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1. Introdution and statement of Main The-oremFor ontinuous maps on the interval with �nitelymany monotoniity intervals, the kneading theorydeveloped by Milnor and Thurston [MT℄ gives asymboli desription of the dynamis of these maps.This desription is given in terms of the kneadinginvariants whih essentially onsist on the symboliorbits of the turning points of the map under onsid-eration. Moreover, this theory also gives a lassi�a-tion of all suh maps through these invariants. For

ontinuous bimodal degree one irle maps similarinvariants were introdued by Alsedà and Mañosas[AM℄. In that paper, the �rst part of the programjust desribed was arried through, and relationsbetween the irle maps invariants and the rotationinterval were eluidated. Later on, in [AF; Theo-rem A℄ the set of all these kneading invariants (thekneading spae) was haraterized. The main goalof this paper is to give a desription of the knead-ing spae of the bimodal degree one irle maps us-ing some self�similarity operators whih allow us toidentify ertain subsets with known struture. To1



2 Ll. Alsedá and A. Faló.state this desription we need the appropriate no-tation. This paper is, in some sense, a ontinua-tion of [AF℄ and we use heavily the notation andresults from that paper. Although we have tried tomake this paper self-ontained in the introdutionwe have repeated ertain de�nitions from [AF℄ forreadability.As it is usual, instead of working with the ir-le maps themselves we will rather use their liftingsto the universal overing spae R. To this end, weintrodue the following lass A of maps. First wede�ne L to be the lass of all ontinuous maps Ffrom R into itself suh that F (x + 1) = F (x) + 1for all x ∈ R. That is, L is the lass of all liftingsof degree one irle maps. Then we will say that
F ∈ A if (see Figure 1):(1) F ∈ L.(2) There exists c

F
∈ (0, 1) suh that F is stritlyinreasing in [0, c

F
] and stritly dereasing in

[c
F
, 1] .We note that every map F ∈ A has a unique lo-al maximum and a unique loal minimum in [0, 1) .To de�ne the lass A we restrited ourselves to thease in whih F has the minimum at 0. Sine eahmap from L is onjugate by a translation to a mapfrom L having the minimum at 0, the fat that in (2)we �x that F has a minimum in 0 is not restritive.For a map F ∈ A one an de�ne the kneadingpair denoted by K(F ) (see De�nition 2.4) whihaptures all dynamis of the map F (see [AM;Proposition A℄). The kneading spae is a subset ofthe produt spae Eǫ × Eδ where both Eǫ and Eδare totally ordered spaes equipped with the ordertopology (see Subsetion 2.1). Also, the set of allkneading pairs will be alled the kneading spae.Now, we introdue the following index spae. Itwill be used to haraterize a lass of basi subsetsfrom eah omponent of the kneading spae.De�nition 1.1. Let J be the index spae whoseelements are sequenes x = {xj}

n
j=1 with termsin [0, 1] ∪ {δ, ǫ}, where n ∈ N ∪ {∞} and either

n < ∞, {xj}
n−1
j=1 ⊂ Q∩(0, 1) and xn ∈ {0, 1, δ, ǫ} ∪

{(0, 1) \ Q} or n = ∞ and {xj}
n
j=1 ⊂ Q \ Z.Consider the set J endowed with the lexio-graphial ordering indued by the usual ordering ofthe real numbers and the following ordering:

δ < 0 < 1 < ǫ.

The ordering of J will denoted by ≺ . Let J∞ bethe subset of J whih ontains all the in�nite se-quenes in J , and let J ∗
ǫ (respetively, J ∗

δ ) be theset of all �nite sequenes in J ending with an ir-rational number union the �nite sequenes whihdo not end with δ (respetively, ǫ). Finally, set
Jǫ = J∞∪J ∗

ǫ and Jδ = J∞∪J ∗
δ . Note that Jǫ (re-spetively, Jδ) has as maximum the �nite sequene

ǫ (respetively, 1) and as minimum 0 (respetively,
δ). Also we denote by I the set of all �nite sequeneswhih do not end with 0, 1, ǫ or δ, union the emptysequene.Now we are ready to state the main result of thispaper. A ruial observation to the next theoremis that all maps appearing in it are de�ned in aonstrutive way using four symboli operators tobe de�ned in Setion 3.Main Theorem For F ∈ A there exist a, b ∈ R,
a ≤ b, and two losed intervals Qǫ(a) in Eǫ and
Qδ(b) in Eδ suh that K(F ) ∈ Qǫ(a)×Qǫ(b). More-over, the numbers a and b are the endpoints of therotation interval of F. and the following statementshold.1. There exists pǫ,a : Jǫ → Qǫ(a) whih is non�dereasing, maps the endpoints of Jǫ into theendpoints of Qǫ(a) and if a ∈ Q \Z then pǫ,ais one�to�one. Moreover,

Impǫ,a = Qǫ(a) \
⋃

x∈I

(pǫ,a(x1), pǫ,a(xǫ)) .2. There exists
Pǫ(a) ⊂

⋃

x∈I

[pǫ,a(x1), pǫ,a(xǫ)]with the following property. For eah α ∈
Pǫ(a) there is an x ∈ I and a bijetive stritlymonotone map uǫ

α from the kneading spaeof all unimodal maps on the interval to alosed subinterval of [pǫ,a(x1), pǫ,a(xǫ)] whihontains α as an endpoint. Moreover, foreah x ∈ I there exists α ∈ Pǫ(a) suh that
max(Imuǫ

α) = pǫ,a(xǫ).3. There exists pδ,b : Jδ → Qδ(b) whih is non-dereasing, maps the endpoints of Jδ into the
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�� �Fig. 1. An example of a map F in lass A.endpoints of Qδ(b) and if b ∈ Q \Z then pδ,bis one�to�one. Moreover,
Impδ,b = Qδ(b) \

⋃

x∈I

(pδ,b(xδ), pδ,b(x0))4. There exists
Pδ(b) ⊂

⋃

x∈I

[pδ,b(xδ), pδ,b(x0)]with the following property. For eah β ∈
Pδ(b) there is an x ∈ I and a bijetive stritlymonotone map uδ

β from the kneading spae ofall unimodal maps on the interval to a losedsubinterval of [pδ,b(xδ), pδ,b(x0)] whih on-tains β as an endpoint. Moreover, for eah
x ∈ I there exists β ∈ Pδ(b) suh that
min(Imuδ

β) = pδ,b(xδ).Thus, the above theorem e�etively gives a de-omposition of the spae Qǫ(a) (respetively, Qδ(b))into a set
Kǫ,a = Impǫ,a ∪




⋃

α∈Pǫ(a)

Imuα




(respetively,
Kδ,b = Impδ,b ∪




⋃

β∈Pδ(b)

Imuβ


)whose points are ompletely haraterized, and theopen intervals in the omplement of this set (whihare gaps where we have not been able to harater-ize the sequenes in their interior). The role of theabove gaps in Qǫ(a) (respetively, Qδ(b)) is to dealwith the �rst (respetively, seond) omponent ofthe kneading pairs ontaining unbounded symbols(see Figure 2 and ompare with [HH; Figure 5℄).These unbounded symbols appear in the kneadingsequenes due to the fat that b (respetively, a) anbe an be arbitrarily far from a (respetively, b).Another feature of the above deompositiontheorem is the following one. Assume that weknown the �rst (respetively, seond) omponentof the kneading pair of a given map from lass Ahaving a (respetively, b) as a left (respetively,right) endpoint of the rotation interval up to a given�ne length n. Then, from the above theorem wean obtain the minimal interval in Qǫ(a) (respe-tively, Qδ(b)) with endpoints in Kǫ,a (respetively,

Kδ,b) ontaining all the �rst (respetively, seond)omponents of kneading pairs whih oinide with
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Qε (a)

p/q  < w < p'/q'

pε,a (p/q0) pε,a (p/qε)pε,a (p/q1)

pε,a (p'/q'0) pε,a (p'/q'1)pε,a (p'/q'ε)

pε,a (0) pε,a (w) pε,a (1) pε,a (ε)

These open intervals contain copies
of closed intervals of unimodal type Fig. 2. The deription of the losed interval Qǫ(a) using the map pǫ,a. Note that the gaps also ontain thesequenes with unbounded symbols.

Fig. 3. The kneading spae and its desription using the index spae and the map given in the MainTheorem.



On the struture of the kneading spae of bimodal degree one irle maps 5the given one in the �rst n symbols (see Figures 3and 2). Thus, the study of the dynamis (periodipoints, topologial entropy, ...) of maps assoiatedto the endpoints on these intervals should allow usto bound the dynamis of the given map by usingthe standard tools arising from kneading theory. Inpartiular, this theorem gives some basi topologi-al tools that we an used to desribe bifurations inparametrized families of bimodal degree one irlemaps (see Hokett and Holmes [HH℄).The paper is organized as follows. Unfortu-nately, the de�nitions of the ∗ �like operators andthe statements of the results using to proved theMain Theorem are rather tehnial and require agood deal of notation. In partiular, before thesede�nitions and statements, for ompleteness, weneed to make a survey on Kneading Theory for mapsin A and to �x the notation we will use when talkingabout unimodal interval maps (see Setion 2). InSetion 3 we introdue the four operators to statethe results that we use in Setion 4 to prove theMain Theorem. Finally, in Setions 5 and 6 we shallprove the results stated in Setion 3.2. A survey on kneading theory for maps in
A and unimodal mapsThis setion is divided into two setions. The �rstone it is essentially a survey of the papers by Alsedàand Mañosas [AM℄ and Alsedà and Faló [AF℄.The seond one we will reall basi onepts of thekneading theory of unimodal maps.2.1. Kneading theory for maps in AWe start by realling the notion of itinerary of apoint. For F ∈ A and x ∈ R let

s(x) =





R if D(x) ∈ (cF , 1),
C if D(x) = cF ,
L if D(x) ∈ (0, cF ),
M if D(x) = 0,and d(x) = E(F (x)) − E(x).Then the redued itinerary of x, denoted by

Î
F
(x), is de�ned as follows. For i ∈ N, set si =

s(F i(x)) and di = d(F i−1(x)). Then Î
F
(x) is de-

�ned by




ds1

1 ds2

2 . . . if si ∈ {L,R} for all i ≥ 1,
ds1

1 ds2

2 . . . dsn
n if sn ∈ {M,C}and si ∈ {L,R} for all

i ∈ {1, . . . , n − 1}.Note that sine F ∈ L we have that ÎF (x) =
ÎF (x + k) for all k ∈ Z. Let x, y ∈ R be suh that
D(x) 6= D(y). We say that x and y are onjugateif and only if F (D(x)) = F (D(y)). Note also thatif x and y are onjugate then they have the sameredued itinerary.Let S = {M,L,C,R} and let α = α0α1 . . . be asequene of elements αi = dsi

i of Z×S. We say that
α is admissible if one of the following two onditionsis satis�ed:De�nition 2.1. 1. α is in�nite, si ∈ {L,R} forall i ≥ 1 and there exists k ∈ N suh that

|di| ≤ k for all i ≥ 1.2. α is �nite of length n, sn ∈ {M,C} and si ∈
{L,R} for all i ∈ {1, . . . , n − 1}.Notie that any redued itinerary is an admis-sible sequene. Now we shall introdue some nota-tion for admissible sequenes (and hene for redueditineraries).The ardinality of an admissible sequene α willbe denoted by |α| ( if α is in�nite we write |α| = ∞).We denote by S the shift operator whih atson the set of admissible sequenes of length greaterthan one as follows : S(α) = α2α3 . . . if α =

α1α2α3 . . . . We will write Sk for the k-th iterateof S. Obviously Sk is only de�ned for admissiblesequenes of length greater than k. Clearly, foreah x ∈ R we have Sn(Î
F
(x)) = Î

F
(Fn(x)) if

|Î
F
(x)| > n.Let α = α1α2 . . . αn and β = β1β2 . . . be twosequenes of symbols in Z × S. We shall write α βto denote the onatenation of α and β (i. e. thesequene α1α2 . . . αnβ1β2 . . .). We also shall use thesymbols αn to denote n times︷ ︸︸ ︷

α α . . . α and α∞ to denote
α α . . . .Let α = α1α2 . . . αn, be a sequene of symbolsin Z × S. Set αi = dsi

i for i = 1, 2, . . . , n. We saythat α is even if Card{i ∈ {1, . . . , n}|si = R} iseven. Otherwise we say that α is odd.



