
Cheminformatic Models To Predict Binding Affinities to Human Serum
Albumin

Gonzalo Colmenarejo,*,† Ana Alvarez-Pedraglio, and José-Luis Lavandera*
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Models to predict binding affinities to human serum albumin (HSA) should be very useful in
the pharmaceutical industry to speed up the design of new compounds, especially as far as
pharmacokinetics is concerned. We have experimentally determined through high-performace
affinity chromatography the binding affinities to HSA of 95 diverse drugs and druglike
compounds. These data have allowed us the derivation of quantitative structure-activity
relationship models to predict binding affinities to HSA of new compounds on the basis of their
structure. Simple linear, one-variable models have been derived for specific families of
compounds (r2 g 0.80; q2 g 0.62): â-adrenergic antagonists, steroids, COX inhibitors, and
tricyclic antidepressants. Also, global models have been derived to be applicable to the whole
medicinal chemical space by using the full database of HSA binding constants described above.
For this aim, a genetic algorithm has been used to exhaustively search and select for
multivariate and nonlinear equations, starting from a large pool of molecular descriptors. The
resulting models display good fits to the experimental data (r2 g 0.78; LOF e 0.12). In addition,
both internal (cross validation and randomization) and external validation tests have
demonstrated that these models have good predictive power (q2 g 0.73; PRESS/SSY e 0.23; r2

g 0.82 for the external set). Statistical analysis of the equation populations indicates that
hydrophobicity (as measured by the ClogP) is the most important variable determining the
binding extent to HSA. In addition, structural factors (especially the topological 6øring index
and some Jurs descriptors) also frequently appear as descriptors in the best equations.
Therefore, binding to HSA turns out to be determined by a combination of hydrophobic forces
together with some modulating shape factors. This agrees with X-ray structures of HSA alone
or bound to ligands, where the binding pockets of both sites I and II are composed mainly of
hydrophobic residues.

Introduction

Serum albumin is probably the protein most exten-
sively studied because of its abundance, low cost, ease
of purification, and stability.1 It is the most abundant
protein in plasma, where it reaches a concentration of
about 40 mg mL-1 (0.6 mM).2 This protein is extremely
important from a biopharmacological point of view
because it is the major transporter of non-esterified fatty
acids, as well as of different drugs and metabolites, to
different tissues. Serum albumin allows solubilization
of hydrophobic compounds, contributes to a more ho-
mogeneous distribution of drugs in the body, and
increases their biological lifetime.2 Given the high
concentration of this protein, the binding strength of any
drug to serum albumin is the main factor for availability
of that drug to diffuse from the circulatory system to
target tissues.3 All these factors cause the pharmaco-
kinetics of almost any drug to be dramatically influ-
enced and controlled by its binding to serum albumin.2,3

Binding of drugs and metabolites to human serum
albumin (HSA) has been studied for many years (re-

viewed in ref 1). HSA is able to bind an enormous
variety of ligands and displays two main binding sites,
the so-called sites I and II. These sites have been
structurally identified from the crystal structure of the
protein bound to different ligands.1,4-6 Binding strengths
vary by several orders of magnitude, with association
constants (KA) ranging from 103 to 107 M-1. These
constants, however, have been determined through
different techniques and/or under different conditions,
making it impossible to confidently compare the results
from different laboratories.

Quantitative structure-activity relationships (QSARs)
have been successfully established to predict different
important biopharmaceutical properties, such as me-
tabolism,7 toxicity,8 oral bioavailability,9-11 intestinal
absorption,12 blood-brain transport,13,14 and skin15,16

and corneal17 permeability, from molecular structure.
In some cases, these models have been developed for
specific families of compounds (see, for instance, ref 18
and citations therein), but in others an attempt has been
made to model (at least in principle) the whole medicinal
chemical space.9-15

Given the importance of drug binding to HSA, it
should be extremely useful to develop QSARs to predict
the binding affinity to HSA. This would allow speeding
up of the design of new compounds with appropriate
HSA binding properties and therefore the optimization
of the pharmacokinetics.
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In this work we have determined in a systematic way
the binding constants to HSA of a large set (95 mol-
ecules) of widely different compounds of biopharma-
ceutical interest. This has allowed the direct and
unambiguous comparison of binding constants for those
compounds previously studied with different techniques
and/or at different conditions. Then, we have developed
QSAR models for specific well-known families of drugs.
These models will provide accurate predictions of HSA
binding constants for new compounds of these families.
Finally, the whole database has been used to create
QSAR models to predict binding constants of any new
compound on the basis of its structure.

Experimental Section

A total of 95 drugs and druglike compounds were selected
from the literature, trying to maximize the diversity in both
structure and physicochemical properties. These compounds
are gathered in Table 1, where their clinical use and target
(whenever it is known) are also displayed. It can be seen there
that the set comprises many families of well-known compounds
from many different therapeutic areas.

