
Abstract

The Proper Generalized Decomposition or, in short, PGD is a technique that reduces
calculation and storage cost drastically and presents somesimilarities with the Proper
Orthogonal Decomposition, in short POD. It was initially introduced for the analyze
and reduction of statistical and experimental data, the a posteriori decomposition tech-
niques, also known as Karhunen-Loeve Expansion, Singular Value decomposition or
Principal Component Analysis, are now used in the context ofmodel reduction. Its
are also related with the so-calledn-best term approximation problem. In this paper
we study and analyze the different mathematical and computational problems appear-
ing in the optimization procedures related with the Proper Generalized Decomposition
and its relativen-best term approximation problem.

Keywords: Proper Generalized Decomposition, Tensor Product HilbertSpace, Best
Approximation.

1 Introduction

The main goal of this paper is to use of a separated representation of the solution of
a class of elliptic problems, which allows to define a tensor product approximation
basis as well as to decouple the numerical integration of a high dimensional model
in each dimension. The milestone of this methodology is the use of shape functions
given by a tensorial based construction. This fact has advantages as the manipulation
of only one dimensional polynomials and its derivatives, that provides a better com-
putational performance and simplified implementation and use one-dimensional inte-
gration rules. Moreover, it makes possible the solution of models defined in spaces of
more than hundred dimensions in some specific applications.This problem is closely
related with the decomposition of a tensor as a sum of rank-one tensors, that it can be
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considered as a higher order extension of the matrix Singular Value Decomposition.

It is well-known, from the Lax-Milgram Lemma, that ifV is a Hilbert space,A(·, ·)
is a bounded,V−elliptic bilinear form onV, and ℓ ∈ V ′. Then there is a unique
solution of the problem

Findu ∈ V such thatA(u, v) = ℓ(v) for all v ∈ V. (1)

A generalized paradigm is that ifV = V1 ⊗ . . . ⊗ Vd then the intensive use of tensor
techniques can help to the computer scientist to ”avoid the curse of dimensionality”.

The Proper Generalized Decomposition (PGD) method has beenrecently proposed
[1, 17, 21] for the a priori construction of separated representations of an elementu in
a tensor product spaceV = V1 ⊗ . . .⊗ Vd, which is the solution of a problem of type
(1) with a symmetric bilinear form. A rank-n approximated separated representation
un of u is defined by

un =

n∑

i=1

v1
i ⊗ . . .⊗ vd

i (2)

The concept of separated representation was introduced by Beylkin and Mohlenkamp
in [4] and it is related with the problem of constructing the approximate solutions of
some classes of problems in high-dimensional spaces by means a separable function.
In particular, for a given map

u : [0, 1]d ⊂ R
d −→ R,

we say that it has aseparable representationif

u(x1, . . . , xd) =

∞∑

j=1

u
(j)
1 (x1) · · ·u

(j)
d (xd) (3)

Now, consider a mesh of[0, 1] in thexk-variable given byNk-mesh points,1 ≤ k ≤ d,
then we can write a discrete version of (3) by

u(xi1 , . . . , xid) =

∞∑

j=1

u
(j)
1 (xi1) · · ·u

(j)
d (xid), (4)

where1 ≤ ik ≤ Nk for 1 ≤ k ≤ d. Observe that for each1 ≤ k ≤ d, if x
j
k ∈ RNk

denotes the vector with componentsu
(j)
k (xik) for 1 ≤ ik ≤ Nk, then (4) it is equivalent

to

u =

∞∑

j=1

x
j
1 ⊗ · · · ⊗ x

j
d. (5)

We point out that (5) is an useful expression to implemented numerical algorithms
using the MATLAB and OCTAVE functionkron.
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This paper is organized as follows. In the next section we introduce the tensor
product Hilbert spaces. In Section we give the definition of progressive representation
in tensor product Hilbert spaces and introduce the existence theorem for the progres-
sive separated representation in Tensor Product Hilbert Spaces using a class of energy
functionals. Next, in 4 we propose two algorithms in order toconstruct the PGD ap-
proach for general elliptic problems. Finally, in Section 5some numerical examples
are given.

