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Abstract

In this paper we propose a tensor based description of the Bézier Shape Deforma-
tion (BSD) algorithm, denoted T-BSD. The BSD algorithm is a well-known technique,
based on the deformation of a Bézier curve through a field of vectors. A critical point
in the use of real-time applications is the cost in computational time. Recently, the use
of tensors in numerical methods has been increasing because they drastically reduce
computational costs. Our formulation based in tensors T-BSD provides an efficient
reformulation of the BSD algorithm. More precisely, the evolution of the execution
time with respect to the number of curves of the BSD algorithm is an exponentially
increasing curve. As the numerical experiments shown, the T-BSD algorithm trans-
forms this evolution into a linear one. This fact allows to compute the deformation of
a Bézier with a much lower computational cost.

∗Keywords: Tensor product, Bézier Curves, Parametric Curve Deformation
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1 Introduction

One of the most important facts in engineering applications is the cost in computational time.
A critical point appearing in this context is related to real-time processes. In consequence,
one of the main goals is to develop algorithms that reduce, as much as possible, the execution
time of existing real-time algorithms.

Lately, interest in numerical methods that make use of tensors has increased because
they drastically reduce computational costs. It is particularly useful for high-dimensional
spaces where one must pay attention to the numerical cost (in time and storage).

A first family of applications using tensor decompositions concerns the extraction of in-
formation from complex data. It has been used in many areas such as psychometrics [13, 5],
chemometrics [2], analysis of turbulent flows [3], image analysis and pattern recognition [14],
data mining. . . Another family of applications concerns the compression of complex data
(for storage or transmission), also introduced in many areas such as signal processing [10]
or computer vision [16]. A survey of tensor decompositions in multilinear algebra and an
overview of possible applications can be found in the review paper [9]. In the above applica-
tions, the aim is to compress the best as possible the information. The use of tensor product
approximations is also receiving a growing interest in numerical analysis for the solution
of problems defined in high-dimensional tensor spaces, such as PDEs arising in stochastic
calculus [1, 4, 7] (e.g., Fokker-Planck equation), stochastic parametric PDEs arising in un-
certainty quantification with spectral approaches [11, 6, 12], and quantum chemistry (cf.,
e.g., [15]). Details can be found in [8].

On the other hand we recall that parametric curves are extensively used in Computer
Aided Geometric Design (CAGD). The different engineering applications that exist are due
to the useful mathematical properties of this kind of curves. The most common parame-
tric curves in these applications are, among others, Bézier, B-Splines, NURBS and Rational
Bézier, and every one of them has many special properties. A recently research topic in
the CAGD framework is the study of shape deformations in parametric curves. There are
different ways to compute these deformations depending on the parametric curve under
consideration (see [24, 25, 26, 27, 28, 29] for NURBS and [20, 21, 22, 23] for B-Splines).
In particular, in [31] a deformation of a Bézier was introduced by means of a constrained
optimization problem related to a discrete coefficient norm. Later in [32] a new technique
to deform the shape of a Bézier curve was introduced. This technique was improved inclu-
ding a set of concatenated Bézier curves and more constraints to the optimization problem.
This improvement was applied in the numerical simulation of Liquid Composite Moulding
Processes [33] and also in the path planning problem in mobile robotics [41, 42].

The main goal of this paper is to introduce tensor calculus in order to improve the pro-
cedure described in [33, 41, 42]. The tensor reformulation of the algorihtm is called T-BSD.
As a result, the computational cost is reduced to obtain a suitable real-time performance.

This paper is organized as follows. In Section 2 we give preliminary definitions and results
about tensors, also some useful properties are introduced. In Section 3 the algorithm for
shape deformation using a basis of parametric curve is developed. In Section 4 the T-BSD
algorithm using a set of Bézier curves concatenated is defined . In Section 5 the comparative
between BSD and T-BSD algorithm is shown. In Section 6 two applications of the T-BSD
algorithm are described. Finally, in Section 7 we provide some conclusions about the present
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work.

2 Definitions and preliminary results

First of all we introduce some of the notation used in this paper,(see [17], [18] or [19] for more
details). We denote the set of (n×m)-matrices by Rn×m, and the transpose of a matrix A
is denoted AT . By 〈x,y〉 we denote the usual Euclidean inner product given by xT y = yT x
and its corresponding 2-norm, ‖x‖2 = 〈x,x〉1/2. The matrix In is the (n×n)-identity matrix
and when the dimension is clear from the context, we simply denote it by I.

Now, we recall the definition and some properties of the Kronecker product. The Kro-
necker product of A ∈ Rn′1×n1 and B ∈ Rn′2×n2 , written A ⊗ B, is the tensor algebraic
operation defined as

A⊗B =


a11B a12B · · · a1n′1

B
a21B a22B · · · a2n′1

B
...

...
. . .

...
an11B an12B · · · an1n′1

B

 ∈ Rn′1n
′
2×n1n2 .

Also, the Kronecker product of two matrices A ∈ Rn′1×n1 and B ∈ Rn′2×n2 , can be defined as
A⊗B ∈ Rn′1n

′
2×n1n2 , where

(A⊗B)(j1−1)n′2+j2;(i1−1)n2+i2 = Aj1;i1Bj2;i2 .

Finally, we list some of the well-know properties of the Kronecker product.

(T1) A⊗ (B ⊗ C) = (A⊗B)⊗ C.

(T2) (A+B)⊗ (C +D) = (A⊗ C) + (B ⊗ C) + (A⊗D) + (B ⊗D).

(T3) If A+B and C +D exist, AB ⊗ CD = (A⊗ C)(B ⊗D).

(T4) If A and B are non-singular, (A⊗B)−1 = A−1 ⊗B−1.

(T5) If (A⊗B)T = AT ⊗BT .

(T6) If A and B are banded, then A⊗B is banded.

(T7) If A and B are symmetric, then A⊗B is symmetric.

(T8) If A and B are definite positive, then A⊗B is definite positive.

