different methodologies based on “agilism” received the name of Agile Methodologies
in February of 2001, after a meeting in Utah-EEUU, where a group of 17 prominent figures
in the field of agile development (including the designers of Scrum, DSDM and Extreme
Programming) came together to discuss the keys and values that the development teams
should follow for a lighter, faster and better way of developing software. The result of this
meeting was the Agile Manifesto, which enumerates 12 keys for getting this achievement
(Letelier et al., 2004). These 12 keys can be summarized in 4 main values:

1. Individuals and interactions over processes and tools
2. Working software over comprehensive documentation
3. Customer collaboration over contract negotiation
4. Responding to change over following a plan.

Agile methodologies are composed by a great number of software development techniques
that follow the agile manifesto in different ways but that have always the same philosophy
and have at least six common features: 1) collaboration, 2) code reviews, 3) small teams, 4)

short release schedules, 5) time-boxing and 6) constant testing (Coram & Bohner, 2005).
Agile methodologies are growing in use and popularity, and nowadays companies are
reporting success in meeting rapidly changing customer needs through their use. Motorola
Wireless Systems Group, for example, has begun to gradually adopt Agile methodologies
and several of its projects have shown extremely positive results as improved quality,
improved cycle time or reduced risk among others. (Woi, 2006)
Regarding the cost of change, Kent Beck (designer of the Extreme Programming
methodology) has reported that the use of his Agile Methodology (XP) implies that the cost
of change can be inexpensive even late in the project lifecycle while maintaining system
quality. The reason is because in XP techniques which reduce the feedback cycle are
followed. Agile techniques have short feedback cycles while traditional ones have longer
feedback cycles (Ambler & Scott, 2004).
However all the issues exposed, agile methods are not a silver bullet and agile practices only
work in context. Agile methods help to succeed in unpredictable environments (Mauer et
al., 2007) while waterfall model is a good choice in large and complex software projects that
require systematic discipline with the requisite process overhead to ensure success (Coram
& Bohner, 2005), the requirements are well understood and unlikely to change radically
during system development (Sommerville, 2006). Also many companies have found that
Agile methodologies work better in small projects while traditional methodologies usually
work better in large ones (Woi, 2006), although K. Beck reports that XP has been applied in a
wide range of projects succeeding in small and big projects (what he also indicates is that
the practices must be augmented and altered when the team is composed by many people)
(Beck, 2005).

3.2 Why are agile methodologies a good solutions for ERP problems
It’s known, and literature shows, that the use of high-ceremony, science-based, project
management methods have given rise to failure in ERP projects (Alleman, 2002). Experience
has shown to some development teams that traditional development methods are not
always adequate nowadays: they need to refine their development process for getting new
features to market quicker, to get customer feedback earlier in the process, to test early in
the developing process to avoid large re-work efforts before deployment, etc. (Sumrell,
2007) These old methods, particularly the waterfall one, contain several erroneous
assumptions that impact negatively in software projects, especially the ERP projects:

 They understand the project planning as a set of successive steps that have to be
executed without a backward step.

 Changes are not welcomed. They can be made, but with a cost that grows when the
project is advanced.

 They want a stable plan to which they can commit.

In real life it’s not possible to produce such a perfect plan: there always appear
unanticipated problems and, in certain situations, deferring decisions for taking advantage
of new information or new opportunities that imply the change of the plan are necessary.
About the change, many times it isn’t a problem but a competitive chance that has to be
faced for getting advantage (Alleman, 2002). All these problems get worse in ERP projects:
these are people-centred projects which rely heavily on change management for success

www.intechopen.com

A Modiied Agile Methodology for an ERP Academic Project Development 95

pharmaceutical, chemical, telecommunications, banking and government industries
(including several Fortune 500 companies list) (Neill et al., 2003).
Despite this data and the fact that it has reported success with large and complex systems, it
has a well known and literature exposed number of drawbacks due to the Tayloristic
paradigm principles (Mauer et al., 2007) (Sommerville, 2006). These drawbacks appeared
clearly when in the 90s the programmers tried to apply this heavyweight, plan-based
development approach to small and medium-sized business systems (Sommerville, 2006).
They are mainly two: the highly ceremonious processes and mainly the inflexibility in the
face of changing requirements.
The waterfall model assumes that all the requirements can be accurately gathered at the
beginning of the project, assumption that in medium or large projects is impossible to take
because of the stakeholder users. They cannot tell developers everything about the system at
the beginning of the project, most of the times they don’t say once and for all exactly what
they want or need, they contradict themselves or they change their minds (Beck, 1999)(Woi,
2006). This requirement drawback resulted in high costs of change in terms of time and
money as can be shown in the Barry Boehm cost of change curve (Ambler & Scott, 2004).
Due to the problems of applying the waterfall model to small and medium-sized business
systems and taking the high cost of changing software as a challenge, the academic software
engineering community started to use different and new practices in combination with older
ones and to create technologies like relational databases, modular programming, and
information hiding (Beck, 1999) (Sommerville, 2006).
The result of these efforts was a more humanistic and collaborative approach to software
development known as “agilism” (Mauer et al., 2007) that led to methodologies as that of
Scrum (1986), Dynamic Systems Development Method (1995) or Extreme Programming
(1996) among others. The “agilism” is a lightweight process that employs short iterative
cycles, actively involve users to establish, prioritize, and verify requirements, and rely on
team’s tacit knowledge as opposed to documentation (Woi, 2006). It’s important to remark
that many of the practices involved in these methodologies are not new; for example
software inspections were introduced in 1970s and rapid prototyping in 1980s (Beck,
1999)(Mauer et al., 2007).
The different methodologies based on “agilism” received the name of Agile Methodologies
in February of 2001, after a meeting in Utah-EEUU, where a group of 17 prominent figures
in the field of agile development (including the designers of Scrum, DSDM and Extreme
Programming) came together to discuss the keys and values that the development teams
should follow for a lighter, faster and better way of developing software. The result of this
meeting was the Agile Manifesto, which enumerates 12 keys for getting this achievement
(Letelier et al., 2004). These 12 keys can be summarized in 4 main values:

1. Individuals and interactions over processes and tools
2. Working software over comprehensive documentation
3. Customer collaboration over contract negotiation
4. Responding to change over following a plan.

Agile methodologies are composed by a great number of software development techniques
that follow the agile manifesto in different ways but that have always the same philosophy
and have at least six common features: 1) collaboration, 2) code reviews, 3) small teams, 4)

short release schedules, 5) time-boxing and 6) constant testing (Coram & Bohner, 2005).
Agile methodologies are growing in use and popularity, and nowadays companies are
reporting success in meeting rapidly changing customer needs through their use. Motorola
Wireless Systems Group, for example, has begun to gradually adopt Agile methodologies
and several of its projects have shown extremely positive results as improved quality,
improved cycle time or reduced risk among others. (Woi, 2006)
Regarding the cost of change, Kent Beck (designer of the Extreme Programming
methodology) has reported that the use of his Agile Methodology (XP) implies that the cost
of change can be inexpensive even late in the project lifecycle while maintaining system
quality. The reason is because in XP techniques which reduce the feedback cycle are
followed. Agile techniques have short feedback cycles while traditional ones have longer
feedback cycles (Ambler & Scott, 2004).
However all the issues exposed, agile methods are not a silver bullet and agile practices only
work in context. Agile methods help to succeed in unpredictable environments (Mauer et
al., 2007) while waterfall model is a good choice in large and complex software projects that
require systematic discipline with the requisite process overhead to ensure success (Coram
& Bohner, 2005), the requirements are well understood and unlikely to change radically
during system development (Sommerville, 2006). Also many companies have found that
Agile methodologies work better in small projects while traditional methodologies usually
work better in large ones (Woi, 2006), although K. Beck reports that XP has been applied in a
wide range of projects succeeding in small and big projects (what he also indicates is that
the practices must be augmented and altered when the team is composed by many people)
(Beck, 2005).