2 Tensor product sums on tensor product Hilbert spaces

Let V =
⊗d

i=1 Vi be a tensor product Hilbert space whereVi, for i = 1, 2, . . . , d, are
separable Hilbert spaces. We denote by(·, ·) and‖ · ‖ a general inner product onV
and its associated norm. We introduce norms‖ · ‖i and associated inner products(·, ·)i

onVi, for i = 1, 2, . . . , d. These norms and inner products define a particular norm on
V , denoted‖ · ‖V , defined by

‖ ⊗d
i=1 vi‖V =

d∏

i=1

‖vi‖i,

for all (v1, v2, . . . , vd) ∈ V, whereV is the product spaceV1×· · ·×Vd. The associated
inner product(·, ·)V is defined by

(
⊗d

i=1ui,⊗
d
i=1vi

)
V

=
d∏

i=1

(ui, vi)i,

Recall thatV , endowed with inner product(·, ·)V , is in fact constructed by taking the
completion under this inner product.

Now, we introduce the set ofV of vectors that can be written as a sum of tensor
rank1 elements. For eachn ∈ N, we define the set of rank-n tensors

Sn = {u ∈ V : rank⊗u ≤ n},

introduced in [11] in the following way. Givenu ∈ V we say thatu ∈ S1 if u =
u1 ⊗ u2 ⊗ · · · ⊗ ud, whereui ∈ Vi, for i = 1, . . . , d. Forn ≥ 2 we define inductively
Sn = Sn−1 + S1, that is,

Sn =

{
u ∈ V : u =

k∑

i=1

u(i), u(i) ∈ S1 for 1 ≤ i ≤ k ≤ n

}
.

Note thatSn ⊂ Sn+1 for all n ≥ 1. We will say foru ∈ V that rank⊗u = n if and
only if u ∈ Sn \ Sn−1.

We first consider the following important property of the setS1 and inner product
‖ · ‖V .
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Lemma 1 S1 is weakly closed in(V, ‖ · ‖V ).

Since equivalent norms induce the same weak topology onV , we have the follow-
ing corollary.

Corollary 2 If the norm‖ · ‖ onV is equivalent to the norm‖ · ‖V , thenS1 is weakly
closed in(V, ‖ · ‖).

Corollary 3 If the Vi are finite-dimensional vectors spaces, thenS1 is weakly closed
in (V, ‖ · ‖) whatever the norm‖ · ‖.

3 An existence theorem for the progressive separated
representation in Tensor Product Hilbert Spaces us-
ing a class of energy functionals

Now we want to construct a class of energy functional onS1, with respect to a given
inner product(·, ·) onV , with associated norm‖ · ‖. The results of this section are due
to Falcó and Nouy [10]. We make the following assumption on the inner product.

Assumption 4 We consider that the inner product(·, ·), with associated norm‖ · ‖, is
such thatS1 is weakly closed in(V, ‖ · ‖).

Let us recall that by Corollary 2, the particular norm‖ · ‖V verifies Assumption 4.
Now, we introduce for the norm‖ · ‖ and for eachr ∈ V the functionalEr : V −→ R

by

Er(v) =
1

2
‖v‖2 − (r, v) =

1

2
‖r − v‖2 −

1

2
‖r‖2.

The following result gives the main properties of the energyfunctionalEr.

Theorem 5 For eachr ∈ V there existsv∗ ∈ S1 such that

Ez(v
∗) = min

v∈S1

Ez(v). (6)

Moreover,

Ez(v
∗) = −

1

2
‖v∗‖2, (7)

‖z − v∗‖2 = ‖z‖2 − ‖v∗‖2, (8)

and
(r − v∗, v∗) = 0. (9)
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Definition 6 (Progressive separated representation ofu ∈ V ) For a givenz ∈ V,
takez0 = 0 and forn ≥ 1, proceed as follows:

rn = z − zn−1 (10)

zn = zn−1 + vn, wherevn ∈ argminv∈S1
Ern

(v). (11)

zn is called an optimal rank-n progressive separated representation ofz with respect
to the norm‖ · ‖.

We introduce the following definition of theprogressive rank. Note that in general,
the progressive rank of an elementz ∈ V is different from the optimal rankrank⊗(z).