Let A = [A1 · · ·An] be an m× n matrix where Aj is its j-th column vector. Then vecA
is the mn× 1 vector

vecA =

 A1
...

An

 .
Thus the vec operator transforms a matrix into a vector by stacking the columns of the
matrix one underneath the other. Notice that vecA = vecB does not imply A = B, unless
A and B are matrices of the same order. The following properties are useful:
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(V1) vec uT = vec u = u, for any column vector u.

(V2) vec uvT = v ⊗ u, for any two column vectors u and v (not necessarily of the same
order).

(V3) Let A, B and C be three matrices such that the matrix product ABC is defined. Then,

vecABC = (CT ⊗ A)vecB. (1)

Definition 1. Let F : Rn×q −→ Rm×p be a differentiable function. The Jacobian matrix of
F at X is the mp× nq matrix

DF (X) =
∂ vecF (X)

∂ (vecX)T
.

Clearly, DF (X) is a straightforward matrix generalization of the traditional definition
of the Jacobian matrix and all properties of Jacobian matrices are preserved. Thus, the
above definition reduces the study of functions of matrices to the study of vector functions
of vectors, since it allows F (X) and X only in their vectorized forms vecF and vecX. The
next properties will be useful (see Chapter 9 in [18])

(P1) Assume y = f(X) = X u, such that u is a vector of constants, here f : Rn×m −→ Rn.
Then the Jacobian matrix is D(Xu) = uT ⊗ I ∈ Rn×nm ∼= R1×m ⊗ Rn×n.

(P2) Assume y = f(x) = xT x, here f : Rn −→ R. then D(xT x) = 2xT ∈ R1×n

(P3) Let F : Rn×m −→ Rp×q be defined as F (X) = AXB where A ∈ Rp×n and B ∈ Rm×q

are matrices of constants. Then

DF (X) = BT ⊗ A. (2)

Theorem 1 (chain rule). Let S be a subset of Rn×q and assume that F : S −→ Rm×p is
differentiable at an interior point C of S. Let T be a subset of Rm×p such that F (X) ∈ T
for all X ∈ S, and assume that G : T −→ Rr×s is differentiable at an interior point B =
F (C) ∈ T. Then the composite function H : S −→ Rr×s defined by H(X) = G(F (X)) is
differentiable at C, and

DH(C) = (DG(B))(DF (C)).

The following theorem will be useful.

Theorem 2. Let A be a (p+ q)× (p+ q)-matrix such that

A =

[
A1,1 A1,2

−AT
1,2 0

]
where A1,1 ∈ Rp×p and A1,2 ∈ Rp×q.

Assume that A1,1 is non-singular, that is, invertible and rankA1,2 = q. Then A es non-
singular and

A−1 =

[
X1,1 X1,2

X2,1 X2,2

]
,

where X2,2 = (AT
1,2A1,1A1,2)−1, X2,1 = X2,2A

T
1,2A

−1
1,1, X1,1 = A−1

1,1 − A−1
1,1A1,2X2,1 and X1,2 =

−A−1
1,1A1,2X2,2.
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Proof. First, observe that the rankA = p + q because rankA1,1 = p and rankA1,2 = q. To
compute A−1 we need to solve the matrix linear system[

A1,1 A1,2

−AT
1,2 0

] [
X1,1 X1,2

X2,1 X2,2

]
= Ip+q,

that is,

A1,1X1,1 + A1,2X2,1 = Ip, (3)

A1,1X1,2 + A1,2X2,2 = 0p×q, (4)

−AT
1,2X1,1 = 0p×q, (5)

−AT
1,2X1,2 = Iq. (6)

Since A1,1 is invertible, from (3) and (5) we obtain

AT
1,2A

−1
1,1A2,1X1,2 = AT

1,2A
−1
1,1

and hence

X2,1 = (AT
1,2A1,1A1,2)−1AT

1,2A
−1
1,1,

because rank (AT
1,2A1,1A1,2) = q. In a similar way, using (4) and (6) we have

−Iq + AT
1,2A

−1
1,1A1,2X2,2 = 0q×q

and then

X2,2 = (AT
1,2A

−1
1,1A1,2)−1.

To end the proof observe that (3) and (4) are equivalent to

X1,1 = A−1
1,1 − A−1

1,1A1,2X2,1,

X1,2 = −A−1
1,1A1,2X2,2,

respectively.

3 A matrix-based optimization algorithm for shape de-

formation using a basis of parametric curves

Our main goal is to fit a parametric curve through a field of vectors by using a basis of
parametric curves. There are different techniques to obtain this, in particular an approxi-
mation based on the deformation of a Bézier curve is proposed in [33, 41, 42]. The aim is
the reduction of the cost in computational time of this algorithm because this is a critical
point in real-time applications.

We will consider for each fixed n ≥ 1 a finite dimensional basis {B0,n, . . . , Bn,n} ⊂ L2[0, 1]
and Ω ⊂ R2 a compact and convex set. Now, assume that for each time t ∈ (0, tend] we have
a matrix of Target Points

Tr(t) =
[

T1
r(t) · · · Tr

r(t)
]
∈ R2×r
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where T j
r (t) ∈ Ω, 1 ≤ j ≤ r. Our main goal is construct a map from [0, tend] to C1([0, 1];R2)

given by

t 7→ αn
t (u) =

n∑
i=0

Pi(t)Bi,n(u); u ∈ [0, 1], (7)

where

Pn(t) =
[

P0
n(t) · · · Pn

n(t)
]
∈ R2×(n+1),

for each fixed t is a finite set of control points, Pn(0) is previously known and

{T1
r(t), · · · ,Tr

r(t)} ⊂ αn
t ([0, 1]),

for each t ∈ (0, tend]. Observe that we can write (7) in a equivalent matrix form,

αn
t (u) = Pn(t) Bn(u);u ∈ [0, 1] (8)

where
Bn(u) =

[
B0,n(u) · · · Bn,n(u)

]T ∈ R(n+1)×1. (9)

