
A GENERAL FRAMEWORK FOR NONLINEAR APPROXIMATIONSWITH APPLICATIONS TO IMAGE RESTORATION∗V. CANDELA† AND A. FALCÓ, PANTALEÓN D. ROMERO‡Abstra
t. In this paper we establish su�
ient 
onditions for the existen
e and uniqueness ofoptimal nonlinear approximations. Most nonlinear problems do not only have di�
ulties in order toimplement good proje
tion algorithms, but also the subsets where we proje
t the fun
tions do nothave the geometri
 properties ne
essary for 
lassi
 existen
e results (su
h as 
onvexity, for instan
e).The theoreti
al results we show here over
ome some of these di�
ulties. We illustrate these resultsby applying them to a fra
tional model for image de
onvolution, where we 
an ensure existen
e anduniqueness of the solution and 
onvergen
e of the 
omputational algorithms.Key words. Hilbert Spa
e, Pure Greedy Algorithm, Fra
tional De
onvolution, Image Restora-tion.AMS subje
t 
lassi�
ations. 65D15,40A251. Introdu
tion. Unlike linear approximation, where there exists a solid theo-reti
al ba
kground establishing 
onditions for existen
e, uniqueness and algorithmi
issues, nonlinear approximation is a �eld with not so deep a knowledge. Nonlinearityis su
h a wide 
on
ept that most fundamental 
on
epts in linear spa
es 
annot begeneralized without losing their strength.La
k of the ve
torial stru
ture of the spa
es, of 
ourse, is one of the main di�
ul-ties to obtain adequate results, but there are other features whi
h are often lost, someof them geometri
al (
onvexity, for instan
e) and other ones algebrai
 (linear bases).In the last years, sparsity helped the devise of nonlinear models, by introdu
ing the
on
ept of di
tionaries as generators of the spa
e sa
ri�
ing linear independen
e. This,optimal approximation 
an be redu
ed to the sear
h of a good di
tionary �rst, and,then, the best �tted subset of the di
tionary to get an adequate approximation. Thisis the prin
iple lying under the so 
alled greedy algorithms.However, di
tionaries 
annot over
ome in general stru
tural, mostly geometri
,problems. Convexity is usually one of these problems: in pra
ti
e, spa
es generatedby any element of the di
tionary are not 
onvex, thus eliminating one of the su�
ient
onditions to ensure the existen
e of optimal approximations.In this paper, we provide theoreti
al results related to nonlinear approximationwith milder 
onditions to give a ground to the general topi
 of nonlinear approximationfor a large 
lass of settings. These 
onditions are veri�ed in many pra
ti
al problems.Image pro
essing, and, parti
ularly, image restoration is one of these �elds wherethis theory 
an be applied. Both de
onvolution and denoising of images are best dealtwith adaptive nonlinear models than linear ones (leaving aside 
omputational aspe
ts),in the sense that the pro
ess must work in a di�erent way not only for di�erent typeof 
onvolution kernels, or di�erent noises, but also depending on the image itself. In[2, 5℄, the authors propose a blind de
onvolution model based on an iterative fra
tionalde
omposition of the kernel, with a fra
tional parameter obtained by the properties of
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the image itself. Though, in pra
ti
e, this model 
onverges with high quality results,its 
onvergen
e has been theoreti
ally proved in the 
ontext introdu
ed in this paper.The stru
ture of this paper is as follows: in �2, we introdu
e the notation, de�ni-tions and basi
 preliminary results in order to simplify the main results in the paper,whi
h are shown in �3. In �4, we 
onsider the blind de
onvolution model in [2, 5℄ as aparti
ular 
ase of this result, and we display some examples of the appli
ation of themodel in �5. Finally, we will draw 
on
lusions in �6.2. De�nitions and preliminary results. Let V be a Hilbert spa
e; we denoteby (·, ·) and ‖ · ‖ a general inner produ
t on V and its asso
iated norm. Let C be anonempty subset in V su
h that(A1) C, is a 
one, that is, if v ∈ C then λv ∈ C for all λ ≥ 0, and(A2) C is weakly 
losed in V.Example 2.1. Clearly, every 
losed and 
onvex 
one in V satisfy (A1) and(A2).Example 2.2. Fal
ó and Ha
kbus
h [1℄ proved that for ea
h r ∈ Nd the set Tr,of tensors in Tu
ker format whi
h is a non-
onvex 
one, is a weakly 
losed set in anytensor Bana
h spa
e with a norm not weaker than the inje
tive norm.Example 2.3. Let us 
onsider the non-
onvex 
one
C =