6 Ll. Alsedá and A. Faló.Now we endow the set of admissible sequeneswith a total ordering. First set M < L < C < R.Then we extend this ordering to Z×S lexiographi-ally. That is, we write ds < tm if and only if either
d < t or d = t and s < m. Let now α = α1α2 . . .and β = β1β2 . . . be two admissible sequenes suhthat α 6= β. Then there exists n ∈ N suh that
αn 6= βn and αi = βi for i = 1, 2, . . . , n−1. We write
α < β if either α1α2 . . . αn−1 is even and αn < βnor α1α2 . . . αn−1 is odd and αn > βn.Let α = α1α2α3 . . . be an admissible sequene.We say that α is periodi of period n if Sn(α) = αand Si(α) 6= α for i = 1, 2, . . . , n − 1. We notethat if α is a periodi sequene of period n, then
|α| = ∞ and there exist α1, . . . , αn ∈ Z × Ssuh that α = (α1 . . . αn)∞. We also note thatif x is a periodi (mod 1) point of F suh that
|Î

F
(x)| = ∞, then Î

F
(x) is periodi (reall that

Sn(Î
F
(x)) = Î

F
(Fn(x))) but their periods are notneessarily equal.The following results show that the above or-dering of redued itineraries is, in fat, the orderingof points in [0, c
F
].Proposition 2.2. Let F ∈ A. Then(a) If x, y ∈ [0, c

F
], and x < y then Î

F
(x) ≤

Î
F
(y).(b) If x, y ∈ [c

F
, 1) , and x < y then Î

F
(x) ≥

Î
F
(y).Corollary 2.3. Let F ∈ A. For all x ∈ R we have

Î
F
(0) ≤ Î

F
(x) ≤ Î

F
(c

F
).To de�ne the kneading pair of a map F ∈ Awe introdue the following notation. For a point

x ∈ R we de�ne the sequenes Î
F
(x+) and Î

F
(x−)as follows. For eah n ≥ 0 there exists δ(n) > 0 suhthat d(Fn−1(y)) and s(Fn(y)) take onstant valuesfor eah y ∈ (x, x + δ(n)) (resp. y ∈ (x − δ(n), x)).Denote these values by d(Fn−1(x+)) and s(Fn(x+))(resp. d(Fn−1(x−)) and s(Fn(x−))). Then we set

Î
F
(x+) = d(x+)s(F (x+))d(F (x+))s(F

2(x+)) . . .and̂
I

F
(x−) = d(x−)s(F (x−))d(F (x−))s(F

2(x−)) . . . .

Clearly, Î
F
(x+) and Î

F
(x−) are in�nite admissi-ble sequenes and, Î

F
(x+) = Î

F
((x + k)+) and

Î
F
(x−) = Î

F
((x + k)−) for all k ∈ Z. Moreover,if x /∈ Z and |Î

F
(x)| = ∞ then Î

F
(x−) = Î

F
(x) =

Î
F
(x+).De�nition 2.4. Let F ∈ A. The pair

(Î
F
(0+), Î

F
(c−

F
)) will be alled the kneadingpair of F and will be denoted by K(F ).From [AM; Proposition A℄ it follows that K(F )haraterizes the set of redued itineraries (andhene the dynamis) of a map F ∈ A.Let AD denote the set of all in�nite admissiblesequenes.Note that for eah F ∈ A we have that K(F ) ∈

AD × AD. To haraterize the pairs in AD × ADthat an our as a kneading pair of a map from Awe will de�ne a subset E of AD×AD whih turns tobe the set of all kneading pairs of all maps from A(see [AF℄). To this end we introdue the followingnotation.Let α = ds1

1 α2 . . ., be an admissible sequene.We will denote by α′ the sequene (d1 + 1)s1α2 . . . .Note that sine for F ∈ A we have d(F (0+)) =
d(F (0−)) − 1 we an write (Î

F
(0+))′ = Î

F
(0−).We will denote by E∗ the set of all pairs

(ν1, ν2) ∈ AD × AD suh that the following on-ditions hold:(1) ν ′
1 < ν2.(2) ν1 ≤ Sn(νi) ≤ ν2 for all n > 0 and i ∈ {1, 2}.(3) If for some n ≥ 0, Sn(νi) = dR . . . , then

Sn+1(νi) ≥ ν ′
1 for i ∈ {1, 2} .We note that ondition (2) says, in partiu-lar, that ν1 and ν2 are minimal and maximal, re-spetively, aording the following de�nition. Let

α ∈ AD , we say that α is minimal (respetivelymaximal) if and only if α ≤ Sn(α) (respetively
α ≥ Sn(α)) for all n ∈ {1, 2, . . . | α | −1} .As we will see, the above set ontains (amongothers) the kneading pairs of maps from A withnon�degenerate rotation interval. To deal withsome speial kneading pairs assoiated to maps withdegenerate rotation interval we introdue the follow-ing de�nitions.



On the struture of the kneading spae of bimodal degree one irle maps 7For a ∈ R we set ǫi(a) = E(ia) − E((i − 1)a)and δi(a) = Ẽ(ia) − Ẽ((i − 1)a). Also, we set
Îǫ(a) = ǫ1(a)Lǫ2(a)L . . . ǫn(a)L . . .and
Îδ(a) = δ1(a)Lδ2(a)L . . . δn(a)L . . .Let Î

∗

ǫ (a) = (Îǫ(a))′ and let Î
∗

δ(a) denote the se-quene that satis�es (Î
∗

δ(a))′ = Îδ(a). Let a = p/qwith (p, q) = 1. We denote by ÎR(a) the sequene
(δ1(a)L . . . δq−1(a)Lδq(a)R)∞and by Î
∗

R(a) the sequene whih satis�es
(Î

∗

R(a))′ = ÎR(a).To simplify the use of the above sequenes thefollowing lemma will be helpful (see [AM; (4.1)�(4.3)℄).Lemma 2.5. Let a ∈ R. Then the following state-ments hold.(a) If a /∈ Z then δ1(a) = ǫ1(a)+1. Furthermore,if a/∈Q then δi(a) = ǫi(a) for all i > 1. Thatis, Î
∗

δ(a) = Îǫ(a) and Îδ(a) = Î
∗

ǫ (a). If a =
p/q with (p, q) = 1 and q > 1 then ǫi(a) =
δi(a) for i = 2, . . . , q − 1, δq(a) = ǫq(a) − 1and, ǫi+q(a) = ǫi(a) and δi+q(a) = δi(a) forall i ∈ N.(b) If a ∈ Z then ǫi(a) = δi(a) = a for all i > 0.Now, for eah a ∈ R, we set

Ea =





{(Îǫ(a), Î
∗

ǫ (a)), (Î
∗

δ(a), Îδ(a)), (Î
∗

R(a), ÎR(a))}if a = p/q ∈ Q, with (p, q) = 1,{
(Î

∗

δ(a), Îδ(a))
} if a /∈ Q.Finally we denote by E the set E∗ ∪ (∪a∈REa).The following two results, given by Alsedà and Faló[AF; Theorem A℄, haraterizes the kneading pairsof the maps from lass A.Theorem 2.6. For F ∈ A we have that K(F ) ∈ E .Conversely, for eah (ν1, ν2) ∈ E there exists F ∈ Asuh that K(F ) = (ν1, ν2).To de�ne the ambient spae of the set E weintrodue the following two sets. Let

Eǫ =
{
α ∈ AD : ∃ β ∈ AD suh that (α, β) ∈ E

}

and
Eδ =

{
β ∈ AD : ∃α ∈ AD suh that (α, β) ∈ E

}
.The following result haraterizes the sets Eǫand Eδ (see [F; Theorem 3.1.1℄).Proposition 2.7. The following statements hold.(a) α ∈ Eǫ if and only if it is minimal and satis�esthat if for some n ≥ 0, Sn(α) = dR . . . then

Sn+1(α) ≥ α′.(b) β ∈ Eδ if and only if it is maximal.We onsider Eǫ and Eδ endowed with the or-der topology and let Eǫ × Eδ be with the produttopology. We note that E is stritly ontained in
Eǫ × Eδ. To see this onsider for example the set
A = {(0L)∞, (1L)∞} of admissible sequenes. Sine
((−1L)∞, (0L)∞), ((0L)∞, (1L)∞), ((1L)∞, (2L)∞) ∈ E ,we have that A ⊂ Eǫ and A ⊂ Eδ. In onsequene
{((0L)∞, (1L)∞), ((1L)∞, (0L)∞)} ⊂ Eǫ × Eδ. How-ever, ((0L)∞, (1L)∞) ∈ E but ((1L)∞, (0L)∞) /∈ E .For a ∈ R we de�ne Qǫ(a) as [Î

∗

δ(a), Îǫ(a)] ⊂ Eǫand Qδ(a) = [Îδ(a), Î
∗

ǫ(a)] ⊂ Eδ (reall that fromTheorem 2.6 Î
∗

δ(a), Îǫ(a) ∈ Eǫ and Îδ(a), Î
∗

ǫ (a) ∈ Eδfor all a ∈ R). From Lemma 2.5(a) we have thatif a /∈ Q then Qǫ(a) and Qδ(a) are losed intervalsdegenerated to a point.The next result gives a haraterization of therotation interval by using the kneading pair (see[AM; Theorem B℄). To see this we reall that for
F ∈ L the rotation interval RF is de�ned to be theset

{ρF (x) : x ∈ R},where
ρF (x) = ρ(x) = lim sup

n→∞

Fn(x) − x

n
.It is well known (see [I℄) that the set RF is a losedinterval, perhaps degenerate to a single point. Also,if F ∈ L is a non�dereasing map then

RF = { lim
n→∞

Fn(x) − x

n
}.Theorem 2.8. Let F ∈ A. Then RF = [a, b] if andonly if

K(F ) ∈ Qǫ(a)×Qδ(b) = [Î
∗

δ(a), Îǫ(a)]×[Îδ(b), Î
∗

ǫ (b)].



8 Ll. Alsedá and A. Faló.2.2. Kneading theory for unimodal mapsIn the last step of this survey we introdue the no-tation we shall use for the kneading theory of uni-modal interval maps. Let I be a losed interval andlet f : I −→ I be a ontinuous map. We say that fis unimodal if1. f(max I) = f(min I) ∈ ∂I2. There exists c ∈ Int(I) suh that the maps
f |[min I,c] and f |[c,max I] are homeomorphisms.The set of all unimodal maps from I to itselfwill be denoted by U(I). A map f ∈ U(I) will bealled positive if f |[min I,c] is inreasing. Otherwise,

f will be alled negative.Let f ∈ U(I) and let x ∈ I. We assoiatewith x a �nite or in�nite sequene of the symbols
L,C,R alled its itinerary. To do it we introdue thefollowing notation. Let f : I −→ I be ontinuous.We will say that f is loally inreasing (respetivelydereasing) at x ∈ I if there exists an open (in I)neighborhood V of x suh that f |V is inreasing(respetively dereasing). Now, we de�ne the i− thaddress of a point x, that we denote by θi(x), asfollows:

θi(x) =





L if f i is loally inreasing at x.
C if f i(x) = c,
R if f i is loally dereasing at x.We de�ne the itinerary of x denoted by θf (x)as follows1. θf (x) = θ0(x)θ1(x) . . . θn(x) . . . if θi(x) ∈

{L,R} for all i ≥ 0.2. θf (x) = θ0(x)θ1(x) . . . θn(x) if θn(x) = C, and
θi(x) ∈ {L,R} for all i ∈ {0, 1, . . . n − 1}.Given n ∈ N and y ∈ I, there exists δ > 0 suhthat θn(y) takes onstant value L or R in the inter-val (x, x + δ) . We denote this value by for θn(x+).In a similar way we an de�ne θn(x−). With thisnotation we set θf (x+) = θ1(x

+)θ2(x
+) . . . and

θf (x−) = θ1(x
−)θ2(x

−) . . . . We note that if θf (x)is in�nite then θf (x) = θf (x+) = θf (x−).The sequene θf (f(c)+) is alled the kneadingsequene of f. We will denote it by k(f).Let A = A0A1 . . . be a sequene of elements
Ai ∈ {L,C,R}. We say that A is admissible if oneof the following two onditions is satis�ed:

