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Abstract. In this paper we establish sufficient conditions for the existence and uniqueness of
optimal nonlinear approximations. Most nonlinear problems do not only have difficulties in order to
implement good projection algorithms, but also the subsets where we project the functions do not
have the geometric properties necessary for classic existence results (such as convexity, for instance).
The theoretical results we show here overcome some of these difficulties. We illustrate these results
by applying them to a fractional model for image deconvolution, where we can ensure existence and
uniqueness of the solution and convergence of the computational algorithms.
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1. Introduction. Unlike linear approximation, where there exists a solid theo-
retical background establishing conditions for existence, uniqueness and algorithmic
issues, nonlinear approximation is a field with not so deep a knowledge. Nonlinearity
is such a wide concept that most fundamental concepts in linear spaces cannot be
generalized without losing their strength.

Lack of the vectorial structure of the spaces, of course, is one of the main difficul-
ties to obtain adequate results, but there are other features which are often lost, some
of them geometrical (convexity, for instance) and other ones algebraic (linear bases).
In the last years, sparsity helped the devise of nonlinear models, by introducing the
concept of dictionaries as generators of the space sacrificing linear independence. This,
optimal approximation can be reduced to the search of a good dictionary first, and,
then, the best fitted subset of the dictionary to get an adequate approximation. This
is the principle lying under the so called greedy algorithms.

However, dictionaries cannot overcome in general structural, mostly geometric,
problems. Convexity is usually one of these problems: in practice, spaces generated
by any element of the dictionary are not convex, thus eliminating one of the sufficient
conditions to ensure the existence of optimal approximations.

In this paper, we provide theoretical results related to nonlinear approximation
with milder conditions to give a ground to the general topic of nonlinear approximation
for a large class of settings. These conditions are verified in many practical problems.

Image processing, and, particularly, image restoration is one of these fields where
this theory can be applied. Both deconvolution and denoising of images are best dealt
with adaptive nonlinear models than linear ones (leaving aside computational aspects),
in the sense that the process must work in a different way not only for different type
of convolution kernels, or different noises, but also depending on the image itself. In
[2, 5], the authors propose a blind deconvolution model based on an iterative fractional
decomposition of the kernel, with a fractional parameter obtained by the properties of
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the image itself. Though, in practice, this model converges with high quality results,
its convergence has been theoretically proved in the context introduced in this paper.

The structure of this paper is as follows: in §2, we introduce the notation, defini-
tions and basic preliminary results in order to simplify the main results in the paper,
which are shown in §3. In §4, we consider the blind deconvolution model in [2, 5] as a
particular case of this result, and we display some examples of the application of the
model in §5. Finally, we will draw conclusions in §6.

2. Definitions and preliminary results. Let V be a Hilbert space; we denote
by (-,-) and || - || a general inner product on V and its associated norm. Let C be a
nonempty subset in V' such that

(A1) C, is a cone, that is, if v € C then Av € C for all A > 0, and
(A2) C is weakly closed in V.

ExAMPLE 2.1. Clearly, every closed and convex cone in V satisfy (A1) and
(A2).

EXAMPLE 2.2. Falcé and Hackbusch [1] proved that for each v € N the set Ty,
of tensors in Tucker format which is a non-convex cone, is a weakly closed set in any
tensor Banach space with a norm not weaker than the injective norm.

EXAMPLE 2.3. Let us consider the non-convex cone

C={uecLs0,1]:u(z) = az” where a >0 and § € [0,2]}.

Then the map ® : Ry x [0,2] — L»[0,1], given by ®(«, B)(z) = az?, is continuous
because

(a—a')?
min(, B + 1
Now, assume that {u,(x) = a,2P" },en C C weakly converges to u in L2[0,1]. Then
{un }nen is bounded:

12 (cr, B) — @(a, B) | 0,1 <

2

<C

2 _ n
||un||L2[o,1] - —ﬂ% +1-

for some C > 0 and for all n € N. As a consequence, {(cn,fn)}nen is a bounded
sequence in the closed set Ry x [0,2]. Then, there exists a convergent subsequence,
also denoted by {(cn, Bn)}nen, to some (a, B) € Ry x [0,2].