Since αn
t (u) ∈ R2 we can write its standard euclidean norm as

‖αn
t (u)‖2

2 = Bn(u)T Pn(t)T Pn(t) Bn(u), (10)

then, for each fixed t, the energy of the u-parametrized curve αn
t in C([0, 1],R2) can be given

by its L2([0, 1],R2)-norm, that is,

‖αn
t ‖∆2 =

(∫ 1

0

‖αn
t (u)‖2

2 du

)1/2

=

(∫ 1

0

Bn(u)T Pn(t)T Pn(t) Bn(u) du

)1/2

. (11)

Assume that for some t ∈ [0, tend) we previously know αn
t as αn

t (u) = Pn(t) Bn(u). Then
it moves in a given small interval of time ∆t to a parametric curve αn

t+∆t, by using a set of
perturbations for each control point, namely

Xn(t+ ∆t) =
[

X0
n(t+ ∆t) · · · Xn

n(t+ ∆t)
]
∈ R2×(n+1), (12)

The resultant parametric curve αn
t+∆t will be given by,

αn
t+∆t(u) = Pn(t+ ∆t) Bn(u); u ∈ [0, 1]. (13)

where
Pn(t+ ∆t) := Pn(t) +Xn(t+ ∆t). (14)

To compute Xn(t+ ∆t) we will use the following least action principle: the curve minimize
the energy to move from αn

t to αn
t+∆t and it has to pass through the set of Target Points

{T1
r(t+ ∆t), . . . ,Tr

r(t+ ∆t)} for a given set of parameter values, namely

0 = ur1 < ur2 < · · · < urr−1 < urr = 1.

More precisely, we would like to find αn
t+∆t such that
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min ‖αn
t+∆t −αn

t ‖2
∆2

s. t. αn
t+∆t(u

r
j) = Tj

r(t+ ∆t) for 1 ≤ j ≤ r and r ≤ n− 1.
(15)

In order to write (15) in a equivalent matrix form we introduce the following notation.
Let

Br
n =

[
Bn(ur1) · · · Bn(urr)

]
∈ R(n+1)×r,

where we assume that

rankBr
n = r = min{n+ 1, r}, (16)

holds for the set of parameter values {ur1, ur2, . . . , urr−1, u
r
r}. Finally, we consider the matrix

function Φn : R2×(n+1) → R, defined by

Φn(Xn(t+ ∆t)) =

∫ 1

0

Bn(u)T Xn(t+ ∆t)TXn(t+ ∆t) Bn(u) du. (17)

Then the miminization problem (15) can be written in a matrix form as:

min
Xn(t+∆t)∈R2×(n+1)

Φn(Xn(t+ ∆t)) (18)

s. t. (Pn(t) +Xn(t+ ∆t))Br
n = Tr(t+ ∆t). (19)

By using the vec operator in (19) and the property V3 defined in the equation (1), we
obtain a useful equivalent formulation written as

((Br
n)T ⊗ I2) vecXn(t+ ∆t) = vecTr(t+ ∆t)− vec (Pn(t)Br

n). (20)

Note that the set of constrains of this problem 19 is linear where (Br
n)T ⊗ I2 ∈ R2r×2(n+1).

In consequence, the map Φn is defined over a convex set. Thus, by proving the convexity of
Φn, each stationary point of Φn over the constrained set will give us an absolute minimum.
In particular, the following proposition give us the first and the second derivative of Φn.

Proposition 1. The following statements hold:

(a) DΦn(Xn(t+ ∆t)) = 2

∫ 1

0

(Xn(t+ ∆t) Bn(u))T (Bn(u)T ⊗ I2) du,∈ R1×2(n+1).

(b) (DΦn(Xn(t+ ∆t)))T = 2

(∫ 1

0

(Bn(u)T ⊗Bn(u)⊗ I2) du

)
vecXn(t+ ∆t).

(c) D2Φn(Xn(t + ∆t)) = 2

∫ 1

0

(Bn(u)Bn(u)T ⊗ I2) du = 2

(∫ 1

0

Bn(u)Bn(u)T du

)
⊗ I2.

Moreover, D2Φn(Xn(t + ∆t)) ∈ R2(n+1)×2(n+1) is a definite positive symmetric matrix
and hence Φn is a convex function over each convex set Ω.
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Proof. First, we observe that

DΦn(Xn(t+ ∆t)) =

∫ 1

0

D
(
Bn(u)T Xn(t+ ∆t)TXn(t+ ∆t) Bn(u)

)
du. (21)

Let us consider yn = F (Xn(t + ∆t)) = Xn(t + ∆t)Bn(u) and G(yn) = yT
nyn. Then,

DF (Xn(t + ∆t)) = Bn(u)T ⊗ I2 and DG(yn) = 2yT
n . Thus, by using Theorem 1 we ob-

tain that

D
(
Bn(u)T Xn(t+ ∆t)TXn(t+ ∆t) Bn(u)

)
= 2yT

n

(
Bn(u)T ⊗ I2

)
= 2 (Xn(t+ ∆t)Bn(u))T

(
Bn(u)T ⊗ I2

)
,

and this follows statement (a). By using the fact that,

(DΦn(Xn(t+ ∆t)))T = 2

∫ 1

0

(Bn(u)⊗ I2)(Xn(t+ ∆t) Bn(u)) du ∈ R2(n+1)×1 (22)

and taking the vec operator we obtain that,

(DΦn(Xn(t+ ∆t)))T = 2

(∫ 1

0

(Bn(u)T ⊗Bn(u)⊗ I2) du

)
vecXn(t+ ∆t), (23)

an it follows (b). To prove (c) note that

D2
(
Bn(u)T Xn(t+ ∆t)TXn(t+ ∆t) Bn(u)

)
= 2

(
Bn(u)T ⊗ I2

)T (
Bn(u)T ⊗ I2

)
. (24)

Since (Bn(u)Bn(u)T⊗I2) is definite positive, we obtain that D2Φn(Xn(t+∆t)) is also definite
positive for all Xn(t+ ∆t) ∈ R2×(n+1).

Moreover, we have the following lemma.

