Abstract

The Proper Generalized Decomposition or, in short, PGD &chrtique that reduces
calculation and storage cost drastically and presents somlarities with the Proper
Orthogonal Decomposition, in short POD. It was initiallyroduced for the analyze
and reduction of statistical and experimental data, theségpiori decomposition tech-
niques, also known as Karhunen-Loeve Expansion, Singaare\dlecomposition or
Principal Component Analysis, are now used in the contexhodiel reduction. Its
are also related with the so-calleebest term approximation problem. In this paper
we study and analyze the different mathematical and cortipotd problems appear-
ing in the optimization procedures related with the Propemé&alized Decomposition
and its relative:-best term approximation problem.

Keywords: Proper Generalized Decomposition, Tensor Product HilBp&ce, Best
Approximation.

1 Introduction

The main goal of this paper is to use of a separated reprementd the solution of
a class of elliptic problems, which allows to define a tengodpct approximation
basis as well as to decouple the numerical integration ofja imensional model
in each dimension. The milestone of this methodology is seaf shape functions
given by a tensorial based construction. This fact has ddgas as the manipulation
of only one dimensional polynomials and its derivativeat throvides a better com-
putational performance and simplified implementation aselane-dimensional inte-
gration rules. Moreover, it makes possible the solution ofleis defined in spaces of
more than hundred dimensions in some specific applicatioims.problem is closely
related with the decomposition of a tensor as a sum of ramki@msors, that it can be



considered as a higher order extension of the matrix Sinyallae Decomposition.

It is well-known, from the Lax-Milgram Lemma, that¥f is a Hilbert spaceA(-, -)
is a bounded)/ —elliptic bilinear form onV, and¢ € V’. Then there is a unique
solution of the problem

Findu € V' such that4(u,v) = ¢(v) forallv € V. (1)

A generalized paradigm is thatif = V; ® ... ® V; then the intensive use of tensor
techniques can help to the computer scientist to "avoid tingecof dimensionality”.

The Proper Generalized Decomposition (PGD) method hasreeently proposed
[1, 17, 21] for the a priori construction of separated repn¢stions of an elementin
atensor product spadé = V; ® ... ® Vg, which is the solution of a problem of type
(1) with a symmetric bilinear form. A rank-approximated separated representation
u, of u is defined by

:Zvi1®...®vf (2)
i=1

The concept of separated representation was introducedydiB and Mohlenkamp
in [4] and it is related with the problem of constructing th@peoximate solutions of
some classes of problems in high-dimensional spaces bysweeseparable function.
In particular, for a given map

w:[0,1]? c R — R,

we say that it has separable representatiah
w(@r,. .. @ Zu o (2g) (3)

Now, consider a mesh ¢4, 1] in thex,-variable given byV,-mesh points] < k < d,
then we can write a discrete version of (3) by

wW(Tiyy oy Tiy) = Zu (22,) - ud (1,), (4)

wherel < i, < Ny for 1 < k < d. Observe that for each < k < d, if x] € RM

denotes the vector with componenfjé)(xik) for1 < i, < N, then (4) itis equivalent
to

zzxﬂl’@...@%. (5)
j=1

We point out that (5) is an useful expression to implementaaierical algorithms
using the MATLAB and GCTAVE functionkr on.



This paper is organized as follows. In the next section wethice the tensor
product Hilbert spaces. In Section we give the definitionrofypessive representation
in tensor product Hilbert spaces and introduce the existémeorem for the progres-
sive separated representation in Tensor Product Hilbexte&pusing a class of energy
functionals. Next, in 4 we propose two algorithms in ordecdostruct the PGD ap-
proach for general elliptic problems. Finally, in Sectiosdne numerical examples
are given.

2 Tensor product sums on tensor product Hilbert spaces

LetV = ®‘j:1 V; be a tensor product Hilbert space whéfefori = 1,2,...,d, are
separable Hilbert spaces. We denote(hy) and|| - || a general inner product or

and its associated norm. We introduce nofmi; and associated inner products);
onV,,fori=1,2,...,d. These norms and inner products define a particular norm on
V, denoted| - ||y, defined by

d
I, vl = [ il
=1

forall (vy,vs,...,v4) € V,whereV is the product space x - - - x V;. The associated
inner product-, -)y is defined by

d
(®f:1ul-, ®?:1Uz‘) v H(Uu Vi)i,

=1
Recall thatV’, endowed with inner product, - )y, is in fact constructed by taking the

completion under this inner product.