Since

Tim [ @(an, Ba) = ®(a, B) 2,001 = O,

we have that u,, —v, where v(z) = az?, converges to zero in L2[0,1]. Thus v = u, and
C' is weakly closed in L3[0,1].

Now we want to characterize a projection on C with respect to a given inner
product (-,-) on V, with associated norm || - ||.

A C-projection with respect to inner product (-, ), with associated norm is a map
I(-|C) : 2 € V = II(z|C) C C defined by

I = i — )% 2.1
(2|C) argggglIz vl (2.1)

Let be the map o(-|C) : V — R defined by

0(2|C) = max |(z, w)], (2.2)
llwli=1
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The following Proposition 2.4 proves that (A3) is a sufficient condition on the
inner product (-, -) for the maps II(-|C) and o(-|C) be well defined.
PROPOSITION 2.4. For each z € V, there exists v* € C such that

Iz = v** = min |2 — v]|* = |[2]]* = o ([C)*. (2.3)
ve
Moreover, o(z|C) = ||[v*||, and

(z—v*,0") =0. (2.4)

Proof. Let us choose any sequence w,, € C with ||z — w,|| \, inf{]|z —w|| : w €
C}. Since (wy,),,cy is a bounded sequence in V', there exists a subsequence w,, — v €
V. v belongs to C because wy,, € C and C'is weakly closed. Since also z —w,,, weakly
converges to x — v, then ||z — v|| < liminf ||z — wy,, || < inf{]|z — w|| : w € C}. Thus,
there exists v* € C such that ||z — v*||? = minyec ||z — v||?. The second equality of
(2.3) follows from

min||z —v|*= min ||z — \wl|? (2.5)
veC AER L, wel
llwll=1
. 2 _ 2
= i 1z]]7 — 2A (w, 2) + A (2.6)
— mi 2 _ 2
= min [~ (=) 27)
llwll=1
12 2
= e~ e (2.) 28)
llwl=1
= |[2lI* — o(2]C)*. (2.9)

To prove the second part we consider the equality

1

1 1
S@,0) = (2,0) = 5l — vl = 521,

This implies that for J.(v) = 1(v,v) — (2,v) the minimization problem

J.(v*) = E%lg J.(v). (2.10)
is equivalent to
EréigﬂzvaQ, (2.11)
and
min J,(v) = 1111111”27’0”2 - l||z||2 (2.12)
veC 2 veC 2

If z = 0 then v* = 0 and the theorem clearly holds. Now, assume that z = 0.
From (2.12) and (2.8) we deduce

1 2
i =—— . 2.1
min J2(v) 5 Illvnell%xl(z, w) (2.13)



Thus, v* € C solves (2.10) if and only if v* = o(z|C)w* for some w* € C with
|[w*|| = 1. Therefore, the first statement follows. To prove the second one, from
(2.13) follows

J () = —50(=10)” = —¢ |0 %, (214)
and by using (2.12) we obtain (2.3). Finally, from (2.14) we have that
(’U*,’U*) - (Z,’U*) = 05

and this follows (2.4). O
A first consequence is the following.
COROLLARY 2.5. The map o(-|C) defines a seminorm on V.

3. Main Result. From now on, we will denote by U(C) = span ' the closed
linear subspace generated by C. Now, we introduce the set

V(z|C)={we C:||w|]|=1 and o(z2|C) = |(z,w)|}. (3.1
Then the projector II(-|C') can be written as
II(z|C) = o(2|C)V(2]|C), (3.2)

which means that for v* € II(z|C), there exists w* € V(z|C) such that v* = o(z|C)w*.
Also Proposition 2.4 allows to construct a sequence {e,}n,>0 C V by means of the
following iterative scheme. Let zg = 0, and, for each n > 1, take

€n_1 =2 — 21, and update (3.3)
Zn = 2n_1 + 2" where (™ € II(e,_,|C). (3.4)

