
A GENERAL FRAMEWORK FOR NONLINEAR APPROXIMATIONSWITH APPLICATIONS TO IMAGE RESTORATION∗V. CANDELA† AND A. FALCÓ, PANTALEÓN D. ROMERO‡Abstrat. In this paper we establish su�ient onditions for the existene and uniqueness ofoptimal nonlinear approximations. Most nonlinear problems do not only have di�ulties in order toimplement good projetion algorithms, but also the subsets where we projet the funtions do nothave the geometri properties neessary for lassi existene results (suh as onvexity, for instane).The theoretial results we show here overome some of these di�ulties. We illustrate these resultsby applying them to a frational model for image deonvolution, where we an ensure existene anduniqueness of the solution and onvergene of the omputational algorithms.Key words. Hilbert Spae, Pure Greedy Algorithm, Frational Deonvolution, Image Restora-tion.AMS subjet lassi�ations. 65D15,40A251. Introdution. Unlike linear approximation, where there exists a solid theo-retial bakground establishing onditions for existene, uniqueness and algorithmiissues, nonlinear approximation is a �eld with not so deep a knowledge. Nonlinearityis suh a wide onept that most fundamental onepts in linear spaes annot begeneralized without losing their strength.Lak of the vetorial struture of the spaes, of ourse, is one of the main di�ul-ties to obtain adequate results, but there are other features whih are often lost, someof them geometrial (onvexity, for instane) and other ones algebrai (linear bases).In the last years, sparsity helped the devise of nonlinear models, by introduing theonept of ditionaries as generators of the spae sari�ing linear independene. This,optimal approximation an be redued to the searh of a good ditionary �rst, and,then, the best �tted subset of the ditionary to get an adequate approximation. Thisis the priniple lying under the so alled greedy algorithms.However, ditionaries annot overome in general strutural, mostly geometri,problems. Convexity is usually one of these problems: in pratie, spaes generatedby any element of the ditionary are not onvex, thus eliminating one of the su�ientonditions to ensure the existene of optimal approximations.In this paper, we provide theoretial results related to nonlinear approximationwith milder onditions to give a ground to the general topi of nonlinear approximationfor a large lass of settings. These onditions are veri�ed in many pratial problems.Image proessing, and, partiularly, image restoration is one of these �elds wherethis theory an be applied. Both deonvolution and denoising of images are best dealtwith adaptive nonlinear models than linear ones (leaving aside omputational aspets),in the sense that the proess must work in a di�erent way not only for di�erent typeof onvolution kernels, or di�erent noises, but also depending on the image itself. In[2, 5℄, the authors propose a blind deonvolution model based on an iterative frationaldeomposition of the kernel, with a frational parameter obtained by the properties of
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the image itself. Though, in pratie, this model onverges with high quality results,its onvergene has been theoretially proved in the ontext introdued in this paper.The struture of this paper is as follows: in �2, we introdue the notation, de�ni-tions and basi preliminary results in order to simplify the main results in the paper,whih are shown in �3. In �4, we onsider the blind deonvolution model in [2, 5℄ as apartiular ase of this result, and we display some examples of the appliation of themodel in �5. Finally, we will draw onlusions in �6.2. De�nitions and preliminary results. Let V be a Hilbert spae; we denoteby (·, ·) and ‖ · ‖ a general inner produt on V and its assoiated norm. Let C be anonempty subset in V suh that(A1) C, is a one, that is, if v ∈ C then λv ∈ C for all λ ≥ 0, and(A2) C is weakly losed in V.Example 2.1. Clearly, every losed and onvex one in V satisfy (A1) and(A2).Example 2.2. Faló and Hakbush [1℄ proved that for eah r ∈ Nd the set Tr,of tensors in Tuker format whih is a non-onvex one, is a weakly losed set in anytensor Banah spae with a norm not weaker than the injetive norm.Example 2.3. Let us onsider the non-onvex one
C =