Lemma 1. The matrix

∫ 1

0

(Bn(u)T ⊗Bn(u)⊗ I2) du is invertible.

Proof. Observe that∫ 1

0

(Bn(u)T ⊗Bn(u)⊗ I2) du =

=


∫ 1

0
B0,n(u)B0,n(u)du · · ·

∫ 1

0
Bn,n(u)B0,n(u)du∫ 1

0
B0,n(u)B1,n(u)du · · ·

∫ 1

0
Bn,n(u)B1,n(u)du

...
. . .

...∫ 1

0
B0,n(u)Bn,n(u)du · · ·

∫ 1

0
Bn,n(u)Bn,n(u)du

⊗ I2.

Since

∫ 1

0

Bi,n(u)Bj,n(u)du = 〈Bi,n, Bj,n〉L2([0,1];R) we have that

G(B0,n, . . . , Bn,n) =


∫ 1

0
B0,n(u)B0,n(u)du · · ·

∫ 1

0
Bn,n(u)B0,n(u)du∫ 1

0
B0,n(u)B1,n(u)du · · ·

∫ 1

0
Bn,n(u)B1,n(u)du

...
. . .

...∫ 1

0
B0,n(u)Bn,n(u)du · · ·

∫ 1

0
Bn,n(u)Bn,n(u)du
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is the Gramian matrix of the basis {B0,n, . . . , Bn,n}. From Lemma 7.5 of [30] we have that
G(B0,n, . . . , Bn,n) is a non-singular matrix and hence∫ 1

0

(Bn(u)T ⊗Bn(u)⊗ I2) du = G(B0,n, . . . , Bn,n)⊗ I2

in invertible.

In order to characterize the minimum of (18) and (20) we construct the associate la-
grangian

L(Xn(t+ ∆t),µ) =Φn(Xn(t+ ∆t))− µT [(Br
n)T ⊗ I2) vecXn(t+ ∆t)−

− vecTr(t+ ∆t) + vec (Pn(t)Br
n)],

where µ = [µ1 · · ·µ2r]
T ∈ R2r. The first order optimality conditions are (20) and

DΦn(Xn(t+ ∆t))− µT ((Br
n)T ⊗ I2) = 0, (25)

which is obtained by using Proposition 1 (a) and the property (P3) defined by the equation 2.
The equation (25) is equivalent to

(DΦn(Xn(t+ ∆t)))T − (I2 ⊗Br
n)µ = 0. (26)

Proposition 1 (b) allows us to write the first order optimality conditions as:

2

(∫ 1

0

(Bn(u)T ⊗Bn(u)⊗ I2) du

)
vecXn(t+ ∆t)− (I2 ⊗Br

n)µ = 0

((Br
n)T ⊗ I2) vecXn(t+ ∆t) = vecTr(t+ ∆t)− vec (Pn(t)Br

n),

(27)

that we can write in matrix form as

Az(t+ ∆t) = f(t), (28)

where

A =

 2

(∫ 1

0

(Bn(u)T ⊗Bn(u)⊗ I2) du

)
−(I2 ⊗Br

n)

((Br
n)T ⊗ I2) 0

 ∈ R(2(n+1)+2r)×(2(n+1)+2r),

z(t+ ∆t) =

[
vecXn(t+ ∆t)

µ

]
and f(t) =

[
0

vecTr(t+ ∆t)− vec (Pn(t)Br
n)

]
,

which are in R(2(n+1)+2r).

Proposition 2. Assume that rankBr
n = r. Then the matrix A is invertible.
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Proof. First at all we remark that

A =

[
A1,1 A1,2

−AT
1,2 0

]
∈ R2(n+1)+2r×2(n+1)+2r,

where

A11 = 2

(∫ 1

0

(Bn(u)T ⊗Bn(u)⊗ I2) du

)
∈ R2(n+1)×2(n+1),

and

A1,2 = −(I2 ⊗Br
n) =

[
−Br

n 0
0 −Br

n

]
∈ R2(n+1)×2r.

From Lemma 1 we known that A1,1 is a non-singular matrix. Since rankA1,2 = 2r because
rankBr

n = r, from Theorem 2 the proposition follows.

Now, the algorithm is the following.

1. Construct the matrix A.

2. Consider ∆t =
tend
N − 1

for a fixed N ≥ 2, and write tj = (j − 1)∆t for 1 ≤ j ≤ N.

3. Obtain the initial control points Pn(t1) and a sample of Target Points {Tr(t1), . . . , Tr(tN)} ⊂
Ω ⊂ R2×r.

4. For j = 1 to N

(a) Compute z(tj+1) as the solution of the linear system Az(tj+1) = f(tj);

(b) Obtain Xn(tj+1) from z(tj+1);

(c) Compute the new control points Pn(tj+1) = Pn(tj) +Xn(tj+1);

4 A matrix-based optimization algorithm for Bézier

Shape Deformation

Now, we consider that the curve αt ∈ C([0, 1]; Ω) is now described by a finite set of con-
catenated parametrized Bézier curves αn1

t , . . . ,α
nk
t constructed with basis functions of di-

mensions n1, . . . , nk, respectively. By using Section 3, each of these curves can be written
as

αni
t (u) = Pni

(t) Bni
(u); u ∈ [0, 1]; 1 ≤ i ≤ k (29)

where,
Pni

(t) =
[

P0
ni

(t) · · · Pni
ni

(t)
]
∈ R2×(ni+1). (30)

and
Bni

(u) =
[
B0,ni

(u) · · · Bni,ni
(u)

]T ∈ R(ni+1)×1. (31)

We assume that

Bi,nj
(u) =

(
nj

i

)
ui(1− u)nj−i, i = 0, . . . nj
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are the Bernstein basis polynomials of degree nj for 1 ≤ j ≤ k. Let us consider for t ∈ (0, tend]
and each 1 ≤ i ≤ k a set of ri-target points

Tri(t) =
[

T1
ri

(t) · · · Tri
ri

(t)
]
∈ R2×ri , (32)

where Tj
ri

(t) ∈ Ω for 1 ≤ j ≤ ri, and

{T1
ri

(t), . . . ,Tri
ri

(t)} ⊂ αni
t ([0, 1]) (33)

for all t ∈ (0, tend]. Moreover, Pni
(0) is previously known.