Observe that for n > 1,
Zn = i 20 20 ell(z — 2z,4|0) (3.5)
i=1
or, equivalently, by using Proposition 2.4,
2 =

o(ei_1|C)w?,  w® e V(e;i_1|C). (3.6)
1

We introduce the following definition of the C'- rank

DEFINITION 3.1. We define the C-rank of an element z € V', denoted by rank(z|C),
as follows:

rank(z|C) = min{n : o(e,|C) = 0}, (3.7)

where by convention min(()) = co.
Now, we state the main result of this paper:
THEOREM 3.2. For z € V, the sequence {en},-, constructed in (3.3) satisfies

that lim,, s €, = €* and e* € U(C)*. Moreover,

rank(z|C) '
PU(C)(Z) =z—e€' = Z 0(61'—1|C)w(l)a
i=1
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where Py ¢y is the orthogonal projection over U(C), and

n rank(z|C)
lenll® = [121* =Y oleialC)? = > oles|C)*.
i=1 i=n+1
In consequence,
rank(z|C)
lz=Po)IIP =217 = > aleima|C)*.
i=1

Proof. In order to simplify notation, in this proof we will use o; = o(e;—1|C), for
all i > 0. Let us first note that it holds for 1 < n < rank(z|C) that 2(™ # 0 since for
such n, o(z — z,-1|C) > 0 by definition of C-rank. We have

leall® = lle—1 — 22 (3.8)
— fleaal2 = 2™ (by using (2.3)) (3.9)
= flen-r? = o2 (3.10)

Thus {[|e, || }25=19) i a strictly decreasing sequence of non-negative real numbers.
e first assume that rank(z|C) = r < co. Then, o, = o(z — 2,|C) = 0 an
We first that k(z|C Th C 0 and
2(r+1) = 0 since

Iz = 20 = 202 = 2 = 2| — 07 = ||z — 2|
We have

Iz = 2)1* = min ||z — zr — vl? < Iz — 2 — Mol
for all A € R and v € C. This implies that

(z—2z,0)=0

for all v € C. Thus z — 2z, € UL and the first statement of the theorem follows.
On the other hand, we assume that rank,(z) = co. Then {||e,||}22, is a strictly
decreasing sequence of non-negative real numbers, and there exists

lim |le,|| = lim ||z — z,|| =R > 0.

Proceeding from (3.10) and using that ey = z, we obtain
leal® = [0 = > _ ot (3.11)
k=1

In consequence, Y ;- | o7 is a convergent series and lim,,_,o, 02 = 0. Thus, we obtain
also
lim o, = lim ||z = 0. (3.12)
— 00 n—oo
For all n > 1 and v € C with ||v|| = 1, we have
(en-1,v)> <  max (en_1,w)’> =02 (3.13)

= welw=1
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and then

lim (ep_1,v)> =0 (3.14)
n—oo
Assuming that {e,}>2, is convergent in the || - ||-norm to some e* € V, since the

sequence is also weakly convergent to e* we obtain from (3.14) that
(e*,v)=0

for all v € C with [jv]| = 1. Thus, e* € U*. To conclude the proof we only need to
show that {e,}>° ; is a Cauchy sequence in V in the || - ||-norm. The following lemmas
will be useful.

LeEMMA 3.3. For each n,m > 1, it follows that

(emfla Z(n)) ‘ < OmOn

Proof. We have

()] -

where we have used

(emfla Unw(n)) ‘ =

(emflaw(n)) ’ On S OmOn

o =1 (emer ™) | = [Cemow) |2 (enes ™)
weC:||w|=1

O
LeEMMA 3.4. For every € > 0 and every N € N there exists T > N such that

or Y ok <e. (3.15)
k=1

Proof. Since Z;’il 0’j2- < 00, for a given € > 0 and N € N, we choose n > N such
that

o0
> o<ef?
j=n+1

Since lim;_,oc 0; = 0, we construct 7 : N — N defined inductively by 7(1) = 1 and
for all k£ > 1,

T(k+1)= jg}ri(l}c) {O’j < O’.,.(k)} ,

such that 7 is strictly increasing and limy_,o, 7(k) = oo. Observe that for all &k > 1
and j satisfying 7(k) < j < 7(k + 1), it follows that

Or(k+1) < Or(k) < 0j.