Now, we introduce the set df of vectors that can be written as a sum of tensor
rank1 elements. For each € N, we define the set of ranktensors

S, ={u eV :rankyu < n},

introduced in [11] in the following way. Given € V we say thatu € S; if u =
U R Us ® -+ @ ug, Whereu; € V;, fori =1,...,d. Forn > 2 we define inductively
S, =38,-1+ 81, that is,

k
Sn:{uEV:u:Zu(i),u(i)ESlforlgigkgn}.
i=1

Note thatS,, C S, for all n > 1. We will say foru € V that rank,u = n if and
onlyifue S, \S,_1.

We first consider the following important property of the Setand inner product
-y



Lemma 1 S, is weakly closed iV || - ||v).

Since equivalent norms induce the same weak topology,ome have the follow-
ing corollary.

Corollary 2 If the norm| - || onV is equivalent to the norr - ||, thenS; is weakly
closedin(V,|| - ||)-

Corollary 3 If the V; are finite-dimensional vectors spaces, tl&gris weakly closed
in (V.| - ||) whatever the norrj - ||.

3 An existence theorem for the progressive separated
representation in Tensor Product Hilbert Spaces us-
ing a class of energy functionals

Now we want to construct a class of energy functionalSpnwith respect to a given

inner product-, -) onV, with associated nort- ||. The results of this section are due
to Falc6 and Nouy [10]. We make the following assumptiontamihner product.

Assumption 4 We consider that the inner produgt -), with associated nor- ||, is
such thatS; is weakly closed iV, || - ||).

Let us recall that by Corollary 2, the particular nofm ||, verifies Assumption 4.
Now, we introduce for the norrf- | and for eachr € V' the functionakl, : V. — R

by

1 1 1
E(v) = 5lI0l* = (r.v) = SlIr = of* = SlIrl
The following result gives the main properties of the endrmgyctionalé,.

Theorem 5 For eachr € V there exist®* € S; such that

E(v") = min E.(v). (6)
Moreover,
1
E(v") = =5 llvII%, (7)
Iz = o*|I> = [|2]1” = "%, (8)
and
(r—ov*,0%) =0. 9)



Definition 6 (Progressive separated representation af € V) For a givenz € V,
takez, = 0 and forn > 1, proceed as follows:

Tn = 22— Znp-1 (10)
Zy = Zp—1+v,, Wherev, € argmin, g &, (v). (11)

z, Is called an optimal rank: progressive separated representatior:afith respect
to the norm|| - ||.

We introduce the following definition of thgrogressive rankNote that in general,
the progressive rank of an element V' is different from the optimal rankankg (z2).

Definition 7 (Progressive rank) We define the progressive rank of an elemeatV’,
denoted byank,(z), as follows:

rank,(z) = min{n : z, = 0} (12)

wherez, is the progressive separated representation afefined in definition 6, where
by conventiomin((}) = oc.
Theorem 8 (Existence of the Progressive Separate Represation) For z € V, the

sequencéz, = >, v;},>o defined in definition 6 verifies:

rankey (2

z= lim 2z, = Zrank, () = E (R

n—oo

Moreover, for eacl) < n < rank,(z) — 1 it follows

rankes (z)

Iz =zl = 2P =Y Ml = 32 fl? (13)
=1 i=n—+1
and
|T" I H sin 6;, (14)

wheref); is the angle between andv;, that is,

(73, vi)

0; = arccos )
17 | s ]



4 A variational formulation of the Proper Generalized
Decomposition

4.1 Formulation of the problem

We consider the following variational problem, defined omditensor product Hilbert
space(V, || - [lv):

ueV, Aluv)=~Lv) YveV (15)

whereA(-,-) : V x V — R is a continuousy’ —elliptic bilinear form,i.e. such that
forall u,v € V,

|A(u, v)] < Mjullv[v]lv, (16)
Alv,v) = allvlly (17)

for constants\/ > 0 anda > 0.
Now, we introduce the operater: V' — V associated witb4, and defined by

A(u,v) = (Au,v)y (18)

for all u,v € V. We also introduce the elemeht V' associated witl. and defined
by
l(v) = (l,v)y (19)

forallv € V.. The existence oft and! is ensured by the Riesz representation theorem.
Problem (15) can be rewritten in an operator form:

Au=1 (20)

4.2 The Proper Generalized Decomposition a continuou$, —elliptic
bilinear symmetric form

Assume that for all;, v € V,
A(u,v) = A(v, u). (21)