{
u ∈ L2[0, 1] : u(x) = αxβ where α ≥ 0 and β ∈ [0, 2]

}
.Then the map Φ : R+ × [0, 2] → L2[0, 1], given by Φ(α, β)(x) = αxβ , is 
ontinuousbe
ause

‖Φ(α, β)− Φ(α′, β′)‖2L2[0,1]
≤

(α− α′)2

min(β, β′)2 + 1
.Now, assume that {un(x) = αnx

βn}n∈N ⊂ C weakly 
onverges to u in L2[0, 1]. Then
{un}n∈N is bounded:

‖un‖
2
L2[0,1]

=
α2
n

β2
n + 1

≤ Cfor some C ≥ 0 and for all n ∈ N. As a 
onsequen
e, {(αn, βn)}n∈N is a boundedsequen
e in the 
losed set R+ × [0, 2]. Then, there exists a 
onvergent subsequen
e,also denoted by {(αn, βn)}n∈N, to some (α, β) ∈ R+ × [0, 2].Sin
e
lim
n→∞

‖Φ(αn, βn)− Φ(α, β)‖L2[0,1] = 0,we have that un− v, where v(x) = αxβ , 
onverges to zero in L2[0, 1]. Thus v = u, and
C is weakly 
losed in L2[0, 1].Now we want to 
hara
terize a proje
tion on C with respe
t to a given innerprodu
t (·, ·) on V , with asso
iated norm ‖ · ‖.A C-proje
tion with respe
t to inner produ
t (·, ·), with asso
iated norm is a map
Π(·|C) : z ∈ V 7→ Π(z|C) ⊂ C de�ned by

Π(z|C) = argmin
v∈C

‖z − v‖2. (2.1)Let be the map σ(·|C) : V → R de�ned by
σ(z|C) = max

w∈C
‖w‖=1

|(z, w)|, (2.2)2



The following Proposition 2.4 proves that (A3) is a su�
ient 
ondition on theinner produ
t (·, ·) for the maps Π(·|C) and σ(·|C) be well de�ned.Proposition 2.4. For ea
h z ∈ V , there exists v∗ ∈ C su
h that
‖z − v∗‖2 = min

v∈C
‖z − v‖2 = ‖z‖2 − σ(z|C)2. (2.3)Moreover, σ(z|C) = ‖v∗‖, and

(z − v∗, v∗) = 0. (2.4)Proof. Let us 
hoose any sequen
e wn ∈ C with ‖z − wn‖ ց inf{‖z − w‖ : w ∈
C}. Sin
e (wn)n∈N

is a bounded sequen
e in V , there exists a subsequen
e wni
⇀ v ∈

V . v belongs to C be
ause wni
∈ C and C is weakly 
losed. Sin
e also z−wni

weakly
onverges to x − v, then ‖z − v‖ ≤ lim inf ‖z − wni
‖ ≤ inf{‖z − w‖ : w ∈ C}. Thus,there exists v∗ ∈ C su
h that ‖z − v∗‖2 = minv∈C ‖z − v‖2. The se
ond equality of(2.3) follows from

min
v∈C

‖z − v‖2 = min
λ∈R+,w∈C
‖w‖=1

‖z − λw‖2 (2.5)
= min

λ∈R+,
‖z‖2 − 2λ(w, z) + λ2 (2.6)

= min
w∈C
‖w‖=1

‖z‖2 − (z, w)2 (2.7)
= ‖z‖2 − max

w∈C
‖w‖=1

(z, w)2 (2.8)
= ‖z‖2 − σ(z|C)2. (2.9)To prove the se
ond part we 
onsider the equality