1. A = A0A1 . . . An . . . if Ai ∈ {L,R} for all i ≥
0.2. A = A0A2 . . . An if An = C, and Ai ∈ {L,R}for all i ∈ {0, 1, . . . n − 1}.Now, we introdue an ordering in the set of alladmissible sequenes. We set L < C < R and weextend this ordering lexiographially to the set ofall admissible sequenes as follows. Let K0K1 . . . Knbe a �nite (or empty) sequene of symbols L,R. Wesay that K0K1 . . . Kn is even (respetively odd) ifit has an even (respetively odd) number of R′s.Assume that K = K0K1 . . . and K ′ = K ′

0K
′
1 . . . areadmissible sequenes suh that K 6= K ′. Let n ∈ Nbe suh that Ki = K ′

i for i < n and Kn 6= K ′
n. Thenwe say that K < K ′ if either1. Kn < K ′

n and K0K1 . . . Kn−1 is even.2. Kn > K ′
n and K0K1 . . . Kn−1 is odd.We note that if x < y and f ∈ U(I) then

θf (x) ≤ θf (y) if f is positive and θf (x) ≥ θf (y)if f is negative.The shift operation S on admissible sequenesis de�ned as follows. If K = K0K1 . . . then weset S(K) = K1K2 . . . whih is also an admissiblesequene. If K0 = C, then S is unde�ned. Wewrite Sn to denote the n−th iterate of S. Notethat for eah x ∈ I and f ∈ U(I) we have S(θ(x)) =
(θ(f(x))).An admissible sequene K will be alled max-imal if and only if Sn(K) ≤ K for eah n < |K|,where |K| denotes the length of K. We note thatfor eah f ∈ U(I) (independently of the fat that
f is positive or negative), k(f) is maximal and ad-missible with length in�nite. Given K = K0K1 . . . ,an admissible sequene, we will write K̂ to denote
K̂0K̂1 . . . where L̂ = R, R̂ = L and Ĉ = C. Wenote that K is maximal if and only if K̂ is minimal;that is, Sn(K̂) ≥ K̂ for eah n < |K|.From [CE℄, it follows that for eah admissiblein�nite maximal sequene K there exist f, g ∈ U(I),
f positive and g negative, suh that k(f) = k(g) =
K. We shall denote by K the set of all admissiblein�nite maximal sequenes.3. Self�similarity operatorsIn this setion �rst we state the results that we willuse to prove the Main Theorem. In Subsetion 3.1



On the struture of the kneading spae of bimodal degree one irle maps 9we de�ne the ⋆−operators and we state the mainresult about this operators. In Subsetion 3.2 wede�ne the ⊙−operators and state the result whihstudies them.3.1. The ⋆−operatorsThe aim of this subsetion is to haraterize the setsof sequenes whih appear as the �rst (respetivelyseond) omponent of the kneading pair of a map
F ∈ A for whih there exist p ∈ N, q ∈ Z anda losed interval J ontaining c

F
(respetively 0)suh that (F q − p)|J is a unimodal map. We makethis study at a symboli level by using a ⋆−operatorwhih relates ertains subsets of the symboli spaes

Eǫ and Eδ with the spae of kneading sequenes ofunimodal maps. Moreover, we will show how the�unimodal symboli spae� is embedded into Eǫ and
Eδ. We start by introduing some notation. Let Ξdenote the set of all �nite sequenes with symbolsin Z × {L,R} (of ourse we onsider the empty se-quene as an element of Ξ).Now we onsider the set of sequenes whih o-ur as redued itineraries of periodi ritial points.Indeed we will denote by Pǫ (respetively Pδ) theset of all minimal sequenes of the form βdM with
β ∈ Ξ and d ∈ Z satisfying that if for some n ∈

{1, . . . , |β|}, Sn−1(βdM ) = tR . . . then Sn(βdM ) >

β′dM (respetively the set of all maximal sequenesof the form βdC) and suh that if β is not emptythen {
(βdL)∞, β(d − 1)R(β′(d − 1)R)∞

}
⊂ Eǫ (re-spetively {

(βdL)∞, (βdR)∞
}
⊂ Eδ).We are now ready to de�ne the ⋆−operators.We start by de�ning the operator ⋆δ : Pδ × K −→

AD as follows. Let γ = βdC ∈ Pδ and K =
K1K2 . . . ∈ K. Then we de�ne

γ ⋆δ K =

{
βdK1βdK2β . . . if β is even,
βd

cK1βd
cK2β . . . if β is odd.Now we de�ne ⋆ǫ : Pǫ × K −→ AD. Let β ∈ Ξand s ∈ {L,R}. We set

χ(s, β) =

{
β if s = L,

β′ if s = R.Also, for d ∈ Z we set
ϕ(s, d) =

{
dL if s = L,
(d − 1)R if s = R.

Let γ = βdM ∈ Pǫ and K = K1K2 . . . ∈ K. Thenwe de�ne γ ⋆ǫ K as follows. If β is not empty then
γ⋆ǫK =





βϕ(K1, d)χ(K1, β)ϕ(K2, d)χ(K2, β) . . .if β is even,
βϕ(K̂1, d)χ(K1, β)ϕ(K̂2, d)χ(K2, β) . . .if β is odd.If β is empty then γ ⋆ǫ K = dK1

1 dK2

2 . . . where, if
K1 = L then di = d for all i ≥ 1 and if K1 = Rthen d1 = d − 1 and

di =





d + 1 if Ki−1Ki = RL,
d if Ki−1Ki ∈ {LL,RR} ,
d − 1 if Ki−1Ki = LR,for i ≥ 2.The main result of this subsetion whih studiesthe properties of the ⋆−operators is the following.Theorem A Let γ = βdM ∈ Pǫ, α = βdC ∈ Pδand K ∈ K. Then γ ⋆ǫK ∈ Eǫ and α⋆δ K ∈ Eδ. If βis even then γ⋆ǫ is order reversing and α⋆δ is orderpreserving. Otherwise, γ⋆ǫ is order preserving and

α ⋆δ is order reversing. Moreover γ ⋆ǫ K and γ ⋆δ Kare onneted in Eǫ and Eδ respetively.Theorem A will be proved in Setion 5. It har-aterizes at a symboli level the �unimodal boxes�in the spaes Eǫ and Eδ. Indeed, if we onsider theset K endowed with the order topology (that is,
K = [L∞, RL∞]) then, from Theorem A, we seethat if γ = βdM ∈ Pǫ (respetively γ = βdC ∈ Pδ),then

γ ⋆ǫ K =

{
[γ ⋆ǫ RL∞, γ ⋆ǫ L∞] if β is even,
[γ ⋆ǫ L∞, γ ⋆ǫ RL∞] if β is odd.(respetively

γ ⋆δ K =

{
[γ ⋆δ RL∞, γ ⋆δ L∞] if β is odd,
[γ ⋆δ L∞, γ ⋆δ RL∞] if β is even)where, given two sequenes α, β ∈ AD with α ≤

β, [α, β] denotes the set of all admissible sequeneslying between α and β.The set γ ⋆ǫ K will be alled the ǫ−unimodalbox of γ and the set γ ⋆δ K will be alled the δ−unimodal box of γ.



10 Ll. Alsedá and A. Faló.3.2. The ⊙−operatorsLet k ∈ Z. We denote by Σk the set of sequenes in
{kL, (k + 1)L}N. Let α = dL

1 dL
2 . . . and β = tL1 tL2 . . .be two sequenes in Σk. We onsider in Σk the topol-ogy de�ned by the metri d(α, β) =

∞∑
i=0

2−i|di − ti|.With this topology, Σk is a ompat metri spae.Let Sk : Σk −→ Σk denote the usual shift trans-formation restrited to Σk. Clearly, Sk is ontin-uous. Let πk : Σk −→ Σ0 be the order pre-serving homeomorphism de�ned by πk(d
L
1 dL

2 . . .) =
(d1 − k)L(d2 − k)L . . . . Clearly, S0 ◦ πk = πk ◦ Sk.For k ∈ Z we de�ne the sets Bǫ(k) = Σk ∩ Eǫand Bδ(k) = Σk ∩ Eδ. We note that the sets Eǫ and
Eδ are invariant under �translations�. That is, if
ds1

1 ds2

2 . . . is a sequene in Eǫ (respetively in Eδ)then (d1 + k)s1(d2 + k)s2 . . . also belongs to Eǫ (re-spetively Eδ). Therefore, Bǫ(k) = π−1
k (Bǫ(0)) and

Bδ(k) = π−1
k (Bδ(0)). From Proposition 2.7 we havethat Bǫ(k) (respetively Bδ(k)) are the minimal (re-spetively maximal) sequenes in Σk.For a ∈ R we will denote a − Ẽ(a) by D̃(a).Also, Q \ Z will be denoted by Q∗.We note that from Lemma 2.5, if a = p/q ∈ Q∗with (p, q) = 1 and q 6= 2 then the �nite se-quenes ǫ2(a)L . . . ǫq−1(a)L and δ2(a)L . . . δq−1(a)Lare equal. We will denote this �nite sequene by

r(a) (we take the empty sequene as r(1/2)).Now we are ready to de�ne the ⊙−operators.For α = dL with d ∈ {0, 1} we set α̂ = (1−d)L.Then for a ∈ (0, 1] and α = α1α2 . . . ∈ Bǫ(0) wede�ne
a⊙ǫα =





0Lr(a)α1α̂1r(a)α2α̂2 . . . if a ∈ Q∗,

Îǫ(a) if a /∈ Q∗and α = (1L)∞,

Î
∗

δ(a) if a /∈ Q∗and α 6= (1L)∞.We extend the above de�nition to eah a ∈ R bysetting a ⊙ǫ α = π−1
eE(a)

(D̃(a) ⊙ǫ α).Now, we de�ne the ⊙δ version of the
⊙−operator as follows. Let a ∈ [0, 1) and α =
α1α2 . . . ∈ Bδ(0) be. Then we set
a⊙δα =





1Lr(a)α1α̂1r(a)α2α̂2 . . . if a ∈ Q∗,

Îδ(a) if a /∈ Q∗and α = (0L)∞,

Î
∗

ǫ(a) if a /∈ Q∗and α 6= (0L)∞.

and we extend the above de�nition to eah a ∈ Rby a ⊙δ α = π−1
E(a)(D(a) ⊙δ α).The next result whih we will be proved inSubsetion 6.1 gives a �rst motivation to the

⊙−operators.Proposition 3.1. Let a ∈ R. Then a ⊙ǫ (0L)∞ =

Î
∗

δ(a), a ⊙ǫ (1L)∞ = Îǫ(a), a ⊙δ (0L)∞ = Îδ(a) and
a ⊙δ (1L)∞ = Î

∗

ǫ(a).From the above proposition we see that the fun-damental boxes an be written as Qǫ(a) = [a ⊙ǫ

(0L)∞, a ⊙ǫ (1L)∞] and Qδ(a) = [a ⊙δ (0L)∞, a ⊙δ

(1L)∞]. The next theorem is the main result of thissubsetion.For α ∈ Σk, α = dL
1 dL

2 . . . we de�ne the symbolirotation number of α as
ρ(α) = lim sup

n→∞

1

n

n∑

i=1

di.Theorem B Let a, b ∈ R with a ≤ b. Then thefollowing statements hold:(a) Let α, β ∈ Bǫ(0) with α < β . Then a⊙ǫ α ≤
b⊙ǫβ. Moreover if a ∈ Q∗ then a⊙ǫα < a⊙ǫβ.(b) Let α, β ∈ Bδ(0) with α < β. Then a ⊙δ α ≤
b ⊙δ β. Moreover if a ∈ Q∗ then a ⊙δ α <
a ⊙δ β.() Let α ∈ Bǫ(0). Then a ⊙ǫ α ∈ Bǫ(Ẽ(a)) ⊂ Eǫand ρ(a ⊙ǫ α) = a.(d) Let α ∈ Bδ(0). Then a⊙δ α ∈ Bδ(E(a)) ⊂ Eδand ρ(a ⊙ǫ α) = a.(e) Let a ∈ Q∗ and (α, β) ∈ Bǫ(0) × Bδ(0) besuh that α 6= (1L)∞ and β 6= (0L)∞. If
Sn(α) ≤ β and Sn(β) ≥ α for all n ≥ 0, then
(a ⊙ǫ α, a ⊙δ β) ∈ E∗ ⊂ E .We note that if (α, β) ∈ E , by Theorem 2.6and Proposition 4.3 of [AF℄ we have that α′ ≤ β,

Sn(α) ≤ β and Sn(β) ≥ α for all n ≥ 0. Thus fromTheorem B(e) we have the following.Corollary 3.2. Let a ∈ Q∗ and let (α, β) ∈

(Bǫ(0) × Bδ(0)) ∩ E be suh that α 6= (1L)∞ and
β 6= (0L)∞. Then (a ⊙ǫ α, a ⊙δ β) ∈ E∗ ⊂ E .



