DUAL EFFECT OF GLUCOSE ON LDL OXIDATION: DEPENDENCE ON VITAMIN E

PAOLA OTERO,* EMILIO HERRERA,* and BARTOLOMÉ BONET†‡

*Facultad de Ciencias Experimentales y de la Salud, Universidad San Pablo-CEU, Madrid, Spain; †Fundación Hospital Alcorcón, Madrid, Spain; and ‡Universidad Juan Carlos I, Madrid, Spain

(Received 18 June 2002; Revised 25 June 2002; Accepted 27 June 2002)

Abstract—The aim of the present study was to determine the direct effect of glucose on LDL oxidation, a key step in the development of atherosclerosis. Purified human LDL were incubated with glucose (500 mg/dl) and LDL oxidation was started by adding CuCl₂ to the media. Glucose delayed the vitamin E consumption, but accelerated the formation of conjugated dienes and increased both the formation of thiobarbituric acid reacting substances (TBARS) and LDL electrophoretic mobility. When LDL were incubated with increasing concentrations of glucose and submitted to oxidation, the formation of conjugated dienes, TBARS, and the electrophoretic mobility increased in a concentration-dependent manner. When LDL was enriched with vitamin E, it showed a delay in the formation of conjugated dienes, even in the presence of glucose. To determine whether glucose had any effect on LDL oxidation, once the process was started and vitamin E consumed, LDL were submitted to oxidation and, at different times thereafter, glucose was added into the media. Under these conditions glucose also accelerated the LDL oxidation. In summary, present results show that in LDL submitted to oxidation, glucose delays the early phases of the oxidation, slowing the vitamin E consumption, but it accelerates the rate of LDL oxidation once LDL vitamin E has been consumed; the effect being concentration-dependent. © 2002 Elsevier Science Inc.

Keywords—Low density lipoprotein, Glucose, Vitamin E, Free radicals

INTRODUCTION

Among subjects with insulin-dependent diabetes mellitus (IDDM), cardiovascular diseases secondary to atherosclerosis are the leading cause of death [1,2]. Numerous studies have been conducted to determine the risk factors involved in this accelerated process, with inconclusive results, although there is clear evidence that high glucose concentrations are involved in most of the complications secondary to IDDM [3–5], including the atherosclerotic process. LDL oxidation and free radical generation seem to play a central role in the atherosclerotic process [6–9]. There are several reports showing in poorly controlled diabetic subjects increased levels of lipid peroxides [10], increased LDL susceptibility to oxidation [11,12], and decreased levels of antioxidants [11,13,14], linking the oxidation of LDL to their accelerated atherosclerotic process. In fact, in isolated LDL preparations and in the cell culture model, it has been shown that LDL oxidation is accelerated by high glucose concentrations [15,16].

The mechanisms involved in the association between glucose, LDL oxidation, and atherosclerosis are not well understood. The formation in the LDL of Amadori products secondary to protein glycosylation makes these particles more atherogenic [17,18], although this process seems unlikely to play a major role in vivo, as it takes weeks for these products to be generated [19], and the LDL half life is only a few days [20]. In a red cell model of oxidative damage, it has been shown that glucose may act either as an antioxidant or pro-oxidant, depending on the LDL concentration of vitamin E [21], in a manner similar to what we and others have shown for vitamin C, dehydroascorbic acid, and flavonoids [22–25]. These compounds may act either as LDL antioxidant or pro-oxidant, depending on the LDL vitamin E content. When vitamin E is present in the LDL those compounds act as antioxidant, whereas when added during the process of
the LDL oxidation, once vitamin E has been consumed [22] or to LDL minimally oxidized [23,24], they act as pro-oxidant, accelerating the oxidation of the LDL lipids. Because glucose has a structure similar to ascorbic acid, it is hypothesized that the effects of glucose may be antioxidant or pro-oxidant, depending on the degree of the LDL oxidation and/or the LDL vitamin E content.

Thus, the aim of the present study was to determine whether concentrations of glucose, frequently found in IDDM subjects, have a different effect on the LDL oxidation depending on their vitamin E content.

MATERIALS AND METHODS

Isolation of LDL

LDL were isolated from ethylenediaminetetraacetic acid (EDTA)-treated plasma obtained from different healthy donors, after 12 h fasting, by ultracentrifugation and stored in a sucrose solution [26] as described previously [22,27].

Because most of the chemicals commonly used in the laboratory, including glucose and phosphate-buffered saline, may contain metal ions as contaminants, all the solutions used in the experiments were treated with Chelex (chelating resin iminodiacetic acid; Sigma, Barcelona, Spain) to remove any metal traces.