These compounds were assayed for HSA binding through
high-performance affinity chromatography by using an im-
mobilized HSA column (ThermoHypersil, 150 mm × 4.6 mm
size). This technique is well established as a fast and reliable
method to obtain HSA binding constants.19,20 The mobile phase
used was 25 mM Na2HPO4, 25 mM KH2PO4 (pH 7.0)/aceto-
nitrile [85:15; v/v]. A flow rate of 0.8 mL min-1 was used
throughout. Experiments were conducted at 25 ( 0.1 °C. A
minimum of four different chromatograms were obtained for
each compound to ensure the reproducibility of the measure-
ments and to estimate their errors.

As is customary in protein binding studies by high-
performance affinity chromatography, the binding constants
were calculated in the logarithmic scale as log K’hsa )
log((t - t0)/t0), where t and t0 are the retention times of the
drug and NaNO3 (dead time of the column), respectively.19,20

This resulted in an appropriate wide, centered, and Gaussian-
like distribution of binding constants, displayed in Figure 1.
All the retention times, together with their corresponding
errors and log K’hsa values, are listed in Table 1 too; 84 out
of the 95 compounds showed errors in retention times below
1%, and in the remaining cases the errors were always below
5%. This indicates the high reproducibility and accuracy of the
measurements. On the other hand, these compounds span a
wide range of K’hsa binding constants (3 orders of magnitude)
corresponding to retention times between 2 and 56 min. It is
therefore expected to be appropriate to model a wide range of
druglike molecules.

Theoretical Calculations Section

For molecular structure calculations, descriptor cal-
culations, and model generation and fitting, the pro-
grams Tsar21 and QSAR+22 (inside Cerius223) were
used, running on a four-processor Silicon Graphics
Origin200 workstation under the IRIX 6.5 operating
system.

Structure Calculations. Initial acceptable three-
dimensional structures of the drugs at their neutral
state were calculated with CORINA, inside Tsar; after
that, accurate structures were obtained through energy
minimization (EF algorithm) by using the semiempirical
AM-1 Hamiltonian as the energy operator.24 For this
step, the program Vamp (inside Tsar) was employed.
These quantum mechanical calculations were also used
to determine some descriptors, like dipolar moments
and mean atomic polarizabilities (see below).

Molecular Descriptor Calculation and Initial
Selection. A wide range of molecular descriptors of
different types were calculated for all 95 selected
compounds. These included electronic, topological, in-
formation-content, spatial, structural, and thermody-
namic descriptors. Electronic descriptors included AM-1
mean polarizability and dipole moment, CNDO/2 HOMO
and LUMO energies, and superdelocalizability. Topo-
logical descriptors included Wiener,25 Zagreb,26 and
Hosoya27 indices, Kier and Hall molecular connectivity
indices (ø’s),28 valence-modified connectivity indices
(øv’s),28 subgraph count indices (SC’s),28 Kier’s shape
indices (κ’s),28 the molecular flexibility index,28 and
Balaban indices.29 Information-content descriptors in-
cluded indices of atomic composition, adjacency matrix,
distance matrix, edge adjacency matrix, edge distance
matrix, and multigraph information content.30 Spatial
descriptors included radius of gyration, Jurs descrip-
tors,31 shadow indices,32 area, density, principal moment
of inertia, and molecular volume. Structural descriptors
included numbers of chiral centers, rotatable bonds,
hydrogen-bond acceptors, hydrogen-bond donors, mo-
lecular weight, and aromatic density. Finally, the
thermodynamic descriptors included AlogP,33 Fh2o,34

Foct,34 MNDO heat of formation,35 molar refractivity,
ClogP,36 and the Andrews binding free energy.37

This yielded a total of 107 initial descriptors. Several
criteria were used to reduce this number while optimiz-
ing the information content of the descriptors set. First,
descriptors for which no value was available for all the
compounds were disregarded. Second, descriptors show-
ing the same value for more than 70% of the molecules
were removed. Third, if two descriptors showed a
correlation coefficient greater than 0.9, one of them was
left out. After these screening procedures, a set of 53
descriptors remained for model generation. These de-
scriptors provided a set of uncorrelated variables with
high information content.

QSAR’s for Specific Families of Compounds.
From inspection of Table 1 it can be seen that many of
the 95 selected compounds can be grouped together in
well-known “families”, displaying structural similarity
(measured through Tanimoto distances between Day-
light38 fingerprints) and also in most cases the same
target and clinical use. Families were defined as dis-
played as additional entries in Table 1.