From the assumptions on the bilinear fou-, -), we know thatA is bounded, self-
adjoint, and positive definite. As usual, we will denote (by)4 the inner product
induced by the operatot, where for allu,v € V

(u,v)a = (Au,v)y = (u, Av)y,

We denote by|u|[4 = (u,u){* the associated norm. Note thatdf= I the identity

operator, ther| - ||4 = || - ||v-



From properties of operatot, the norm|| - || 4 is equivalent td| - ||,,. Therefore,
by Corollary 2, the sef,; is weakly closed inV, || - ||4) and then,|| - |4 verifies
assumption 4. Then we consider in this case for each/ the map

1 _ 1
Ea-n(v) = llvlla = (A7, 0)a = Sllvlla = (r,0)v.
Definition 9 (PGD for self-adjoint operators) Letz, = 0 and forn > 1,

rn, = | — Az, (22)
Zn—1 + vy, Wherev,, € argmin,cg E4-1,., (V). (23)

Zn
From Theorem 8 we obtain that
Tim (A7 7|4 = 0,
thatislim,, .. z, = A~'linthe|| - || s-norm. Since| - || 4 is equivalent td| - ||/, then

the sequencéz, },>o also converges tel~!7 in the || - ||y-norm. Observe, that the
convergence rate given in (14)|js || a-norm dependent, more precisely,

-1
1A 7]l 4 i—[ :
A S11 Qi,
A, U

where
(Aisz‘, 2i)A
A= 7] allzilla”

0; = arccos

A natural question arises in this context: How we compute mimmum of £4-1,
overS; for a givenr € V7 Note that if

d

v = ®vi € argmin, .5 E4-1,(2)
i=1

then
d

d
ESA_IT (@(UZ + twi)>

i=1

=0 (24)

t=0

holds for all (w1, ..., wy) € V; x --- x V. Equation (24) is equivalent to show that
the following Euler-Lagrange Equation:

d d
Z <T—A<®Uz‘> avl®"'®Uz’—1®wi®vi+1®"'®vi> =0 (25)

i=1 i=1 v

holds for all(wy, ..., wg) € V§ x -+ x V.



4.2.1 A special case

Now, assume thatl = ;4 ®Z L Afandr = Y77 @,k are given also in rank-
one form. Then the EuIer—Lagrange equation appears as

d Ny
Z(Z H T )i _Z H (Ajvj,v5);Afvi, z) =0 (26)

i=1 \k=1 j=1,j%i s=1 j=1,j#i i

for all (wy,...,wg) € V1 x -+ x V. Then

(Z H 7’],1}] T —Z H Asvj,v] Alv;, Z) =0 (27)

k=1 j=1,j7#1¢ s=1 j=1,j#i

for1 <i < dandforall(ws,...,wy) € Vi x---xV;. Now, consider am-dimensional
subspacepan {w}, ..., w!'} of V;, for eachl < i < d, and define the vector; € R"
by means

n
(Vi)a = v Wherev; = Z viw

On the other hand introduce the symmetric matriggs R"*" and the vectorsg? €
R"™ by
(Aj)aﬂ = (A3 w”? w§ &); and(r ) (Tk wj)

J7a0 77

Note that we can write
d
k d k d a;
rf®---or) at,.. H ®j:1rj7®j:1wj )v’

forl <k <n,.

Under the above notation the PGD run as follows. Start wits 0 € R™ and
¥ = I¥ here we assume that= ;' ®7 I}, thusn, = n;. Then we compute

{v1,...,vq} C R" as follows. Note, that (27) can be written as

Ny d na d
oI whovideri =7 T (visAsvi)aAvi=0 (28)

k=1 j=1,j#i s=1 j=1,j#i

for 1 <i < d, here(,-), denotes the usual inner producfi®4. The strategy to solve
the above non-linear system can be seen in Algoritfm

From Algorithm?? we can update the solutiom = u + v; ® --- ® v4 and the
residual by considet, = n, + n4 and

rtt = Afvifor1 <k <nyandl <j<d.



We remark that under this notation we have
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for 1 < k <n4.Inconsequence at stép > 1 the residual can be written as
Ny
d
k=1

wheren, = n, + Nn4. The proposal algorithm is given in Algorithm 1.

