Trabajo realizado por el equipo de la Biblioteca Digital de CEU-Universidad San Pablo

Me comprometo a utilizar esta copia privada sin finalidad lucrativa, para fines de investigación y docencia, de acuerdo con el art. 37 de la M.T.R.L.P.I. (Modificación del Texto Refundido de la Ley de Propiedad Intelectual del 7 julio del 2006)
Plasma Leptin Levels in Rat Mother and Offspring during Pregnancy and Lactation

E. Herreraa M.A. Lasunciónb L. Huertab A. Martín-Hidalgob

aUniversidad San Pablo-CEU, Madrid, and bServicio de Bioquimica-Investigación, Hospital Ramón y Cajal, Madrid, Spain

\textbf{Key Words}
Leptin · Pregnant rat · Fetus · Newborn · Adipose tissue

\textbf{Abstract}
The profiles of plasma leptin levels in pregnant and lactating rats and their offspring were determined. The plasma leptin levels increased on days 12 and 20 of gestation and declined on day 21 of gestation, remaining at this level during lactation. These changes were similar for lumbar adipose tissue weight, and a significant correlation was found when both variables were plotted with individual values. During the last 2 days of intrauterine life, the plasma leptin levels in the fetuses were in the same range as in their mothers, declining from day 20 to day 21. On the 1st day of life, the leptin levels increased to decline in suckling newborns after 4 days, remaining stable until day 20 of life. The enhancement in maternal white adipose tissue mass that takes place during pregnancy and its decline around parturition and lactation are proposed to contribute actively to the changes in the plasma leptin profile detected at these stages. Besides the contribution of placental leptin for the fetus and milk leptin for the suckling newborn, it is proposed that brown adipose tissue, which is the first form of adipose tissue that appears during development in the rat, is responsible for most of the changes in plasma leptin levels seen around birth, whereas its later decline could be mediated by the hormonal changes occurring after birth.

\textbf{Introduction}
The body fat accumulation increases progressively during pregnancy, although it stops or even declines during the last trimester, both in women [1, 2] and in rats [3–5], and this change seems to account for a substantial proportion of the net (conceptus not included) maternal body weight increase during gestation. From studies in pregnant rats, body fat accumulation during gestation may be associated with hyperphagia [6], increased adipose tissue lipogenesis and glycerolgenesis [7] and hyperinsulinemia prior to the development of insulin resistance which normally takes place during late gestation [8].

During pregnancy, the plasma levels of leptin, the product of the adipose tissue ob gene, has been shown to be high in women [9–11], mice [12], and rats [13, 14]. The placenta seems to contribute to the hyperleptinemia of pregnancy, since it has been shown to express leptin mRNA both in women [15–17] and in rats [18], although in the latter this finding has not been confirmed by some authors [13].

According to studies in nonpregnant animals [19, 20], leptin is thought to be a satiety factor which acts in the hypothalamus to reduce food intake and increase energy expenditure. The increase in leptin in pregnancy, during which hyperphagia is a common feature both in women [21, 22] and in rats [6, 23], would, therefore, indicate a leptin-resistant condition similar to that reported in obesity [24]. Since the physiological role of an increased plas-
ma leptin level during pregnancy is yet to be determined, we have examined plasma leptin levels during pregnancy and lactation in rat dams and their offspring, and the values have been related to both body and adipose tissue weights.

Materials and Methods

Animals and Sample Collection

Female Sprague-Dawley rats from our colony, weighing 180–200 g, were kept at 22 ± 1°C under standard conditions of light (on from 08.00 to 20.00 h) and food (Purina chow; Panlab, Barcelona, Spain). The experimental protocol was approved by the Animal Research Committee of the Hospital Ramón y Cajal and University San Pablo-CEU.

The experimental groups were virgin controls (day 0; n = 7), pregnant rats (days 12, 20, and 21; n = 5, 9, and 6, respectively), and lactating rats (days 1, 4, 10, and 20; n = 6, 5, 5, and 6, respectively). The rats were mated with normal males, and positive pregnancy was determined by the appearance of spermatozoa in vaginal smears. The litter sizes were adjusted to 9–11 pups at birth. The animals were fed ad libitum and had free access to tap water. They were killed between 10.00 and 11.00 h by decapitation on days listed above, after normal night access to food, and trunk blood was collected in ice-chilled heparinized tubes for immediate separation of plasma at 4°C that was kept at −20°C until analysis.