3.2 Why are agile methodologies a good solutions for ERP problems
It’s known, and literature shows, that the use of high-ceremony, science-based, project
management methods have given rise to failure in ERP projects (Alleman, 2002). Experience
has shown to some development teams that traditional development methods are not
always adequate nowadays: they need to refine their development process for getting new
features to market quicker, to get customer feedback earlier in the process, to test early in
the developing process to avoid large re-work efforts before deployment, etc. (Sumrell,
2007) These old methods, particularly the waterfall one, contain several erroneous
assumptions that impact negatively in software projects, especially the ERP projects:

 They understand the project planning as a set of successive steps that have to be
executed without a backward step.

 Changes are not welcomed. They can be made, but with a cost that grows when the
project is advanced.

 They want a stable plan to which they can commit.

In real life it’s not possible to produce such a perfect plan: there always appear
unanticipated problems and, in certain situations, deferring decisions for taking advantage
of new information or new opportunities that imply the change of the plan are necessary.
About the change, many times it isn’t a problem but a competitive chance that has to be
faced for getting advantage (Alleman, 2002). All these problems get worse in ERP projects:
these are people-centred projects which rely heavily on change management for success

www.intechopen.com

New Achievements in Technology, Education and Development96

facing constant change and reassessment of organizational processes and technology
(Alleman, 2002)(Kee-Young, 2006).
Attending to the ERP projects characteristics (Alleman, 2002), Agile Methodologies fit better
in their needs for many reasons, principally because they emphasize rapid and flexible
adaptation to changes in the process, product and business, and deployment environment.
Recent studies show that IS utilization behavior is significantly affected by beliefs about the
system’s usefulness and ease of use (Kee-Young, 2006). These two characteristics can be
powered by the customer or user involvement in the project. In waterfall and other
traditional models, customers are involved at the inception and the end of the project. On
the contrary agile methods involve customer or user much more frequently and with more
influence. In fact, customers in agile methodologies (AM) should be committed,
knowledgeable, collaborative, representative, and empowered (Coram & Bohner, 2005).
Because requirements of ERP project evolve over time, the stakeholders understanding of
them evolve as well, changing their point of view and consequently changing the goals and
success criteria of the project (Alleman, 2002). Agile Methodologies embrace this change,
turning it into competitive advantage.
Finally, without quality software all the agile methods and practices are useless. In this
sense, agile methods include many practices that have quality assurance (QA) potential.
Some of them are inside the development phase and some others can be separated out as
supporting practices, but all of them have a higher frequency that in waterfall model. Other
advantage about QA is that its practices are available in very early process stages. These
practices are among others: system metaphor, on-site customer, pair programming,
refactoring, continuous integration, acceptance testing or early customer feedback (Huo et
al., 2004).

4. Final degree project description

4.1 Project overview
The project, on which this case study is based, consists in the design, implementation and
implantation of a tailored ERP for a SME in the Comunidad Valenciana, Spain. It comprises
the final degree project (FDP) of a student from the CEU-Cardenal Herrera University that is
nowadays in an evolution phase. The SME for which the project is, Chair’s Collection (CC),
is one of the hundreds of SME of the Comunidad Valenciana dedicated to the furniture
sector. CC was founded in 1984, focusing its sales on big installations like hotels in the UE
and other countries, specially the USA.
After 25 years of existence without an Informatic Department or other department with
similar functions, the result, about data, are three different applications. These applications
were built by different suppliers and now each one works with duplicated and
unsynchronized data that makes difficult the normal company operations. Besides the data
problem, all processes are paper and oral messages managed with the risks that that implies.
When facing the purchase of a commercial ERP, CC had two main problems that limited
highly their decision:

 As literature shows, SMEs have in many cases company-specific needs for the ERP
software, but they usually have to adapt to the processes and information

structures the ERP systems offers. This was a situation which CC wanted to avoid:
they liked the way they worked and didn’t want to change it.

 As other SME, and especially in the difficult market situation, they didn’t have
resources for creating a tailor-made ERP software to cover all their requirements to
a professional software company.

Because of this situation, CC, contacted with the CEU-Cardenal Herrera University in order
to suggest a collaboration deal. This collaboration resulted in a project focused on the
design, implementation and implantation of a tailor-made ERP, covering their most crucial
areas. The ERP proposed was a high-modular ERP focused on order processing, inventory
management and invoice generation. The other possible modules were discarded for
specific reasons: previous correct functional software (accounting) or no interest (Custom
Relationship Management or CRM).
Summarizing, the final objectives of the project were:

 The process automation, avoiding papers and extra verbal communications. This
automation didn’t imply the process change.

 The data integrity in one common data base.
 A set of interrelated web applications for the automation of the process.
 A hardware infrastructure to support the ERP system.

4.2 Project planning
When planning the project development it was considered a series of issues of different
kinds: a possible global schedule based on the time we had, the program language to use,
etc. but we realized that almost all of them were subject to just one: the programming
model. We had two options:

 A traditional model, like waterfall, characterized for being a strict steadily
downwards of the 5 phases named before (2.1 Waterfall Vs Agile) without going
back (Woi, 2006) or doing it but with a high time cost.

 One of the Agile Methodologies (AM), characterized for being lightweight
processes that employs short iterative cycles, actively involve users to determine
the requisites and rely on a team’s knowledge as opposed to documentation (Woi,
2006).

We explained in 2.3 section why we think that AM are better for ERP projects in SMEs,
anyway we are going to describe the two main reasons that impelled us to choose an AM.
A tailor-made ERP supposes a project with high customer collaboration. The first
implication of the customer is the requirements issue. He will have to indicate and give a
precise description of all the needs and requirements he want the ERP to include. As logical
and human, it is possible that as the project develops the customer changes his point of view
about many issues or that he realizes that has forgotten some requirement information.
Obviously, those changes will imply a requirement modification that will affect to ERP
itself. In this way, the ERP development builds a feedback cycle with the customer. The
problem appears when the changes have to be made. As it was said before, high-ceremony
methods, like traditional ones, have given rise to failure in ERP projects (Alleman, 2002).

www.intechopen.com

A Modiied Agile Methodology for an ERP Academic Project Development 97

facing constant change and reassessment of organizational processes and technology
(Alleman, 2002)(Kee-Young, 2006).
Attending to the ERP projects characteristics (Alleman, 2002), Agile Methodologies fit better
in their needs for many reasons, principally because they emphasize rapid and flexible
adaptation to changes in the process, product and business, and deployment environment.
Recent studies show that IS utilization behavior is significantly affected by beliefs about the
system’s usefulness and ease of use (Kee-Young, 2006). These two characteristics can be
powered by the customer or user involvement in the project. In waterfall and other
traditional models, customers are involved at the inception and the end of the project. On
the contrary agile methods involve customer or user much more frequently and with more
influence. In fact, customers in agile methodologies (AM) should be committed,
knowledgeable, collaborative, representative, and empowered (Coram & Bohner, 2005).
Because requirements of ERP project evolve over time, the stakeholders understanding of
them evolve as well, changing their point of view and consequently changing the goals and
success criteria of the project (Alleman, 2002). Agile Methodologies embrace this change,
turning it into competitive advantage.
Finally, without quality software all the agile methods and practices are useless. In this
sense, agile methods include many practices that have quality assurance (QA) potential.
Some of them are inside the development phase and some others can be separated out as
supporting practices, but all of them have a higher frequency that in waterfall model. Other
advantage about QA is that its practices are available in very early process stages. These
practices are among others: system metaphor, on-site customer, pair programming,
refactoring, continuous integration, acceptance testing or early customer feedback (Huo et
al., 2004).

4. Final degree project description

4.1 Project overview
The project, on which this case study is based, consists in the design, implementation and
implantation of a tailored ERP for a SME in the Comunidad Valenciana, Spain. It comprises
the final degree project (FDP) of a student from the CEU-Cardenal Herrera University that is
nowadays in an evolution phase. The SME for which the project is, Chair’s Collection (CC),
is one of the hundreds of SME of the Comunidad Valenciana dedicated to the furniture
sector. CC was founded in 1984, focusing its sales on big installations like hotels in the UE
and other countries, specially the USA.
After 25 years of existence without an Informatic Department or other department with
similar functions, the result, about data, are three different applications. These applications
were built by different suppliers and now each one works with duplicated and
unsynchronized data that makes difficult the normal company operations. Besides the data
problem, all processes are paper and oral messages managed with the risks that that implies.
When facing the purchase of a commercial ERP, CC had two main problems that limited
highly their decision:

 As literature shows, SMEs have in many cases company-specific needs for the ERP
software, but they usually have to adapt to the processes and information

structures the ERP systems offers. This was a situation which CC wanted to avoid:
they liked the way they worked and didn’t want to change it.