{
u ∈ L2[0, 1] : u(x) = αxβ where α ≥ 0 and β ∈ [0, 2]

}
.Then the map Φ : R+ × [0, 2] → L2[0, 1], given by Φ(α, β)(x) = αxβ , is ontinuousbeause

‖Φ(α, β)− Φ(α′, β′)‖2L2[0,1]
≤

(α− α′)2

min(β, β′)2 + 1
.Now, assume that {un(x) = αnx

βn}n∈N ⊂ C weakly onverges to u in L2[0, 1]. Then
{un}n∈N is bounded:

‖un‖
2
L2[0,1]

=
α2
n

β2
n + 1

≤ Cfor some C ≥ 0 and for all n ∈ N. As a onsequene, {(αn, βn)}n∈N is a boundedsequene in the losed set R+ × [0, 2]. Then, there exists a onvergent subsequene,also denoted by {(αn, βn)}n∈N, to some (α, β) ∈ R+ × [0, 2].Sine
lim
n→∞

‖Φ(αn, βn)− Φ(α, β)‖L2[0,1] = 0,we have that un− v, where v(x) = αxβ , onverges to zero in L2[0, 1]. Thus v = u, and
C is weakly losed in L2[0, 1].Now we want to haraterize a projetion on C with respet to a given innerprodut (·, ·) on V , with assoiated norm ‖ · ‖.A C-projetion with respet to inner produt (·, ·), with assoiated norm is a map
Π(·|C) : z ∈ V 7→ Π(z|C) ⊂ C de�ned by

Π(z|C) = argmin
v∈C

‖z − v‖2. (2.1)Let be the map σ(·|C) : V → R de�ned by
σ(z|C) = max

w∈C
‖w‖=1

|(z, w)|, (2.2)2



The following Proposition 2.4 proves that (A3) is a su�ient ondition on theinner produt (·, ·) for the maps Π(·|C) and σ(·|C) be well de�ned.Proposition 2.4. For eah z ∈ V , there exists v∗ ∈ C suh that
‖z − v∗‖2 = min

v∈C
‖z − v‖2 = ‖z‖2 − σ(z|C)2. (2.3)Moreover, σ(z|C) = ‖v∗‖, and

(z − v∗, v∗) = 0. (2.4)Proof. Let us hoose any sequene wn ∈ C with ‖z − wn‖ ց inf{‖z − w‖ : w ∈
C}. Sine (wn)n∈N

is a bounded sequene in V , there exists a subsequene wni
⇀ v ∈

V . v belongs to C beause wni
∈ C and C is weakly losed. Sine also z−wni

weaklyonverges to x − v, then ‖z − v‖ ≤ lim inf ‖z − wni
‖ ≤ inf{‖z − w‖ : w ∈ C}. Thus,there exists v∗ ∈ C suh that ‖z − v∗‖2 = minv∈C ‖z − v‖2. The seond equality of(2.3) follows from

min
v∈C

‖z − v‖2 = min
λ∈R+,w∈C
‖w‖=1

‖z − λw‖2 (2.5)
= min

λ∈R+,
‖z‖2 − 2λ(w, z) + λ2 (2.6)

= min
w∈C
‖w‖=1

‖z‖2 − (z, w)2 (2.7)
= ‖z‖2 − max

w∈C
‖w‖=1

(z, w)2 (2.8)
= ‖z‖2 − σ(z|C)2. (2.9)To prove the seond part we onsider the equality

1

2
(v, v)− (z, v) =

1

2
‖z − v‖2 −

1

2
‖z‖2.This implies that for Jz(v) = 1

2 (v, v)− (z, v) the minimization problem
Jz(v

∗) = min
v∈C

Jz(v). (2.10)is equivalent to
min
v∈C

‖z − v‖2, (2.11)and
min
v∈C

Jz(v) =
1

2
min
v∈C

‖z − v‖2 −
1

2
‖z‖2. (2.12)If z = 0 then v∗ = 0 and the theorem learly holds. Now, assume that z 6= 0.From (2.12) and (2.8) we dedue

min
v∈C

Jz(v) = −
1

2
max
w∈C
‖w‖=1

(z, w)2. (2.13)3



Thus, v∗ ∈ C solves (2.10) if and only if v∗ = σ(z|C)w∗ for some w∗ ∈ C with
‖w∗‖ = 1. Therefore, the �rst statement follows. To prove the seond one, from(2.13) follows