In a similar way as in Section 3, we assume that αt, described by {αni
t }ki=1, is given.

Then we would like to construct αt+∆t from {αni
t+∆t}ki=1, as follows. Consider

αni
t+∆t(u) = Pni

(t+ ∆t) Bni
(u); u ∈ [0, 1] (34)

where,

Pni
(t+ ∆t) := Pni

(t) +Xni
(t+ ∆t) (35)

and
Xni

(t+ ∆t) =
[

X0
ni

(t+ ∆t) · · · Xni
ni

(t+ ∆t)
]
∈ R2×(ni+1), (36)

for each 1 ≤ i ≤ k − 1.
Since (33) holds, for each 1 ≤ i ≤ k we will consider

0 = uri1 < uri2 · · · < uri−1
ri−1 < uriri = 1

and the matrix
Bri

ni
=
[

Bni
(uri1 ) · · · Bni

(uriri)
]
∈ R(ni+1)×ri . (37)

Since αni
t+∆t(u

ri
j ) = Tj

ri
(t+ ∆t), for 1 ≤ j ≤ ri and 1 ≤ i ≤ k, we have

(Pni
(t) +Xni

(t+ ∆t))Bri
ni

= Tri(t+ ∆t) for 1 ≤ i ≤ k. (38)

The continuity of αt given by αni
t (1−) = α

ni+1

t (0+) for 1 ≤ i ≤ k − 1, implies that

Pni
ni

(t) = P0
ni+1

(t) (39)

holds for 1 ≤ i ≤ k − 1. Since αt+∆t ∈ C([0, 1]; Ω), from αni
t+∆t(1

−) = α
ni+1

t+∆t(0
+) we have

Xni
ni

(t+ ∆t) = X0
ni+1

(t+ ∆t), (40)

for 1 ≤ i ≤ k− 1. Assume that αn1
t (0),αnk

t (1) belong to the boundary of Ω, denoted by ∂Ω,
and that

d

du
αn1

t (u)|u=0+ = V1(t),
d

du
αnk

t (u)|u=1− = Vk(t),

are given data for all t. This equality and the fact that Bi,nj
, for 0 ≤ i ≤ nj and 1 ≤ j ≤ k,

are Bernstein polinomials, implies

n1(P1
n1

(t)−P0
n1

(t)) = V1(t), nk(Pnk
nk

(t)−Pnk−1
nk

(t)) = Vk(t). (41)

11



In a similar way, since

d

du
αn1

t+∆t(u)
∣∣
u=0+

= V1(t+ ∆t),
d

du
αnk

t+∆t(u)
∣∣
u=1−

= Vk(t+ ∆t),

and (41) hold we obtain

n1(X1
n1

(t+ ∆t)−X0
n1

(t+ ∆t)) = V1(t+ ∆t)−V1(t), (42)

nk(Xnk
nk

(t+ ∆t)−Xnk−1
nk

(t+ ∆t)) = Vk(t+ ∆t)−Vk(t). (43)

To obtain a differentiability condition, that is αt ∈ C1([0, 1]; Ω), we assume

d

du
αni

t (u)|u=1− =
d

du
α

ni+1

t (u)|u=0+ . (44)

and then
ni(P

ni
ni

(t)−Pni−1
ni

(t)) = ni+1(P1
ni+1

(t)−P0
ni+1

(t)) (45)

holds for 1 ≤ i ≤ k − 1. In a similar way, if we assume that αt+∆t ∈ C1([0, 1]; Ω) then,

ni(X
ni
ni

(t+ ∆t)−Xni−1
ni

(t+ ∆t)) = ni+1(X1
ni+1

(t+ ∆t)−X0
ni+1

(t+ ∆t)) (46)

holds for 1 ≤ i ≤ k − 1.
To conclude, we would like to compute Xni

(t+ ∆t) ∈ R2×(ni+1) for 1 ≤ i ≤ k satisfying

min(Xn1 (t+∆t),...,Xnk
(t+∆t))

∑k
i=1 Φni

(Xni
(t+ ∆t))

s. t. (Pni
(t) +Xni

(t+ ∆t))Bri
ni

= Tri(t+ ∆t), 1 ≤ i ≤ k,
Xni

ni
(t+ ∆t) = X0

ni+1
(t+ ∆t), 1 ≤ i ≤ k − 1,

n1(X1
n1

(t+ ∆t)−X0
n1

(t+ ∆t)) = V1(t+ ∆t)−V1(t),
nk(Xnk

nk
(t+ ∆t)−Xnk−1

nk
(t+ ∆t)) = Vk(t+ ∆t)−Vk(t),

ni(X
ni
ni

(t+ ∆t)−Xni−1
ni

(t+ ∆t)) = ni+1(X1
ni+1

(t+ ∆t)−X0
ni+1

(t+ ∆t)), 1 ≤ i ≤ k − 1,

(47)
Introduce the matrix function

Φ(Xn1(t+ ∆t), . . . , Xnk
(t+ ∆t)) :=

k∑
i=1

Φni
(Xni

(t+ ∆t)),

which is a linear combination with positive coefficients of convex functions. In consequence
it is also a convex function over each convex set Ω ⊂ (R2×(n1+1)×· · ·×R2×(nk+1)). Moreover,

DΦ(Xn1(t+ ∆t), . . . , Xnk
(t+ ∆t)) =

[
DΦn1(Xn1(t+ ∆t)) · · · DΦnk

(Xnk
(t+ ∆t))

]
,

where DΦ(Xn1(t+ ∆t), . . . , Xnk
(t+ ∆t)) ∈ R1×2

∑k
i=1(ni+1) and

D2Φ(Xn1(t+∆t), . . . , Xnk
(t+∆t)) = diag

(
D2Φn1(Xn1(t+ ∆t)), . . . , D2Φnk

(Xnk
(t+ ∆t))

)
.