Definition 7 (Progressive rank) We define the progressive rank of an elementu ∈ V ,
denoted byrankσ(z), as follows:

rankσ(z) = min{n : zn = 0} (12)

wherezn is the progressive separated representation ofz, defined in definition 6, where
by conventionmin(∅) =∞.

Theorem 8 (Existence of the Progressive Separate Representation) For z ∈ V , the
sequence{zn =

∑n
i=1 vi}n>0 defined in definition 6 verifies:

z = lim
n→∞

zn = zrankσ(z) =

rankσ(z)∑

i=1

vi.

Moreover, for each0 ≤ n ≤ rankσ(z)− 1 it follows

‖z − zn‖
2 = ‖z‖2 −

n∑

i=1

‖vi‖
2 =

rankσ(z)∑

i=n+1

‖vi‖
2 (13)

and

‖rn‖

‖z‖
=

n−1∏

j=1

sin θi, (14)

whereθi is the angle betweenri andvi, that is,

θi = arccos
(ri, vi)

‖ri‖‖vi‖
.
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4 A variational formulation of the Proper Generalized
Decomposition

4.1 Formulation of the problem

We consider the following variational problem, defined on the a tensor product Hilbert
space(V, ‖ · ‖V ):

u ∈ V, A(u, v) = ℓ(v) ∀v ∈ V (15)

whereA(·, ·) : V × V −→ R is a continuous,V−elliptic bilinear form,i.e. such that
for all u, v ∈ V,

|A(u, v)| ≤M‖u‖V ‖v‖V , (16)

A(v, v) ≥ α‖v‖2V (17)

for constantsM > 0 andα > 0.

Now, we introduce the operatorA : V −→ V associated withA, and defined by

A(u, v) = (Au, v)V (18)

for all u, v ∈ V. We also introduce the elementl ∈ V associated withL and defined
by

ℓ(v) = (l, v)V (19)

for all v ∈ V.. The existence ofA andl is ensured by the Riesz representation theorem.
Problem (15) can be rewritten in an operator form:

Au = l (20)

4.2 The Proper Generalized Decomposition a continuous,V−elliptic
bilinear symmetric form

Assume that for allu, v ∈ V,

A(u, v) = A(v, u). (21)

From the assumptions on the bilinear formA(·, ·), we know thatA is bounded, self-
adjoint, and positive definite. As usual, we will denote by(·, ·)A the inner product
induced by the operatorA, where for allu, v ∈ V

(u, v)A = (Au, v)V = (u, Av)V ,

We denote by‖u‖A = (u, u)
1/2
A the associated norm. Note that ifA = I the identity

operator, then‖ · ‖A = ‖ · ‖V .
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From properties of operatorA, the norm‖ · ‖A is equivalent to‖ · ‖V . Therefore,
by Corollary 2, the setS1 is weakly closed in(V, ‖ · ‖A) and then,‖ · ‖A verifies
assumption 4. Then we consider in this case for eachr ∈ V the map

EA−1r(v) =
1

2
‖v‖A − (A−1r, v)A =

1

2
‖v‖A − (r, v)V .

Definition 9 (PGD for self-adjoint operators) Let z0 = 0 and forn ≥ 1,

rn = l − Azn−1 (22)

zn = zn−1 + vn, wherevn ∈ argminv∈S1
EA−1rn

(v). (23)

From Theorem 8 we obtain that

lim
n→∞

‖A−1rn‖A = 0,

that islimn→∞ zn = A−1l in the‖ · ‖A-norm. Since‖ · ‖A is equivalent to‖ · ‖V , then
the sequence{zn}n≥0 also converges toA−1l in the ‖ · ‖V -norm. Observe, that the
convergence rate given in (14) is‖ · ‖A-norm dependent, more precisely,

‖A−1rn‖A
‖A−1l‖A

=

n−1∏

j=1

sin θi,

where

θi = arccos
(A−1ri, zi)A

‖A−1ri‖A‖zi‖A
.