Jz(v
∗) = −

1

2
σ(z|C)2 = −

1

2
‖v∗‖2, (2.14)and by using (2.12) we obtain (2.3). Finally, from (2.14) we have that

(v∗, v∗)− (z, v∗) = 0,and this follows (2.4).A �rst onsequene is the following.Corollary 2.5. The map σ(·|C) de�nes a seminorm on V.3. Main Result. From now on, we will denote by U(C) = spanC
‖·‖ the losedlinear subspae generated by C. Now, we introdue the set

V(z|C) = {w ∈ C : ‖w‖ = 1 and σ(z|C) = |(z, w)|}. (3.1)Then the projetor Π(·|C) an be written as
Π(z|C) = σ(z|C)V(z|C), (3.2)whih means that for v∗ ∈ Π(z|C), there exists w∗ ∈ V(z|C) suh that v∗ = σ(z|C)w∗.Also Proposition 2.4 allows to onstrut a sequene {en}n≥0 ⊂ V by means of thefollowing iterative sheme. Let z0 = 0, and, for eah n ≥ 1, take

en−1 = z − zn−1, and update (3.3)
zn = zn−1 + z(n) where z(n) ∈ Π(en−1|C). (3.4)Observe that for n > 1,
zn =

n∑

i=1

z(i), z(i) ∈ Π(z − zi−1|C) (3.5)or, equivalently, by using Proposition 2.4,
zn =

n∑

i=1

σ(ei−1|C)w(i), w(i) ∈ V(ei−1|C). (3.6)We introdue the following de�nition of the C- rankDefinition 3.1. We de�ne the C-rank of an element z ∈ V , denoted by rank(z|C),as follows:
rank(z|C) = min{n : σ(en|C) = 0}, (3.7)where by onvention min(∅) = ∞.Now, we state the main result of this paper:Theorem 3.2. For z ∈ V , the sequene {en}n>0 onstruted in (3.3) satis�esthat limn→∞ en = e∗ and e∗ ∈ U(C)⊥. Moreover,

PU(C)(z) = z − e∗ =

rank(z|C)∑

i=1

σ(ei−1|C)w(i),4



where PU(C) is the orthogonal projetion over U(C), and
‖en‖

2 = ‖z‖2 −
n∑

i=1

σ(ei−1|C)2 =

rank(z|C)∑

i=n+1

σ(ei−1|C)2.In onsequene,
‖z − PU (z)‖

2 = ‖z‖2 −

rank(z|C)∑

i=1

σ(ei−1|C)2.Proof. In order to simplify notation, in this proof we will use σi = σ(ei−1|C), forall i ≥ 0. Let us �rst note that it holds for 1 ≤ n ≤ rank(z|C) that z(n) 6= 0 sine forsuh n, σ(z − zn−1|C) > 0 by de�nition of C-rank. We have
‖en‖

2 = ‖en−1 − z(n)‖2 (3.8)
= ‖en−1‖

2 − ‖z(n)‖2 (by using (2.3)) (3.9)
= ‖en−1‖

2 − σ2
n (3.10)Thus {‖en‖}rank(z|C)

n=0 is a stritly dereasing sequene of non-negative real numbers.We �rst assume that rank(z|C) = r < ∞. Then, σr = σ(z − zr|C) = 0 and
z(r+1) = 0 sine