Thus, for all 1 < j < 7(k 4+ 1), we have

Or(k+1) < 0
6



Now, since limy ;o 0 (1) = 0, we can choose 7 = 7(k + 1) > n large enough satisfying

n
or Zoj <e/2.
j=1

Then
-
O‘TZUJ—O’TZUJ-i-O‘T Z o < ¢/2+40; Z oF
Jj=n+1 Jj=n+1
oo
<e/2+ Z o7 < g/2+ Z o5
j=n+1 Jj=n+1

<e

This proves the lemma. O

LEMMA 3.5. For all M > N > 0, it follows that

M
llex—1— el < llex—1l® = lemr—1l* +20m Yo%
k=1
Proof. We have
len—1 —em—1l* = llen—1l* + llesr—1lI* = 2 (ear—1,en—1)
M-1
= len—1l* + llear—1* — 2 <€M LeM—1+ Z Z(k)>
k=N
M-1
= llen-al* = flear1]* =2 3 (enr-1,2)
k=N
M-1
< llen-1l* = llesr—1l> + 208 Y ok (by using Lemma 3.3)
k=N
M
<llexn—1l* = llear—1l* +20m Zok (by adding positive terms.)
k=1
This ends the proof of lemma. O

Since the limit of ||e,||? goes to R? as n — oo, and it is a decreasing sequence,
for a given € > 0 there exists k. > 0 such that

R? < |lem-1]*> < R*+¢£2/2

for all m > k.. Now, we assume that m > k.. From Lemma 3.4, for each m + p there
exists 7 > m + p such that

-
or Z o < %/4.
k=1

Now, we would to estimate

lem—1— emip-1ll <llem—1 —er—1ll + ller—1 — emsp-1l-
7



By using Lemma 3.5 with M = 7 and N = m and m + p, we obtain that

lem—1—er1]> < R*+&?/2— R* +£%/2 =2,

and

||em+p71 - 6,,-,1”2 < R2 + 52/2 - R2 + 52/2 = 525
respectively. In consequence {e,}5 is a Cauchy sequence in the || - ||-norm and it
converges to e*. O

4. An Application to a Fractional Blind Deconvolution Model. The
above results provide a theoretical ground for a large class of nonlinear approximation
problems. In this section, we will illustrate this through a particular example mod-
elling blind deconvolution, introduced in [2]. In order to self completeness, we outline
the main aspects of the model and refer the interested reader to [2] for details.

4.1. The Blind Deconvolution Problem. It is well known that an image
u(z,y) gets degraded due to different causes, which can usually be mathematically
formulated as follows:

where K (z,y) is an operator representing the deterministic degrading of the image,
and n(z,y), the stochastic additive errors (noise). In this section we are going to
consider a linear and shift invariant convolution operator, defined as usual:

(K*U)(:L‘,y) = R? K(SC - oY — ﬂ)dadﬂ

For simplicity, we will consider pure convolution models (i.e., without noise,
n(z,y) = 0).

Physical convolution features, such as blurring or diffusion, come from smooth
operator kernels, K.

Deconvolution problems consist of recovering the original image u from the con-
volved, observed, one (ug). The problem should be solved in the context of Fourier
transforms, due to the fundamental theorem of convolution:

K xu(&,n) = K(&,n)a(,n)

A naive way to deconvolve is thus to obtain u by a simple division. In practice,
regularity of K implies that its Fourier transform decays fast, and this direct decon-
volution is unstable, not allowing the recovery of high frequences of ). A regularizing
term must be included in order to stabilize the problem.