 As other SME, and especially in the difficult market situation, they didn’t have
resources for creating a tailor-made ERP software to cover all their requirements to
a professional software company.

Because of this situation, CC, contacted with the CEU-Cardenal Herrera University in order
to suggest a collaboration deal. This collaboration resulted in a project focused on the
design, implementation and implantation of a tailor-made ERP, covering their most crucial
areas. The ERP proposed was a high-modular ERP focused on order processing, inventory
management and invoice generation. The other possible modules were discarded for
specific reasons: previous correct functional software (accounting) or no interest (Custom
Relationship Management or CRM).
Summarizing, the final objectives of the project were:

 The process automation, avoiding papers and extra verbal communications. This
automation didn’t imply the process change.

 The data integrity in one common data base.
 A set of interrelated web applications for the automation of the process.
 A hardware infrastructure to support the ERP system.

4.2 Project planning
When planning the project development it was considered a series of issues of different
kinds: a possible global schedule based on the time we had, the program language to use,
etc. but we realized that almost all of them were subject to just one: the programming
model. We had two options:

 A traditional model, like waterfall, characterized for being a strict steadily
downwards of the 5 phases named before (2.1 Waterfall Vs Agile) without going
back (Woi, 2006) or doing it but with a high time cost.

 One of the Agile Methodologies (AM), characterized for being lightweight
processes that employs short iterative cycles, actively involve users to determine
the requisites and rely on a team’s knowledge as opposed to documentation (Woi,
2006).

We explained in 2.3 section why we think that AM are better for ERP projects in SMEs,
anyway we are going to describe the two main reasons that impelled us to choose an AM.
A tailor-made ERP supposes a project with high customer collaboration. The first
implication of the customer is the requirements issue. He will have to indicate and give a
precise description of all the needs and requirements he want the ERP to include. As logical
and human, it is possible that as the project develops the customer changes his point of view
about many issues or that he realizes that has forgotten some requirement information.
Obviously, those changes will imply a requirement modification that will affect to ERP
itself. In this way, the ERP development builds a feedback cycle with the customer. The
problem appears when the changes have to be made. As it was said before, high-ceremony
methods, like traditional ones, have given rise to failure in ERP projects (Alleman, 2002).

www.intechopen.com

New Achievements in Technology, Education and Development98

This kind of projects need a methodology able to adapt to changes, and one of the main
features of the AM is that they can handle unstable requirements throughout the
development lifecycle (Huo et al., 2004).
The other reason is of academic nature. One of the objectives that we established for the
student training was the knowledge of how the customer relation in real world is. In this
respect, AM offered us the opportunity of instructing the student in this field. AM are
characterized for being people-centred, and as for customers, these are more involved and
have more influence that in traditional methodologies. Also AM are characterized by their
fast system releases (from 2 weeks to 4 months) (Coram & Bohner, 2005), each of one implies
a customer contact for knowing how the release is working. In this way, the student would
have much more contact with the customer. In fact, he started to work on the project in the
CC headquarters with the objective of being near the customer and ask him anything he
may need to know.
As we decided to build a high-modular ERP, each module could be understood as a small
Agile Project, preceded by a business process study. After deciding that the programming
method that was going to be used was an AM, the next step before beginning the project
development, was to choose an agile methodology and adapt it to our real situation. We
counted only on three people: the student, the tutor and an external professional. Although
all AM presuppose teams of at least 3 people, as our team, it is obvious that almost all of the
tasks would rely on the student. In the next section we will explain the role adaptation. We
analyzed some agile methodologies and we decided that the one that better fitted our needs
was the Extreme Programming methodology.

The two main reasons of using this AM are:

 The set of roles that are clear and precisely identified (Letelier et al., 2004). These
roles have allowed us to share them between our three components keeping the
authority range between teacher and student. It also allowed the student to face
different role tasks.

 It doesn’t have an exact schedule to follow. Thanks to this feature, we could qualify
the student according to a personal academic schedule, allowing the normal
working of the project, and allowing the development to evolve beyond the
academic subject.

Therefore the different tasks and practices in this AM should be adapted.

4.3 Tailor-made XP
As it was said before, we counted only on three people: the student, the tutor and the
external professional, so all the tasks inside the project had to be distributed between these
three roles. The development process, life cycle and practices had to be also adapted to the
real situation.

The life cycle of XP consists of five phases (Coram & Bohner, 2005):

1. Exploration. In this phase customers provide requirements for the first release while
the team becomes familiar with the technology, tools, and practices that will be
used.

2. Planning. The project team and the customer will determine the capabilities needed
for the first release.

3. Iterations to release. This phase consists in some iterations, that take from one to four
weeks, that will produce the first release. Last iteration will finish with the
productionizing phase.

4. Productionizing. The project team will test and check to ensure the releases meet the
customer requirements. This is the time for new changes.

5. Maintenance. In this phase all the changes exposed in the previous phase will be
made.

6. Death. This phase is reached when the evolving of the system no longer exists.

Because the project was brought up as a set of modular applications, we first needed to have
a wide perspective of the project before beginning the applications development. In our
case, we took a pre-exploration phase that consisted in four interviews between the student
and the customer. Those interviews were recorded and any material used in it (drawings,
diagrams, etc.) were stored for requirements identification and project understanding. After
each meeting the student joined all the compiled material and created a written document
describing the business processes explained and the requirements identified. Then, he
presented us that document and we guided him about future interviews, advising him on
which areas should focus the interview and how to treat the customer. The second objective
of this pre-exploration phase was to create an application listing enumerating and describing
with a few paragraphs the main application function and features.
After this pre-exploration phase, we followed the original life cycle of XP. Other of the XP
features to have into account is the development process. The original XP development process
is as follows (Letelier et al., 2004):

1. The customer defines the business value to implement.
2. The programmer estimates the effort needed for its implementation.
3. The customer selects what to build, according to his priorities and time restrictions.
4. The programmer builds that business value
5. Come back to step 1.

Because the student had to develop many applications and their users would be an
important component, we used a sub-iteration inside the main iteration favoring the final-
user participation. Our development process was:

1. The student confirms to the customer the application that is going to be built. In
this moment, customer and student review the applications list to reconfigure it if
necessary.

2. The student reviews all the information that has compiled about the business
processes relative to that application with the customer, allowing him to correct the
student if necessary.

3. Here begins a second iteration where a new role starts to play: the user of the
application

a. The student builds/modifies a prototype refactoring if needed.
b. The student shows the prototype with limited functionality to the end-

user of the actual application. At this moment the end-user can correct

www.intechopen.com

A Modiied Agile Methodology for an ERP Academic Project Development 99

This kind of projects need a methodology able to adapt to changes, and one of the main
features of the AM is that they can handle unstable requirements throughout the
development lifecycle (Huo et al., 2004).
The other reason is of academic nature. One of the objectives that we established for the
student training was the knowledge of how the customer relation in real world is. In this
respect, AM offered us the opportunity of instructing the student in this field. AM are
characterized for being people-centred, and as for customers, these are more involved and
have more influence that in traditional methodologies. Also AM are characterized by their
fast system releases (from 2 weeks to 4 months) (Coram & Bohner, 2005), each of one implies
a customer contact for knowing how the release is working. In this way, the student would
have much more contact with the customer. In fact, he started to work on the project in the
CC headquarters with the objective of being near the customer and ask him anything he
may need to know.
As we decided to build a high-modular ERP, each module could be understood as a small
Agile Project, preceded by a business process study. After deciding that the programming
method that was going to be used was an AM, the next step before beginning the project
development, was to choose an agile methodology and adapt it to our real situation. We
counted only on three people: the student, the tutor and an external professional. Although
all AM presuppose teams of at least 3 people, as our team, it is obvious that almost all of the
tasks would rely on the student. In the next section we will explain the role adaptation. We
analyzed some agile methodologies and we decided that the one that better fitted our needs
was the Extreme Programming methodology.