4.3 The Proper Generalized Decomposition a continuou$, —elliptic
bilinear form

We consider for each € V the map

E(A) = (E0A))
= Sl - ¢, Av)y

1

= §||U|A*A—(A*T,U)V
1

= —”U’ A*A — ((A*A)ilA*T,U)A*A.
2

Thus sinceA* A is a self-adjoint operator, then the notm || 4«4 is equivalent to
the| - ||y-norm and in consequenc® is also weakly closed in thg - || 4- 4-norm.
Moreover,(&, o A) inthe|| - [[v-norm is equal t& 4+ 4)-1 4+ (v) in the|| - || 4= 4-noOrm.

Definition 10 (PGD for non self-adjoint operators) Letz, = 0 and forn > 1,
r, = b— Az, (29)

Zn = Zp_1 -+ v,, Wherev, € arg mign & (Av). (30)
vES]

From Theorem 8 we obtain

lim [[(A*A)~'A*r,|




Thus, in this case the sequenfeg,},>, also converges to the solutiofi!/ in the
| - ||lv-norm. Here the convergence rate (14) is given by the exioress

A A Al [rally _ T g

(A= A) 7 AD[aea Ol 25
where
((A*A) T A 7y, v) . (ri, Avy)
0; = arccos A4 — arccos ————V
| (A*A)~LA*r;|| a=a|vill 4= a ([l [v [ Avi v

In order to solve the associated minimization problem fovamyr € V, we have that
if
d

® v; € argmin, g £ (Axz)

=1
then the following Euler-Lagrange equation

d

d
Z (A*T—A*A <®vz> ,vl®---®vi_1®wi®vi+1®---®vi) =0,
i=1

i=1 1%

or equivalently

d
Z ( <® UZ) ) U1 QW RV V- ® U1)> =0 (31)
14

=1

holds for all(wy, ..., wg) € Vi x -+ x V.

4.3.1 A special case

Now, assume thatt = 374, @7, A¥ andr = 377, @~ ,* are given also in rank-
one form. Then the Euler-Lagrange equation appears as

ZZ (Z H ASUJ Z H Atvj,Asv]) Ath,A5w2> =0

i=1 s=1 \k=1 j=1,j#i t=1 j=1,j#i
(32)

for all (wy,...,wg) € V1 x -+ x V. Then

na o d

> (Z [T o Agy),r Z H (Abvy, Adv;);Aly, Asw ) =0 (33)

s=1 \k=1j=1,j#i t=1 j=1,j%#i i
for 1 < i < dandforall(wy,...,wg) € Vi x--- x V. In a similar way as in the
symmetric case, let be consideramimensional subspaegan {w}, ..., w!} of V;,

for eachl < ¢ < d, and in this case we define the vectgre R™ as follows:

n
(Vi)a = v Wherev; = Z viw

10



In this case, the symmetric matr&\é?’i € R™™ and the vectorf-i € R™ are

(450 = (Afw], Ajuf); and(x}")a = (1}, Ajug);.

Now, (33) with this notation can be written as follows

na  nr d nA d

k,S k7s t,s t,s .
2.2 11 o5tvieri =3 I (vidivihoaitvi=0  (34)
s=1 k=1 j=1,7#1 t=1 j=1,j#i

for 1 <1 < d. The proposal algorithm is given in Algorithm 2.

5 A case study: The first passage time and the Poisson
equation in (0, 1)
Our first case to study is based on the well-known Feynmankpmesentation of

the solution to the Dirichlet problem for Poissons equatiRecall that the Dirichlet
problem for Poissons equation is

—~Au=finQ CcR?
35
wheref = f(x1,x2,...,24) iS a given function and\ = Zle aa—; is the Laplace

operator. The solution of this problem ®§ € R?, given in the form of the path-
integral with respect to standasiddimensional Brownian motioWV, is as follows

u(xo) = B [ [ 2f<Wt>dt} (36)
0
Here
Toq = inf{t : W, € 0Q}

is the first-passage time aiW ., , is the first-passage location on the boundafty,

We assume thd[ryq] < oo for all x, € Q and f andu are continuous and bounded

in ©2, and that the boundaryy?, is sufficiently smooth so as to ensure the existence
of a unique solutionyu(x), that has bounded and continuous first- and second-order
partial derivatives in any interior subdomain

Example 11 Firstly, we consider the following problem in 3D: Solve for

(r1, 9, 23) € Q= (0, 1)3 :

~Au = (27)*-3-sin(27z; — 7)sin(27ay — ) sin(2wws — 7), (37)
uloq = 0, (38)

11
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Figure 1: The relative errdfu; — A~'f||,/||A~f]|, in logarithmic scale.

which has as closed form solution
u(xy, xe, x3) = sin(2mxy — m) sin(2wzy — 7) sin(2wxs — 7).