A natural question arises in this context: How we compute a minimum ofEA−1r

overS1 for a givenr ∈ V ? Note that if

v =

d⊗

i=1

vi ∈ argminz∈S1
EA−1r(z)

then
d

dt
EA−1r

(
d⊗

i=1

(vi + twi)

)∣∣∣∣∣
t=0

= 0 (24)

holds for all(w1, . . . , wd) ∈ V1 × · · · × Vd. Equation (24) is equivalent to show that
the following Euler-Lagrange Equation:

d∑

i=1

(
r −A

(
d⊗

i=1

vi

)
, v1 ⊗ · · · ⊗ vi−1 ⊗ wi ⊗ vi+1 ⊗ · · · ⊗ vi

)

V

= 0 (25)

holds for all(w1, . . . , wd) ∈ V1 × · · · × Vd.
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4.2.1 A special case

Now, assume thatA =
∑nA

k=1

⊗d
i=1 Ak

i andr =
∑nr

k=1⊗
d
i=1r

k
i are given also in rank-

one form. Then the Euler-Lagrange equation appears as

d∑

i=1

(
nr∑

k=1

d∏

j=1,j 6=i

(rk
j , vj)jr

k
i −

nA∑

s=1

d∏

j=1,j 6=i

(As
jvj , vj)jA

s
ivi, wi

)

i

= 0 (26)

for all (w1, . . . , wd) ∈ V1 × · · · × Vd. Then

(
nr∑

k=1

d∏

j=1,j 6=i

(rk
j , vj)jr

k
i −

nA∑

s=1

d∏

j=1,j 6=i

(As
jvj , vj)jA

s
ivi, wi

)

i

= 0 (27)

for 1 ≤ i ≤ d and for all(w1, . . . , wd) ∈ V1×· · ·×Vd. Now, consider ann-dimensional
subspacespan {w1

i , . . . , w
n
i } of Vi, for each1 ≤ i ≤ d, and define the vectorvi ∈ Rn

by means

(vi)α = υα
i wherevi =

n∑

α=1

υα
i wα

i .

On the other hand introduce the symmetric matricesAs
j ∈ Rn×n and the vectorsrk

j ∈
Rn by

(As
j)α,β = (As

jw
β
j , wα

j )j and(rk
j )α = (rk

j , w
α
j )j.

Note that we can write

(rk
1 ⊗ · · · ⊗ r

k
d)α1,...,αd

=

d∏

j=1

(rk
j , w

αj

j )j =
(
⊗d

j=1r
k
j ,⊗

d
j=1w

αi

j

)
V

,

for 1 ≤ k ≤ nr.

Under the above notation the PGD run as follows. Start withu = 0 ∈ Rnd

and
rk
j = lkj , here we assume thatl =

∑nl

k=1⊗
d
i=1l

k
i , thusnr = nl. Then we compute

{v1, . . . ,vd} ⊂ Rn as follows. Note, that (27) can be written as

nr∑

k=1

d∏

j=1,j 6=i

〈rk
j ,vj〉2 r

k
i −

nA∑

s=1

d∏

j=1,j 6=i

〈vj, A
s
jvj〉2 A

s
ivi = 0 (28)

for 1 ≤ i ≤ d, here〈·, ·〉2 denotes the usual inner product inR2. The strategy to solve
the above non-linear system can be seen in Algorithm??.

From Algorithm?? we can update the solutionu = u + v1 ⊗ · · · ⊗ vd and the
residual by considernr = nr + nA and

r
nr+k
j = A

k
jvj for 1 ≤ k ≤ nA and1 ≤ j ≤ d.
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We remark that under this notation we have

(Ak
1v1 ⊗ · · · ⊗ A

k
dvd)α1,...,αd

=

d∏

j=1

(Ak
jvj)αj

=

d∏

j=1

(
Ak

j vj, w
αj

j

)
j

=
(
⊗d

j=1A
k
j vj ,⊗

d
j=1w

αj

j

)
V

for 1 ≤ k ≤ nA. In consequence at stepN ≥ 1 the residual can be written as

rN =
nr∑

k=1

⊗d
j=1r

k
j ∈ R

nd

,

wherenr = nr + NnA. The proposal algorithm is given in Algorithm 1.

4.3 The Proper Generalized Decomposition a continuous,V−elliptic
bilinear form

We consider for eachr ∈ V the map

Er(Av) = (Er ◦ A)(v)

=
1

2
‖Av‖V − (r, Av)V

=
1

2
‖v‖A∗A − (A∗r, v)V

=
1

2
‖v‖A∗A − ((A∗A)−1A∗r, v)A∗A.