The two main reasons of using this AM are:

 The set of roles that are clear and precisely identified (Letelier et al., 2004). These
roles have allowed us to share them between our three components keeping the
authority range between teacher and student. It also allowed the student to face
different role tasks.

 It doesn’t have an exact schedule to follow. Thanks to this feature, we could qualify
the student according to a personal academic schedule, allowing the normal
working of the project, and allowing the development to evolve beyond the
academic subject.

Therefore the different tasks and practices in this AM should be adapted.

4.3 Tailor-made XP
As it was said before, we counted only on three people: the student, the tutor and the
external professional, so all the tasks inside the project had to be distributed between these
three roles. The development process, life cycle and practices had to be also adapted to the
real situation.

The life cycle of XP consists of five phases (Coram & Bohner, 2005):

1. Exploration. In this phase customers provide requirements for the first release while
the team becomes familiar with the technology, tools, and practices that will be
used.

2. Planning. The project team and the customer will determine the capabilities needed
for the first release.

3. Iterations to release. This phase consists in some iterations, that take from one to four
weeks, that will produce the first release. Last iteration will finish with the
productionizing phase.

4. Productionizing. The project team will test and check to ensure the releases meet the
customer requirements. This is the time for new changes.

5. Maintenance. In this phase all the changes exposed in the previous phase will be
made.

6. Death. This phase is reached when the evolving of the system no longer exists.

Because the project was brought up as a set of modular applications, we first needed to have
a wide perspective of the project before beginning the applications development. In our
case, we took a pre-exploration phase that consisted in four interviews between the student
and the customer. Those interviews were recorded and any material used in it (drawings,
diagrams, etc.) were stored for requirements identification and project understanding. After
each meeting the student joined all the compiled material and created a written document
describing the business processes explained and the requirements identified. Then, he
presented us that document and we guided him about future interviews, advising him on
which areas should focus the interview and how to treat the customer. The second objective
of this pre-exploration phase was to create an application listing enumerating and describing
with a few paragraphs the main application function and features.
After this pre-exploration phase, we followed the original life cycle of XP. Other of the XP
features to have into account is the development process. The original XP development process
is as follows (Letelier et al., 2004):

1. The customer defines the business value to implement.
2. The programmer estimates the effort needed for its implementation.
3. The customer selects what to build, according to his priorities and time restrictions.
4. The programmer builds that business value
5. Come back to step 1.

Because the student had to develop many applications and their users would be an
important component, we used a sub-iteration inside the main iteration favoring the final-
user participation. Our development process was:

1. The student confirms to the customer the application that is going to be built. In
this moment, customer and student review the applications list to reconfigure it if
necessary.

2. The student reviews all the information that has compiled about the business
processes relative to that application with the customer, allowing him to correct the
student if necessary.

3. Here begins a second iteration where a new role starts to play: the user of the
application

a. The student builds/modifies a prototype refactoring if needed.
b. The student shows the prototype with limited functionality to the end-

user of the actual application. At this moment the end-user can correct

www.intechopen.com

New Achievements in Technology, Education and Development100

features of the application or give ideas to improve the user interface or
functionality. Obviously, only logical and realistic corrections and ideas
will be taken into account.

c. The student reviews the application functionality (old and new added
functionalities suggested by the end-user) with the customer. The
objective of this checking is to avoid disagreement in the process; all the
end-user ideas or suggestions that don’t fit the business processes must be
commented to the customer.

d. Returns to point ‘a’ until the prototype finishes converting itself into an
application with full functionality.

4. The application is used during one week, reporting bugs, corrections and all the
modifications needed. During that week, all the documentation will be written if
needed and the refactoring process will be finished. Obviously, any requirement
change after that week will be taken into account and solved, but as a secondary
task. This phase will finish with the final application integration into the system
when all the requirements are accomplished.

5. After that week, the process returns to point ‘1’.

Kent Beck designed 13 main practices (Beck, 1999) that we are going to enumerate,
summarize and explain, with regard to the needed tailoring:

 Planning game. This “game” has the objective of allowing the customer to decide the

scope and timing of releases based on estimates provided by programmers. Those
will only implement the functionality demanded by the customer. We could
accomplish this practice limiting the estimates. As a FDP (Final Degree Project), it
has to be made in at least one year, so, as we will see later in other practices, the
schedule available had to fit that time.

 Small releases. It is important to have new releases often because although they
don’t have full-functionality, they mean a business value and in our case, also
educational value. Each release is supposed to be delivered not far than 3 months.
Due to the number of applications and to the one year schedule, the time release
varied from 3 weeks to 2 months, depending on the developing module size.

 Metaphor. This metaphor, or set of metaphors, is a way of defining the shape of the
system. It will describe how the system should work and it is a way of facilitating
the understanding between the user and the customer. In our situation, we didn’t
exactly use a metaphor. The first interviews between the student and the customer
were used to lay down the terminology.

 Simple design. Because the small amount of time we disposed of, this was a basic
practice we had to follow: design the simplest functional solution and implement it
in the right moment during the project. When talking about simplest, we talk about
a design that communicates exactly what programmers want, without duplicating
code and with the fewest possible classes and methods.

 Tests. There are a set of tests, decided by the customer, that are used for testing
code functionality, especially after any modification. The only different thing we
had to do in this practice was to insert other tests designed by our team, as well as
the customer ones.

 Pair programming. This was one of the most problematic practices. It is known that
pair programming usually implies an important quality improvement (Richard,
2007) and a significant decrease in the effort to be taken (Woi, 2006). With just one
student in the team, he was the only responsible about all the code programming.
It is obvious that it was impossible to avoid the effort to be made, that was going to
rely on the student, but we realize that we could get the quality improvement in
other ways. We decided to set a twice-a-week-code reviews, documenting in-depth
all the code, and to support this practice with the next two: refactoring and the
collective ownership.

 Refactoring. This practice was used in its original formula to fulfill the incapacity of
use the pair programming practice. Through the refactoring, the student reorganized
the code with the objective of removing duplicated code, make it simpler and
flexible for facilitating later changes (Letelier et al., 2004). This practice had to be
used very often to assure the software quality.

 Collective ownership. This practice supposes that any programmer of the team can
improve any code. Being the project a FDP, only the student could modify the
code. What we did, in order to reinforce the pair programming practice, was adapt
this practice making the code accessible for the tutor but only in read-only mode.
We gave the tutor permanent access to the code so he could revise it at least after
each student code review, looking for features to improve. After each tutor review,
if he had found code to improve, he planned a meeting with the student to discuss
how to do it. The objective was to establish a conversation with the student so he
realized the possible improvement.

 Continuous integration. This practice increases quality as side-effects of a change are
quickly uncovered, what reduces the effort needed for fixing them (Coram &
Bohner, 2005). It consists in integrating the new code in the system after no more
than a few hours. In this case, we didn’t need to make any tailoring.

 On-site customer. Because the FDP is inside the academic course, coinciding with
some last course subjects, the student couldn’t work full-time in the project.
Because of this situation, we chose some days of the week (2-3) in which the
student went to the companies’ offices to work there and have the customer beside.
Therefore, we adapted this practice getting a temporary on-site programmer one.

 40-hour weeks. As it was said before, the FDP wasn’t the only task of the student so
the 40-hour weeks were impossible. The student had an average of 20-hour weeks
although there were more intensive ones.

 Open workspace. Because of the project situation, the workplace was dispersed in 3
different locations: the work-place in the companies’ offices, the student home
where he could work at weekends if needed and the tutor office at the Physics,
Mathematics and Computation Sciences department where we had the meetings.
In this case, we neither accomplished this practice.

 Just rules. Due to the XP tailoring we were trying to carry out, we quickly realized
that this was going to be one of the most important principles: all adapted practices
had to be tested, used and resulted useful.