Lumbar fat pads of all adult rats were rapidly dissected and weighed. In pregnant rats, the two uterine horns were excised and weighed with their content to obtain the whole conceptus weight. This value was subtracted from the body weight before death to obtain the net maternal body weight. Fetuses and neonates were weighed and decapitated, and their blood was collected as indicated above. Blood from all fetuses and neonates coming from the same dam was pooled and processed in parallel to that of the adults.

Plasma leptin levels were assayed using a commercially available RIA kit from Linco Research Laboratories (St. Charles, Mo., USA). The components of the kit include recombinant rat leptin standards, radioiodinated recombinant rat leptin, guinea pig antirat leptin, and quality control pools representing low and high concentration.

Statistical Analysis

Values are mean ± SE. The statistical significance of changes was assessed at the 5% level using Anova followed by pairwise multiple comparisons using the Student-Newman-Keuls method. Pearson correlation coefficients were calculated to quantify the association between intrapair differences in leptin concentrations and corresponding differences in other variables.

Results

As shown in figure 1 the maternal net body weight (conceptus not included) in the pregnant rat progressively increases until day 20 of gestation, slightly decreases on day 21 of pregnancy, and remains augmented during lactation. As shown in figure 2, the maternal lumbar adipose tissue weight increases until the 20th day of pregnancy, when it reaches a value significantly higher than in virgin rats (day 0). The maternal lumbar adipose tissue weight declines on day 21 of gestation to values that do not differ from those in virgin rats, and this variable remains stable throughout lactation.

As shown in figure 3, the plasma leptin levels in rats progressively increase on days 12 and 20 of gestation to decline on day 21 of gestation to levels found in virgin rats, remaining around these values during lactation.
Fig. 2. Effect of pregnancy and lactation on maternal lumbar adipose tissue weight. Values are mean ± SE of 5–9 animals for each time point. Significant difference versus values of virgin rats: *** p < 0.001.

Fig. 3. Changes in the plasma leptin concentration during pregnancy and lactation in the rat. Values are mean ± SE of 5–9 animals for each time point. Significant differences of values in pregnant rats are versus those in virgin rats, whereas values in lactating rats are versus those in 20-day pregnant rats: *** p < 0.001.

Similarities in the changes of plasma leptin levels and body weight and lumbar adipose tissue during pregnancy prompted us to calculate the linear correlation for individual values between these variables. Whereas net body weight did not correlate significantly with plasma leptin levels when values of virgin, pregnant, and lactating rats were calculated together (r = 0.300, not significant, n = 49), the correlation reached a significant level (r = 0.543, p < 0.05, n = 20), when the values of pregnant rats were considered separately. However, as shown in figure 4, a highly significant correlation was found when plasma leptin levels in all studied animals were plotted against their lumbar adipose tissue weights. Significant correlations were also found between plasma leptin levels and lumbar adipose tissue weights for virgin and pregnant rats (r = 0.656, p < 0.001, n = 27) or for lactating rats (r = 0.485, p < 0.05, n = 22) separately.

The plasma leptin levels in fetuses on days 20 and 21 of pregnancy, neonates (day 1 after birth), and suckling newborns are shown in figure 5. The plasma leptin level in fetuses during the last days of intrauterine life was in the same range as in their mothers and changed similarly, declining from day 20 to day 21. The plasma leptin level increased on the 1st day of life to decline in 4-day old suckling newborns and remaining stable until day 20 of life. During lactation, the maternal plasma leptin levels correlated significantly with those in their respective pups (r = 0.533, p < 0.05, n = 22).
Discussion