Similar compounds in principle should bind to the
same binding site in HSA and establish mainly the same
interactions with the protein. Therefore, it is expected
that simple linear, one-variable models in this case can
provide good predictions for new compounds inside each
family because the structural variability is restricted
and the binding site is the same. It is usually recom-
mended to have at least five compounds per variable in
linear regressions to produce reliable models.39 So, only
families with at least five member compounds were
selected to derive specific univariate linear models.
These are the so-called “COX inhibitors” (six com-
pounds), comprising molecules inhibiting COX-1 and/
or COX-2 (COX means cyclooxygenase); “penicillins”
(five compounds); “â-adrenergic antagonists” (11 com-
pounds); “steroids” (eight compounds), comprising ste-
roids and structurally related molecules; and “tricyclic
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Table 1. Database of Compounds Assayed for HSA Bindinga

compound tr/min SDt % error log K’hsa clinical use; targetb family

captopril 2.465 0.006 0.24 -2.69 antihypertensive; ACE inhibitor
acetylsalicylic acidc 2.56 0 0 -1.39 antiinflamatory; COX-1 inhibitor COX inhibitors
cefuroxime 2.575 0.006 0.23 -1.33 antibacterial; penicillin-binding protein inhibitor penicillins
amoxicillin 2.61 0.01 0.38 -1.21 antibacterial; penicillin-binding protein inhibitor penicillins
cephalexin 2.65 0.01 0.38 -1.11 antibacterial; penicillin-binding protein inhibitor penicillins
5-fluorocytosine 2.65 0 0 -1.11 antifungal
cromolyn 2.67 0.02 0.75 -1.07 antiasthmatic
ebselen 2.685 0.006 0.22 -1.04 antiinflammatory
zidovudine 2.695 0.006 0.22 -1.02 antiviral; reverse transcriptase inhibitor
caffeine 2.755 0.006 0.22 -0.92 CNS cardiac stimulation; phosphodiesterase,

A2 antagonist
acetaminophenc 2.845 0.006 0.21 -0.81 antiinflammatory; COX-1 (COX-2) inhibitor COX inhibitors
L-tryptophan 2.87 0.01 0.35 -0.78 amino acid
methotrexate 2.88 0.01 0.35 -0.77 cancer chemotherapy; dihydropholate reductase
propylthiouracil 2.892 0.006 0.21 -0.75 hyperthyroidism; thyroperoxidase inhibitor?
antipyrine 2.96 0.01 0.34 -0.69 analgesic, antipyretic phenazones
phenoxymethyl-

penicillinic acid
2.96 0.02 0.67 -0.69 antibacterial; penicillin-binding protein inhibitor penicillins

salicylic acid 3 0.01 0.33 -0.66 antiinflammatory; COX inhibitor COX inhibitors
cefuroxime axetil 3.14 0 0 -0.56 antibacterial; penicillin-binding protein inhibitor penicillins
etoposide 3.25 0.02 0.61 -0.49 cancer chemotherapy; topoisomerase II inhibitor
atenolol 3.28 0.02 0.61 -0.48 antihypertensive, cardiac dysrithmias; â1 antagonist â-antagonists
chloramphenicolc 3.305 0.006 0.18 -0.46 antibacterial; ribosomal peptidyl transferase inhibitor
cimetidine 3.355 0.006 0.18 -0.44 antiulcer; H2 antagonist H2 antagonists
chlorpropamide 3.36 0.02 0.59 -0.44 hypoglycaemic; ATP-sensitive

K+ channel blocker at B-cells
sulfonylureas

sotalol 3.36 0.02 0.59 -0.44 antihypertensive, cardiac dysrithmias; â-antagonist â-antagonists
hydrochlorothiazide 3.395 0.006 0.18 -0.42 diuretic; Na+/Cl- cotransporter inhibitor
tolazamide 3.39 0.02 0.59 -0.42 hypoglycaemic; ATP-sensitive

K+ channel blocker at B-cells
sulfonylureas

hydrocortisone 3.43 0.02 0.58 -0.4 hormone steroids
nadolol 3.44 0.01 0.29 -0.4 antihypertensive, cardiac dysrithmias; â-antagonist â-antagonists
prednisolone 3.44 0.01 0.29 -0.4 antiinflammatory and immunosuppressive;

glucocorticoid receptors
steroids

scopolamine 3.57 0.01 0.28 -0.34 antiemetic, antispasmodic; muscarinic antagonist
timololc 3.6 0.01 0.28 -0.33 glaucoma; â-antagonist â-antagonists
metoprolol 3.72 0.04 1.07 -0.29 antihypertensive, antidysrhythmic;