1

2
(v, v)− (z, v) =

1

2
‖z − v‖2 −

1

2
‖z‖2.This implies that for Jz(v) = 1

2 (v, v)− (z, v) the minimization problem
Jz(v

∗) = min
v∈C

Jz(v). (2.10)is equivalent to
min
v∈C

‖z − v‖2, (2.11)and
min
v∈C

Jz(v) =
1

2
min
v∈C

‖z − v‖2 −
1

2
‖z‖2. (2.12)If z = 0 then v∗ = 0 and the theorem 
learly holds. Now, assume that z 6= 0.From (2.12) and (2.8) we dedu
e

min
v∈C

Jz(v) = −
1

2
max
w∈C
‖w‖=1

(z, w)2. (2.13)3



Thus, v∗ ∈ C solves (2.10) if and only if v∗ = σ(z|C)w∗ for some w∗ ∈ C with
‖w∗‖ = 1. Therefore, the �rst statement follows. To prove the se
ond one, from(2.13) follows

Jz(v
∗) = −

1

2
σ(z|C)2 = −

1

2
‖v∗‖2, (2.14)and by using (2.12) we obtain (2.3). Finally, from (2.14) we have that

(v∗, v∗)− (z, v∗) = 0,and this follows (2.4).A �rst 
onsequen
e is the following.Corollary 2.5. The map σ(·|C) de�nes a seminorm on V.3. Main Result. From now on, we will denote by U(C) = spanC
‖·‖ the 
losedlinear subspa
e generated by C. Now, we introdu
e the set

V(z|C) = {w ∈ C : ‖w‖ = 1 and σ(z|C) = |(z, w)|}. (3.1)Then the proje
tor Π(·|C) 
an be written as
Π(z|C) = σ(z|C)V(z|C), (3.2)whi
h means that for v∗ ∈ Π(z|C), there exists w∗ ∈ V(z|C) su
h that v∗ = σ(z|C)w∗.Also Proposition 2.4 allows to 
onstru
t a sequen
e {en}n≥0 ⊂ V by means of thefollowing iterative s
heme. Let z0 = 0, and, for ea
h n ≥ 1, take

en−1 = z − zn−1, and update (3.3)
zn = zn−1 + z(n) where z(n) ∈ Π(en−1|C). (3.4)Observe that for n > 1,
zn =

n∑

i=1

z(i), z(i) ∈ Π(z − zi−1|C) (3.5)or, equivalently, by using Proposition 2.4,
zn =

n∑

i=1

σ(ei−1|C)w(i), w(i) ∈ V(ei−1|C). (3.6)We introdu
e the following de�nition of the C- rankDefinition 3.1. We de�ne the C-rank of an element z ∈ V , denoted by rank(z|C),as follows:
rank(z|C) = min{n : σ(en|C) = 0}, (3.7)where by 
onvention min(∅) = ∞.Now, we state the main result of this paper:Theorem 3.2. For z ∈ V , the sequen
e {en}n>0 
onstru
ted in (3.3) satis�esthat limn→∞ en = e∗ and e∗ ∈ U(C)⊥. Moreover,

PU(C)(z) = z − e∗ =

rank(z|C)∑

i=1

σ(ei−1|C)w(i),4



where PU(C) is the orthogonal proje
tion over U(C), and
‖en‖

2 = ‖z‖2 −
n∑

i=1

σ(ei−1|C)2 =

rank(z|C)∑

i=n+1

σ(ei−1|C)2.In 
onsequen
e,
‖z − PU (z)‖

2 = ‖z‖2 −

rank(z|C)∑

i=1

σ(ei−1|C)2.Proof. In order to simplify notation, in this proof we will use σi = σ(ei−1|C), forall i ≥ 0. Let us �rst note that it holds for 1 ≤ n ≤ rank(z|C) that z(n) 6= 0 sin
e forsu
h n, σ(z − zn−1|C) > 0 by de�nition of C-rank. We have
‖en‖

2 = ‖en−1 − z(n)‖2 (3.8)
= ‖en−1‖

2 − ‖z(n)‖2 (by using (2.3)) (3.9)
= ‖en−1‖

2 − σ2
n (3.10)Thus {‖en‖}rank(z|C)

n=0 is a stri
tly de
reasing sequen
e of non-negative real numbers.We �rst assume that rank(z|C) = r < ∞. Then, σr = σ(z − zr|C) = 0 and
z(r+1) = 0 sin
e