Thus sinceA∗A is a self-adjoint operator, then the norm‖ · ‖A∗A is equivalent to
the ‖ · ‖V -norm and in consequenceS1 is also weakly closed in the‖ · ‖A∗A-norm.
Moreover,(Er ◦A) in the‖ · ‖V -norm is equal toE(A∗A)−1A∗r(v) in the‖ · ‖A∗A-norm.

Definition 10 (PGD for non self-adjoint operators) Let z0 = 0 and forn ≥ 1,

rn = b−Azn−1 (29)

zn = zn−1 + vn, wherevn ∈ arg min
v∈S1

Ern
(Av). (30)

From Theorem 8 we obtain

lim
n→∞

‖(A∗A)−1A∗rn‖A∗A = lim
n→∞

‖A(A∗A)−1A∗rn‖V = lim
n→∞

‖rn‖V = 0.
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Thus, in this case the sequence{zn}n≥0 also converges to the solutionA−1l in the
‖ · ‖V -norm. Here the convergence rate (14) is given by the expression:

‖(A∗A)−1A∗rn‖A∗A

‖(A∗A)−1A∗b‖A∗A

=
‖rn‖V
‖b‖V

=
n−1∏

j=1

sin θi, ,

where

θi = arccos
((A∗A)−1A∗ri, vi)A∗A

‖(A∗A)−1A∗ri‖A∗A‖vi‖A∗A
= arccos

(ri, Avi)V

‖ri‖V ‖Avi‖V

In order to solve the associated minimization problem for a givenr ∈ V, we have that
if

d⊗

i=1

vi ∈ argminz∈S1
Er(Az)

then the following Euler-Lagrange equation

d∑

i=1

(
A∗r − A∗A

(
d⊗

i=1

vi

)
, v1 ⊗ · · · ⊗ vi−1 ⊗ wi ⊗ vi+1 ⊗ · · · ⊗ vi

)

V

= 0,

or equivalently

d∑

i=1

(
r − A

(
d⊗

i=1

vi

)
, A(v1 ⊗ · · · ⊗ vi−1 ⊗ wi ⊗ vi+1 ⊗ · · · ⊗ vi)

)

V

= 0 (31)

holds for all(w1, . . . , wd) ∈ V1 × · · · × Vd.

4.3.1 A special case

Now, assume thatA =
∑nA

k=1

⊗d
i=1 Ak

i andr =
∑nr

k=1⊗
d
i=1r

k
i are given also in rank-

one form. Then the Euler-Lagrange equation appears as

d∑

i=1

nA∑

s=1

(
nr∑

k=1

d∏

j=1,j 6=i

(rk
j , A

s
jvj)jr

k
i −

nA∑

t=1

d∏

j=1,j 6=i

(At
jvj , A

s
jvj)jA

t
ivi, A

s
iwi

)

i

= 0

(32)
for all (w1, . . . , wd) ∈ V1 × · · · × Vd. Then

nA∑

s=1

(
nr∑

k=1

d∏

j=1,j 6=i

(rk
j , A

s
jvj)jr

k
i −

nA∑

t=1

d∏

j=1,j 6=i

(At
jvj, A

s
jvj)jA

t
ivi, A

s
iwi

)

i

= 0 (33)

for 1 ≤ i ≤ d and for all(w1, . . . , wd) ∈ V1 × · · · × Vd. In a similar way as in the
symmetric case, let be consider ann-dimensional subspacespan {w1

i , . . . , w
n
i } of Vi,

for each1 ≤ i ≤ d, and in this case we define the vectorvi ∈ Rn as follows:

(vi)α = υα
i wherevi =

n∑

α=1

υα
i wα

i .
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In this case, the symmetric matrixAk,i
j ∈ Rn×n and the vectorrk.i

j ∈ Rn are

(Ak,i
j )α,β = (Ak

j w
β
j , Ai

jw
α
j )j and(rk,i

j )α = (rk
j , A

i
jw

α
j )j .

Now, (33) with this notation can be written as follows

nA∑

s=1

nr∑

k=1

d∏

j=1,j 6=i

〈rk,s
j ,vj〉2 r

k,s
i −

nA∑

t=1

d∏

j=1,j 6=i

〈vj , A
t,s
j vj〉2 A

t,s
i vi = 0 (34)

for 1 ≤ i ≤ d. The proposal algorithm is given in Algorithm 2.