â1-antagonist
â-antagonists

trimethoprim 3.8 0.01 0.26 -0.26 antibacterial; dihydrofolate reductase inhibitor
dansylglycine 3.8 0.01 0.26 -0.26 nondrug
lidocaine 3.92 0 0 -0.23 antidysrhythmic; Na+ channel blocker local anaesthetics
methylprednisolone 3.932 0.005 0.13 -0.22 antiinflammatory and immunosuppressive;

glucocorticoid receptors
steroids

tolbutamide 3.95 0.02 0.51 -0.22 hypoglycaemic; ATP-sensitive
K+ channel blocker at B-cells

sulfonylureas

sulfaphenazole 3.97 0.03 0.75 -0.21 antimicrobial
acebutolol 3.975 0.006 0.15 -0.21 antihypertensive, cardiac dysrithmias; â1-antagonist â-antagonists
procaine 4.05 0.03 0.74 -0.19 local anaesthetic; Na+ channel blocker local anaesthetics
terazosinc 4.17 0.02 0.48 -0.16 antihypertensive; R1 antagonist R1 antagonist
oxprenolol 4.185 0.006 0.14 -0.15 antihypertensive, antidysrhythmic; â-antagonist â-antagonists
lamotrigine 4.28 0.02 0.47 -0.13 antiepileptic; Na+ channel blocker
clonidine 4.29 0 0 -0.13 antihypertensive; R2 agonist
pindolol 4.295 0.006 0.14 -0.13 antihypertensive, cardiac dysrithmias; â-antagonist â-antagonists
frusemide 4.3 0.02 0.46 -0.13 diuretic; Na+/K+/2Cl- cotransporter blocker loop diuretics
carbamazepine 4.4 0.02 0.45 -0.1 antiepileptic; Na+ channel blocker tricyclic antidepressants
ranitidine 4.41 0.05 1.13 -0.1 antiulcer; H2 antagonist H2 antagonists
camptothecin 4.492 0.005 0.11 -0.08 cancer chemotherapy; topoisomerase I inhibitor
tetracycline 4.5 0.2 4.44 -0.08 antibacterial; A site at ribosomal 30S subunit tetracyclines
bupropionc 4.64 0 0 -0.05 antidepressant
sumatriptan 4.67 0.01 0.21 -0.05 antimigraine; 5HT1D agonist
warfarin 4.72 0.08 1.69 -0.04 anticoagulant; vitamin K reductase inhibitor
bumetanide 4.76 0.03 0.63 -0.03 diuretic; Na+/K+/2Cl- cotransporter blocker loop diuretics
oxyphenbutazone 4.8 0.02 0.42 -0.02 antiinflammatory phenazones
acrivastine 4.83 0.03 0.62 -0.02 antiallergic; H1 antagonist
phenytoin 4.88 0.01 0.2 0 antiepileptic; Na+ channel blocker
doxiciclyne 5 0.1 2 0.01 antibacterial; A site at ribosomal 30S subunit tetracyclines
ketoprofen 5.12 0.02 0.39 0.03 antiinflammatory; COX inhibitor COX inhibitors
alprenolol 5.145 0.006 0.12 0.04 antihypertensive, antidysrhythmic; â-antagonist â-antagonists
prazosinc 5.28 0.02 0.38 0.06 antihypertensive; R1 antagonist R1 antagonist
digitoxin 5.81 0.03 0.52 0.13 cardiotonic; Na+/K+ ATPase pump inhibitor steroids
levofloxacin 5.86 0.008 0.14 0.14 antibacterial; topoisomerase II inhibitor quinolones
ciprofloxacin 5.86 0.08 1.36 0.14 antibacterial; topoisomerase II inhibitor quinolones
labetalol 5.897 0.005 0.08 0.14 antihypertensive in pregnancy; R/â-antagonist â-antagonists
norfloxacin 5.9 0.1 1.69 0.14 antibacterial; topoisomerase II inhibitor quinolones
phenylbutazone 6.31 0.04 0.63 0.19 antiinflammatory phenazones
sancicline 6.42 0.07 1.09 0.21 antibacterial; A site at ribosomal 30S subunit tetracyclines
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antidepressants” (six compounds), comprising tricyclic
antidepressants and structurally similar compounds.

To derive the models, all possible univariate linear
regressions were calculated for all 53 descriptors de-
scribed above, and the best model for each family was
selected. In principle, the goodness of the fit, as judged
by the squared correlation coefficient, r2, was used as
selection criterion for the best model. The closer this
value is to 1, the better the fit (and the model) is.
However, special care was also taken of the predictive
power of the models such that in some cases second-
best models were finally the selected ones because they
scored better in the validation tests (see below).