‖z − zr − z(r+1)‖2 = ‖z − zr‖
2 − σ2

r = ‖z − zr‖
2We have

‖z − zr‖
2 = min

v∈C
‖z − zr − v‖2 ≤ ‖z − zr − λv‖2for all λ ∈ R and v ∈ C. This implies that
(z − zr, v) = 0for all v ∈ C. Thus z − zr ∈ U⊥ and the �rst statement of the theorem follows.On the other hand, we assume that rankσ(z) = ∞. Then {‖en‖}∞n=0 is a stri
tlyde
reasing sequen
e of non-negative real numbers, and there exists

lim
n→∞

‖en‖ = lim
n→∞

‖z − zn‖ = R ≥ 0.Pro
eeding from (3.10) and using that e0 = z, we obtain
‖en‖

2 = ‖z‖2 −
n∑

k=1

σ2
k. (3.11)In 
onsequen
e,∑∞

k=1 σ
2
k is a 
onvergent series and limn→∞ σ2

n = 0. Thus, we obtainalso
lim
n→∞

σn = lim
n→∞

‖z(n)‖ = 0. (3.12)For all n ≥ 1 and v ∈ C with ‖v‖ = 1, we have
(en−1, v)

2 ≤ max
w∈C: ‖w‖=1

(en−1, w)
2 = σ2

n (3.13)5



and then
lim
n→∞

(en−1, v)
2
= 0 (3.14)Assuming that {en}

∞
n=0 is 
onvergent in the ‖ · ‖-norm to some e∗ ∈ V , sin
e thesequen
e is also weakly 
onvergent to e∗ we obtain from (3.14) that

(e∗, v) = 0for all v ∈ C with ‖v‖ = 1. Thus, e∗ ∈ U⊥. To 
on
lude the proof we only need toshow that {en}∞n=1 is a Cau
hy sequen
e in V in the ‖ ·‖-norm. The following lemmaswill be useful.Lemma 3.3. For ea
h n,m ≥ 1, it follows that
∣∣∣
(
em−1, z

(n)
)∣∣∣ ≤ σmσnProof. We have

∣∣∣
(
em−1, z

(n)
)∣∣∣ =

∣∣∣
(
em−1, σnw

(n)
)∣∣∣ =

∣∣∣
(
em−1, w

(n)
)∣∣∣ σn ≤ σmσnwhere we have used

σm = |
(
em−1, w

(m)
)
| = max

w∈C:‖w‖=1
| (em−1, w) | ≥ |

(
em−1, w

(n)
)
|,Lemma 3.4. For every ε > 0 and every N ∈ N there exists τ ≥ N su
h that

στ

τ∑

k=1

σk ≤ ε. (3.15)Proof. Sin
e ∑∞
j=1 σ

2
j < ∞, for a given ε > 0 and N ∈ N, we 
hoose n ≥ N su
hthat

∞∑

j=n+1

σ2
j ≤ ε/2Sin
e limj→∞ σj = 0, we 
onstru
t τ : N −→ N de�ned indu
tively by τ(1) = 1 andfor all k ≥ 1,

τ(k + 1) = min
j>τ(k)

{
σj ≤ στ(k)

}
,su
h that τ is stri
tly in
reasing and limk→∞ τ(k) = ∞. Observe that for all k ≥ 1and j satisfying τ(k) ≤ j < τ(k + 1), it follows that

στ(k+1) ≤ στ(k) ≤ σj .Thus, for all 1 ≤ j < τ(k + 1), we have
στ(k+1) ≤ σj6



Now, sin
e limk→∞ στ(k) = 0, we 
an 
hoose τ = τ(k+1) > n large enough satisfying
στ

n∑

j=1

σj ≤ ε/2.Then
στ

τ∑

j=1

σj = στ

n∑

j=1

σj + στ

τ∑

j=n+1

σj ≤ ε/2 + στ

τ∑

j=n+1

σj

≤ ε/2 +

τ∑

j=n+1

σ2
j ≤ ε/2 +

∞∑

j=n+1

σ2
j

≤ εThis proves the lemma.Lemma 3.5. For all M > N > 0, it follows that
‖eN−1 − eM−1‖

2 ≤ ‖eN−1‖
2 − ‖eM−1‖

2 + 2 σM

M∑

k=1

σkProof. We have
‖eN−1 − eM−1‖

2 = ‖eN−1‖
2 + ‖eM−1‖

2 − 2 (eM−1, eN−1)

= ‖eN−1‖
2 + ‖eM−1‖

2 − 2

(
eM−1, eM−1 +

M−1∑

k=N

z(k)

)