‖z − zr − z(r+1)‖2 = ‖z − zr‖
2 − σ2

r = ‖z − zr‖
2We have

‖z − zr‖
2 = min

v∈C
‖z − zr − v‖2 ≤ ‖z − zr − λv‖2for all λ ∈ R and v ∈ C. This implies that
(z − zr, v) = 0for all v ∈ C. Thus z − zr ∈ U⊥ and the �rst statement of the theorem follows.On the other hand, we assume that rankσ(z) = ∞. Then {‖en‖}∞n=0 is a stritlydereasing sequene of non-negative real numbers, and there exists

lim
n→∞

‖en‖ = lim
n→∞

‖z − zn‖ = R ≥ 0.Proeeding from (3.10) and using that e0 = z, we obtain
‖en‖

2 = ‖z‖2 −
n∑

k=1

σ2
k. (3.11)In onsequene,∑∞

k=1 σ
2
k is a onvergent series and limn→∞ σ2

n = 0. Thus, we obtainalso
lim
n→∞

σn = lim
n→∞

‖z(n)‖ = 0. (3.12)For all n ≥ 1 and v ∈ C with ‖v‖ = 1, we have
(en−1, v)

2 ≤ max
w∈C: ‖w‖=1

(en−1, w)
2 = σ2

n (3.13)5



and then
lim
n→∞

(en−1, v)
2
= 0 (3.14)Assuming that {en}

∞
n=0 is onvergent in the ‖ · ‖-norm to some e∗ ∈ V , sine thesequene is also weakly onvergent to e∗ we obtain from (3.14) that

(e∗, v) = 0for all v ∈ C with ‖v‖ = 1. Thus, e∗ ∈ U⊥. To onlude the proof we only need toshow that {en}∞n=1 is a Cauhy sequene in V in the ‖ ·‖-norm. The following lemmaswill be useful.Lemma 3.3. For eah n,m ≥ 1, it follows that
∣∣∣
(
em−1, z

(n)
)∣∣∣ ≤ σmσnProof. We have

∣∣∣
(
em−1, z

(n)
)∣∣∣ =

∣∣∣
(
em−1, σnw

(n)
)∣∣∣ =

∣∣∣
(
em−1, w

(n)
)∣∣∣ σn ≤ σmσnwhere we have used

σm = |
(
em−1, w

(m)
)
| = max

w∈C:‖w‖=1
| (em−1, w) | ≥ |

(
em−1, w

(n)
)
|,Lemma 3.4. For every ε > 0 and every N ∈ N there exists τ ≥ N suh that

στ

τ∑

k=1

σk ≤ ε. (3.15)Proof. Sine ∑∞
j=1 σ

2
j < ∞, for a given ε > 0 and N ∈ N, we hoose n ≥ N suhthat

∞∑

j=n+1

σ2
j ≤ ε/2Sine limj→∞ σj = 0, we onstrut τ : N −→ N de�ned indutively by τ(1) = 1 andfor all k ≥ 1,

τ(k + 1) = min
j>τ(k)

{
σj ≤ στ(k)

}
,suh that τ is stritly inreasing and limk→∞ τ(k) = ∞. Observe that for all k ≥ 1and j satisfying τ(k) ≤ j < τ(k + 1), it follows that

στ(k+1) ≤ στ(k) ≤ σj .Thus, for all 1 ≤ j < τ(k + 1), we have
στ(k+1) ≤ σj6



Now, sine limk→∞ στ(k) = 0, we an hoose τ = τ(k+1) > n large enough satisfying
στ

n∑

j=1

σj ≤ ε/2.Then
στ

τ∑

j=1

σj = στ

n∑

j=1

σj + στ

τ∑

j=n+1

σj ≤ ε/2 + στ

τ∑

j=n+1

σj

≤ ε/2 +

τ∑

j=n+1

σ2
j ≤ ε/2 +

∞∑

j=n+1

σ2
j

≤ εThis proves the lemma.Lemma 3.5. For all M > N > 0, it follows that
‖eN−1 − eM−1‖