Because the families contained relatively small num-
bers of molecules, no external validations were possible.
Therefore, the models were internally validated by two
methods. First, leave-out-one (LOO) cross-validation
tests were conducted and the PRESS (predictive re-
sidual sum of squares) statistic was computed. It is
defined as

where yi′ are the predicted values of the dependent
variable at each of the models generated after elimina-
tion of one molecule, for that molecule, and yi are the
actual (experimental) values. For reasonable regression
models, the PRESS/SSY ratio,

where ŷ is the average value of the dependent variable
and SSY is given by the denominator of eq 2, should be
smaller than 0.4.40 Also, the cross-validated squared
correlation coefficient, q2, was computed. It is obtained
from the equation

where SD is the sum of squared deviations of the
dependent variable values from their mean. For reason-

Table 1 (Continued)

compound tr/min SDt % error log K’hsa clinical use; targetb family

minocycline 6.46 0.07 1.08 0.21 antibacterial; A site at ribosomal 30S subunit tetracyclines
naproxen 6.8 0.1 1.47 0.25 antiinflammatory; COX-1 and COX-2 inhibitor COX inhibitors
clofibratec 7.08 0.008 0.11 0.27 lipid-lowering drug
propranolol 7.11 0.01 0.14 0.28 antihypertensive, antidysrhythmic; â-antagonist â-antagonists
tetracaine 7.56 0.07 0.92 0.32 local anaesthetic; Na+ channel blocker local anaesthetics
fusidic acid 7.78 0.06 0.77 0.33 antibacterial; EF2-ribosome complex steroids
novobiocin 8.01 0.04 0.5 0.35 antibacterial; topoisomerase II inhibitor
ondansetron 8.21 0.03 0.36 0.37 antiemetic; 5-HT3 antagonist
droperidol 9.09 0.03 0.33 0.43 antipsychotic, antiemetic; D2 antagonist
quinidine 9.31 0.04 0.43 0.44 antidysrhythmic; Na+ channel blocker
indomethacin 9.77 0.02 0.2 0.47 antiinflammatory; COX-1 inhibitor COX inhibitors
quinine 10.11 0.01 0.1 0.49 antimalarial; heme polymerase inhibitor
verapamylc 10.69 0.02 0.19 0.52 antianginal; L-type heart Ca2+ channel blocker
sulfasalazine 11.41 0.4 3.5 0.56 antirheumatoid
progesterone 11.97 0.08 0.67 0.59 hormone steroids
desipramine 12.6 0.1 0.79 0.61 antidepressant; noradrenaline transporter blocker tricyclic antidepressant
estradiol 14.24 0.07 0.49 0.68 hormone steroids
glibenclamide 14.28 0.007 0.05 0.68 hypoglycaemic; ATP-sensitive

K+ channel blocker at B-cells
sulfonylureas

testosterone 15.94 0.05 0.31 0.74 hormone steroids
imipramine 16.4 0.1 0.61 0.75 antidepressant; noradrenaline transporter blocker tricyclic antidepressant
ketoconazole 19.6 0.2 1.02 0.84 antifungal; P450 (ergosterol

synthesis involved) inhibitor
azoles

promazine 23.12 0.04 0.17 0.92 antipsychotic; D2 antagonist tricyclic antidepressant
itraconazolec 29.7 0.09 0.3 1.04 antifungal; P450 (ergosterol synthesis involved) inhibitor azoles
triflupromazine 30.2 0.2 0.66 1.05 antipsychotic; D2 antagonist tricyclic antidepressant
chlorpromazine 33.8 0.2 0.59 1.1 antipsychotic; D2 antagonist tricyclic antidepressant
terbinafine 39.1 0.1 0.25 1.17 antifungal; squalene epoxidase inhibitor
clotrimazole 55.82 0.03 0.05 1.34 antifungal; P450 (ergosterol synthesis involved) inhibitor azoles

a Experimental data obtained as described in the text. tr ) average retention time, obtained from the average of the detected peak
maxima displayed in at least four chromatograms for each compound; SDt ) standard deviation of the retention time; %error ) error
percentage of the retention time. The log K’hsa values were all taken with two decimal numbers, no matter what the error in the retention
times. b Taken from ref 2. c Compounds comprising the external validation set (see text).

Figure 1. Histogram of instances distribution of log K’hsa
values. The captopril value, calculated from the average value
of tr in Table 1, is pointed out; its retention time is the same
as t0 within experimental error, so it was not included in model
generation (see text).
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able regression models, q2 should be close to r2, usually
smaller.40

The second validation method was a randomization
test, where log K’hsa data were scrambled several times
and new regression models were derived each time. This
is particularly important for this problem because we
are selecting one variable from a pool of descriptors
much larger than the number of molecules in the
models, so chances are that good fits will be obtained,
but just from chance correlations not representing true
relationships between log K’hsa and the descriptor
selected.41-43 In our case, nine randomization trials were
performed to achieve a 90% confidence level. Both the
mean value of the correlation coefficient r for random
trials, r̂r, and the number of standard deviations of the
mean value of r of all random trials to the nonrandom
r value, SD-rr, were determined. For models not origi-
nating from chance correlations, the r̂r value should be
well below the nonrandom one, rnr, and the SD-rr should
be large.39 This should indicate that the nonrandom
model represents a true relationship between the se-
lected variables and the log K’hsa.