The last main feature of the XP methodology is the roles distribution. According to original
Beck proposal, there are 7 different roles: programmer, customer, tester, tracker, coach,

www.intechopen.com

A Modiied Agile Methodology for an ERP Academic Project Development 101

features of the application or give ideas to improve the user interface or
functionality. Obviously, only logical and realistic corrections and ideas
will be taken into account.

c. The student reviews the application functionality (old and new added
functionalities suggested by the end-user) with the customer. The
objective of this checking is to avoid disagreement in the process; all the
end-user ideas or suggestions that don’t fit the business processes must be
commented to the customer.

d. Returns to point ‘a’ until the prototype finishes converting itself into an
application with full functionality.

4. The application is used during one week, reporting bugs, corrections and all the
modifications needed. During that week, all the documentation will be written if
needed and the refactoring process will be finished. Obviously, any requirement
change after that week will be taken into account and solved, but as a secondary
task. This phase will finish with the final application integration into the system
when all the requirements are accomplished.

5. After that week, the process returns to point ‘1’.

Kent Beck designed 13 main practices (Beck, 1999) that we are going to enumerate,
summarize and explain, with regard to the needed tailoring:

 Planning game. This “game” has the objective of allowing the customer to decide the

scope and timing of releases based on estimates provided by programmers. Those
will only implement the functionality demanded by the customer. We could
accomplish this practice limiting the estimates. As a FDP (Final Degree Project), it
has to be made in at least one year, so, as we will see later in other practices, the
schedule available had to fit that time.

 Small releases. It is important to have new releases often because although they
don’t have full-functionality, they mean a business value and in our case, also
educational value. Each release is supposed to be delivered not far than 3 months.
Due to the number of applications and to the one year schedule, the time release
varied from 3 weeks to 2 months, depending on the developing module size.

 Metaphor. This metaphor, or set of metaphors, is a way of defining the shape of the
system. It will describe how the system should work and it is a way of facilitating
the understanding between the user and the customer. In our situation, we didn’t
exactly use a metaphor. The first interviews between the student and the customer
were used to lay down the terminology.

 Simple design. Because the small amount of time we disposed of, this was a basic
practice we had to follow: design the simplest functional solution and implement it
in the right moment during the project. When talking about simplest, we talk about
a design that communicates exactly what programmers want, without duplicating
code and with the fewest possible classes and methods.

 Tests. There are a set of tests, decided by the customer, that are used for testing
code functionality, especially after any modification. The only different thing we
had to do in this practice was to insert other tests designed by our team, as well as
the customer ones.

 Pair programming. This was one of the most problematic practices. It is known that
pair programming usually implies an important quality improvement (Richard,
2007) and a significant decrease in the effort to be taken (Woi, 2006). With just one
student in the team, he was the only responsible about all the code programming.
It is obvious that it was impossible to avoid the effort to be made, that was going to
rely on the student, but we realize that we could get the quality improvement in
other ways. We decided to set a twice-a-week-code reviews, documenting in-depth
all the code, and to support this practice with the next two: refactoring and the
collective ownership.

 Refactoring. This practice was used in its original formula to fulfill the incapacity of
use the pair programming practice. Through the refactoring, the student reorganized
the code with the objective of removing duplicated code, make it simpler and
flexible for facilitating later changes (Letelier et al., 2004). This practice had to be
used very often to assure the software quality.

 Collective ownership. This practice supposes that any programmer of the team can
improve any code. Being the project a FDP, only the student could modify the
code. What we did, in order to reinforce the pair programming practice, was adapt
this practice making the code accessible for the tutor but only in read-only mode.
We gave the tutor permanent access to the code so he could revise it at least after
each student code review, looking for features to improve. After each tutor review,
if he had found code to improve, he planned a meeting with the student to discuss
how to do it. The objective was to establish a conversation with the student so he
realized the possible improvement.

 Continuous integration. This practice increases quality as side-effects of a change are
quickly uncovered, what reduces the effort needed for fixing them (Coram &
Bohner, 2005). It consists in integrating the new code in the system after no more
than a few hours. In this case, we didn’t need to make any tailoring.

 On-site customer. Because the FDP is inside the academic course, coinciding with
some last course subjects, the student couldn’t work full-time in the project.
Because of this situation, we chose some days of the week (2-3) in which the
student went to the companies’ offices to work there and have the customer beside.
Therefore, we adapted this practice getting a temporary on-site programmer one.

 40-hour weeks. As it was said before, the FDP wasn’t the only task of the student so
the 40-hour weeks were impossible. The student had an average of 20-hour weeks
although there were more intensive ones.

 Open workspace. Because of the project situation, the workplace was dispersed in 3
different locations: the work-place in the companies’ offices, the student home
where he could work at weekends if needed and the tutor office at the Physics,
Mathematics and Computation Sciences department where we had the meetings.
In this case, we neither accomplished this practice.

 Just rules. Due to the XP tailoring we were trying to carry out, we quickly realized
that this was going to be one of the most important principles: all adapted practices
had to be tested, used and resulted useful.

The last main feature of the XP methodology is the roles distribution. According to original
Beck proposal, there are 7 different roles: programmer, customer, tester, tracker, coach,

www.intechopen.com

New Achievements in Technology, Education and Development102

consultant and big boss. Our problem was that we only had 4 different roles with different
authority level that should be respected: student, tutor, specialist and customer. The
customer, obviously, adopted the original customer role. Because this project is focused on
getting a real application for real enterprises, the customer also took the big boss role that
supposes a coordination labor. Taking this second rule, we tried to get a highest
involvement of the customer in the project.
As we are talking about an academic subject, it’s logical that the hardest roles relied on the
student: programmer, tracker (gives feedback of the project situation and of each iteration),
tester (helps the customer to write tests, executes the tests and spreads the results to the
team) and big boss. The last role was shared because we thought that would be interesting
for the student to help coordinating a team, although he was almost all the team. The tutor
was a teacher from the University that had to evaluate the project planning, development
and final result. In this case he adopted the following roles: coach (process global
responsible that provides guides for following XP practices and features), tracker, as a
student support, and big boss, supporting coordination between customer and student.
Finally, the professional role is a person from outside the university that gives continuous
real feedback to the team. He adopted the consultant original role.

5. Project results

Before talking about the Project results, it is important to point out first which are the
objectives, both educative and professional, and which are the conditions required to
consider both achieved. When it comes to analyze the selected objectives, it is important to
highlight that in the Computer Science degree at the CEU-UCH University, there are 3
projects for each of the last 3 years of the degree. That is the reason why in the two previous
projects, the student was trained in some basic aspects.

5.1 Educative objectives
In 2002, the ACM and the IEEE-CS jointly proposed a basis for the education of software
engineers called SEEK (Software Engineering Education Knowledge) (SEEK, 2002). SEEK
defined 10 basic topic areas that are going to be analyzed below, indicating which were
addressed in earlier courses and which were the objectives we proposed ourselves. The
basic SEEK areas covered in early courses were: fundamentals (understanding for
fundamentals mathematics and the foundations of computing and engineering like
requirements specification or risk management), software design, software construction,
software verification and validation, software engineering process and software quality.
In this last project, four SEEK areas were expected to be practiced: professional practice,
software requirements, software evolution and software engineering managements. For
these areas, partial success was achieved:

 Professional practice. In order to train good professionals, it’s important for the
students to have real contact with their future working environment. The tailored
“temporary programmer on-site” XP practice, together with the fact that the
student was the one who always interacted with the customer (always under the
tutor guide), has allowed the student to have that real contact. It’s true that the
contact hasn’t been all the real it could be in a normal project because the project is

an academic one, but it has been enough for considering the success achievement
of the area. It would have been great to treat issues of the contract.

 Software requirements. In the preceding projects, the students were at the same
time the programmers and the customers which specified the requirements, reason
why they always knew what they needed or wanted and how they wanted, rarely
changing those requirements. As it has been said, XP perfectly adapts to changes
reason why it has been a great tool helping the student to deal with two problems:
changing requirements and change process. The achievement of this area has been
partial achieved. Because the student used to be the customer, in some occasions he
took for granted requirements or applications features that later didn’t agree with
the real customer decisions. It’s very important for the student to be humble,
realizing that the real customer is the one who dictates the requirements.