On the struture of the kneading spae of bimodal degree one irle maps 11We will prove Theorem B in Subsetion 6.2.We reall that in Subsetion 3.1 we have de�nedthe unimodal box of a periodi sequene γ from Pǫ(respetively Pδ) as γ ⋆ǫ K = γ ⋆ǫ [L∞, RL∞] (re-spetively γ ⋆δ K = γ ⋆δ [L∞, RL∞]). Thus, in orderthat the unimodal boxes of a ⊙ǫ α and a ⊙δ α arede�ned, it is neessary that these sequenes are pe-riodi. The next result haraterizes the periodisequenes of the form a ⊙ǫ α and a ⊙δ α. It will beproved in Subsetion 6.3.Proposition 3.3. Let a ∈ R. The following state-ments hold.(a) Let α ∈ Bǫ(0) \ {(0
L)∞} be periodi. If a /∈ Qthen a⊙ǫα is not periodi. If a ∈ Z then a⊙ǫαis periodi if and only if α = (1L)∞. Moreover,

aM ∈ Pǫ and a⊙ǫ(1
L)∞ = aM ⋆ǫL

∞. If a ∈ Q∗then a⊙ǫ α is periodi. Moreover, there exists
βdM ∈ Pǫ suh that a ⊙ǫ α = βdM ⋆ǫ L∞.(b) Let α ∈ Bδ(0)\{(1

L)∞} be periodi. If a /∈ Qthen a⊙δα is not periodi. If a ∈ Z then a⊙δαis periodi if and only if α = (0L)∞. Moreover,
aC ∈ Pδ and a⊙δ (0L)∞ = aC ⋆δ L∞. If a ∈ Q∗then a⊙δ α is periodi. Moreover, there exists
βdC ∈ Pδ suh that a ⊙δ α = βdC ⋆δ L∞.Now we an de�ne the unimodal box of a se-quene of the form a ⊙ǫ α as follows. Let a ∈ Qand α ∈ Bǫ(0) \ {(0L)∞} be periodi. Then, withthe notation of Proposition 3.3(a), we set

Uǫ(a⊙ǫα) =

{
βdM ⋆ǫ K if a ∈ Q∗,
aM ⋆ǫ K if a ∈ Z and α = (1L)∞.Let now α ∈ Bδ(0)\{(1

L)∞} be periodi. With thenotation of Proposition 3.3(b), we set
Uδ(a⊙δα) =

{
βdC ⋆δ K if a ∈ Q∗,
aC ⋆δ K if a ∈ Z and α = (0L)∞.4. Proof of Main TheoremLet F ∈ A be suh that RF = [a, b] for some a, b ∈ Rwith a ≤ b. By using Theorem 2.8 it follows the �rststatement of the Main Theorem.Now, we will de�ne the map pǫ,a : Jǫ → Qǫ(a)(respetively, pδ,a : Jδ → Qδ(a)) in two steps. First,we will introdue the notation that will allow us tospeak about iterated ⊙− operators.

Let x1, x2 ∈ (0, 1] and α ∈ Bǫ(0). We note thatif β ∈ Bǫ(0) then, by Theorem B() and the de�ni-tion of ⊙ǫ, xi ⊙ǫ β also lies in Bǫ(0). Therefore, thesequene
x1 ⊙ǫ (x2 ⊙ǫ α)is well de�ned. Now we take x1, x2 ∈ (k, k + 1] with

k ∈ Z and we extend the notation to this ase asfollows. Let
x1 ⊙ǫ (x2 ⊙ǫ α) = π−1

k (D̃(x1) ⊙ǫ (D̃(x2) ⊙ǫ α)).In a similar way let x1, x2 ∈ [0, 1) and α ∈ Bδ(0).Then, by using Theorem B(d), the sequene
x1 ⊙δ (x2 ⊙δ α)is well�de�ned. If x1, x2 ∈ [k, k + 1) with k ∈ Zthen we set

x1 ⊙δ (x2 ⊙δ α) = π−1
k (D(x1) ⊙δ (D(x2) ⊙δ α)).In the �rst steep we de�ne pǫ,a from J ∗

ǫ (re-spetively, J ∗
δ ) into Qǫ(a) (respetively, Qδ(a)). Let

a ∈ R and xω ∈ J ∗
ǫ (respetively, xω ∈ J ∗

δ ). As-sume that x = {xi}
n−1
i=1 ∈ I, if n = 1 (i.e. x is theempty sequene) we set

pǫ,a(ω) =





a ⊙ǫ Îǫ(0) if ω = 0,

a ⊙ǫ Îǫ(ω) if ω /∈ (0, 1) ∩ Q,

a ⊙ǫ Î
∗

δ(1) if ω = 1,

a ⊙ǫ Îǫ(1) if ω = ǫ(respetively,
pδ,a(ω) =





a ⊙ǫ Îδ(0) if ω = δ,

a ⊙ǫ Î
∗

ǫ (0) if ω = 0,

a ⊙ǫ Îδ(ω) if ω /∈ (0, 1) ∩ Q,

a ⊙ǫ Îδ(1) if ω = 1.


Otherwise, if n ≥ 2 we set pǫ,a(xω) = a ⊙ǫ

pǫ,x1
(x2x3 · · · xn−1ω) (respetively, pǫ,a(xω) = a⊙δ

pδ,x1
(x2x3 · · · xn−1ω)).Reall that Îǫ(1) = Îδ(1) = (1L)∞ and Îǫ(0) =

Îδ(0) = (0L)∞. From Proposition 3.1 and TheoremB(a)�(b) it follows the following.Lemma 4.1. Let a ∈ R. Then the maps pǫ,a :
J ∗

ǫ → Qǫ(a) and pδ,a : J ∗
δ → Qδ(a) are non�dereasing. Moreover, if a ∈ Q∗ then pǫ,a and pδ,aare stritly inreasing.



12 Ll. Alsedá and A. Faló.To extend the de�nition of pǫ,a and pδ,a to J∞,respetively, we introdue the following notation.For x = {xi}
∞
i=1 ∈ J we set λn

0 (x) = x1x2 · · · xn0and λn
1 (x) = x1x2 · · · xn1 for eah n ∈ N.Proposition 4.2. Let a ∈ R. Then for eah x =

{xi}
∞
i=1 ∈ J∞ we have that

⋂∞
n=1 [pǫ,a(λ

n
0 (x)), pǫ,a(λ

n
1 (x))] ∈ Bǫ(Ẽ(a)) and⋂∞

n=1 [pδ,a(λ
n
0 (x)), pδ,a(λ

n
1 (x))] ∈ Bδ(E(a)).To prove this proposition we shall use the fol-lowing.Lemma 4.3. Let a ∈ Q∗. Then

lim
n→∞

d(pǫ,a(λ
n
0 (x)), pǫ,a(λ

n
1 (x))) = 0 and

lim
n→∞

d(pδ,a(λ
n
0 (x)), pδ,a(λ

n
1 (x))) = 0Proof. Let a = p/q ∈ Q∗, with (p, q) = 1. Withoutloss of generality may assume that Ẽ(a) = 0. If

pǫ,x1
(0) = dL

1,1d
L
1,2 . . . and pǫ,x1

(1) = tL1,1t
L
1,2 . . . aretwo sequenes in Bǫ(0) then, sine

pǫ,a(λ
1
0(x)) = a ⊙ǫ pǫ,x1

(0)

= 0Lr(a)dL
1,1d̂

L
1,1r(a)dL

1,2d̂
L
1,2r(a) . . .and

pǫ,a(λ
1
1(x)) = a ⊙ǫ pǫ,x1

(1)

= 0Lr(a)tL1,1t̂
L
1,1r(a)tL1,2t̂

L
1,2r(a) . . . ,we have that

d(pǫ,a(λ
1
0(x)), pǫ,a(λ

1
1(x)))

=

∞∑

i=1

(
2−qi|d1,i − t1,i| + 2−(q+1)i|d̂1,i − t̂1,i|

)
.Beause the di�erenes between these two sequenesour at the positions q, q+1, 2q, 2q+1, . . . . Finally,by using the fat that |d1,i − t1,i| = |d̂1,i − t̂1,i|, weobtain

d(pǫ,a(λ
1
0(x)), pǫ,a(λ

1
1(x)))

=

∞∑

i=1

(
2−qi + 2−(qi+1)

)
|d1,i − t1,i|

=
3

2

∞∑

i=1

2−qi|d1,i − t1,i|

<
3

2

(
1

1 − 2−q
− 1

)
.

Now, assume that x1 = p1/q1, with (p1, q1) = 1,
pǫ,x2

(0) = dL
2,1d

L
2,2 . . . and pǫ,x2

(1) = tL2,1t
L
2,2 . . . ,then

pǫ,x1
(x20) = x1 ⊙ǫ pǫ,x2

(0)

= 0Lr(x1)d
L
2,1d̂

L
2,1r(x1)d

L
2,2d̂

L
2,2r(x1) . . .and

pǫ,x1
(x21) = x1 ⊙ǫ pǫ,x1

(1)

= 0Lr(x1)t
L
2,1t̂

L
2,1r(x1)t

L
2,2t̂

L
2,2r(x1) . . . .Note that in this ase the di�erenes betweenthese two sequenes appear at the positions q1q1 +

1, 2q1, 2q1+1, . . . . Sine pǫ,a(λ
2
i (x)) = a⊙ǫpǫ,x1

(x2i)for i = 0 and 1 and by using some similar argumentsas above, it is not di�ult to prove that the di�er-enes between the two sequenes will take plae atthe qq1, qq1 + 1, 2qq1, 2qq1 + 1, . . . positions. Thus,
d

(
pǫ,a(λ

2
0(x)), pǫ,a(λ

2
2(x))

)

=

∞∑

i=1

(
2−qq

1
i + 2−(qq

1
i+1)

)
|d2,i − t2,i|

<
3

2

(
1

1 − 2−qq
1

− 1

)
.Proeeding indutively, set xi = pi/qi, with

(pi, qi) = 1 for i = 1, 2, . . . , n − 1, pǫ,xn(0) =
dL

n,1d
L
n,2 . . . and pǫ,xn(1) = tLn,1t

L
n,2 . . . then

d (pǫ,a(λ
n
0 (x)), pǫ,a(λ

n
2 (x)))

=

∞∑

i=1

(
2−qq

1
···q

n−1
i + 2−(qq

1
···q

n−1
i+1)

)
|dn,i − tn,i|

<
3

2

(
1

1 − 2−qq
1
···q

n−1

− 1

)
.Thus,

lim
n→∞

d(pǫ,a(λ
n
0 (x)), pǫ,a(λ

n
1 (x))) = 0,beause qi, q ≥ 2, and then the �rst equality follows.The seond one an be omputed in a similar wayProof of Proposition 4.2. We only prove the�rst statement, the seond one is given in a similarway. First at all we remark that Bǫ(Ẽ(a)), the min-imal sequenes in two symbols, is a losed invariantset of Σ eE(a), beause the shift map is ontinuous.