The resulting models are gathered in Table 2, to-
gether with their PRESS/SSY, r2, q2, rnr, r̂r, and SD-rr
statistics. As can be seen in Table 2, different descrip-
tors provide for each family the best model: ClogP,
JursRPSA, aromatic density, radius of gyration, and
shadow-YZfr, for â-adrenergic antagonists, steroids, COX
inhibitors, tricyclic antidepressants, and penicillins,
respectively. In the case of COX inhibitors, the equation
shown is not the best one as far as r2 is concerned; the
best fit corresponded to one equation having an AM-1
dipole moment as descriptor. However, this model
displayed low predictive power, so it was replaced with
the one shown in Table 2.

In all the cases but penicillins, the fit is good, with r2

greater than 0.80 and PRESS/SSY below 0.4. Also, the
internal validation tests indicate good predictive power
and no chance correlations for all the models but
penicillins; q2 is close to r2, r̂ is well below rnr, and SD-
rr is large. This is especially fair in the case of â-
adrenergic antagonists, steroids, and tricyclic anti-
depressants. In the case of penicillins, no model could
be derived from any of the 53 descriptors showing
acceptable fit and reasonable cross validation and
randomization test results.

These equations should be useful for predicting HSA
binding affinities for new molecules of the corresponding
families: â-adrenergic antagonists, steroids, COX in-
hibitors, and tricyclic antidepressants.

Global QSAR. All the compounds but one in the
database of log K’hsa values were used to generate
models to be employed for predicting binding affinities
to HSA of any new druglike compound. The only

exception, captopril, was not used because its retention
time is the same as that of NaNO3 (t0 ) 2.46′) within
experimental error. The genetic funcion approximation
(GFA) facility in QSAR+ was used for this aim to
exhaustively search for models and to select the best
ones. This facility consists of a genetic algorithm, which
at the outset generates randomly an ensemble of model
equations, each of them being codified by a “gene”. The
genes fight for reproduction with success proportional
to their “fitness” (in this case the minimization of the
so-called lack of fit (LOF) statistic of the model44). Both
crossover and mutation are allowed to increase the
search in the model space. Here, mutations represent
modifications in the model equation, while crossovers
correspond to transfers of some equation terms between
models. In this way, the search is made very quickly
without the need of trying all the possible models, which
would result in an unaffordable computation. On the
other hand, the fight imposed inside the population of
genes (models) produces a fast selection of the best
equations. After a relatively small number of genera-
tions the system converges to a final population com-
prising mainly the best model, together with a set of
models similar to that, both in functional form and LOF.
Genetic algorithms have proved to be very powerful
optimization algorithms for complex systems in very
different contexts.45 Here, we have a large set of
descriptors and possible functional forms of the QSAR
equations, so GFA appears to be the appropriate choice
for this problem. In addition, GFA ends up with an
equation, therefore allowing the interpretation of the
model in physical terms. GFA is also able to discrimi-
nate between good and bad descriptors and to select the
former. These two properties are not available for other
optimization algorithms, like neural networks; when
used for similar problems, they are normally supple-
mented with a genetic algorithm to search and select
for descriptors, the neural network being only used for
regression purposes.12

The dataset, comprising 94 compounds, was split into
two subsets: a training one (84 molecules) used to
derive the models and an external validation one (10
molecules, shown with a c in Table 1). The last set was
selected to span uniformly the whole range of log K’hsa
values. Multiple runs were initially conducted in order
to set the parameters of the GFA for this problem. For
instance, it was observed that runs with an excessive
number of generations converged on slightly better
models but had worse external and internal valida-
tion test results, indicating they had moved to the
overfitted side. In contrast, too few generations failed
to yield good models and convergence. For any number
of initial random equations, an approximate optimum
number of generations could be suggested. In addition,

Table 2. QSAR Models for Specific Families of Compounds in the Databasea

family n QSAR equation PRESS/SSY r2 q2 rnr r̂r SD-rr

â-adrenergic antagonists 11 -0.52 + (0.23)(ClogP) 0.25 0.83 0.74 0.91 0.70 2.50
steroids 8 (1.63-5.44)(JursRPSA) 0.11 0.94 0.89 0.97 0.69 2.40
COX inhibitors 6 -4.82 + (12.61)(DensArom) 0.38 0.80 0.62 0.89 0.85 0.52
tricyclic antidepressants 6 -5.53 + (1.64)(RadOfGyr) 0.08 0.97 0.92 0.98 0.79 1.37
penicillins 5 6.37-11.25(Shadow-YZfr) 0.71 0.67 0.28 0.82 0.92 -0.77
a n ) number of compounds in the family; PRESS/SSY, r2, q2, as described in the text; rnr ) correlation coefficient for the nonrandom

model; r̂r ) average correlation coefficient for the random models; SD-rr ) number of standard deviations of the mean value of r of all
random trials to the nonrandom rnr value.
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not biasing the evolution toward equations with small
numbers of terms also resulted in overfitted models with
a lot of descriptors. Similar considerations were applied
for other parameters: type of equation terms, mutation
probabilities, and so on. The final parameters and
running conditions are described below.