 Software evolution. This area is focused on change and how to deal with it. Change
is understood as a stage in an activity related to maintenance, reengineering or
reuse. The main problem in this area is the time limitation and the project size. For
dealing with the software evolution in such a big project, more time is needed.

Regarding the student, and regardless the educative objectives, the motivation and the
involvement grade of the student in this kind of real projects are higher than in non-real
ones. We checked this reality comparing the scheduling fulfilling of the student of this case
study with the scheduling of some of his classmates. In our case, the milestones dates were
achieved at time with only one delay at the beginning of the project. The classmates that
worked on non-real projects always tended to delay the milestone achievement a week at
least.

5.2 Professional objectives
The main professional objective was the development of a high modular ERP. Between all
the modules, three were chosen as the key and fundamental ones: the model management,
the stock management and the invoice application. The student began with some
complementary modules needed like the customer or supplier applications (only inserting,
deleting and editing) focusing later on the 3 main modules and finishing them completely.
Due to the lack of time, only one more, of the possible modules, was developed: the one
focused on reporting tasks and summary information.
The basic objective was achieved (the 3 modules development), but it’s true that other
modules that would give business value and usefulness to the ERP were not fully
developed. These modules (highlighting the BI reporting application) were just designed
and, after the FDP evaluation, began their development and are nowadays in the testing
phase.

From the university point of view, the methodology used gave us important opportunities:

 It allowed the University to prepare a student for real job world, training and
guiding him in a way other universities actually don’t do.

 The tailor-made XP designed gives the University a methodology to reuse and
improve in following years.

www.intechopen.com

A Modiied Agile Methodology for an ERP Academic Project Development 103

consultant and big boss. Our problem was that we only had 4 different roles with different
authority level that should be respected: student, tutor, specialist and customer. The
customer, obviously, adopted the original customer role. Because this project is focused on
getting a real application for real enterprises, the customer also took the big boss role that
supposes a coordination labor. Taking this second rule, we tried to get a highest
involvement of the customer in the project.
As we are talking about an academic subject, it’s logical that the hardest roles relied on the
student: programmer, tracker (gives feedback of the project situation and of each iteration),
tester (helps the customer to write tests, executes the tests and spreads the results to the
team) and big boss. The last role was shared because we thought that would be interesting
for the student to help coordinating a team, although he was almost all the team. The tutor
was a teacher from the University that had to evaluate the project planning, development
and final result. In this case he adopted the following roles: coach (process global
responsible that provides guides for following XP practices and features), tracker, as a
student support, and big boss, supporting coordination between customer and student.
Finally, the professional role is a person from outside the university that gives continuous
real feedback to the team. He adopted the consultant original role.

5. Project results

Before talking about the Project results, it is important to point out first which are the
objectives, both educative and professional, and which are the conditions required to
consider both achieved. When it comes to analyze the selected objectives, it is important to
highlight that in the Computer Science degree at the CEU-UCH University, there are 3
projects for each of the last 3 years of the degree. That is the reason why in the two previous
projects, the student was trained in some basic aspects.

5.1 Educative objectives
In 2002, the ACM and the IEEE-CS jointly proposed a basis for the education of software
engineers called SEEK (Software Engineering Education Knowledge) (SEEK, 2002). SEEK
defined 10 basic topic areas that are going to be analyzed below, indicating which were
addressed in earlier courses and which were the objectives we proposed ourselves. The
basic SEEK areas covered in early courses were: fundamentals (understanding for
fundamentals mathematics and the foundations of computing and engineering like
requirements specification or risk management), software design, software construction,
software verification and validation, software engineering process and software quality.
In this last project, four SEEK areas were expected to be practiced: professional practice,
software requirements, software evolution and software engineering managements. For
these areas, partial success was achieved:

 Professional practice. In order to train good professionals, it’s important for the
students to have real contact with their future working environment. The tailored
“temporary programmer on-site” XP practice, together with the fact that the
student was the one who always interacted with the customer (always under the
tutor guide), has allowed the student to have that real contact. It’s true that the
contact hasn’t been all the real it could be in a normal project because the project is

an academic one, but it has been enough for considering the success achievement
of the area. It would have been great to treat issues of the contract.

 Software requirements. In the preceding projects, the students were at the same
time the programmers and the customers which specified the requirements, reason
why they always knew what they needed or wanted and how they wanted, rarely
changing those requirements. As it has been said, XP perfectly adapts to changes
reason why it has been a great tool helping the student to deal with two problems:
changing requirements and change process. The achievement of this area has been
partial achieved. Because the student used to be the customer, in some occasions he
took for granted requirements or applications features that later didn’t agree with
the real customer decisions. It’s very important for the student to be humble,
realizing that the real customer is the one who dictates the requirements.

 Software evolution. This area is focused on change and how to deal with it. Change
is understood as a stage in an activity related to maintenance, reengineering or
reuse. The main problem in this area is the time limitation and the project size. For
dealing with the software evolution in such a big project, more time is needed.

Regarding the student, and regardless the educative objectives, the motivation and the
involvement grade of the student in this kind of real projects are higher than in non-real
ones. We checked this reality comparing the scheduling fulfilling of the student of this case
study with the scheduling of some of his classmates. In our case, the milestones dates were
achieved at time with only one delay at the beginning of the project. The classmates that
worked on non-real projects always tended to delay the milestone achievement a week at
least.

5.2 Professional objectives
The main professional objective was the development of a high modular ERP. Between all
the modules, three were chosen as the key and fundamental ones: the model management,
the stock management and the invoice application. The student began with some
complementary modules needed like the customer or supplier applications (only inserting,
deleting and editing) focusing later on the 3 main modules and finishing them completely.
Due to the lack of time, only one more, of the possible modules, was developed: the one
focused on reporting tasks and summary information.
The basic objective was achieved (the 3 modules development), but it’s true that other
modules that would give business value and usefulness to the ERP were not fully
developed. These modules (highlighting the BI reporting application) were just designed
and, after the FDP evaluation, began their development and are nowadays in the testing
phase.

From the university point of view, the methodology used gave us important opportunities:

 It allowed the University to prepare a student for real job world, training and
guiding him in a way other universities actually don’t do.

 The tailor-made XP designed gives the University a methodology to reuse and
improve in following years.

www.intechopen.com

New Achievements in Technology, Education and Development104

 The successful conclusion of the project will impulse more collaboration deals
between our university and other SME of our country. Obviously, as we are talking
about a project framed in a final degree project, which implies little time, the
adaption of the agile methodology played a fundamental role giving us the
flexibility needed to face this project successfully.

5.3 Project functionalities
The tailor-made XP gave as final result a real and actually in use ERP that automates the
main business processes with no charge. It’s called SIGATYC and it’s a high modular system
that gives to the end-users the opportunity of working with a set of applications to which
they have access. Obviously, not all the users can access to all the applications. There are
strict security measures, at application and database levels, that avoid unauthorized use of
private data.
After the authentication process, SIGATYC begins with what the student called “Control
Panel”, from which the end-users can choose a specific application.

Fig. 1. Control Panel where each icon represents an application

Those applications are classified in 5 main groups:

1. PRODUCTS. This category groups all the applications related to product data
management. Inside this group the Stock application can be found. This was one of
the fundamental applications to carry out.

2. ORDERS AND SALES. This is a group prepared for further developments, in
which end-users would find applications related with orders made by customers
and to suppliers, their actual situation and the invoices and delivery notes
generated after selling or receiving products. Only the invoice application is
available. In the future, the invoice application data will be fed by the customer
orders entries.

3. CUSTOMERS AND SUPPLIERS. In this group there are only two applications that
records and identifies the existing customer and suppliers. Although this is an
interesting group for developing applications focused on reinforcing the company
relation with the customers and suppliers, the CC company wasn’t interested in
this kind of applications.

4. MANAGEMENT. This group is exclusively for the manager. From here he can
manage prices, get detailed reports about sells, about customer purchases, etc.