On the struture of the kneading spae of bimodal degree one irle maps 13Let x = {xi}
∞
i=1 ∈ J∞, if a /∈ Q∗ then by the de�ni-tion of ⊙ǫ we have that pǫ,a(λ

n
0 (x)) = pǫ,a(λ

n
1 (x)) =

Î
∗

δ(a) ∈ Bǫ(Ẽ(a)) for all n ∈ N and the propositionfollows. Now, assume that a ∈ Q∗. By using thefat that
λn

0 (x) ≺ λn+1
0 (x) ≺ λn+1

1 (x) ≺ λn
1 (x),from Lemma 4.1 we have that[

pǫ,a(λ
n+1
0 (x)), pǫ,a(λ

n+1
1 (x))

] is stritly ontainedin [pǫ,a(λ
n
0 (x)), pǫ,a(λ

n
1 (x))] ⊂ Bǫ(Ẽ(a)) ⊂ Σ eE(a).Then, ⋂∞

n=1 [pǫ,a(λ
n
0 (x)), pǫ,a(λ

n
1 (x))] 6= ∅,beause Σ eE(a)

is a ompat set. More-over, by using Lemma 4.3 and the fat that
Bǫ(Ẽ(a)) is a losed set in Σ eE(a)

, we have that
⋂∞

n=1 [pǫ,a(λ
n
0 (x)), pǫ,a(λ

n
1 (x))] ∈ Bǫ(Ẽ(a)) and theproposition follows.Now, let a ∈ R then, by using Proposition 4.2,we an de�ne pǫ,a : J∞ → Qǫ(a) by

pǫ,a(x) =

∞⋂

n=1

[pǫ,a(λ
n
0 (x)), pǫ,a(λ

n
1 (x))]and pδ,a : J∞ → Qδ(a) by

pδ,a(x) =
∞⋂

n=1

[pδ,a(λ
n
0 (x)), pδ,a(λ

n
1 (x))] .We note that for x = {xi}∞i=1 ∈ J∞ we have that

pǫ,a(x) /∈ (pǫ,a(x1x2 · · · xn1), pǫ,a(x1x2 · · · xnǫ))and
pǫ,a(x) /∈ (pδ,a(x1x2 · · · xnδ), pδ,a(x1x2 · · · xn0))for all n ∈ N.By the onstrution of pǫ,a and pδ,a we obtainthe following orollary, it resumes all said above andgives the proof of statements 1 and 3 of our MainTheorem.Corollary 4.4. Let a ∈ R. Then the followingstatements hold.(a) The map pǫ,a : Jǫ → Qǫ(a) is non�dereasing,maps the endpoints of Jǫ into the endpoints of

Qǫ(a) and if a ∈ Q\Z then pǫ,a is one�to�one.Moreover,
Impǫ,a = Qǫ(a) \

⋃

x∈I

(pǫ,a(x1), pǫ,a(xǫ)) .

(b) The map pδ,b : Jδ → Qδ(a) is non-dereasing,maps the endpoints of Jδ into the endpoints of
Qδ(b) and if a ∈ Q\Z then pδ,b is one�to�one.Moreover,

Impδ,b = Qδ(a) \
⋃

x∈I

(pδ,b(xδ), pδ,b(x0))Remark 4.5. It is not di�ult to see that in thease that a ∈ Q∗ and x = {xi}
∞
i=1 ∈ J∞ is suhthat xi = a for all i ≥ 1. Then we have that

a ⊙ǫ pǫ,a(x) = pǫ,a(x) and a ⊙δ pδ,a(x) = pδ,a(x).That is, the sequenes pǫ,a(x) ∈ Qǫ(a) and pδ,a(x) ∈
Qδ(a) are, respetively, �xed points of the operators
a⊙ǫ : Bǫ(0) → Qǫ(a) and a⊙δ : Bδ(0) → Qδ(a), re-spetively.Finally, statements 2 and 4 follow from the de�-nition of Pǫ, Pδ and the ⋆�operators given in Setion3.1 and Proposition 6.3. This ends the proof of theMain Theorem.5. Proof of Theorem AThis setion is organized as follows. In Subsetion5.1 we give some tehnial results and in Subsetion5.2 we prove Theorem A. Lastly, in Subsetion 5.3,we give some remarks to Theorem A.5.1. Preliminary resultsIn this subsetion we study the itineraries of theritial points when they are periodi and some ofthe basi properties of the ⋆−operators. We startwith the following tehnial lemmas and de�nitions.Let F ∈ L and let x ∈ R. Then the set {y ∈ R :
y = Fn(x)(mod. 1) for n = 0, 1, . . .} will be alledthe (mod. 1) orbit of x by F. We stress the fat thatif P is a (mod. 1) orbit and x ∈ P, then x + k ∈ Pfor all k ∈ Z. Let P be a (mod. 1) orbit of a map
F ∈ L. We say that P is a twist orbit if F restritedto P is inreasing. If a periodi (mod. 1) orbit istwist then we say that P is a twist periodi orbit.Lemma 5.1. Let F ∈ A. Then the following state-ments hold.(a) Assume that 0 is a periodi (mod 1) point ofperiod n. Then there exist β ∈ Ξ and d ∈ Z,suh that Î

F
(0+) is either (βdL)∞ with β



14 Ll. Alsedá and A. Faló.even or βdR(β′dR)∞ with β odd. Moreover,if Î
F
(0+) = (βdL)∞ then β(d − 1)R(β′(d −

1)R)∞ ∈ Eǫ and if Î
F
(0+) = βdR(β′dR)∞ then

(β(d + 1)L)∞ ∈ Eǫ.(b) Assume that c
F
is a periodi (mod 1) point ofperiod n. Then there exist β ∈ Ξ and d ∈ Z,suh that Î

F
(c−

F
) is either (βdL)∞ with β evenor (βdR)∞ with β odd. Moreover, if Î

F
(c−

F
) =

(βdL)∞ then (βdR)∞ ∈ Eδ and if Î
F
(c−

F
) =

(βdR)∞ then (βdL)∞ ∈ Eδ.Proof. We start proving statement (a). Assume�rst that Î
F
(0) = βtM for some β ∈ Ξ of length

n − 1 even. If x > 0 is su�iently lose to 0we have that Fn |[0,x] is inreasing and Fn(x) isalso lose to Fn(0) = 0. Therefore, Î
F
(0+) =

βtLÎ
F
(0+). So Î

F
(0+) = (βtL)∞. Now, assume that

β is odd. Take x < 0 su�iently lose to 0. Then
Fn |[x,0] is inreasing and Fn(x) is also lose to
Fn(0). Thus Î

F
(0−) = β′(t − 1)RÎ

F
(0−). There-fore Î

F
(0−) = (β′(t − 1)R)∞ and, in onsequene,

Î
F
(0+) = β(t − 1)R(β′(t − 1)R)∞.To prove the seond statement of (a) in thisase we only need to show that there exists G ∈ Asuh that Î

G
(0+) = β(t − 1)R(β′(t − 1)R)∞ if β iseven or Î

G
(0+) = (βtL)∞ if β is odd. We note thatthe proof of Lemma 5.4 of [AF℄ does not dependon the fat that the orbit under onsideration istwist. So, if Î

F
(0) = βtM the statement followsfrom Lemma 5.4 of [AF℄ and the part of (a) alreadyproven.Now, assume that Î

F
(0) = γkC and Î

F
(c

F
) =

νtM where γ, ν ∈ Ξ, γ has length n1 − 1, ν haslength n2 − 1 and n1 + n2 = n. If x > 0 is suf-�iently lose to 0 then Fn1(x) is lose to c
F
. If

γ is even then Fn1 |[0,x] is stritly inreasing and,hene, Î
F
(0+) = γkRÎ

F
(c+

F
). Otherwise, if γ isodd, Fn1 |[0,x] is stritly dereasing and Î

F
(0+) =

γkLÎ
F
(c−

F
). Let now x > c

F
be su�iently lose to

c
F
. If ν is even, then Fn2 |[cF ,x] is stritly dereasingand Î

F
(c+

F
) = ν(t − 1)RÎ

F
(0−). Otherwise, if ν isodd, Fn2 |[cF ,x] is stritly inreasing and Î

F
(c+

F
) =

νtLÎ
F
(0+). We reall that Î

F
(c+

F
) = Î

F
(c−

F
) and

that if Î
F
(0−) = (Î

F
(0+))′. Hene, if we set

β =

{
γkRν if γ is even,
γkLν if γ is odd,we get

Î
F
(0+) =

{
β(t − 1)R(β′(t − 1)R)∞ if ν is even,
(βtL)∞ if ν is odd.This ends the proof of the �rst part of statement(a). Now, we prove the seond part of statement (a)in this ase. Let P be the (mod. 1) orbit of 0by F. Then 0, c

F
∈ P. Let x0 = min(P ∩ (c

F
, 1]),

x1 = max(P ∩ (0, c
F
)) and J = (c

F
, x0) if γ is evenand J = (x1, cF

) if γ is odd. Let G ∈ A ∩ C1(R, R)be lose enough to F suh that c
G
∈ J , G|[0,1]\J =

F |[0,1]\J and G(c
G
) ∈ (F (c

F
),min(P∩(F (c

F
),∞))).Thus, learly, Î

G
(0) = βkM . From the proof of theprevious ase, sine β has always di�erent paritythan ν, we get

Î
G
(0+) =





(βtL)∞ if ν is odd(β even),
β(t − 1)R(β′(t − 1)R)∞ if ν is even(β odd),and the proof of (a) follows by using G instead of

F. Statement (b) follows in a similar way.The next lemma gives some properties of thesequenes in Pǫ an Pδ.Lemma 5.2. Let β = β1 . . . βn−1 ∈ Ξ. The follow-ing statements hold.(a) If βdM ∈ Pǫ. Then (βdL)∞ and (β′(d−1)R)∞are periodi of period n.(b) If βdC ∈ Pδ. Then (βdL)∞ and (βdR)∞ areperiodi of period n.Proof. By the minimality of βdM we have that
Sj(βdM ) > βdM for j = 1, 2, . . . , n − 1. Assumethat (βdL)∞ is periodi of period k < n and set
m = n/k. Then βdL = (β1 . . . βk−1d

L)m and, hene,
(β1 . . . βk−1d

L)m−1β1 . . . βk−1d
M

= βdM < Sn−k(βdM ) = β1 . . . βk−1d
M .



On the struture of the kneading spae of bimodal degree one irle maps 15In onsequene β1 . . . βk−1 is even and so
β1 . . . βk−1d

L > β1 . . . βk−1(d − 1)R.Sine βdM ∈ Pǫ then
β1 . . . βk−1d

L(β(d − 1)R)(β′(d − 1)R)∞ ∈ Eǫ.Hene, by Proposition 2.7(a), we have that
(β1 . . . βk−1d

L)m−1β1 . . . βk−1(d − 1)R(β′(d − 1)R)∞

≤ β1 . . . βk−1(d − 1)R . . .
= Sn−k(β(d − 1)R(β′(d − 1)R)∞);a ontradition. The proof of statement (a) in thease (β′(d − 1)R)∞ and statement (b) follow in asimilar way.The next lemma studies the relation betweenthe periodi sequenes in Eǫ and Eδ and their shifts.Lemma 5.3. The following statements hold.(a) Let β = (β1 . . . βn)∞ ∈ Eǫ. Then Sj(β) > β∗for all j = 1, 2, . . . , n− 1 where β∗ is either βif βj = dL . . . or β

′ if βj = dR . . . .(b) Let β = (β1 . . . βn)∞ ∈ Eδ. Then Sj(β) < βfor all j = 1, 2, . . . , n − 1.Proof. We prove (a). Statement (b) follows in a sim-ilar way. Let j ∈ {2, . . . , n}. If βj−1 = dL for some
d ∈ Z then, by Proposition 2.7, sine Sj−1(β) ≥ βand Sj−1(β) 6= β the lemma follows in an obvi-ous way. If βj−1 = dR for some d ∈ Z, we have
Sj−1(β) ≥ β′. Assume that Sj−1(β) = β′. Then

n︷ ︸︸ ︷
βjβj+1 . . . βnβ1 . . . βj−1

n︷ ︸︸ ︷
βj . . . βnβ1 . . . βj−1 . . .

= β′
1β2 . . . βnβ1 . . . βn . . .and, hene, β′

1 = βj = β1; a ontradition. Thisends the proof of (a).The proof of the following lemma follows by di-ret omputation.Lemma 5.4. The following statements hold.(a) Let f ∈ U(I) be negative. If f(c) ≥ c,then k(f) = L∞. Otherwise k(f) = RS(k(f))and there exists c− < c < c+ with f(c−) =
f(c+) = c. Then the following statementshold.