2 ≤ ‖eN−1‖
2 − ‖eM−1‖

2 + 2 σM

M∑

k=1

σkProof. We have
‖eN−1 − eM−1‖

2 = ‖eN−1‖
2 + ‖eM−1‖

2 − 2 (eM−1, eN−1)

= ‖eN−1‖
2 + ‖eM−1‖

2 − 2

(
eM−1, eM−1 +

M−1∑

k=N

z(k)

)

= ‖eN−1‖
2 − ‖eM−1‖

2 − 2

M−1∑

k=N

(
eM−1, z

(k)
)

≤ ‖eN−1‖
2 − ‖eM−1‖

2 + 2 σM

M−1∑

k=N

σk (by using Lemma 3.3)
≤ ‖eN−1‖

2 − ‖eM−1‖
2 + 2 σM

M∑

k=1

σk (by adding positive terms.)This ends the proof of lemma.Sine the limit of ‖en‖2 goes to R2 as n → ∞, and it is a dereasing sequene,for a given ε > 0 there exists kε > 0 suh that
R2 ≤ ‖em−1‖

2 ≤ R2 + ε2/2for all m > kε. Now, we assume that m > kε. From Lemma 3.4, for eah m+ p thereexists τ > m+ p suh that
στ

τ∑

k=1

σk ≤ ε2/4.Now, we would to estimate
‖em−1 − em+p−1‖ ≤ ‖em−1 − eτ−1‖+ ‖eτ−1 − em+p−1‖.7



By using Lemma 3.5 with M = τ and N = m and m+ p, we obtain that
‖em−1 − eτ−1‖

2 ≤ R2 + ε2/2− R2 + ε2/2 = ε2,and
‖em+p−1 − eτ−1‖

2 ≤ R2 + ε2/2−R2 + ε2/2 = ε2,respetively. In onsequene {en}∞n=0 is a Cauhy sequene in the ‖ · ‖-norm and itonverges to e∗.4. An Appliation to a Frational Blind Deonvolution Model. Theabove results provide a theoretial ground for a large lass of nonlinear approximationproblems. In this setion, we will illustrate this through a partiular example mod-elling blind deonvolution, introdued in [2℄. In order to self ompleteness, we outlinethe main aspets of the model and refer the interested reader to [2℄ for details.4.1. The Blind Deonvolution Problem. It is well known that an image
u(x, y) gets degraded due to di�erent auses, whih an usually be mathematiallyformulated as follows:

u0(x, y) = (K ∗ u)(x, y) + n(x, y) (4.1)where K(x, y) is an operator representing the deterministi degrading of the image,and n(x, y), the stohasti additive errors (noise). In this setion we are going toonsider a linear and shift invariant onvolution operator, de�ned as usual:
(K ∗ u)(x, y) =

∫

R2

K(x− α, y − β)dαdβFor simpliity, we will onsider pure onvolution models (i.e., without noise,
n(x, y) = 0).Physial onvolution features, suh as blurring or di�usion, ome from smoothoperator kernels, K.Deonvolution problems onsist of reovering the original image u from the on-volved, observed, one (u0). The problem should be solved in the ontext of Fouriertransforms, due to the fundamental theorem of onvolution:

K̂ ∗ u(ξ, η) = K̂(ξ, η)û(ξ, η)A naive way to deonvolve is thus to obtain û by a simple division. In pratie,regularity of K implies that its Fourier transform deays fast, and this diret deon-volution is unstable, not allowing the reovery of high frequenes of û). A regularizingterm must be inluded in order to stabilize the problem.The problem gets even more ompliated when the kernel K is not known (blinddeonvolution). We must worry about the stability, as before, but we also haveto estimate the kernel. The model to analize, whih we explain here, makes theassumption that the kernel is a Gaussian. This is not a risked assumption beauseblurring is produed by that kind of kernels). Fourier transform of Gaussians are alsoGaussians, and, hene: 8