= ‖eN−1‖
2 − ‖eM−1‖

2 − 2

M−1∑

k=N

(
eM−1, z

(k)
)

≤ ‖eN−1‖
2 − ‖eM−1‖

2 + 2 σM

M−1∑

k=N

σk (by using Lemma 3.3)
≤ ‖eN−1‖

2 − ‖eM−1‖
2 + 2 σM

M∑

k=1

σk (by adding positive terms.)This ends the proof of lemma.Sin
e the limit of ‖en‖2 goes to R2 as n → ∞, and it is a de
reasing sequen
e,for a given ε > 0 there exists kε > 0 su
h that
R2 ≤ ‖em−1‖

2 ≤ R2 + ε2/2for all m > kε. Now, we assume that m > kε. From Lemma 3.4, for ea
h m+ p thereexists τ > m+ p su
h that
στ

τ∑

k=1

σk ≤ ε2/4.Now, we would to estimate
‖em−1 − em+p−1‖ ≤ ‖em−1 − eτ−1‖+ ‖eτ−1 − em+p−1‖.7



By using Lemma 3.5 with M = τ and N = m and m+ p, we obtain that
‖em−1 − eτ−1‖

2 ≤ R2 + ε2/2− R2 + ε2/2 = ε2,and
‖em+p−1 − eτ−1‖

2 ≤ R2 + ε2/2−R2 + ε2/2 = ε2,respe
tively. In 
onsequen
e {en}∞n=0 is a Cau
hy sequen
e in the ‖ · ‖-norm and it
onverges to e∗.4. An Appli
ation to a Fra
tional Blind De
onvolution Model. Theabove results provide a theoreti
al ground for a large 
lass of nonlinear approximationproblems. In this se
tion, we will illustrate this through a parti
ular example mod-elling blind de
onvolution, introdu
ed in [2℄. In order to self 
ompleteness, we outlinethe main aspe
ts of the model and refer the interested reader to [2℄ for details.4.1. The Blind De
onvolution Problem. It is well known that an image
u(x, y) gets degraded due to di�erent 
auses, whi
h 
an usually be mathemati
allyformulated as follows:

u0(x, y) = (K ∗ u)(x, y) + n(x, y) (4.1)where K(x, y) is an operator representing the deterministi
 degrading of the image,and n(x, y), the sto
hasti
 additive errors (noise). In this se
tion we are going to
onsider a linear and shift invariant 
onvolution operator, de�ned as usual:
(K ∗ u)(x, y) =

∫

R2

K(x− α, y − β)dαdβFor simpli
ity, we will 
onsider pure 
onvolution models (i.e., without noise,
n(x, y) = 0).Physi
al 
onvolution features, su
h as blurring or di�usion, 
ome from smoothoperator kernels, K.De
onvolution problems 
onsist of re
overing the original image u from the 
on-volved, observed, one (u0). The problem should be solved in the 
ontext of Fouriertransforms, due to the fundamental theorem of 
onvolution:

K̂ ∗ u(ξ, η) = K̂(ξ, η)û(ξ, η)A naive way to de
onvolve is thus to obtain û by a simple division. In pra
ti
e,regularity of K implies that its Fourier transform de
ays fast, and this dire
t de
on-volution is unstable, not allowing the re
overy of high frequen
es of û). A regularizingterm must be in
luded in order to stabilize the problem.The problem gets even more 
ompli
ated when the kernel K is not known (blindde
onvolution). We must worry about the stability, as before, but we also haveto estimate the kernel. The model to analize, whi
h we explain here, makes theassumption that the kernel is a Gaussian. This is not a risked assumption be
auseblurring is produ
ed by that kind of kernels). Fourier transform of Gaussians are alsoGaussians, and, hen
e: 8