LDL vitamin E enrichment was performed using the method described by Esterbauer et al. [28]. In brief, EDTA-treated plasma (10 ml) was incubated with 100 µl of a solution of α-tocopherol 100 mM previously diluted in ethanol for 4 h in a shaking bath at 37°C, under sterile conditions. In parallel, the same volume of plasma was incubated with 100 µl of ethanol. LDL were isolated and stored as described above.

Determination of the effects of glucose on the LDL oxidation

After being thawed, the LDL were passed through a Sephacryl-400 column (Pharmacia LKB, Biotechnology, Inc., Madrid, Spain) to remove EDTA and sucrose. LDL protein concentration was determined immediately using the Lowry procedure [29] and aliquots of 0.1 mg of LDL protein/ml were incubated with glucose (500 mg/dl) and CuCl₂ (2.4 µM). Butylated hydroxytoluene (BHT) and EDTA (final concentration 1 mM) were added to aliquots obtained at different times to stop the ongoing oxidation process. These aliquots were used to test different parameters related to the degree of LDL oxidation, including: (i) vitamin E concentration, which was determined by high-performance liquid chromatography following the method described previously [22,27]; (ii) mobility on agarose gel electrophoresis; (iii) the amount of thiobarbituric acid reacting substances (TBARS), which was measured by using malondialdehyde (MDA) formed from 1,1,3,3-tetramethoxypropane as standard [30]; and (iv) conjugated dienes formation, which was determined as described by Esterbauer et al. [31]. In short, 1 ml of the LDL solution was incubated in a quartz cuvette at 37°C. Absorbance was read at 234 nm, in a Beckman DU-640 spectrophotometer, every 10 min for a maximum of 8 h or until the rapid phase of LDL oxidation reached a plateau. The lag phase and the slope were determined. The lag phase was estimated as the incubation time corresponding to the intersection of two lines drawn from the changes in optical density, one through the initial, slowly rising curve that corresponds to the utilization of the endogenous antioxidants and the other, a subsequent, rapidly rising curve that corresponds to the propagation phase of the LDL oxidation, when most of the fatty acids are being oxidized [31]. The lag phase is expressed as minutes from the addition of CuCl₂. The slope was determined by a linear regression.

The effects of glucose on the formation of conjugated dienes was followed in LDL obtained from plasma treated with vitamin E and compared with LDL obtained from the same plasma without the addition of vitamin E.

To study whether the effects of glucose were concen-
Effects of glucose on LDL oxidation

Because the first products to be consumed during LDL oxidation process are the endogenous antioxidants, mainly vitamin E, in order to determine the effects of glucose upon this process, LDL were submitted to oxidation with CuCl₂ in a media containing glucose (500 mg/dl). As shown in Fig. 1, the presence of glucose in the media delayed the consumption of vitamin E, when compared to the same LDL solution in a media without glucose. However, as shown in Fig. 2, when other pa-
Fig. 4. Effects of glucose on LDL electrophoretic mobility. The experiment design is described in Fig. 1. The electrophoretic mobility was determined at different times (60, 120, 180, and 240 min) after the addition of CuCl₂. This representative experiment was repeated with LDL obtained from six different LDL samples with similar results.

Fig. 5. Effects of different concentrations of glucose on LDL submitted to oxidation as described in Fig. 1. (A) and (B) show, respectively, the lag phase and the propagation rate of the formation of conjugated dienes; and (C) and (D) show, respectively, the TBARS and the electrophoretic mobility of the LDL particles submitted to oxidation for 150 min. The LDL oxidation was stopped as described in the Materials and Methods section by adding BHT and EDTA (final concentration 1 mM). Results are expressed as the mean ± SEM of eight different samples. *LDL incubated with vs. without glucose. **p < .01; ***p < .001.
Effects of glucose on LDL oxidation

Fig. 6. Effects of glucose on the formation of conjugated dienes in vitamin E-enriched LDL. LDL were incubated in vitro and submitted to CuCl₂ oxidation as described in Fig. 1. The mean LDL vitamin E content in the LDL obtained from plasma treated with vitamin E, as described in the Materials and Methods section was 94 ± 5.84 (µg of vitamin E/dl) vs. 23.07 ± 2.07 (µg of vitamin E/dl) in the LDL from nontreated plasma. Results are expressed as the mean ± SEM of six different samples. * LDL incubated with vs. without glucose. **p < .01; ***p < .001. LDL enriched with vitamin E vs. nonenriched LDL. LDL + Gln p < .001.