5 A case study: The first passage time and the Poisson
equation in (0, 1)d

Our first case to study is based on the well-known FeynmanKac representation of
the solution to the Dirichlet problem for Poissons equation. Recall that the Dirichlet
problem for Poissons equation is

{
−∆u = f in Ω ⊂ Rd

u|∂Ω = 0.
(35)

wheref = f(x1, x2, . . . , xd) is a given function and∆ =
∑d

i=1
∂2

∂x2

i

is the Laplace

operator. The solution of this problem atx0 ∈ Rd, given in the form of the path-
integral with respect to standardd-dimensional Brownian motionWt is as follows

u(x0) = E

[∫ τ∂Ω

0

2f(Wt)dt

]
(36)

Here
τ∂Ω = inf{t : Wt ∈ ∂Ω}

is the first-passage time andWτ∂Ω
is the first-passage location on the boundary,∂Ω.

We assume thatE[τ∂Ω] < ∞ for all x0 ∈ Ω andf andu are continuous and bounded
in Ω, and that the boundary,∂Ω, is sufficiently smooth so as to ensure the existence
of a unique solution,u(x), that has bounded and continuous first- and second-order
partial derivatives in any interior subdomain

Example 11 Firstly, we consider the following problem in 3D: Solve for

(x1, x2, x3) ∈ Ω = (0, 1)3 :

−∆u = (2π)2 · 3 · sin(2πx1 − π) sin(2πx2 − π) sin(2πx3 − π), (37)

u|∂Ω = 0, (38)
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Figure 1: The relative error‖u1 − A−1
f‖2/‖A

−1
f‖2 in logarithmic scale.

which has as closed form solution

u(x1, x2, x3) = sin(2πx1 − π) sin(2πx2 − π) sin(2πx3 − π).

We used the separable representation Algorithm 1) with parameter valuesiter max =
5, rank max = 1000 andε = 0.001. The algorithm give us an approximated solution
u1 ∈ S1. In Figure 1 we represent the relative error of the solution computed using
the separable representation algorithm, using logarithmic scale, as a function of the
number of nodes used in the discretization of the Poisson equation. All the computa-
tions were performed using the GNU softwareOCTAVE in a AMD 64 Athlon K8 with
2Gib of RAM.

In Figure 2 we represent the CPU time, in logarithmic scale, used in solving the
standard FEM linear system against the separable representation algorithm. In both
cases all the linear systems involved were solved using the standard linear system
solver (A\b) of OCTAVE.

Example 12 Finally we are addressing some highly multidimensional models. To this
end we solve numerically (35) for(x1, . . . , xd) ∈ Ω = (0, π)d where

f =

d∑

k=1

−(1 + k) sin(−1+k)(xk)
(
−k cos2(xk) + sin2(xk)

) d∏

k′=1,k′ 6=k

sin(1+k′)(xk′),
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Figure 2: The CPU time, in seconds, used in solving the linearsystem as a function
of the number of nodes employed in the discretization of the Poisson Equation.

which has as closed form solution

u(x1, . . . , xd) =

d∏

k=1

sin(k+1)(xk).

Here we consider the true solutionu given byUi1,...,id = u(x̂i1+1, . . . , x̂id+1). For d =
10 we use the parameter valuesiter max = 2, rank max = 10 and ε = 0.001.
In a similar way as above the algorithm give us an approximated solutionû ∈ S1.
In Figure 3 we represent the absolute error‖û − u‖2 as a function ofh = π/N for
N = 5, 10, 20, . . . , 160 in log10-scale. By using similar parameters values the problem
has been solved ford = 100 in about 20 minutes.
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[13] D. Dureisseix, P. Ladevèze, and B. A. Schrefler. A computational strategy for
multiphysics problems — application to poroelasticity.International Journal for
Numerical Methods in Engineering, 56(10):1489–1510, 2003.

[14] Carl Eckart and Gale Young. The Approximation Of One Matrix By Another Of
Lower Rank.Psychometrika, 1(3):211–218, 1936.

[15] T.G. Kolda. Orthogonal tensor decompositions.SIAM J. Matrix Analysis &
Applications, 23(1):243–255, 2001.