The problem gets even more complicated when the kernel K is not known (blind
deconvolution). We must worry about the stability, as before, but we also have
to estimate the kernel. The model to analize, which we explain here, makes the
assumption that the kernel is a Gaussian. This is not a risked assumption because
blurring is produced by that kind of kernels). Fourier transform of Gaussians are also
Gaussians, and, hence:



K(&n) = ce "+ = G (€,1)

being ¢ a constant normalizing the function, and ~ a positive parameter related to
the amount of diffusion. A direct approach to the problem is to fit 4. However, once
again, this naive approach is wrong. The problem is extremely ill posed, because there
exist infinite solutions: any Gaussian with a diffusion smaller than v (G for A < 7)
is also a convolution kernel of the image, and, at least, any w = G, x u is a solution
of the deconvolution problem. There are many other solutions. In fact, additional
conditions must be required in order to, at least, expect for a good resolution.

In any case, it is not a right strategy to look for the parameter . In the first
place, the own image can distort this parameter. On the other side, knowledge of the
kernel is directly related to the amount of regularization needed: the most accuracy
for the kernel implies the least amount of frequences recovered.

4.2. The Fractional Deconvolution Model. The above remarks lead us to
consider a model based on an iterative fractional decomposition of the kernel. De-
composition will be obtained by logarithmic approximation, as follows:

(&, m) = exp(—y(&% + %)) - u(€,m)

Thus,

log(|uo(€,m)]) & —y(&* +n*) + log([u(¢,n)])

Assumptions on the image (see [2]) let us fix one of the frequences, for instance,
17 = 0, and the function v(§) = log(|a(&,0)]) is decreasing. By radial symmetry, u can
be recovered from v. Analogously, we denote vg(€) = log(|ug(&,0)]). Without loss of
generality, let us assume that vo(§) = 0 (in any other case, the arguments below are
valid for w(§) = vo(§) — vo(0).

Among all the possible choices of v we select the one given by the following
decomposition:

w(§) = v(€) = h(&) ; (h(&) = 3 yll” (4.2)

where a; and 0 < ; < 2 are such that h(£) is the optimal approximation (the
projection) to vo in the space generated by the dictionary:

€8, with 0 < 8 < 2. Therefore, we are in the setting establlished in example (2.3).
Of course, nonlinearity comes from the powers 3, and this is the main difficulty to fit
the problem in the approximation frame.

This is equivalent to decompose the kernel G, = Ggll/2 * GEZ/Q ®e ek Gg’;/Q Koo
where Gft’;/ ? are quasigaussian kernels (those whose Fourier transform is a fractional
power of the Gaussian).

4.3. Convergence of the Algorithm. Leaving aside stability and regulariza-
tion aspects (that could be inclded in a wider class of methods known as weak greedy
ones), the actual algorithm is as follows:



1. Pivot Vo, ho =0.

2. Given vy, hi, get the projection of vi on the cone, finding the coefficients
and S.

3. Deconvolve uy from Gft@, which is equivalent to obtain vi41(£) = vi(§) —
arl€1PR; higr = hi + ag|€]Px.

4. Stop the process when ||vg11|| > ||vg, or ||axr1]€]PF+1 —aw|€|P*|| < tolerance.

5. Return v = vg, h = hy.

The limit case (tolerance= 0) leads to two possibilities: if the process is finite,
the projection v lays in the space generated by the cone; in the infinite case, it is in
the closure of such space. In any of these cases, the theoretical results in the previous
section show that this projection exists and it is the desired optimal approximation.
As a late remark we remark that v is the residual of the projection, and it consists
of the part of the function that cannot be expressed by fractional powers of £&. Thus,
the function v is the least regular of the possible ones, and the corresponding image
u is the one with most edges among all of the solutions of the deconvolution problem.

Although deconvolution techniques at each step are linear in the sense that they
are not adaptive (do not depend on the image) and they are computed via fast Fourier
transforms, the overall algorithm is nonlinear and adaptive. Decomposition does not
depend only on the kernel, but on the observed image. In the following section, we
will remark these features of the algorithm.