(a.1) θ(x) = RL . . . if and only if x ∈
[inf I, c−) .(a.2) θ(x) = RR . . . if and only if x ∈ (c−, c) .(a.3) θ(x) = LR . . . if and only if x ∈ (c, c+) .(a.4) θ(x) = LL . . . if and only if x ∈
(c+, sup I] .(b) Let f ∈ U(I) be positive. If f(c) ≤ c, then

k(f) = L∞. Otherwise k(f) = RS(k(f))and there exists c− < c < c+ with f(c−) =
f(c+) = c. Then the following statementshold.(b.1) θ(x) = LR . . . if and only if x ∈

(c+, sup I] .(b.2) θ(x) = RR . . . if and only if x ∈ (c, c+) .(b.3) θ(x) = LR . . . if and only if x ∈ (c−, c) .(b.4) θ(x) = LL . . . if and only if x ∈
[inf I, c−) .Let I, J ⊂ R be two losed intervals. Let f :

I −→ I and g : J −→ J be two ontinuous maps.We say that f is topologially onjugate to g if thereexists a homeomorphism h : I −→ J suh that h ◦
f = g ◦ h. From [CE℄ (see also [dMvS℄) we havethat if f ∈ U(I) and g ∈ U(J) are topologiallyonjugate then k(f) = k(g).The next proposition justi�es the de�nition ofthe ⋆−operators in the ase β empty.Proposition 5.5. Let K ∈ K and d ∈ Z. Then thefollowing statements hold.(a) There exist F ∈ A and J ⊂ R, a losedinterval ontaining 0, suh that (F − d) |Jis unimodal with k((F − d) |J) = K and

ÎF (0+) = dM ⋆ǫ K.(b) There exists F ∈ A and J ⊂ R, a losedinterval ontaining c
F
, suh that (F − d) |Jis unimodal with k((F − d) |J) = K and

ÎF (c−F ) = dC ⋆δ K.Proof. Let f ∈ U(I) be negative suh that k(f) =
K. Take ǫ > 0 and J = [−ǫ, ǫ] , and let h : I −→ Jbe the unique inreasing map suh that h(c) = 0and h is a�ne in [min I, c], [c,max I]. Let F ∈ Abe suh that F (x) = h ◦ f ◦ h−1(x) + d for eah
x ∈ J. Clearly, (F − d) |J is topologially onjugate



16 Ll. Alsedá and A. Faló.to f. Then k((F − d) |J) = k(f) = K1K2 . . . . Weobserve that sine (F − d) maps J into itself wehave that F (J) ⊂ J + d. Sine F ∈ L we havethat for all j ≥ 1, F j(J) ⊂ J + jd. On the otherhand, sine s((F − d)j(0+)) = s(F j(0+)) we getthat for all j ≥ 1, s(F j(0+)) = Kj. Assume that
(F − d)(0) ≥ 0, then f(c) ≥ c and, from Lemma5.4, we have that k(f) = L∞. Sine F (0) ≥ d wehave that F j(0) ∈ [0, ǫ] + jd for all i ≥ 0. Then forall i ≥ 1 we have d(F j(0+)) = jd− (j−1)d = d and
ÎF (0+) = dM⋆ǫK. Now, assume that (F−d)(0) < 0.Then f(c) < c and, from Lemma 5.4(a), we havethat K1 = R. Sine F (0) < d we obtain that F (0) ∈
[−ǫ, 0] + d. Then d(0+) = d − 1 and so ÎF (0+) =
(d − 1)R . . . . Let j ≥ 2. Assume that Kj−1Kj =
RL. Then Sj−2(k(f)) = θ(f j−2(x)) = RL . . . for
x > f(c), lose enough to f(c). From Lemma 5.4(a.1) we have that f j−1(c) ∈ [min I, c−) and, hene,
F j−1(0) ∈ [−ǫ, h(c−))+ (j − 1)d. Moreover F j(0) ∈
(0, ǫ]+jd. Then d(F j−1(0+)) = jd−((j−1)d−1) =
d+1. If Kj−1Kj = LL, then, F j−1(0) ∈ (h(c+), ǫ]+
(j − 1)d and F j(0) ∈ (0, ǫ] + id. So d(F j−1(0+)) =
jd−(j−1)d = d. If Kj−1Kj = RR, then F j−1(0+) ∈
(h(c−), 0)+(j−1)d and F j(0+) ∈ [−ǫ, 0)+jd. Thus,
d(F j−1(0+)) = (jd−1)−((j −1)d−1) = d. Finally,if Kj−1Kj = LR then F j−1(0) ∈ (0, h(c+)) + (j −
1)d, F j(0) ∈ [−ǫ, 0)+ jd. Therefore, d(F j−1(0+)) =
(jd − 1) − (j − 1)d = d − 1. From the de�nition of
⋆ǫ we have that ÎF (0+) = dM ⋆ǫ K. Statement (b)follows in a similar way.5.2. Proof of Theorem AWe only will prove Theorem A for ⋆ǫ. The proof for
⋆δ follows in a similar way. Let γ = βdM ∈ Pǫ and
K ∈ K. We only will prove the statement in thease β even. The ase β odd follows analogously.First we are going to prove that γ ⋆ǫ K ∈ Eǫ. If βis empty then this follows from Proposition 5.5(a),the de�nition of Eǫ and Theorem 2.6. Assume nowthat β is not empty. We note that γ ⋆ǫ L∞ =

(βdL)∞ and γ ⋆ǫ R∞ = β(d − 1)R(β′(d − 1)R)∞.Sine βdM ∈ Pǫ these two sequenes belong to
Eǫ and we are done. Thus we an assume that
K /∈ {L∞, R∞}. From Collet and Ekmann [CE℄ wehave that K = RL . . . . Let β = β1β2 . . . βn−1, K =
K1K2 . . . and j = nm with m ≥ 0. Then we have
γ⋆ǫK = βϕ(K1, d)χ(K1, β)ϕ(K2, d)χ(K2, β) . . . . Itis not di�ult to see that, sine K is maximal, then
ϕ(K1, d)ϕ(K2, d) . . . ∈ AD is minimal. Therefore,

if Km−1 = L then
Sj(γ ⋆ǫ K) = βϕ(Km, d)χ(Km, β)ϕ(Km+1, d) . . .

≥ γ ⋆ǫ K.Otherwise,
Sj(γ ⋆ǫ K) = β′ϕ(Km, d)χ(Km, β)ϕ(Km+1, d) . . .

≥ (γ ⋆ǫ K)′and, by Proposition 2.7(a), we are done. So, takenow j = nm + p with m ≥ 0, 1 ≤ p < n. Then wehave to ompare
Sj(γ ⋆ǫ K)

= βp+1 . . . βn−1ϕ(Km, d)χ(Km, β)ϕ(Km+1, d) . . .

= υϕ(Km, d)χ(Km, β)ϕ(Km+1, d) . . . , (1)with
γ ⋆ǫ K

= β1 . . . βn−p−1βn−p . . . βn−1ϕ(K1, d) . . .
= υβn−p . . . βn−1ϕ(K1, d) . . . .

(2)Set
υ∗ =

{
υ if βp = tL,
υ′ if βp = tR,where t ∈ Z and (γ ⋆ǫ K)∗ =

υ∗βn−p . . . βn−1ϕ(K1, d) . . . . By Proposition 2.7(a)we have to show that Sj(γ ⋆ǫ K) ≥ (γ ⋆ǫ K)∗. Sine
βdM ∈ Pǫ, β(d − 1)R(β′(d − 1)R)∞, (βdL)∞ ∈ Eǫ.Therefore, by Proposition 2.7(a) and Lemma5.3(a), for all 1 ≤ p < n, we have

υ(d − 1)R(β′(d − 1)R)∞

≥ υ∗βn−p . . . βn−1(d − 1)R(β′(d − 1)R)∞
(3)and

υdL(βdL)∞ > υ∗βn−p . . . βn−1d
L(βdL)∞. (4)Clearly if υ 6= υ∗ then Sj(γ ⋆ǫ K) > (γ ⋆ǫ K)∗and we are done. So assume that υ = υ∗. First weonsider the ase υ even. If ϕ(Km, d) = dL theneither dL > βn−p and, from (1) and (2), we see that

Sj(γ ⋆ǫ K) > (γ ⋆ǫ K)∗ or dL = βn−p. In the latter,sine υdL is even, from (4) we have that
(βdL)∞ > βn−p+1 . . . βn−1d

L(βdL)∞;a ontradition with Lemma 5.3(a). Now, let
ϕ(Km, d) = (d − 1)R. From (3) we have

βn−p ≤ (d − 1)R.



On the struture of the kneading spae of bimodal degree one irle maps 17If βn−p < (d − 1)R, then Sj(γ ⋆ǫ K) > (γ ⋆ǫ K)∗by ( 1) and (2). So, assume that βn−p = (d − 1)R.Then υ(d − 1)R = υ∗(d − 1)R is odd and, from (3),we have that
(β′(d−1)R)∞ ≤ βn−p+1 . . . βn−1(d−1)R(β′(d−1)R)∞.We note that Sn−p((β′(d − 1)R)∞) =

(βn−p+1 . . . βn−1(d − 1)Rβ′
1 . . . βn−p)

∞. There-fore, if
β′

1β2 . . . βn−1(d − 1)R

= βn−p+1 . . . βn−1(d − 1)Rβ′
1 . . . βn−pthen, Sn−p((β′(d−1)R)∞) = (β′(d−1)R)∞ whih isa ontradition by Lemma 5.2(a). In onsequene,

β′
1β2 . . . βn−1(d − 1)R

< βn−p+1 . . . βn−1(d − 1)Rβ′
1 . . . βn−p

(5)and, by (1) and (2), Sj(γ ⋆ǫ K) > (γ ⋆ǫ K)∗ if
ϕ(Km+1, d) = (d − 1)R (reall that ϕ(K1, d) =
(d − 1)R). Now, assume that ϕ(Km+1, d) = dL. If
β′

1β2 . . . βn−1 < βn−p+1 . . . βn−1(d−1)Rβ′
1 . . . βn−p−1then we also have Sj(γ⋆ǫK) > (γ⋆ǫK)∗. Otherwise,sine β′ is even, from (5), we have that

β′
1β2 . . . βn−1 = βn−p+1 . . . βn−1(d−1)Rβ′

1 . . . βn−p−1and βn−p ≥ dL. If βn−p > dL then the statementfollows as above. Hene, βn−p = dL and so
β′

1β2 . . . βn−1d
L

= βn−p+1 . . . βn−1(d − 1)Rβ′
1 . . . βn−p−1βn−p.This is a ontradition beause the left hand sideof the above equation has di�erent parity that theright hand side. The ase υ odd is handled by anal-ogy. This ends the proof of the �rst statement ofthe theorem.Now, we are going to prove that γ⋆ǫ is orderreversing. Let K,K ′ ∈ K be suh that K < K ′.Set K = K1K2 . . . and K ′ = K ′
1K

′
2 . . . . Then thereexists n ≥ 1 suh that K1 . . . Kn−1 = K ′

1 . . . K ′
n−1and Kn < K ′

n if K1 . . . Kn−1 is even and Kn > K ′
nif K1 . . . Kn−1 is odd. We will only onsider the ase

K1 . . . Kn−1 even. The proof in the ase odd followssimilarly. Then we have Kn = L < R = K ′
n. As-sume that β is not the empty sequene. Then γ ⋆ǫ

K = βdK1

1 χ(K1, β)dK2

2 . . . χ(Kn−1, β)dKn
n . . . and

γ ⋆ǫ K ′ = βt
K ′

1

1 χ(K1, β)t
K ′

2

2 . . . χ(Kn−1, β)t
K ′

n
n . . . .Then

βdK1

1 χ(K1, β)dK2

2 . . . χ(Kn−1, β)

= βt
K ′

1

1 χ(K1, β)t
K ′

2

2 . . . χ(Kn−1, β),

dKn
n = dL, t

K ′

n
n = (d − 1)R and

βds1

1 χ(K1, β)ds2

2 . . . χ(Kn−1, β) is even. Then,learly, γ ⋆ǫ K ′ < γ ⋆ǫ K. Now, assume that β is theempty sequene. Then
γ ⋆ǫ K = dK1

1 . . . d
Kn−1

n−1 dKn
n . . .and

γ ⋆ǫ K ′ = t
K ′

1

1 . . . t
K ′

n−1

n−1 tK
′

n
n . . .