[16] TG Kolda. A counterexample to the possibility of an extension of the Eckart-
Young low-rank approximation theorem for the orthogonal rank tensor decom-
position. Siam Journal On Matrix Analysis And Applications, 24(3):762–767,
2003.
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Algorithm 1 PGD symmetric case

1: procedure PGDSYM(
∑nl

k=1⊗
d
j=1l

k
j ,
∑nA

k=1

⊗d
j=1 Ak

j , ε,tol,rank max)

2: (As
j)α,β = (As

jw
β
j , wα

j )j for 1 ≤ j ≤ d and1 ≤ s ≤ nA.

3: (rk
j )α = (lkj , w

α
j )j for 1 ≤ j ≤ d and1 ≤ k ≤ nl.

4: u = 0

5: for i = 0, 1, 2, . . . ,rank max do
6: Initialize v

0
i ∈ Rn for i = 1, 2 . . . , d. ⊲ We solveminv∈S1

EA−1rn
(v) by a

fixed point strategy
7: distance← 1.
8: while distance ≥ ε do
9: for k = 1, 2, . . . , d do

10: v
1
k ← v

0
k

11: v
0
k ←

[∑nA

s=1

∏d
j=1,j 6=k〈vj , A

s
jvj〉2 As

k

]−1∑nl

c=1

∏d
j=1,j 6=k〈r

c
j,vj〉2 r

c
k

12: end for
13: distance← max1≤i≤d ‖v

0
i − v

1
i ‖2

14: end while
15: u← u + v

0
1 ⊗ · · · ⊗ v

0
d

16: for k = 1, . . . , nA do ⊲ We update the residual
17: r

nl+k
j = −Ak

jv
0
j for 1 ≤ j ≤ d.

18: end for
19: nl ← nl + nA. ⊲ Here we update the residual tensor rank
20: residual(i) =

∑nl

k=1

∏d
j=1 ‖r

k
j‖2

21: if residual(i) < ε or |residual(i) − residual(i)| < tol
then goto13

22: end if
23: end for
24: return u andresidual(rank max)
25: break
26: return u andresidual(i)
27: end procedure
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Algorithm 2 PGD non-symmetric case

1: procedure PGD(
∑nl

k=1⊗
d
j=1l

k
j ,
∑nA

k=1

⊗d
j=1 Ak

j , ε,tol,rank max)

2: (Ak,i
j )α,β = (Ak

jw
β
j , Ai

jw
α
j )j for 1 ≤ j ≤ d and1 ≤ k, i ≤ nA.

3: (rk,i
j )α = (lkj , A

i
jw

α
j )j for 1 ≤ j ≤ d, 1 ≤ k ≤ nl and1 ≤ i ≤ nA.

4: u = 0

5: for i = 0, 1, 2, . . . ,rank max do
6: Initialize v

0
i ∈ R

n for i = 1, 2 . . . , d. ⊲ We solveminv∈S1
EA−1rn

(v) by a
fixed point strategy

7: distance← 1.
8: while distance ≥ ε do
9: for k = 1, 2, . . . , d do

10: v
1
k ← v

0
k

11:

v
0
k ←

[
nA∑

s=1

nA∑

t=1

d∏

j=1,j 6=k

〈vj, A
t,s
j vj〉2 A

t,s
k

]−1 nA∑

s=1

nr∑

c=1

d∏

j=1,j 6=k

〈rc,s
j ,vj〉2 r

c,s
k

12: end for
13: distance← max1≤i≤d ‖v

0
i − v

1
i ‖2

14: end while
15: u← u + v

0
1 ⊗ · · · ⊗ v

0
d

16: for k = 1, . . . , nA do ⊲ We update the residual
17: r

nl+k,s
j = −A

k,s
j v

0
j for 1 ≤ j ≤ d and1 ≤ s ≤ nA.

18: end for
19: nl ← nl + nA. ⊲ Here we update the residual tensor rank
20: residual(i) ==

∑nl

k=1

∏d
j=1 ‖r

k
j‖2

21: if residual(i) < ε or |residual(i) − residual(i)| < tol
then goto13

22: end if
23: end for
24: return u andresidual(rank max)
25: break
26: return u andresidual(i)
27: end procedure
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