By using Proposition 1, we see that D2Φ(Xn1(t+ ∆t), . . . , Xnk
(t+ ∆t)) is a definite positive

matrix. Now, we would like to write (47) in a more compact notation. To this end we use
the following four block matrices. For 1 ≤ i ≤ k we define

Rni
=
[

0 · · · 0 0 I2

]
∈ R2×2(ni+1),

12



R∗ni
=
[

0 · · · 0 −I2 I2

]
∈ R2×2(ni+1),

Lni
=
[
I2 0 0 · · · 0

]
∈ R2×2(ni+1)

and

L∗ni
=
[
−I2 I2 0 · · · 0

]
∈ R2×2(ni+1).

Finally, we denote by

0ni
=
[

0 0 0 · · · 0
]
∈ R2×2(ni+1),

here and for all the above matrices 0 denotes the square matrix[
0 0
0 0

]
.

Then by using the above matrices and the vec operator we can write the set of constrains in
(47) as

((Bri
ni

)T ⊗ I2)vecXni
(t+ ∆t) = vecTri(t)− vec (Pni

(t)Bri
ni

), 1 ≤ i ≤ k,
Rni

vecXni
(t+ ∆t) = Lni+1

vecXni+1
(t+ ∆t), 1 ≤ i ≤ k − 1,

n1L
∗
n1

vecXn1(t+ ∆t) = V1(t+ ∆t)−V1(t),
nkR

∗
nk

vecXnk
(t+ ∆t) = Vk(t+ ∆t)−Vk(t),

niR
∗
ni

vecXni
(t+ ∆t) = ni+1L

∗
ni+1

vecXni+1
(t+ ∆t), 1 ≤ i ≤ k − 1.

(48)

Now, the Lagrangian function associated to (47) is

L(Xn1(t+ ∆t), . . . , Xnk
(t+ ∆t),λr1

1 , . . . ,λ
rk
k ,µ1, . . . ,µ2k)

=
∑k

i=1 Φni
(Xni

(t+ ∆t))

−
∑k

i=1(λri
i )T

[
((Bri

ni
)T ⊗ I2)vecXni

(t+ ∆t)− vecTri(t) + vec (Pni
(t)Bri

ni
)
]

−
∑k−1

i=1 µT
i

[
Rni

vecXni
(t+ ∆t)− Lni+1

vecXni+1
(t+ ∆t)

]
−µT

k

[
n1L

∗
n1

vecXn1(t+ ∆t)−V1(t+ ∆t) + V1(t)
]

−µT
k+1

[
nkR

∗
nk

vecXnk
−Vk(t+ ∆t) + Vk(t)

]
−
∑k−1

i=1 µT
i+1+k

[
niR

∗
ni

vecXni
(t+ ∆t)− ni+1L

∗
ni+1

vecXni+1
(t+ ∆t)

]
,

(49)

where,

λri
i =

 λ1
i
...

λ2ri
i

 ∈ R2ri , (50)

13



for 1 ≤ i ≤ k, and

µj =

[
µ1
j

µ2
j

]
∈ R2, (51)

for 1 ≤ j ≤ 2k. The first order optimality conditions are given by (48),

DΦn1(Xn1(t+ ∆t))− (λr1
1 )T ((Br1

n1
)T ⊗ I2)− µT

1Rn1 − µT
k n1L

∗
n1
− µT

k+2n1R
∗
n1

= 0, (52)

DΦni
(Xni

(t+ ∆t))− (λri
i )T ((Bri

ni
)T ⊗ I2)− µT

i Rni
+ µT

i−1Lni
− µT

k+1+iniR
∗
ni

+ µT
k+iniL

∗
ni

= 0,
(53)

for 2 ≤ i ≤ k − 1, and

DΦnk
(Xnk

(t+ ∆t))− (λrk
k )T ((Brk

nk
)T ⊗ I2) + µT

k−1Lnk
− µT

k+1nkR
∗
nk

+ µT
2knkL

∗
nk

= 0.
(54)

Thus, the first order optimality conditions with respect to the vecXni
(t + ∆t)-variables

(52)–(54) can be written respectively as,

0 = 2

(∫ 1

0

(Bn1(u)T ⊗Bn1(u)⊗ I2) du

)
vecXn1(t+ ∆t)− (I2 ⊗Br1

n1
)λr1

1

−RT
n1
µ1 − n1(L∗n1

)Tµk − n1(R∗n1
)Tµk+2,

(55)

0 = 2

(∫ 1

0

(Bni
(u)T ⊗Bni

(u)⊗ I2) du

)
vecXni

(t+ ∆t)− (I2 ⊗Bri
ni

)λri
i

+LT
ni
µi−1 −RT

ni
µi + ni(L

∗
ni

)Tµk+i − ni(R
∗
ni

)Tµk+i+1,

(56)

for 2 ≤ i ≤ k − 1.

0 = 2

(∫ 1

0

(Bnk
(u)T ⊗Bnk

(u)⊗ I2) du

)
vecXnk

(t+ ∆t)− (I2 ⊗Brk
nk

)λrk
k

+LT
nk
µk−1 − nk(R∗nk

)Tµk+1 + nk(L∗nk
)Tµ2k.

(57)

Finally, we conclude that the solution of the minimization program (47) can be computed
by means the following linear system,

Az(t+ ∆t) = f(t) (58)

where A is a block matrix given by

A =

[
A1,1 A1,2

A2,1 0

]
.

The block matrices are

A1,1 = diag (Zn1 , . . . , Znk
)

where,

Zni
= 2

∫ 1

0

(Bni
(u)T ⊗Bni

(u)⊗ I2)du ∈ R2(ni+1)×2(ni+1)
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for i = 1, 2, . . . , k,

A1,2 = [B1 B2 B3 B4] and A2,1 =


C1

C2

C3

C4

 .
where

B1 = diag (−(I2 ⊗Br1
n1

), . . . ,−(I2 ⊗Brk
nk

)),

C1 = diag ((Br1
n1

)T ⊗ I2, . . . , (B
rk
nk

)T ⊗ I2),

B2 =



−RT
n1

0T
n1

0T
n1

0T
n1

· · · 0T
n1

0T
n1

LT
n2

−RT
n2

0T
n2

0T
n2

· · · 0T
n2

0T
n2

0T
n3

LT
n3

−RT
n3

0T
n3

· · · 0T
n3

0T
n3

...
...