The GFA search and selection was performed in two
steps. An initial run of GFA was performed with the
training set, using the 53 descriptors. Given the large
number of descriptors, as well as the use of multiple
types of equation terms (see below), a big initial popula-
tion of random equations (1000 models) was generated
to search as much as possible the equation space. All
these initial models had five terms, one of them a
constant. Terms were of five types: linear, quadratic,
spline, offset quadratic, and quadratic spline. The
mutation probabilities for evolution were set as fol-
lows: 0.5 for adding a new term, 0.5 for shifting the
spline knot, 0.25 for reducing the equation, and 0 for
extending the equation. A smoothing parameter of 2 was
used to bias toward smaller models. Equation lengths
were not fixed. Least squares were used as the regres-
sion method. The system was allowed to evolve for a
total of 100 000 generations, after which the resulting
best model (as judged by the LOF) was

The resulting statistics for this model equation were as
follows: LOF ) 0.12; r2 ) 0.78; q2 ) 0.73; PRESS/SSY
) 0.27; five outliers. (Both q2 and PRESS/SSY where
computed using eqs 2 and 3 above; they are shown in
the “equation viewer” of QSAR+ inside Cerius2.) There-
fore, a good fit (as judged by the large r2 and the small
LOF), with good predictive power (as judged by a q2

close to r2 and a PRESS/SSY well below 0.4) was
obtained. Figure 2 shows a plot of the theoretical
log K’hsa values vs the experimental ones.

The whole process was validated first by means of a
randomization test, where the whole evolution was

repeated nine times (to yield a 90% confidence level)
after scrambling the log K’hsa values every time. As a
result, all the derived models were clearly worse than
the one above, having r̂r ) 0.30, well below rnr ) 0.88.
Moreover, the SD-rr value was large: 3.27. This indi-
cates that the obtained regression does not result from
chance correlations but is the result of real dependen-
cies.

In addition, the whole process was also further
validated with a LOO cross-validation test. As with the
randomization test, the same evolution was repeated
84 times after leaving out all the molecules, one each
time. The 84 best models were used to predict the
corresponding log K’hsa of the absent compound. This
yielded a q2 ) 0.81, very close to the value obtained for
the validated model.

Finally, the model was externally validated with the
external set not used in the derivation of the model at
any moment. The resulting actual vs predicted log K’hsa
plot is shown in Figure 3. The values are very well
correlated (r2 ) 0.88). This, together with the internal
validation tests, demonstrates the good predictive power
of the model and the absence of both overfitting and
chance correlations in the model.

Figure 2. Observed vs predicted log K’hsa values plot for the
first global model, obtained with the training set.

log K’hsa ) 0.020141 + (0.055367)(AM1dip) -
(1.22294)(JursRPSA) - 0.028267(EHOMO +

7.4076)2 + (0.14905)(ClogP) -
3.48408(0.18539 - 6øring) (4)

Figure 3. Observed vs predicted log K’hsa values plot for the
first global model, obtained with the external validation set.

Figure 4. Frequency distribution of descriptors in the best
model equations obtained from the global cross validation of
the first global model.
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The cross-validation test described above was also
useful for screening in a robust way the descriptors
important for this system because they represent 84
independent evolutions with datasets lacking one dif-
ferent molecule each time. The descriptor frequencies
were computed from the resulting 84 best models.
Figure 4 shows these frequencies. It can be seen that
the best models are made up of a subset of only 12
descriptors. ClogP is the most important parameter
because it occurs in all the models, followed by 6øring.
All the descriptors in the previous model belong to this
subset of important descriptors.

Therefore, a second GFA step was taken, starting only
with the subset of 12 important descriptors, to obtain
an improved model. The conditions were the same as
before except the system was allowed to evolve for
300 000 generations to achieve better convergence. The
resulting best model was

This model is similar to the previous one in that it keeps
the most important parameters, ClogP and 6øring, to-
gether with others less important: AM-1 dipole mo-
ment, and HOMO energy. JursRPSA has been replaced
with JursTPSA, and a new term, having a number of
hydrogen bond donors as descriptor, appears.

The statistics for this model are as follows: LOF )
0.10; r2 ) 0.83; q2 ) 0.79; PRESS/SSY ) 0.20. Therefore,
both the goodness of the fit and the predictive power of
the model from the cross validation have been improved
compared with those from the previous model. Figure
5 displays a plot of the predicted log K’hsa vs the
experimental one; Figure 6 displays the descriptor usage
vs the number of generations in the evolution, where it
can be seen that good convergence has actually been
achieved.

A randomization test, with the same conditions as the
previous one, was also conducted to validate the model
generation with the subset of important descriptors. The

results showed again that the random models were
clearly worse, with r̂ ) 0.25 (rnr ) 0.92), and a large
SD-rr ) 4.57. Thus, it is even more unlikely that this
model results from chance correlations.