= dK1

1 . . . d
Kn−1

n−1 tK
′

n
n . . .and the result follows as in the ase β not empty.From the assumptions only one of the following twopossibilities an our: either Kn−1Kn = RL and

K ′
n−1K

′
n = RR, or Kn−1Kn = LL and K ′

n−1K
′
n =

LR. Assume that Kn−1Kn = RL and K ′
n−1K

′
n =

RR. Then dKn
n = (d + 1)L and t

K ′

n
n = dR and

γ ⋆ǫ K ′ < γ ⋆ǫ K. Now, let Kn−1Kn = LL and
K ′

n−1K
′
n = LR. Then dKn

n = dL and t
K ′

n
n = (d−1)Rand also, γ ⋆ǫ K ′ < γ ⋆ǫ K. This onludes the proofof the seond statement.The third statement follows from TheoremII.2.7 of [CE℄.5.3. Remarks to Theorem AIn the preeding subsetion we have shown that theunimodal boxes γ ⋆ǫ K and γ ⋆δ K are onneted.However, the topologial struture of the spaes

Eǫ(γ) = (γ ⋆ǫ K) × Eδ(respetively
Eδ(γ) = Eǫ × (γ ⋆δ K))is muh more ompliated. We illustrate thisfat with the following examples. Let γ =

0L1M . Then γ ⋆ǫ L∞ = (0L1L)∞ and γ ⋆ǫ

RL∞ = 0L0R1L1L(0L1L)∞. Therefore, γ ⋆ǫ K =

[(0L1L)∞, 0L0R1L1L(0L1L)∞].Example 1: the spae Eǫ(γ) ontains �aumulat-ing� holes in E onsisting of �horizontal lines�. Let
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α = (3L)∞ ∈ Eδ. Clearly [γ⋆ǫRL∞, γ⋆ǫL

∞]×{α} ⊂

E∗ ⊂ E . Let now αn = (3L)n(−1L)∞ ∈ Eδ. Then
αn < αn+1 < α for all n ∈ N. Sine Sn−1(αn) =
(−1L)∞ < ω for all ω ∈ γ ⋆ǫ K we have that for all
n ∈ N, [γ ⋆ǫ RL∞, γ ⋆ǫ L

∞]×{αn} /∈ E . We also notethat d(αn, α) tends to 0 as n → ∞.Example 2: the �aumulating� holes in E onsist-ing of �horizontal lines� are intertwined with �hori-zontal lines� inside E. Let β
n

= (3L)n(2L)∞ ∈ Eδ.Then for all n ∈ N, [γ ⋆ǫ RL∞, γ ⋆ǫ L∞]×{β
n
} ⊂ Ebut d(αn, β

n
) =

∑∞
i=n+1

1
2i = 1

2n whih tends to 0when n → ∞.Example 3: there exists �retangles� in
E ∩ (γ ⋆ǫ K × β ⋆δ K).Let β = 3M . Then β⋆δL

∞ = (3L)∞ and β⋆δRL∞ =

3R(3L)∞. It is not di�ult to see that [γ⋆ǫRL∞, γ⋆ǫ

L∞] × [β ⋆δ L∞, β ⋆δ RL∞] ⊂ E .6. Proof of Theorem BIn Subsetion 6.1 we give some preliminary resultsand prove Proposition 3.1 and in Subsetion 6.2 weprove Theorem B.6.1. Preliminary resultsWe start by introduing some tehnial resultsabout the sequenes Î
∗

δ(a), Î ǫ(a), Îδ(a) and Î
∗

ǫ (a).The following lemma is due to Alsedà and Mañosas[AM℄.Lemma 6.1. The following statements hold:(a) If a = p/q with (p, q) = 1 then Îǫ(a) and Îδ(a)are periodi with period q (i.e. Sq(Îǫ(a)) =
Îǫ(a) and Sq(Îδ(a)) = Îδ(a)).(b) Let a, b ∈ R with a < b. Then Îǫ(a) < Îǫ(b),
Îδ(a) < Îδ(b), Î

∗

ǫ (a) < Î
∗

ǫ(b) and Î
∗

δ(a) <

Î
∗

δ(b).From Theorem 2.6 and Proposition 2.7 we havethe following.Lemma 6.2. Let a ∈ R. Then Î
∗

δ(a), Î ǫ(a) ∈ Eǫ areminimal and Îδ(a), Î
∗

ǫ(a) ∈ Eδ are maximal.

Lemma 6.3. Let a ∈ R. Then ǫ1(a) ≤ ǫi(a) ≤
ǫ1(a)+1 and δ1(a)−1 ≤ δi(a) ≤ δ1(a) for all i ≥ 1.Proof. We reall that ǫi(a) = E(ia)−E((i−1)a) =
E(a + (i − 1)a) − E((i − 1)a). Then, from the fatthat E(x)+E(y) ≤ E(x+y) ≤ E(x)+E(y)+1 forall x, y ∈ R, we have that ǫ1(a) ≤ ǫi(a) ≤ ǫ1(a) + 1for all i ≥ 1. In a similar way we an prove that
δ1(a) − 1 ≤ δi(a) ≤ δ1(a) for all i ≥ 1.The next lemma follows by diret omputation.Lemma 6.4. Let a ∈ Z then ǫi(a) = δi(a) = a forall i > 0.Lemma 6.5. Let a ∈ R. Then Îǫ(a), Î

∗

δ(a) ∈ Σ eE(a)and Îδ(a), Î
∗

ǫ(a) ∈ ΣE(a).Proof. From Lemmas 6.1(a) and 2.5, the fat that
ǫ1(a) = δ1(a) − 1 = E(a) = Ẽ(a) if a /∈ Z andLemma 6.3 the statement follows when a /∈ Z. If
a ∈ Z, then from Lemma 6.4 we have that Îǫ(a) =

Îδ(a) = (aL)∞, Î
∗

ǫ (a) = (a + 1)L(aL)∞ and Î
∗

δ(a) =
(a − 1)L(aL)∞. Sine E(a) = a and Ẽ(a) = a − 1the statement follows also in this ase.We now have the following orollaries whih willbe useful in the next setion.Corollary 6.6. Let a ∈ R. Then Îǫ(a), Î

∗

δ(a) ∈

Bǫ(Ẽ(a)) and Îδ(a), Î
∗

ǫ (a) ∈ Bδ(E(a))).Proof. It follows from Lemmas 6.5 and 6.2.Corollary 6.7. Let a ∈ R. Then Îǫ(a) =

π−1
eE(a)

(Îǫ(D̃(a))), Î
∗

δ(a) = π−1
eE(a)

(Î
∗

δ(D̃(a))), Îδ(a) =

π−1
E(a)(Îδ(D(a))) and Î

∗

ǫ (a) = π−1
E(a)(Î

∗

ǫ (D(a))).Proof. Let a ∈ R. Then
ǫi(a) = E(ia) − E((i − 1)a)
= E(i(D(a) + E(a))) − E((i − 1)(D(a) + E(a))))
= E(iD(a)) + iE(a) − E((i − 1)D(a)) − (i − 1)E(a)
= E(iD(a)) − E((i − 1)D(a)) + E(a)
= ǫi(D(a)) + E(a).If a /∈ Z, sine Ẽ(a) = E(a) and D̃(a) = D(a)we have that Îǫ(a) = π−1

eE(a)
(Îǫ(D̃(a))). Other-wise, by Lemma 6.4, Îǫ(a) = (E(a)L)∞ and sine

D̃(a) = 1 and Ẽ(a) = E(a) − 1 we get Îǫ(a) =
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π−1

eE(a)
(Îǫ(D̃(a))). Also, Î

∗

ǫ (a) = π−1
E(a)(Î

∗

ǫ (D(a))) if
a /∈ Z. Otherwise, Î

∗

ǫ(a) = (E(a) + 1)L(E(a)L)∞ =

π−1
E(a)(Î

∗

ǫ (D(a))). The other two ases follow in asimilar way.Lemma 6.8. Let a ∈ Q∗ be with (p, q) = 1. Then
ǫq(a) = ǫ1(a) + 1.Proof. If ǫq(a) 6= ǫ1(a) + 1 then, by Lemma 6.3, wean assume that ǫq(a) = ǫ1(a). Then, by Lemma6.1(a), Îǫ(a) = (ǫ1(a)Lr(a)ǫ1(a)L)∞. By Lemma6.2,

Sq−1(Îǫ(a)) = (ǫ1(a)Lǫ1(a)Lr(a))∞ ≥ Îǫ(a).Thus, by Lemma 6.3, ǫ2(a) = ǫ1(a) and, proeedingindutively, we obtain that Îǫ(a) = (ǫ1(a)L)∞; aontradition by Lemma 6.1(a).Remark 6.9. In view of Lemmas 2.5 and 6.8, for a ∈
Q∗, we an write
Î
∗

δ(a) = ǫ1(a)Lr(a)(ǫ1(a)L(ǫ1(a) + 1)Lr(a))∞,

Îǫ(a) = (ǫ1(a)Lr(a)(ǫ1(a) + 1)L)∞,

Îδ(a) = ((ǫ1(a) + 1))Lr(a)ǫ1(a)L)∞ and
Î
∗

ǫ(a) = (ǫ1(a) + 1)Lr(a)((ǫ1(a) + 1)Lǫ1(a)Lr(a))∞.The above observation already allow us to proveProposition 3.1.Proof of Proposition 3.1. We will only provethat a ⊙ǫ (1L)∞ = Îǫ(a). The proof of the otherthree statements follows similarly. From Corollary6.7 and the de�nition of ⊙ǫ we an assume that a ∈
(0, 1]. Now, the statement follows diretly from thede�nitions if a /∈ Q∗. If a ∈ Q∗ the statement followsfrom Remark 6.9 and the fat that ǫ1(a) = 0.6.2. Proof of Theorem BWe start with a tehnial lemma.Lemma 6.10. Let a = p/q ∈ Q∗ be with (p, q) = 1,Then(a) ǫ1(a)L(ǫ1(a) + 1)Lr(a) > ǫ1(a)Lr(a)ǫ1(a)L.(b) For 1 < j ≤ q − 1 we have that

ǫj(a)L . . . ǫq−1(a)L

ǫ1(a)L(ǫ1(a) + 1)Lǫ2(a)L . . . ǫj−1(a)L

> ǫ1(a)Lr(a)ǫ1(a)L,

and
ǫj(a)L . . . ǫq−1(a)L

(ǫ1(a) + 1)Lǫ1(a)Lǫ2(a)L . . . ǫj−1(a)L

> ǫ1(a)Lr(a)(ǫ1(a) + 1)L.()
(ǫ1(a)+1)Lǫ1(a)Lr(a) < (ǫ1(a)+1)Lr(a)(ǫ1(a)+1)L.(d) For 1 < j ≤ q − 1 we have that

ǫj(a)L . . . ǫq−1(a)L

(ǫ1(a) + 1)Lǫ1(a)Lǫ2(a)L . . . ǫj−1(a)L

< (ǫ1(a) + 1)Lr(a)(ǫ1(a) + 1)L,and
ǫj(a)L . . . ǫq−1(a)L

ǫ1(a)L(ǫ1(a) + 1)Lǫ2(a)L . . . ǫj−1(a)L

< (ǫ1(a) + 1)Lr(a)ǫ1(a)L.Proof. Sine, by Remark 6.9 and Lemma 6.2,
Î
∗

δ(a) = ǫ1(a)Lr(a)(ǫ1(a)L(ǫ1(a) + 1)Lr(a))∞and is a minimal sequene we have
ǫ1(a)L(ǫ1(a) + 1)Lr(a) ≥ ǫ1(a)Lr(a)ǫ1(a)L.If
ǫ1(a)L(ǫ1(a) + 1)Lr(a) = ǫ1(a)Lr(a)ǫ1(a)L,then
Î
∗

δ(a) = ǫ1(a)Lr(a)ǫ1(a)L(ǫ1(a) + 1)L . . .
> ǫ1(a)L(ǫ1(a) + 1)Lr(a)ǫ1(a)L . . .

= Sq−1(Î
∗

δ(a));a ontradition with the minimality of Î
∗

δ(a). Thisends the proof of (a). Now, we prove (b). Again bythe minimality of Î
∗

δ(a), for 1 < j ≤ q − 1 we have
ǫj(a)L . . . ǫq−1(a)Lǫ1(a)L

(ǫ1(a) + 1)Lǫ2(a)L . . . ǫj−1(a)L

≥ ǫ1(a)Lr(a)ǫ1(a)L.If in the above inequality the equality holds, we have
Sj−1(Î

∗

δ(a))
= ǫj(a)L . . . ǫq−1(a)Lǫ1(a)L

(ǫ1(a) + 1)Lǫ2(a)L . . . ǫj−1(a)Lǫj(a)L . . .
= ǫ1(a)Lr(a)ǫ1(a)Lǫ1(a)L . . .