The present study shows that in rats, the plasma leptin levels increase up to day 20 of gestation and decline just before parturition to remain low throughout lactation, agreeing with previously reported findings [13, 18]. This study demonstrates for the first time that these changes in plasma leptin levels during pregnancy linearly correlate with the maternal lumbar adipose tissue weight. Since changes in net maternal body weight during gestation mainly correspond to maternal fat accumulation [4, 5], the present findings, therefore, indicate that maternal fat depots contribute to the changes in plasma leptin levels. This fat accumulation occurs during the two first parts of gestation [3, 5, 25], is caused by enhanced adipose tissue lipogenesis [7, 26], and is related to maternal hyperphagia, since it does not occur in food-restricted or food-deprived rats [6]. On day 21 of gestation, adipose tissue lipogenesis sharply declines [7] which together with an enhanced lipolytic activity [27, 28] and a decreased hydrolysis and uptake of circulating triglycerides resulting from a decreased lipoprotein lipase activity [28–30] reflects the decline in adipose tissue mass seen in the rat around parturition. This change does not cause a signifi-
cant decline in maternal body weight during lactation, probably as a result of the enhanced mammary gland weight [5, 31] as well as the high body water content [32] known to occur during this phase. Late pregnancy is characterized by high plasma insulin levels and insulin resistance [8, 33, 34]. Therefore, the high plasma leptin levels found in pregnant rats occur in the presence of hyperphagia which indicates leptin resistance, increased lumbar adipose tissue weight, high plasma insulin levels, and insulin resistance, all of which are similar changes to those normally seen in human obesity [35–37].

Enhanced plasma leptin levels during pregnancy could be partially attributed to its production by the placenta, since it has been previously shown that the placenta expresses leptin mRNA both in women [10, 16, 17] and in rats [18]. In the case of the rat placenta, however, the matter remains controversial, since other authors reported absence of leptin mRNA expression [13]. Besides, the presence of a leptin-binding activity during pregnancy causing a reduced renal clearance of bound leptin cannot be claimed in the rat, as it has been, however, shown in mice [12], since such leptin-binding activity has not been found in pregnant rats [12, 36]. An enhanced production of leptin by adipose tissue, proportional to its augmented mass, may, therefore, be proposed as the main factor responsible for the hyperleptinemia found in pregnant rats, and this hypothesis is supported by the significant correlation reported in this study between maternal plasma leptin levels and lumbar adipose tissue mass. This conclusion agrees with the high leptin content and mRNA expression found in adipose tissue of pregnant rats [13, 18], suggesting that both the increase in fat mass and the enhanced gene expression and protein production of leptin in adipose tissue are the main responsible factors for the development of maternal hyperleptinemia during pregnancy. This situation changes around parturition and during lactation, when both adipose tissue mass and plasma leptin levels decline. During lactation food intake is even greater than during pregnancy, and although the reduction in plasma leptin levels reaches the same values as in nonpregnant rats, the rapid decline around parturition could contribute to the massive food intake required to sustain the enhanced energy demand that takes place during this period.

Although the presence of leptin in fetal plasma may be influenced by placental synthesis, it could also come from the own fetus. In the rat, brown adipose tissue is the first form of adipose tissue that appears during development, and in Wistar rats, interscapular brown adipose tissue expresses leptin mRNA at birth, although not in fetuses 1 day before birth [38]. The presence of leptin in 20- and 21-day fetuses of Sprague-Dawley rats found here agrees with data from Kawai et al. [13], and given the differences in the metabolic maturation sequence that takes place around birth in rats of this strain as compared with Wistar rats [39], it may be suggested that brown adipose tissue could contribute to the plasma leptin levels found in the former. In fact, the rapid increase in plasma leptin level found in our rats just on the 1st day after birth could be the consequence of the abrupt expansion of brown adipose tissue known to occur at this stage [40]. The contribution of milk leptin to the changes in plasma leptin levels found in the newborn rats cannot be ruled out on the background of the significant correlation found between mothers' and pups' plasma leptin levels and the recent finding of leptin production by the mammary gland in lactating mice [41]. The later decline in plasma leptin levels found in our newborn rats could, however, be mediated by hormonal changes occurring after birth, like the fall in plasma insulin levels [42]. A decline in plasma leptin levels has been reported to occur in healthy human neonates [43] and might be important to regulate body weight gain and feeding during the early neonatal period and to acquire progressively the adult plasma leptin pattern. In fact, in adults, the close correlation between adiposity and circulating leptin levels supports the generally held concept that leptin is a signal from the body fat mass to the brain where it affects satiety. This concept is, however, difficult to apply to the fetal situation, where the mother controls the energy supply to the fetus which has no need for feelings of hunger and satiety.

Acknowledgments

We thank Dr. Beatriz Ramos for her editorial help. This work was supported by a grant (No. PB92/0918) from the Dirección General de Investigación Científica y Técnica of the Ministry of Education and Culture to A. Martín-Hidalgo.
References