...
...

. . .
...

...
0T
nk−1

0T
nk−1

0T
nk−1

0T
nk−1

· · · LT
nk−1

−RT
nk−1

0T
nk

0T
nk

0T
nk

0T
nk

· · · 0T
nk

LT
nk


,

C2 =


Rn1 −Ln2 0n3 · · · 0nk−2

0nk−1
0nk

0n1 Rn2 −Ln3 · · · 0nk−2
0nk−1

0nk

...
...

...
. . .

...
...

...
0n1 0n2 0n3 · · · Rnk−2

−Lnk−1
0nk

0n1 0n2 0n3 · · · 0nk−2 Rnk−1
−Lnk

 ,

B3 =


−n1(L∗n1

)T 0T
n1

0T
n2

0T
n2

...
...

0T
nk−1

0T
nk−1

0T
nk

−nk(R∗nk
)T

 ,

C3 =

[
n1L

∗
n1

0n2 0n3 · · · 0nk−1
0nk

0n1 0n2 0n3 · · · 0nk−1
nkR

∗
nk

]

B4 =



−n1(R∗n1
)T 0T

n1
0T
n1

· · · 0T
n1

0T
n1

0T
n1

n2(L∗n2
)T −n2(R∗n2

)T 0T
n2

· · · 0T
n2

0T
n2

0T
n2

0T
n3

n3(L∗n3
)T −n3(R∗n3

)T · · · 0T
n3

0T
n3

0T
n3

...
...

...
. . .

...
...

...
0T
nk−1

0T
nk−1

0T
nk−1

· · · 0T
nk−1

nk−1(L∗nk−1
)T −nk−1(R∗nk−1

)T

0T
nk

0T
nk

0T
nk

· · · 0T
nk

0T
nk

nk(L∗nk
)T


,
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and

C4 =


n1R

∗
n1
−n2L

∗
n2

0n3 · · · 0nk−2
0nk−1

0nk

0n1 n2R
∗
n2

−n3L
∗
n3
· · · 0nk−2

0nk−1
0nk

...
...

...
. . .

...
...

...
0n1 0n2 0n3 · · · nk−2R

∗
nk−2

−nk−1L
∗
nk−1

0nk

0n1 0n2 0n3 · · · 0nk−2
nk−1R

∗
nk−1

−nkL
∗
nk

 .

We point out the dimension of the block matrices:

A1,1 ∈ R2
∑k

i=1(ni+1)×2
∑k

i=1(ni+1), B1 ∈ R2
∑k

i=1(ni+1)×2
∑k

i=1 ri , B2 ∈ R2
∑k

i=1(ni+1)×2(k−1),

B3 ∈ R2
∑k

i=1(ni+1)×4, B4 ∈ R2
∑k

i=1(ni+1)×2(k−1), C1 ∈ R2
∑k

i=1 ri×2
∑k

i=1(ni+1),

C2 ∈ R2(k−1)×2
∑k

i=1(ni+1), C3 ∈ R4×2
∑k

i=1(ni+1) and C4 ∈ R2(k−1)×2
∑k

i=1(ni+1),

and hence A ∈ Rp×p for

p = 2
k∑

i=1

(ni + 1) + 2
k∑

i=1

ri + 2(k − 1) + 4 + 2(k − 1) = 2
k∑

i=1

(ni + ri) + 6k. (59)

Since,

Cj = −BT
j for j = 1, 2, 3, 4, (60)

we can write

A =

[
A1,1 A1,2

−AT
1,2 0

]
.

Finally, we have

z(t+ ∆t) =



vecXn1(t+ ∆t)
...

vecXnk
(t+ ∆t)

λr1
1
...

λrk
k

µ1
...

µ2k


∈ Rp×1 and f(t) =



V1(t+ ∆t)−V1(t)
0
...
0

Vk(t+ ∆t)−Vk(t)
vecTr1(t)− vecPn1(t)B

r1
n1

...
vecTrk(t)− vecPnk

(t)Brk
nk

0
...
0



∈ Rp×1.

Next, we will show that A is a non-singular matrix and hence there exists a unique
minimum for our problem.

Proposition 3. Assume that rankB
rj
nj = rj for 1 ≤ j ≤ k. Then the matrix A is invertible.
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Proof. First, observe that
A1,1 = diag (Zn1 , . . . , Znk

).

By Proposition 1 the matrix Znj
is invertible for 1 ≤ j ≤ k and, in consequence, rankA1,1 =∑k

j=1 2(nj + 1). Thanks to Theorem 2 the proposition follows if

rankA1,2 = rank (−AT
1,2) =

k∑
j=1

2rj + 2k,

holds. Observe that k <
∑k

j=1 rj <
∑k

j=1(nj + 1). Let us denote by {e(i)
1 , . . . , e

(i)
ni+1} the

canonical basis of Rni+1 for 1 ≤ i ≤ k, and observe that

Rni
=
[

0 · · · 0 0 I2

]
= (I2 ⊗ e

(i)
ni+1)T ,

R∗ni
=
[

0 · · · 0 −I2 I2

]
= (I2 ⊗ (e

(i)
ni+1 − e(i)

ni
))T ,

Lni
=
[
I2 0 0 · · · 0

]
= (I2 ⊗ e

(i)
1 )T

and

L∗ni
=
[
−I2 I2 0 · · · 0

]
= (I2 ⊗ (e

(i)
2 − e

(i)
1 ))T ,

By inspection it is possible to see that the subspace spanned by the rows of the
∑k

j=1 2rj +

2k ×
∑k

j=1 2(nj + 1)-matrix (−AT
1,2), that is,



(B
r1
n1

)T ⊗ I2 0 0 · · · 0 0

0 (B
r1
n2

)T ⊗ I2 0 · · · 0 0

0 0 (B
r2
n3

)T ⊗ I2 · · · 0 0

0 0 0 · · · 0 0

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

0 0 0 · · · (B
rk−1
nk−1

)T ⊗ I2 0

0 0 0 · · · 0 (B
rk
nk

)T ⊗ I2
− − − − − −

(e
(1)
n1+1)