K̂(ξ, η) = ce−γ(ξ2+η2) := Ĝγ(ξ, η)being c a onstant normalizing the funtion, and γ a positive parameter related tothe amount of di�usion. A diret approah to the problem is to �t γ. However, oneagain, this naive approah is wrong. The problem is extremely ill posed, beause thereexist in�nite solutions: any Gaussian with a di�usion smaller than γ (Gλ for λ ≤ γ)is also a onvolution kernel of the image, and, at least, any w = Gλ ∗ u is a solutionof the deonvolution problem. There are many other solutions. In fat, additionalonditions must be required in order to, at least, expet for a good resolution.In any ase, it is not a right strategy to look for the parameter γ. In the �rstplae, the own image an distort this parameter. On the other side, knowledge of thekernel is diretly related to the amount of regularization needed: the most aurayfor the kernel implies the least amount of frequenes reovered.4.2. The Frational Deonvolution Model. The above remarks lead us toonsider a model based on an iterative frational deomposition of the kernel. De-omposition will be obtained by logarithmi approximation, as follows:
û0(ξ, η) = exp(−γ(ξ2 + η2)) · û(ξ, η)Thus,

log(|û0(ξ, η)|) ≈ −γ(ξ2 + η2) + log(|û(ξ, η)|)Assumptions on the image (see [2℄) let us �x one of the frequenes, for instane,
η = 0, and the funtion v(ξ) = log(|û(ξ, 0)|) is dereasing. By radial symmetry, u anbe reovered from v. Analogously, we denote v0(ξ) = log(|û0(ξ, 0)|). Without loss ofgenerality, let us assume that v0(ξ) = 0 (in any other ase, the arguments below arevalid for w(ξ) = v0(ξ)− v0(0).Among all the possible hoies of v we selet the one given by the followingdeomposition:

v0(ξ) = v(ξ)− h(ξ) ; (h(ξ) =
∑

j

αj |ξ|
βj (4.2)where αj and 0 < βj ≤ 2 are suh that h(ξ) is the optimal approximation (theprojetion) to v0 in the spae generated by the ditionary:

ξβ , with 0 < β ≤ 2. Therefore, we are in the setting establlished in example (2.3).Of ourse, nonlinearity omes from the powers β, and this is the main di�ulty to �tthe problem in the approximation frame.This is equivalent to deompose the kernel Gγ = G
β1/2
α1 ∗G

β2/2
α2 ∗ · · · ∗G

βk/2
αk ∗ · · · ,where G

βk/2
αk are quasigaussian kernels (those whose Fourier transform is a frationalpower of the Gaussian).4.3. Convergene of the Algorithm. Leaving aside stability and regulariza-tion aspets (that ould be inlded in a wider lass of methods known as weak greedyones), the atual algorithm is as follows: 9



1. Pivot v0, h0 = 0.2. Given vk, hk, get the projetion of vk on the one, �nding the oe�ients αkand βk.3. Deonvolve uk from G
βj

αj , whih is equivalent to obtain vk+1(ξ) = vk(ξ) −
αk|ξ|βk ; hk+1 = hk + αk|ξ|βk .4. Stop the proess when ||vk+1|| > ||vk||, or ||αk+1|ξ|βk+1−αk|ξ|βk || < tolerane.5. Return v = vk, h = hk.The limit ase (tolerane= 0) leads to two possibilities: if the proess is �nite,the projetion v lays in the spae generated by the one; in the in�nite ase, it is inthe losure of suh spae. In any of these ases, the theoretial results in the previoussetion show that this projetion exists and it is the desired optimal approximation.As a late remark we remark that v is the residual of the projetion, and it onsistsof the part of the funtion that annot be expressed by frational powers of ξ. Thus,the funtion v is the least regular of the possible ones, and the orresponding image