Finally, the model was used to predict the log K’hsa
of the external validation set. Again, the predicted and
observed log K’hsa values are very well correlated (r2

) 0.82, slightly worse than those from the previous
model). Figure 7 displays a plot of the actual vs
predicted log K’hsa values for this second model.

In summary, two models with good predictive power
have been worked out that should be useful to success-
fully predict binding affinities to HSA for new drugs of
any family from their structure. The models cover a
wide range of retention times (between 2 and 56 min)
most optimally. Table 3 lists the range of values
displayed by the descriptors comprising the two models
in the dataset used to derive the models; inside these

Figure 5. Observed vs predicted log K’hsa values plot for the
second global model, obtained with the training set.

log K’hsa )
-0.607873 + 0.06784(HBondDon - 3)2 -

(9 × 10 - 6)(JursTPSA) - 0.028261(EHOMO +

7.4076)2 + (0.005697)(AM1dip2) +
(0.182595)(ClogP) + (2.33529)(6øring) (5)

Figure 6. Variable usage vs genetic algorithm generations
for the second global model. Selection of model descriptors
during evolution can be seen, as well as the achieved conver-
gence.

Figure 7. Observed vs predicted log K’hsa values plot for the
second global model, obtained with the external validation set.
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ranges the reliability of the predictions are greater
because they should come from interpolations of the
model, not from extrapolations.

Implications for Drug-HSA Binding Studies
and Drug Design. This work presents a new set of 95
binding constants of drugs and druglike compounds to
HSA, systematically obtained with the same technique
and under the same conditions. Therefore, it represents
a rich source of information about drug-HSA binding
that can be useful for extracting general conclusions
about the forces that stabilize these interactions. This
information, in turn, should allow the rationalization
of the design of new drugs, as far as their HSA binding
is concerned.

As stated above, GFA generates equation models for
regression. This is an advantage when one is interested
not only in predicting but also in understanding the
mechanism behind the modeled phenomenon. The de-
scriptor frequencies analysis described above is there-
fore very informative because it provides the variables
important to describe the behavior of this system.

In this respect, it is clear that hydrophobicity in-
creases drug binding to HSA because all the models
contain a term proportional to ClogP and some models
a term proportional to AlogP too (not shown). This has
also been observed previously in other models of limited
sets of compounds, like 1,4-benzodiazepines,19 2,3-
substituted 3-hydroxypropionic acids,20 and also in a
heterogeneous set,46,47 where also hydrophobic terms
display a prevailing role. This is supported by the X-ray
structures of HSA, both alone and bound to different
ligands.1,4-6 These structures show both sites I and II
made up mainly of hydrophobic residues and also that
drug binding is stabilized to a large (if not primary)
extent by hydrophobic interactions. This allows us to
suggest this type of interaction to be probably the most
important for drug-HSA binding. From a drug-design
point of view, an increase of hydrophobicity within a
series of compounds is expected to result in an increased
HSA binding, as long as the corresponding chemical
modifications do not also result in an opposing effect of
other types of interactions that affect binding (see
below).

Both the model equations and the descriptor frequen-
cies analysis indicate that there are other factors
modulating the binding strength to HSA, which are
mainly of geometric or shape nature. 6øring, JursRPSA,
and JursTPSA are probably the most important ones
in the models. 6øring is a sixth-order, ring type Kier and
Hall topological index. Its presence in the models is
probably reflecting the effect that the nature of six-
membered rings in the drug can have in the interac-
tion: heteroatoms in the ring, substituents present in
the ring, etc. This topological index especially describes

the degree of substitution or branching in six-membered
rings such that high values of 6øring correspond to
molecules with many nonsubstituted atoms in six-
membered rings. The equations show a direct propor-
tionality of log K’hsa with 6øring and therefore indicate
that molecules with nonsubstituted six-membered rings
are expected to bind more tightly to HSA than others
with no six-membered rings or highly branched rings.

On the other hand, Jurs descriptors are obtained by
mapping partial charges on solvent-accessible surface
areas of particular atoms. In particular, JursTPSA is
the sum of solvent-accessible surface areas of atoms
with the absolute value of partial charges greater than
or equal to 0.2. JursRPSA is JursTPSA divided by the
total molecular solvent-accessible surface area. The
corresponding terms in the model equations indicate
that log K’hsa is inversely proportional to these descrip-
tors; therefore, binding is favored for molecules with
large nonpolar surfaces. This echoes the importance of
hydrophobicity in binding.

Finally, other additional factors, like hydrogen bonds,
number of rotatable bonds, and HOMO energy, can be
important in determining HSA binding extent.

In summary, drug binding to HSA seems to be driven
by hydrophobic interactions that should be modulated
by structural factors, which are modeled by different
terms in the two global models presented here.
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