T ⊗ I2 −(e
(2)
1 )T ⊗ I2 0 · · · 0 0

0 (e
(2)
n2+1)

T ⊗ I2 −(e
(3)
1 )T ⊗ I2 · · · 0 0

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

0 0 0 · · · −(e
(k−1)
nk−1

)T ⊗ I2 0

0 0 0 · · · (e
(k−1)
nk−1+1)

T ⊗ I2 −(e
(k)
1 )T ⊗ I2

− − − − − −
n1((e

(1)
2 − e

(1)
1 ))T ⊗ I2 0 0 · · · 0

0 0 0 · · · 0 nk((e
(k)
nk+1 − e

(k)
nk

))T ⊗ I2

− − − − − −
n1((e

(1)
n1+1 − e

(1)
n1

))T ⊗ I2 −n2(e
(2)
2 − e

(2)
1 )T ⊗ I2 0 · · · 0 0

0 n2(e
(2)
n2+1 − e

(2)
n2

))T ⊗ I2 −n3(e
(3)
2 − e

(3)
1 )T ⊗ I2 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · −nk−1(e
(k−1)
2 − e

(k−1)
1 )T ⊗ I2 0

0 0 0 · · · nk−1(e
(k−1)
nk−1+1 − e

(k−1)
nk−1

))T ⊗ I2 −nk(e
(k)
2 − e

(k)
1 )T ⊗ I2



has dimension equal to
∑k

j=1 2rj + 2k and the proposition follows.

17



5 Comparing BSD with T-BSD

The BSD has been applied and published in [33, 41, 42]. The BSD algorithm computes the
deformation of a continuous Bézier curve. In [33], it was used to improve the numerical
simulation of Liquide Composite Moulding processes. In this case the BSD was used to
represent as a continuous curve and update the information of the resin’s flow front when
the mould is filling.

Later, in [41, 42], the algorithm was applied to mobile robots to obtain a new technique
for flexible path planning based on the deformation of a Bézier curve through a field of
forces (vectors). The focus of this research has been the generation of a smooth collision-free
trajectory for an holonomic mobile robot.

With T-BSD the reduction of the computational cost of the BSD algorithm is achieved.
Figure 1 shows the evolution in computational time required for the calculation of the defor-
mation of Bézier curves (composed of different number of Bézier curves) with the BSD and
T-BSD methods. It is clear that, as the number of curves increases, BSD grows exponentially,
whereas T-BSD grows linearly.

This algorithm can be used in real-time. In fact, whereas the BSD algorithm can use up
to 70 quadratic curves for the computation of the modified Bézier curve in one second (see
Figure 1), its reformulated algorithm T-BSD is able to use up to 170 curves within the same
period of time, which highly increases the accuracy of the modified Bézier curve when it is
compared to the BSD method. The use of tensors reduces the calculation time.

Figure 1: The comparison of the computational cost of BSD and T-BSD methods

This comparison has been computed using a PC with a 3.06 GHz Intel Core i3 and 4GB
RAM.
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6 Simulation Results

The algorithm T-BSD has been applied in Liquid Composite Moulding (LCM) processes and
Mobile Robots.

In LCM processes, see Figure 2, the resin’s flow front is an important tool to take deci-
sions during the mould filling. This flow front has been computed and updated using T-BSD.
It is represented with a Bézier curve and updated through a field of vectors. In this case,
these vectors are the velocity vectors obtained solving the flow kinematics with Finite Ele-
ment Methods (FEM), see [34]. The parametrization of the flow front permits a continuous
numerical formulation using a Bézier, avoiding approximation techniques.

!
Figure 2: Particle Age evolution through T-BSD+FEM.

In Mobile Robots, see Figure 3, the idea is to obtain a flexible Trajectory for a Mobile
Robot free of collisions. This flexible Trajectory is based on the deformation of a Bézier
curve through a field of vectors. The field of vectors, in this case forces, is computed with
a recently artificial potential field method called Potential Field Projection method (PFP),
see [35, 36, 37]. The Initial Trajectory is modified through this field of forces in order to
avoid the obstacles and guiding the robot to non-collision positions.

7 Conclusions

This work presents a use of tensors which reduces the computational time of the BSD (Bézier
Shape Deformation) algorithm, initially developed within the framework of mobile robotics
and liquid composite moulding processes. The result is a tensorial method called T-BSD
(Tensor Bézier Shape Deformation) which enjoys the same properties of the former method
including a key advantage: its low computational time and real-time performance. This
is a critical issue in some engineering applications. For that reason, the reduction of the
execution time of the Bézier generation algorithm is such an important goal to achieve.
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Figure 3: Snapshots of the Trajectory (left images) obtained by the T-BSD+PFP algorithm
in an environment with 15 obstacles. Right images show detailed views of robot Trajectory
for the corresponding left images.

20



In this case of the T-BSD algorithm, the calculation costs depend on the number of
curves required to compute a new Bézier from a given one. A field of vectors indicate the
direction of deformation at predefined points in the initial Bézier. The algorithm performs
then the concatenation of a set of curves to obtain the deformed Bézier. Besides, the number
of curves is highly related to the accuracy of the modified Bézier. In fact, the more curves
are used the better the accuracy of the new Bézier.

As a consequence, the T-BSD algorithm is computed with very low computational time
and excellent accuracy. This is a great outcome in a lot of engineering fields.
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Journal of Software(China), Vol.13(6),2002;1069–1074.

[32] Wu O.B.,Xia F.H. Shape modification of Bézier curves by constrained optimization.
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