u is the one with most edges among all of the solutions of the deonvolution problem.Although deonvolution tehniques at eah step are linear in the sense that theyare not adaptive (do not depend on the image) and they are omputed via fast Fouriertransforms, the overall algorithm is nonlinear and adaptive. Deomposition does notdepend only on the kernel, but on the observed image. In the following setion, wewill remark these features of the algorithm.5. Examples. In this setion we will display some examples in order to illustratethe above results.The �rst three �gures show the deonvolution proess: the deteted quasi-Gaussiankernels (below) and their orresponding partial deonvolved images (above). The �rstimage is the original (blurred) one, and the blurring kernel whih has to be deteted.In the shown examples, good quality deonvolved image is obtained after three or foursteps, even for kernels with a large variane. The deonvolved image reovers manyof the original details whih annot be reovered by other models (we refer the readerto [2, 5℄ for omparison purposes).Adaptiveness of the proess is shown in the �rst two �gures: the blurring kernelis the same for both images, but it an be seen that the deomposition of the kernel isdi�erent in both ases, due to the features of the original, blurred, image. Frationalregularity of both images is not the same, and the model detets di�erent powers. Wemay see that, in Lena image, details are reovered in a more gradual way than in thesatellite, beause the �rst one is riher in texture than the other one.The third example shows that dependene on the kernel is not linear: it is in-teresting to observe that di�erent di�usion parameters (γ) give plae to di�erentdeomposition, though it ould seem natural to think that, as Gγ ∗ Gρ = Gγ+ρ, thedeompositions should follow a similar sequene. As it happens, the kernel in theseond example is Gγ ∗Gγ (being Gγ the blurring kernel in the third example). Nev-ertheless, the deomposition in the seond example does not relates (at least diretly)to the deomposition in the third example.Finally, we show a, non aademi, real life appliation (restoration of a baroquepainting). It is important to ensure that frational deomposition (that is, frationalprojetion) works in a multihannel ontext as it is that of olor images (see [4℄).It is also interesting to remark that, in this example, as it is a real one, the onlyassumption we an make is to onsider the image was blurred by natural auses, and,then, the kernel is a Gaussian or quasi-Gaussian blur. Let us notie that the imageshown is very spoiled and it has some other added di�ulties besides blurring. Most10



other models are not able to obtain good deonvolution beause the srathing ofthe image. As we see, in our frational model, the image an be deonvolved whilekeeping this srathes, whih is often important in order to apply partiular and loalmodels for arranging them.
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6. Conlusion and Final Remarks. In this paper we presented some theoret-ial results for nonlinear approximation whih is underlying many greedy algorithms.In partiular, our results show an alternative to onvexity, whih is a property oftenlost in the nonlinearity ontext.In order to illustrate the strength of the results, we displayed an example relatedto image restoration. In general, image restoration and denoising are situations wherethis theory applies: most models onsist of �nding good approximations to the imageunder some restritions. In the shown example, the theory is not only useful to proveonsistene and existene of the deonvolution, but it also explains some features ofthe deonvolved image (reovery of edges, for instane).11
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Fig. 5.1: Top: Blurred image and kernel (satellite). Bottom: Blind deonvolutionsequene with the orresponding deteted kernels.The omputational examples show how partial (iterative) projetions work: the�rst steps are smooth and it is in the last ones, whih orrespond to the lower ex-ponents when details are obtained. The observed image is thus deomposed in aquasigaussian kernel and versions of deonvolutions with di�erent degrees of smooth-ing (exponents). The model, hene, propose a frequeny-regularity analysis of theobserved image, whih is a nonlinear multiresolution sheme.The frational model introdued in this paper also shows some of the nonlinearfeatures one an wait: adaptiveness to the initial onditions, and joint detetion ofboth the deonvolved image and the blurring kernel. Suh as it is proposed, thedeonvolved image is the residual of the proess. Thus, when the blurred image is12
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(a) Original image: Epiphany

(b) Frational Blind DeonvolutionFig. 5.3: Color Frational Blind deonvolution. Theme: Epiphany, from the altarpieeof Saint Bartholomew Churh, Bienservida (Spain)15