K̂(ξ, η) = ce−γ(ξ2+η2) := Ĝγ(ξ, η)being c a 
onstant normalizing the fun
tion, and γ a positive parameter related tothe amount of di�usion. A dire
t approa
h to the problem is to �t γ. However, on
eagain, this naive approa
h is wrong. The problem is extremely ill posed, be
ause thereexist in�nite solutions: any Gaussian with a di�usion smaller than γ (Gλ for λ ≤ γ)is also a 
onvolution kernel of the image, and, at least, any w = Gλ ∗ u is a solutionof the de
onvolution problem. There are many other solutions. In fa
t, additional
onditions must be required in order to, at least, expe
t for a good resolution.In any 
ase, it is not a right strategy to look for the parameter γ. In the �rstpla
e, the own image 
an distort this parameter. On the other side, knowledge of thekernel is dire
tly related to the amount of regularization needed: the most a

ura
yfor the kernel implies the least amount of frequen
es re
overed.4.2. The Fra
tional De
onvolution Model. The above remarks lead us to
onsider a model based on an iterative fra
tional de
omposition of the kernel. De-
omposition will be obtained by logarithmi
 approximation, as follows:
û0(ξ, η) = exp(−γ(ξ2 + η2)) · û(ξ, η)Thus,

log(|û0(ξ, η)|) ≈ −γ(ξ2 + η2) + log(|û(ξ, η)|)Assumptions on the image (see [2℄) let us �x one of the frequen
es, for instan
e,
η = 0, and the fun
tion v(ξ) = log(|û(ξ, 0)|) is de
reasing. By radial symmetry, u 
anbe re
overed from v. Analogously, we denote v0(ξ) = log(|û0(ξ, 0)|). Without loss ofgenerality, let us assume that v0(ξ) = 0 (in any other 
ase, the arguments below arevalid for w(ξ) = v0(ξ)− v0(0).Among all the possible 
hoi
es of v we sele
t the one given by the followingde
omposition:

v0(ξ) = v(ξ)− h(ξ) ; (h(ξ) =
∑

j

αj |ξ|
βj (4.2)where αj and 0 < βj ≤ 2 are su
h that h(ξ) is the optimal approximation (theproje
tion) to v0 in the spa
e generated by the di
tionary:

ξβ , with 0 < β ≤ 2. Therefore, we are in the setting establlished in example (2.3).Of 
ourse, nonlinearity 
omes from the powers β, and this is the main di�
ulty to �tthe problem in the approximation frame.This is equivalent to de
ompose the kernel Gγ = G
β1/2
α1 ∗G

β2/2
α2 ∗ · · · ∗G

βk/2
αk ∗ · · · ,where G

βk/2
αk are quasigaussian kernels (those whose Fourier transform is a fra
tionalpower of the Gaussian).4.3. Convergen
e of the Algorithm. Leaving aside stability and regulariza-tion aspe
ts (that 
ould be in
lded in a wider 
lass of methods known as weak greedyones), the a
tual algorithm is as follows: 9



1. Pivot v0, h0 = 0.2. Given vk, hk, get the proje
tion of vk on the 
one, �nding the 
oe�
ients αkand βk.3. De
onvolve uk from G
βj

αj , whi
h is equivalent to obtain vk+1(ξ) = vk(ξ) −
αk|ξ|βk ; hk+1 = hk + αk|ξ|βk .4. Stop the pro
ess when ||vk+1|| > ||vk||, or ||αk+1|ξ|βk+1−αk|ξ|βk || < toleran
e.5. Return v = vk, h = hk.The limit 
ase (toleran
e= 0) leads to two possibilities: if the pro
ess is �nite,the proje
tion v lays in the spa
e generated by the 
one; in the in�nite 
ase, it is inthe 
losure of su
h spa
e. In any of these 
ases, the theoreti
al results in the previousse
tion show that this proje
tion exists and it is the desired optimal approximation.As a late remark we remark that v is the residual of the proje
tion, and it 
onsistsof the part of the fun
tion that 
annot be expressed by fra
tional powers of ξ. Thus,the fun
tion v is the least regular of the possible ones, and the 
orresponding image