We used the separable representation Algorithm 1) withipetar valuest er _max =
5,rank_max = 1000 ande = 0.001. The algorithm give us an approximated solution
u; € &;. In Figure 1 we represent the relative error of the solutiommguted using
the separable representation algorithm, using logarithistale, as a function of the
number of nodes used in the discretization of the Poissoategu All the computa-
tions were performed using the GNU softw@eTAaVvE in a AMD 64 Athlon K8 with
2Gib of RAM.

In Figure 2 we represent the CPU time, in logarithmic scalsediin solving the
standard FEM linear system against the separable reprediemt algorithm. In both
cases all the linear systems involved were solved usingtrelard linear system
solver A\b) of OCTAVE.

Example 12 Finally we are addressing some highly multidimensional et®dTo this

end we solve numerically (35) fér,, ..., z4) € Q = (0, 7)? where
d d
f= —(1 + k) sin =19 (2) (—k cos®(zy) + sin®(zy)) H sin**) (21,),
k=1 k'=1,k'+k

12
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Figure 2: The CPU time, in seconds, used in solving the lisgatem as a function
of the number of nodes employed in the discretization of tiegdn Equation.

which has as closed form solution

d

w(xy, ..., xq) = H sin®+ ().
k=1

Here we consider the true solutiengiven byl4;, ., = w(Zi,41,...,Zi41). FOrd =
10 we use the parameter values er max = 2, rank_max = 10 ande = 0.001.
In a similar way as above the algorithm give us an approximaelutionu € S;.
In Figure 3 we represent the absolute erigii — ul|, as a function ofs = =/N for
N =5,10,20,...,160inlog,,-scale. By using similar parameters values the problem
has been solved fer = 100 in about 20 minutes.
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Algorithm 1 PGD symmetric case

1: procedure PGDsYM(Y_ L, @4, 1%, 3714 @7 A¥ e tol ,rank_max)

N

8:
9:
10:

11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22:
23:
24:
25:
26:

(A%)as = (Aswﬁ w);for1 <j < dandl < s <na.

J730

Vo = (15, ws); forlgjgdandlgkgnl.
u=20
fori:0,1,2,...,rank_rrax do

Initialize v¥ € R" for: =1,2...,d. >We solvemin,cs, E4-1,, (v) by a

flxed point strategy

di st ance «— 1.
while di st ance > ¢ do
for k=1,2,...,ddo

v} — v
—1
Ve [0 T v AV A7) S0 Ty a5 Va2
end for
di stance «— maxXi<;<d ||V? — Vi1||2
end while
u—u+vi® vy
fork=1,...,n4do > We update the residual
/it = A’“ Ofor1<j<d.
end for
ng<—n;+na. > Here we update the residual tensor rank

residual (i) =33 10, bl
if residual (i) <eor|residual (i) —residual (i)]| < tol

then goto13

end if

end for

return u andr esi dual (r ank_max)
break

return u andr esi dual (i)

27: end procedure
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Algorithm 2 PGD non-symmetric case
1: procedure PGD( L, @18, 34 @9, A% e, tol ,r ank_max)

20 (AT)a5 = (Abw] Alw);for1 < j < dandl < k,i < na.

3 (1), = (IF, Alwg)for1 < j<d, 1<k <mandl <i<ny.

4: u=20

5: fori=0,1,2,...,rank_max do

6: Initialize v? € R" fori =1,2...,d. >We solvemin,cs, £4-1,, (v) by a

fixed point strategy

7 di st ance « 1.
8: while di st ance > ¢ do
9: fork=1,2,...,ddo
10: V,l€ — Vg
11:
nA mna d -1 nA Ngr d
W 000 T taivar| 030 TT 65wy
s=1 t=1 j=1,j#k s=1 c=1 j=1,j#k
12: end for
13: di stance « maxj<;<q ||[vY — v} ||
14: end while
15: u—u+vi® vy
16: fork=1,...,nado > We update the residual
17: r?lJrk’s = —A?’SVJO» forl1 <j<dandl < s <ny.
18: end for
19: ng<—n;+na. > Here we update the residual tensor rank
20: residual (i) == 33" 10, lIrb)l
21: if residual (i) <corfresidual (i) —residual (i)| < tol
then goto13
22: end if

23: end for

24: return u andr esi dual (r ank_max)
25: break

26: return u andr esi dual (i)

27: end procedure
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