5. USERS MANAGEMENT. These applications will be used for joining new user,
delete old users or modify their data and application listing to which they have
access.

Fig. 2. Model management application with an image gallery web widget

Although the applications are grouped in five different groups, the access rights are granted
by application, not by group. In this way, the end-users have a better delimited set of
applications they can use.
About existing applications, a remark should be made about “Customers and suppliers”
ones. Extended ERPs are characterized for including two well known extensions called
Supply Chain Management (SCM) and Customer Relation Management (CRM). These two
extensions enable effective third-party business relationships between the organization,
suppliers and the customers (Hossain et al., 2002). Despite the possible benefits both can
imply, SIGATYC doesn’t include these kinds of applications because of direct company
decision.
About the accounting application, this wasn’t developed because the company already had
a specific independent software package focused on this area. What the student did after the
FDP evaluation, was to connect the ERP developed with the data files of the accounting
application, allowing the reports applications to access and read the finance data, and
connecting both software packages where necessary. This was an important part of the
project because the CC company didn’t want to lose the money investment made in the
accounting application.

www.intechopen.com

A Modiied Agile Methodology for an ERP Academic Project Development 105

 The successful conclusion of the project will impulse more collaboration deals
between our university and other SME of our country. Obviously, as we are talking
about a project framed in a final degree project, which implies little time, the
adaption of the agile methodology played a fundamental role giving us the
flexibility needed to face this project successfully.

5.3 Project functionalities
The tailor-made XP gave as final result a real and actually in use ERP that automates the
main business processes with no charge. It’s called SIGATYC and it’s a high modular system
that gives to the end-users the opportunity of working with a set of applications to which
they have access. Obviously, not all the users can access to all the applications. There are
strict security measures, at application and database levels, that avoid unauthorized use of
private data.
After the authentication process, SIGATYC begins with what the student called “Control
Panel”, from which the end-users can choose a specific application.

Fig. 1. Control Panel where each icon represents an application

Those applications are classified in 5 main groups:

1. PRODUCTS. This category groups all the applications related to product data
management. Inside this group the Stock application can be found. This was one of
the fundamental applications to carry out.

2. ORDERS AND SALES. This is a group prepared for further developments, in
which end-users would find applications related with orders made by customers
and to suppliers, their actual situation and the invoices and delivery notes
generated after selling or receiving products. Only the invoice application is
available. In the future, the invoice application data will be fed by the customer
orders entries.

3. CUSTOMERS AND SUPPLIERS. In this group there are only two applications that
records and identifies the existing customer and suppliers. Although this is an
interesting group for developing applications focused on reinforcing the company
relation with the customers and suppliers, the CC company wasn’t interested in
this kind of applications.

4. MANAGEMENT. This group is exclusively for the manager. From here he can
manage prices, get detailed reports about sells, about customer purchases, etc.

5. USERS MANAGEMENT. These applications will be used for joining new user,
delete old users or modify their data and application listing to which they have
access.

Fig. 2. Model management application with an image gallery web widget

Although the applications are grouped in five different groups, the access rights are granted
by application, not by group. In this way, the end-users have a better delimited set of
applications they can use.
About existing applications, a remark should be made about “Customers and suppliers”
ones. Extended ERPs are characterized for including two well known extensions called
Supply Chain Management (SCM) and Customer Relation Management (CRM). These two
extensions enable effective third-party business relationships between the organization,
suppliers and the customers (Hossain et al., 2002). Despite the possible benefits both can
imply, SIGATYC doesn’t include these kinds of applications because of direct company
decision.
About the accounting application, this wasn’t developed because the company already had
a specific independent software package focused on this area. What the student did after the
FDP evaluation, was to connect the ERP developed with the data files of the accounting
application, allowing the reports applications to access and read the finance data, and
connecting both software packages where necessary. This was an important part of the
project because the CC company didn’t want to lose the money investment made in the
accounting application.

www.intechopen.com

New Achievements in Technology, Education and Development106

Fig. 3. Invoice application. One of the most important applications for the company.

6. Conclusions

The result of using a tailored agile methodology for the design, development and
implementation of an ERP by a student of last course could be described as satisfactory. The
student, in his relation with the customer and the company, has acquired knowledge
impossible to acquire in the classroom. He had to plan the project, being able to experiment
the problems and situations that a bad schedule or an undervalued task can cause. He has
learnt to treat with a real customer, who has changed the requirements repeated times
forcing him to be more flexible (to what the tailored XP has help), with whom the student
has been in constant and direct contact communicating via phone or mail using a correct
and appropriate language and expressions. All these experiences have helped to train the
student as a future Computer Science professional. As for the company, it has obtained the
basic portion of the tool that will help in its material management and business process
automation.
However, there exist some aspects to improve:

 Project size. Because of the time limitation, there are two options: to develop
smaller and simpler projects, which allow the long use of all the XP practices by
just one student or create at least two little teams (of two students each one) which
should work in parallel but in constant communication between them and with the
client. This last option would complicate the client interaction. It’s known that
clients don’t fully understand the benefit of regular developer-client interactions
and don’t want to be bothered. The available time. The time that a final course Project offers is limited: just one
year at CEU-UCH studies. Such a short period has two important limitations: on
the one hand it limits the size and complexity of the project, on the other hand, it
doesn’t allow the student to observe the software evolution. As for the time, it is

important to stand out that, although the FPD evaluation takes in a year, the
project goes on until it’s completely finished. The team size. As it has been indicated, it would be preferable to have groups of
two students, allowing the exchange of them between the different groups in order
to use the “pair programming” practice and allowing the students to work with
more students. It’s important to teach the student to face up dynamic teamwork
because it’s one of the working characteristics more appreciated by firms.

For further projects, smaller information systems for two student teams will be proposed.
For improving the tutor evaluation process and for eliminating part of the documentation,
new and different practices can be applied: the mutual explained qualification between the
students after a module finalization or evaluation of the degree of ability acquired in the
resolution of changes along the project. The objective is to use different kinds of deliverables
different from documentation.

7. References

Alleman, Glen B. “Agile Project Management Methods for ERP: How to Apply Agile
Processes to Complex COTS Projects and Live to Tell About It”, Extreme
Programming and Agile Methods: XP/Agile Universe 2002.

Andreu, R; Ricart, J.E.; Valor, J. “Strategy and information systems”, Ed. McGraw-Hill,
Segunda edición. 1996. ISBN: 8476156669

ANIEME (National Association of Furniture Industrials and Exporters in Spain), “Furniture
Sector Results Report 2006”. Available online: http://www.anieme.com/
actualidad/datos-sector.aspx

Beck, Kent. “Embracing Change with Extreme Programming”, Computer, vol. 32, pp. 70-77,
1999.

Beck, K et al. Manifesto for Agile Software Development, 2001. Online: http://www.
agilemanifesto.org

Beck, K. “Extreme Programming Explained: Embrace change”, 2nd Edition, Addison-Wesley,
2005

Carr, N. “IT doesn’t matter”, Harvard Business Review (May), pp. 1-10, 2003
Coram, M. Bohner, S. “The impact of Agile Methods on Software Project Management”,

Proceedings of the 12th IEEE international Conference and Workshops on the
Engineering of Computer-Based Systems, 2005

DGPYME; Industry, Turism and Comerce Spanish Department, “PYME of the 2007
description”. Available online: http://www.ipyme.org/NR/rdonlyres/
D86BB6D9-EB28-4DFC-BCC7-F10F5008E787/0/Retrato2007.pdf

Eurostat Statistical Books. “European Business. Facts & Figures”, 2007, available on line:
http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-BW-07-001/EN/KS-
BW-07-001-EN.PDF

H. Canós, José, Letelier, Patricio and Penadés, Mª Carmen. “Agile methodologies for the
software development”, 2004

Hossain, Liaquat; Patrick, Jon David and M.A. Rashid, “Enterprise Resource Planning:
Global Opportunities & Challenges”,. Idea Group Publishing, 2002.

I. Sommerville, “Software engineering”, 8th ed. Harlow, England; Pearson Education, 2006.

www.intechopen.com

A Modiied Agile Methodology for an ERP Academic Project Development 107

Fig. 3. Invoice application. One of the most important applications for the company.