DISCUSSION

Present results show for the first time that the disappearance of vitamin E in LDL subjected to oxidation by transitional metal ions is delayed by a glucose concentration frequently found in subjects with poorly controlled IDDM. Because vitamin E is one of the first products to be consumed during the LDL oxidation process [32], this finding indicates that glucose delays the early phases of LDL oxidation. However, high glucose concentration accelerated the LDL oxidation once vitamin E was consumed, as shown here by the decreased lag phase and the increased slope in the formation of conjugated dienes, the enhanced formation of TBARS, and the higher electrophoretic mobility.

In the present model of LDL oxidation, we hypothesize that the free radicals generated in the water phase by the copper, will be taken up by the vitamin E of the LDL surface and by the glucose of the media, therefore, delaying the vitamin E consumption, as our results show. As the process continues and the LDL vitamin E is consumed, the oxidation of fatty acids starts generating peroxides, which, in a media containing copper, as has been described in other systems containing transitional metal ions, can also oxidize the glucose, generating glucose-derived aldehydes [33]. Both the oxidation of glucose and glucose-derived aldehydes will generate more...
Fig. 7. Effects of glucose on LDL submitted to different degrees of oxidation. LDL was submitted to oxidation with the addition of CuCl₂ (2.4 µM) and the formation of conjugated dienes was followed as described in the Materials and Methods section. At different times (0, 20, 40, and 70 min) after the initiation of the oxidation process, glucose was added to the media to a final concentration of 500 mg/dl. The experiment was reproduced with LDL from four different donors with similar results.

Addition Time
Glucose Addition

Fig. 8. Electrophoretic mobility of LDL submitted to different degrees of oxidation incubated with glucose. The same procedure as described in Fig. 7 was followed in this experiment. The oxidation process was stopped at 90 min by adding BHT and EDTA (final concentration 1 mM). The same experiment was repeated with LDL from four different donors with similar results.

If a process like the one described occurred in vivo and in LDL oxidized under different conditions it might explain the accelerated atherosclerotic process observed.
Effects of glucose on LDL oxidation

in subjects with IDDM. Even if, under basal conditions, LDL of the diabetic subjects were similar to the nondoniabetic, when the oxidation process starts and the vitamin E is consumed, the presence of glucose in the media would accelerate the oxidation process, increasing the consequences of the oxidized LDL, including the accelerated atherosclerotic process. What it is even more relevant from present results is the fact that LDL with higher content of vitamin E will be less susceptible to the effects of glucose on LDL oxidation and, therefore, if a similar mechanism would occur in vivo, less prone to the development of atherosclerosis. Our data have demonstrated that increasing the vitamin E content of the LDL, the glucose pro-oxidant effects are markedly reduced. In contrast, the diabetic subjects with the lowest intake of vitamin E and therefore lower levels of vitamin E in their LDL would be more susceptible to the effects of the hyperglycemia. It is remarkable that some studies in humans have shown lower levels of vitamin E in IDDM subjects [13,14], making them more susceptible to the pro-oxidant effects of the hyperglycemia. Also, several studies have shown in the experimental animal model that some of the complications secondary to diabetes can be prevented with the administration of antioxidants, including vitamin E [39–41], despite no improvement of the hyperglycemia. What is even more relevant from present results is the possibility of avoiding the effects of glucose on LDL oxidation by increasing the vitamin E content of these particles.

We have also shown here, that the pro-oxidant effect of glucose is concentration-dependent, which would be in agreement with the fact that IDDM subjects with complications secondary to diabetes are related to the degree of metabolic control, those with the highest levels of glucose have the highest risk of developing atherosclerosis and cardiovascular diseases [3,4].

As described recently by Halliwell [42], there is increasing evidence that, in the general population, not everybody will be subjected to the same oxidative stress, and some subjects, probably including patients with diabetes, may be at a higher risk of developing the complications of an increased oxidative stress. Present findings would indicate that this population may benefit from a higher intake of vitamin E than the current recommendations.

Acknowledgements — This work was supported by grants from the Spanish Ministry of Health (FIS 94/0398) and from the University San Pablo-CEU (11/96). We would like to acknowledge the technical assistance of Dr. M. del Pilar Ramos.

REFERENCES

[22] Otero, P.; Viana, M.; Herrera, E.; Bonet, B. Antioxidant and

ABBREVIATIONS

BHT— butylated hydroxytoluene
CVD— cardiovascular diseases
HPLC— high-performance liquid chromatography
IDDM— insulin-dependent diabetes mellitus
LDL— low density lipoprotein
TBARS— thiobarbituric acid reacting substances