u is the one with most edges among all of the solutions of the de
onvolution problem.Although de
onvolution te
hniques at ea
h step are linear in the sense that theyare not adaptive (do not depend on the image) and they are 
omputed via fast Fouriertransforms, the overall algorithm is nonlinear and adaptive. De
omposition does notdepend only on the kernel, but on the observed image. In the following se
tion, wewill remark these features of the algorithm.5. Examples. In this se
tion we will display some examples in order to illustratethe above results.The �rst three �gures show the de
onvolution pro
ess: the dete
ted quasi-Gaussiankernels (below) and their 
orresponding partial de
onvolved images (above). The �rstimage is the original (blurred) one, and the blurring kernel whi
h has to be dete
ted.In the shown examples, good quality de
onvolved image is obtained after three or foursteps, even for kernels with a large varian
e. The de
onvolved image re
overs manyof the original details whi
h 
annot be re
overed by other models (we refer the readerto [2, 5℄ for 
omparison purposes).Adaptiveness of the pro
ess is shown in the �rst two �gures: the blurring kernelis the same for both images, but it 
an be seen that the de
omposition of the kernel isdi�erent in both 
ases, due to the features of the original, blurred, image. Fra
tionalregularity of both images is not the same, and the model dete
ts di�erent powers. Wemay see that, in Lena image, details are re
overed in a more gradual way than in thesatellite, be
ause the �rst one is ri
her in texture than the other one.The third example shows that dependen
e on the kernel is not linear: it is in-teresting to observe that di�erent di�usion parameters (γ) give pla
e to di�erentde
omposition, though it 
ould seem natural to think that, as Gγ ∗ Gρ = Gγ+ρ, thede
ompositions should follow a similar sequen
e. As it happens, the kernel in these
ond example is Gγ ∗Gγ (being Gγ the blurring kernel in the third example). Nev-ertheless, the de
omposition in the se
ond example does not relates (at least dire
tly)to the de
omposition in the third example.Finally, we show a, non a
ademi
, real life appli
ation (restoration of a baroquepainting). It is important to ensure that fra
tional de
omposition (that is, fra
tionalproje
tion) works in a multi
hannel 
ontext as it is that of 
olor images (see [4℄).It is also interesting to remark that, in this example, as it is a real one, the onlyassumption we 
an make is to 
onsider the image was blurred by natural 
auses, and,then, the kernel is a Gaussian or quasi-Gaussian blur. Let us noti
e that the imageshown is very spoiled and it has some other added di�
ulties besides blurring. Most10



other models are not able to obtain good de
onvolution be
ause the s
rat
hing ofthe image. As we see, in our fra
tional model, the image 
an be de
onvolved whilekeeping this s
rat
hes, whi
h is often important in order to apply parti
ular and lo
almodels for arranging them.
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6. Con
lusion and Final Remarks. In this paper we presented some theoret-i
al results for nonlinear approximation whi
h is underlying many greedy algorithms.In parti
ular, our results show an alternative to 
onvexity, whi
h is a property oftenlost in the nonlinearity 
ontext.In order to illustrate the strength of the results, we displayed an example relatedto image restoration. In general, image restoration and denoising are situations wherethis theory applies: most models 
onsist of �nding good approximations to the imageunder some restri
tions. In the shown example, the theory is not only useful to prove
onsisten
e and existen
e of the de
onvolution, but it also explains some features ofthe de
onvolved image (re
overy of edges, for instan
e).11
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Fig. 5.1: Top: Blurred image and kernel (satellite). Bottom: Blind de
onvolutionsequen
e with the 
orresponding dete
ted kernels.The 
omputational examples show how partial (iterative) proje
tions work: the�rst steps are smooth and it is in the last ones, whi
h 
orrespond to the lower ex-ponents when details are obtained. The observed image is thus de
omposed in aquasigaussian kernel and versions of de
onvolutions with di�erent degrees of smooth-ing (exponents). The model, hen
e, propose a frequen
y-regularity analysis of theobserved image, whi
h is a nonlinear multiresolution s
heme.The fra
tional model introdu
ed in this paper also shows some of the nonlinearfeatures one 
an wait: adaptiveness to the initial 
onditions, and joint dete
tion ofboth the de
onvolved image and the blurring kernel. Su
h as it is proposed, thede
onvolved image is the residual of the pro
ess. Thus, when the blurred image is12
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Fig. 5.2: Top: Blurred image and kernel (satellite). Bottom: Blind de
onvolutionsequen
e with the 
orresponding dete
ted kernels. (40 pasos de la e
ua
ión del 
alor)in the subspa
e we are proje
ting, the de
onvolution we obtain is just the null image(a bla
k one). In other words, in general, the image we obtain is the one with mostdetails, among all the possible ones.REFERENCES[1℄ A. Fal
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(a) Original image: Epiphany

(b) Fra
tional Blind De
onvolutionFig. 5.3: Color Fra
tional Blind de
onvolution. Theme: Epiphany, from the altarpie
eof Saint Bartholomew Chur
h, Bienservida (Spain)15