6. Conclusions

The result of using a tailored agile methodology for the design, development and
implementation of an ERP by a student of last course could be described as satisfactory. The
student, in his relation with the customer and the company, has acquired knowledge
impossible to acquire in the classroom. He had to plan the project, being able to experiment
the problems and situations that a bad schedule or an undervalued task can cause. He has
learnt to treat with a real customer, who has changed the requirements repeated times
forcing him to be more flexible (to what the tailored XP has help), with whom the student
has been in constant and direct contact communicating via phone or mail using a correct
and appropriate language and expressions. All these experiences have helped to train the
student as a future Computer Science professional. As for the company, it has obtained the
basic portion of the tool that will help in its material management and business process
automation.
However, there exist some aspects to improve:

 Project size. Because of the time limitation, there are two options: to develop
smaller and simpler projects, which allow the long use of all the XP practices by
just one student or create at least two little teams (of two students each one) which
should work in parallel but in constant communication between them and with the
client. This last option would complicate the client interaction. It’s known that
clients don’t fully understand the benefit of regular developer-client interactions
and don’t want to be bothered. The available time. The time that a final course Project offers is limited: just one
year at CEU-UCH studies. Such a short period has two important limitations: on
the one hand it limits the size and complexity of the project, on the other hand, it
doesn’t allow the student to observe the software evolution. As for the time, it is

important to stand out that, although the FPD evaluation takes in a year, the
project goes on until it’s completely finished. The team size. As it has been indicated, it would be preferable to have groups of
two students, allowing the exchange of them between the different groups in order
to use the “pair programming” practice and allowing the students to work with
more students. It’s important to teach the student to face up dynamic teamwork
because it’s one of the working characteristics more appreciated by firms.

For further projects, smaller information systems for two student teams will be proposed.
For improving the tutor evaluation process and for eliminating part of the documentation,
new and different practices can be applied: the mutual explained qualification between the
students after a module finalization or evaluation of the degree of ability acquired in the
resolution of changes along the project. The objective is to use different kinds of deliverables
different from documentation.

7. References

Alleman, Glen B. “Agile Project Management Methods for ERP: How to Apply Agile
Processes to Complex COTS Projects and Live to Tell About It”, Extreme
Programming and Agile Methods: XP/Agile Universe 2002.

Andreu, R; Ricart, J.E.; Valor, J. “Strategy and information systems”, Ed. McGraw-Hill,
Segunda edición. 1996. ISBN: 8476156669

ANIEME (National Association of Furniture Industrials and Exporters in Spain), “Furniture
Sector Results Report 2006”. Available online: http://www.anieme.com/
actualidad/datos-sector.aspx

Beck, Kent. “Embracing Change with Extreme Programming”, Computer, vol. 32, pp. 70-77,
1999.

Beck, K et al. Manifesto for Agile Software Development, 2001. Online: http://www.
agilemanifesto.org

Beck, K. “Extreme Programming Explained: Embrace change”, 2nd Edition, Addison-Wesley,
2005

Carr, N. “IT doesn’t matter”, Harvard Business Review (May), pp. 1-10, 2003
Coram, M. Bohner, S. “The impact of Agile Methods on Software Project Management”,

Proceedings of the 12th IEEE international Conference and Workshops on the
Engineering of Computer-Based Systems, 2005

DGPYME; Industry, Turism and Comerce Spanish Department, “PYME of the 2007
description”. Available online: http://www.ipyme.org/NR/rdonlyres/
D86BB6D9-EB28-4DFC-BCC7-F10F5008E787/0/Retrato2007.pdf

Eurostat Statistical Books. “European Business. Facts & Figures”, 2007, available on line:
http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-BW-07-001/EN/KS-
BW-07-001-EN.PDF

H. Canós, José, Letelier, Patricio and Penadés, Mª Carmen. “Agile methodologies for the
software development”, 2004

Hossain, Liaquat; Patrick, Jon David and M.A. Rashid, “Enterprise Resource Planning:
Global Opportunities & Challenges”,. Idea Group Publishing, 2002.

I. Sommerville, “Software engineering”, 8th ed. Harlow, England; Pearson Education, 2006.

www.intechopen.com

New Achievements in Technology, Education and Development108

Kee, Woi H., “Future Implementation and Integration of Agile Methods in Software
Development and Testing”, Innovations in Information Technology, 2006, pp. 1-5,
Nov. 2006

King, John L. (editor) and Lyytinen, Kalle (editor), “Information Systems. The State Of
Field”, ed. Willey & Sons, 2006.

Kwahk, Kee-Young, “ERP Acceptance: Organizational Change Perspective”, Proceedings of
the 39th Hawaii International Conference on System Sciences – 2006.

Lawrence, Richard, “XP and Junios Developers: 7 Mistakes (and how to avoid them)”,
Proceedings of AGILE 2007, IEEE 2007.

Maurer, Frank, and Melnik, Grigori, “Agile Methods: Crossing the Chasm”, IEEE 29th
International Conference on Software Engineering (ICSE’07 Companion)

Ming Huo, June Verner, Liming Zhu, Muhammad Ali Babar, “Software Quality and Agile
Methods”, Proceedings of the 28th Annual International Computer Software and
Applications Conference 2004 (COMPSAC’04).

Neill, C. J., and Laplante, P. A. “Requirements engineering: the state of the practice”. IEEE
Software 20, 6 (Nov./Dec. 2003), 40-45;

Patricio Ramírez Correa. “Rol and contribution of the enterprise resource planning (ERP)”,
PhD thesis, 2004. University of Sevilla.

Royce, Winston W., “Managing the Development of Large Scale Software Systems”,
Proceedings of IEEE WESCON, pp. 1-9, August 1970.

Sandra Sieber, Josep Valor, Valentín Porta. “Information systems in the Enterprise”,
McGraw-Hill. 2007. ISBN: 9788448140069

Software Engineering Education Knowledge (SEEK), 2002. Second Draft, December.
Avaiable online: http://sites.computer.org/ccse

Sumrell, M. “From Waterfall to Agile – How does a QA Team Transition?”, Proceedings of
AGILE 2007, IEEE 2007.

USA Government, “The Small Business Economy. A Report to the President (For data year
2007)”, United States Government Printing Office, Washington, 2008. Available
online: http://www.sba.gov/advo/research/sb_econ2008.pdf

W. Ambler, Scott, “The Object Primer: Agile Model-Driven Development with UML 2.0”, 3th
ed. Cambridge University Press, 2004

www.intechopen.com

New Achievements in Technology Education and Development
Edited by Safeeullah Soomro

ISBN 978-953-307-066-7
Hard cover, 460 pages
Publisher InTech
Published online 01, March, 2010
Published in print edition March, 2010

InTech Europe
University Campus STeP Ri
Slavka Krautzeka 83/A
51000 Rijeka, Croatia
Phone: +385 (51) 770 447
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai
No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820
Fax: +86-21-62489821

Since many decades Education Science and Technology has an achieved tremendous recognition and has
been applied to variety of disciplines, mainly Curriculum development, methodology to develop e-learning
systems and education management. Many efforts have been taken to improve knowledge of students,
researchers, educationists in the field of computer science and engineering. Still many problems to increase
their knowledge on daily basis so this book provides newly innovations and ideas in the field of computer
science and engineering to face the new challenges of current and future centuries. Basically this book open
platform for creative discussion for future and current technologies to adapt new challenges in education
sector at different levels which are essential to understand for the students, researchers, academic personals
and industry related people to enhance their capabilities to capture new ideas and provides valuable
contribution to an international community.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Estelles, E., Pardo, J., Sanchez, F. and Falco A. (2010). A Modified Agile Methodology for an ERP Academic
Project Development, New Achievements in Technology Education and Development, Safeeullah Soomro
(Ed.), ISBN: 978-953-307-066-7, InTech, Available from: http://www.intechopen.com/books/new-
achievements-in-technology-education-and-development/a-modified-agile-methodology-for-an-erp-academic-
project-development