5. Examples. In this section we will display some examples in order to illustrate
the above results.

The first three figures show the deconvolution process: the detected quasi-Gaussian
kernels (below) and their corresponding partial deconvolved images (above). The first
image is the original (blurred) one, and the blurring kernel which has to be detected.
In the shown examples, good quality deconvolved image is obtained after three or four
steps, even for kernels with a large variance. The deconvolved image recovers many
of the original details which cannot be recovered by other models (we refer the reader
to [2, 5] for comparison purposes).

Adaptiveness of the process is shown in the first two figures: the blurring kernel
is the same for both images, but it can be seen that the decomposition of the kernel is
different in both cases, due to the features of the original, blurred, image. Fractional
regularity of both images is not the same, and the model detects different powers. We
may see that, in Lena image, details are recovered in a more gradual way than in the
satellite, because the first one is richer in texture than the other one.

The third example shows that dependence on the kernel is not linear: it is in-
teresting to observe that different diffusion parameters () give place to different
decomposition, though it could seem natural to think that, as G, * G, = G4,, the
decompositions should follow a similar sequence. As it happens, the kernel in the
second example is G, * G, (being G the blurring kernel in the third example). Nev-
ertheless, the decomposition in the second example does not relates (at least directly)
to the decomposition in the third example.

Finally, we show a, non academic, real life application (restoration of a baroque
painting). It is important to ensure that fractional decomposition (that is, fractional
projection) works in a multichannel context as it is that of color images (see [4]).
It is also interesting to remark that, in this example, as it is a real one, the only
assumption we can make is to consider the image was blurred by natural causes, and,
then, the kernel is a Gaussian or quasi-Gaussian blur. Let us notice that the image
shown is very spoiled and it has some other added difficulties besides blurring. Most
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other models are not able to obtain good deconvolution because the scratching of
the image. As we see, in our fractional model, the image can be deconvolved while
keeping this scratches, which is often important in order to apply particular and local
models for arranging them.

x10° Original Kernel

10" Estimated Keme, step 1 a0 Estimated Kernel, step 2 x10° Estimated Keme, step 3 10 Estimated Keme, step 4

6. Conclusion and Final Remarks. In this paper we presented some theoret-
ical results for nonlinear approximation which is underlying many greedy algorithms.
In particular, our results show an alternative to convexity, which is a property often
lost in the nonlinearity context.

In order to illustrate the strength of the results, we displayed an example related
to image restoration. In general, image restoration and denoising are situations where
this theory applies: most models consist of finding good approximations to the image
under some restrictions. In the shown example, the theory is not only useful to prove
consistence and existence of the deconvolution, but it also explains some features of
the deconvolved image (recovery of edges, for instance).
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Original Kernel

Estimated Kemel, step 1 x10" Estimated Kemel, step 2 10 Estimated Kernel, step 3

)10° Estimated Kemel, step &
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Fig. 5.1: Top: Blurred image and kernel (satellite). Bottom: Blind deconvolution
sequence with the corresponding detected kernels.

The computational examples show how partial (iterative) projections work: the
first steps are smooth and it is in the last ones, which correspond to the lower ex-
ponents when details are obtained. The observed image is thus decomposed in a
quasigaussian kernel and versions of deconvolutions with different degrees of smooth-
ing (exponents). The model, hence, propose a frequency-regularity analysis of the
observed image, which is a nonlinear multiresolution scheme.

The fractional model introduced in this paper also shows some of the nonlinear
features one can wait: adaptiveness to the initial conditions, and joint detection of
both the deconvolved image and the blurring kernel. Such as it is proposed, the
deconvolved image is the residual of the process. Thus, when the blurred image is
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Fig. 5.2: Top: Blurred image and kernel (satellite). Bottom: Blind deconvolution
sequence with the corresponding detected kernels. (40 pasos de la ecuacion del calor)

in the subspace we are projecting, the deconvolution we obtain is just the null image
(a black one). In other words, in general, the image we obtain is the one with most
details, among all the possible ones.
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(b) Fractional Blind Deconvolution

Fig. 5.3: Color Fractional Blind deconvolution. Theme: Epiphany, from the altarpiece
of Saint Bartholomew Church, Bienservida (Spain)
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