< ǫ1(a)Lr(a)ǫ1(a)L(ǫ1(a) + 1)Lr(a) . . . = Î
∗

δ(a);
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ǫj(a)L . . . ǫq−1(a)Lǫ1(a)L

(ǫ1(a) + 1)Lǫ2(a)L . . . ǫj−1(a)L

> ǫ1(a)Lr(a)ǫ1(a)L.Now, we prove the seond part of statement (b).Sine by Remark 6.9 and Lemma 6.2
Îǫ(a) = (ǫ1(a)Lr(a)(ǫ1(a) + 1)L)∞is a periodi minimal sequene of period q then, for

1 < j ≤ q − 1, we have that Sj−1(Îǫ(a)) > Îǫ(a).Thus
ǫj(a)L . . . ǫq−1(a)L

(ǫ1(a) + 1)Lǫ1(a)Lǫ2(a)L . . . ǫj−1(a)L

> ǫ1(a)Lr(a)(ǫ1(a) + 1)L.Otherwise, the equality holds and so Sj−1(Îǫ(a)) =
Îǫ(a) with j < q; a ontradition. This onludesthe proof of statement (b). By using the sequenes
Î
∗

ǫ (a) and Îδ(a) instead of Î
∗

δ(a) and Îǫ(a), state-ments () and (d) follow in a similar way.Proof of Theorem B. We start by proving (a).Assume that Ẽ(a) = k < Ẽ(b). From the de�nitionof ⊙ǫ it follows that a⊙ǫ α ∈ Σk and a⊙ǫ β ∈ Σ eE(b)
.Then, if a ⊙ǫ α = kL . . . , learly, a ⊙ǫ α < a ⊙ǫ β.If a ⊙ǫ α = (k + 1)L . . . then, from the de�nitionof ⊙ǫ it follows that a /∈ Q∗. Moreover, from thede�nition of Îǫ(a) and Î

∗

δ(a) (see also Lemma 6.4)it follows that a = k + 1 and a ⊙ǫ α = Îǫ(k +
1) = ((k + 1)L)∞. Clearly, ((k + 1)L)∞ < γ foreah γ ∈ Σm with m > k. This proves statement(a) in this ase. So, assume that Ẽ(a) = Ẽ(b).By the de�nition of ⊙ǫ, Corollary 6.7 and the fatthat π eE(a) is order preserving we may assume that
Ẽ(a) = Ẽ(b) = 0 (that is, a, b ∈ (0, 1]). We onsider�rst the ase a = b. If a /∈ Q∗ then, from Theorem2.8, we have that Î

∗

δ(a) ≤ Îǫ(a). Hene, for eah
α ∈ Bǫ(0) \ {(1L)∞}, a ⊙ǫ α = Î

∗

δ(a) ≤ Îǫ(a) =
a ⊙ǫ (1L)∞. Therefore, a ⊙ǫ α ≤ a ⊙ǫ β for eah
α, β ∈ Bǫ(0). Take now a ∈ Q∗ and set α = α1α2 . . .and β = β1β2 . . . . Sine α < β, there exists k ≥ 1suh that α1 . . . αk−1 = β1 . . . βk−1 and αk < βk.Then a ⊙ǫ α < a ⊙ǫ β diretly from the de�nition.This ends the proof of statement (a) in the ase
a = b. We note that in partiular, from Proposition3.1, we have proved that
Î
∗

δ(a) = a ⊙ǫ (0L)∞ ≤ a ⊙ǫ α ≤ a ⊙ǫ (1L)∞ = Îǫ(a)

for eah α ∈ Bǫ(0). Now we assume that a 6= b.Take c ∈ (a, b) irrational. Then sine Îǫ(c) = Î
∗

δ(c)(see Lemma 2.5 ), from Lemma 6.1(b) we get that
Îǫ(a) < Îǫ(c) = Î

∗

δ(c) < Î
∗

δ(b). So, from above wehave
a ⊙ǫ α ≤ Îǫ(a) < Î

∗

δ(b) ≤ b ⊙ǫ β.This onludes the proof of statement (a). State-ment (b) follows in a similar way.Now, we prove the �rst statement of (). With-out loss of generality we may assume that a ∈ (0, 1].If a /∈ Q∗ then the statement follows from the de�-nition of ⊙ǫ and Lemma 6.2. Now, assume that a ∈
Q∗. From Theorem 2.8 and Lemma 6.2 we also havethat a ⊙ǫ (0L)∞, a ⊙ǫ (1L)∞ ∈ Bǫ(0) ⊂ Eǫ. There-fore, we may assume that α /∈

{
(0L)∞, (1L)∞

}
.Sine α is minimal, we have α = 0L . . . . Indeed,otherwise we have Sn(α) ≥ α = 1L . . . for eah

n ≥ 0. Hene α = (1L)∞; a ontradition. Conse-quently, a⊙ǫ α = 0Lr(a)0L1L . . . . To end the proofof the �rst statement of () we have to prove that
Sj(a⊙ǫ α) ≥ a⊙ǫ α for eah j ≥ 1. Let α = α1α2 . . .and a = p/q with (p, q) = 1 and m ≥ 1. Then

Sqm(a ⊙ǫ α) = α̂mr(a)αm+1α̂m+1 . . . .If αm = 1L, then α̂m = 0L and, sine α is minimal,we have Sqm(α ⊙ǫ a) ≥ a ⊙ǫ α. If αm = 0L and
α̂m = 1L then learly, we are done. Now we look at

Smq−1(a ⊙ǫ α) = αmα̂mr(a)αm+1α̂m+1 . . . .If αm = 1L, obviously Smq−1(α ⊙ǫ a) ≥ a ⊙ǫ α.Assume that αm = 0L. Then αmα̂m = 0L1L andthe desired inequality follows from Lemma 6.10(a)(reall that we are assuming that a ∈ (0, 1] and
a ∈ Q∗; that is ǫ1(a) = 0). Now, assume that 1 <
j ≤ q − 1. Then
S(m−1)q+j−1(a ⊙ǫ α) = ǫj(a)L . . . ǫq−1(a)Lαmα̂m . . .and, from Lemma 6.10(b), we get S(m−1)q+j−1(α⊙ǫ

a) ≥ a ⊙ǫ α. This ends the proof of the �rst state-ment of (). The fat that ρ(α ⊙ǫ a) = a followsstraightforwardly from the de�nition of ⊙ǫ and thefat that ρ(Îǫ(a)) = ρ(Î
∗

δ(a)) = a. This ends theproof of (). Statement (d) follows in a similar way.Now, we prove (e). Assume that a = p/q with
(p, q) = 1 and set α = α1α2 . . . and β = β1β2 . . . .Sine a ∈ Q∗ we have that E(a) = Ẽ(a) = ǫ1(a).Hene,

a ⊙ǫ α = ǫ1(a)Lr(a)α1α̂1r(a)α2α̂2 . . .
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a ⊙δ β = (ǫ1(a) + 1)Lr(a)β1β̂1r(a)β2β̂2 . . . .Sine α 6= (1L)∞ is minimal and β 6= (0L)∞ ismaximal, in a similar way as before we obtain that

α = 0L . . . and β = 1L . . . . Therefore α < β and
(a⊙ǫα)′ < a⊙δβ.Moreover, sine Sn(α) ≤ β, we ob-tain Sn(a⊙ǫα) ≤ a⊙δβ in a similar way as above byusing Lemma 6.10() instead of Lemma 6.10(a) andLemma 6.10(d) instead of Lemma 6.10(b). On theother hand, from Sn(β) ≥ α and Lemma 6.10(a)�(b) we obtain Sn(a⊙δ β) ≥ a⊙ǫ α. Then statement(d) follows from the de�nition of E∗ ⊂ E .6.3. Proof of Proposition 3.3We need three preliminary results. The next lemmafollows easily.Lemma 6.11. Let α = α1α2 . . . , β = α1β2 . . . ∈
AD be suh that α < β. Then the following state-ments hold.(a) If α1 = dL then S(α) < S(β).(b) If α1 = dR then S(α) > S(β).The following proposition haraterizes the se-quenes in Pǫ and Pδ.Proposition 6.12. The following statements hold.(a) Let β ∈ Ξ be suh that γ = βdM is minimalsatisfying that if Sj−1(γ) = dR . . . for some

j = 0, 1, . . . , |γ| − 1, then Sj(γ) ≥ γ′. Thenthere exists F ∈ A suh that ÎF (0) = γ. More-over γ ∈ Pǫ.(b) Let β ∈ Ξ be suh that γ = βdC is maximal.Then there exists F ∈ A suh that ÎF (c
F
) =

γ. Moreover γ ∈ Pδ.Proof. We will prove statement (a). Statement(b) follows similarly. The strategy of the proofwill be to onstrut e�etively a map F ∈ Asuh that ÎF (0) = γ. We proeed as follows. Set
γ = ds1

1 ds2

2 . . . d
sn−1

n−1 dsn
n with sn = M. Let k ∈ Zbe suh that max{|di| : i = 1, . . . , n} < k and let

c ∈ (0, 1). Now, for j = 0, 1, . . . n − 1, we hoosepoints x(Sj(γ)) ∈ [0, 1) suh that

1. x(γ) = 0,2. if for j = 1, . . . , n − 1 we have Sj−1(γ) =

dL
j . . . (respetively Sj−1(γ) = dR

j . . .) then
x(Sj(γ)) ∈ (0, c) (respetively x(Sj(γ)) ∈
(c, 1)),3. if for i 6= j, i, j ∈ {1, 2, . . . , n − 1} wehave x(Si(γ)), x(Sj(γ)) ∈ [0, c) (respetively
x(Si(γ)), x(Sj(γ)) ∈ (c, 1)), then x(Si(γ)) <
x(Sj(γ)) if and only if Si(γ) < Sj(γ) (respe-tively Si(γ) > Sj(γ)).We note that, by the minimality of γ, we have

x(γ) < x(Sj(γ)) for j = 1, 2, , . . . n − 1. Thereforewe an write
x(γ) < x(Sj1(γ)) < . . .

< x(Sjk(γ)) < c < x(Sjk+1(γ)) < . . .

< x(Sjn−1(γ)).Then we set j0 = 0 and we take F ∈ L suh that
F (c) = k, F (x(Sjt(γ)) = x(Sjt+1(γ)) + djt+1 if
jt 6= n − 1, F (x(Sn−1(γ)) = dn and F is a�ne in
[x(Sjt(γ)), x(Sjt+1(γ))] for t ∈ {0, 1, . . . , n− 1}\{k}and in [x(Sjk(γ)), c] and [c, x(Sjk+1(γ))]. Now,we laim that F ∈ A. To prove it note that
F (c) = k > F (x(Sj(γ)) for j = 0, . . . , n − 1.Then F |[x(Sjk (γ)),c] is stritly inreasing and
F |[c,x(Sjk+1(γ))] is stritly dereasing. Let t besuh that [x(Sjt(γ)), x(Sjt+1(γ))] ⊂ [0, c). Wehave Sjt(γ) = d

sjt+1

jt+1 . . . < d
sjt+1+1

jt+1+1 . . . = Sjt+1(γ).If either djt+1 < djt+1+1 or djt+1 = djt+1+1 and
sjt+1 < sjt+1+1, then learly F (x(Sjt(γ))) <

F (x(Sjt+1(γ))). Now, assume d
sjt+1

jt+1 = d
sjt+1+1

jt+1+1 .From Lemma 6.11 we have that either
Sjt+1(γ) < Sjt+1+1(γ) if sjt+1 = L or
Sjt+1(γ) > Sjt+1+1(γ) if sjt+1 = R. In bothases x(Sjt+1(γ)) < x(Sjt+1+1(γ)) and, inonsequene, F (x(Sjt(γ))) < F (x(Sjt+1(γ))).Thus F |[x(Sjt (γ)),x(Sjt+1 (γ))] is stritly in-reasing. In a similar way we an provethat if [x(Sjt(γ)), x(Sjt+1(γ))] ⊂ (c, 1) then
F |[x(Sjt (γ)),x(Sjt+1 (γ))] is stritly dereasing. Toend the proof of the laim we have to prove that
F (x(Sjn−1(γ))) > F (1). Sine x(Sjn−1(γ)) ∈ (c, 1)we have that Sjn−1−1(γ) = dR

jn−1
. . . . Then

Sjn−1(γ) > γ′. If either djn−1+1 > (d1 + 1) or
djn−1+1 = (d1 + 1) and sjn−1+1 = R > L = s1 then,sine F (1) = F (0) + 1 = x(S(γ)) + d1 + 1 and
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F (x(Sjn−1(γ))) = x(Sjn−1+1(γ))+djn−1+1, we havethat F (x(Sjn−1(γ))) > F (1). On the other hand,assume that d

sjn−1+1

jn−1+1 = (d1 + 1)s1 . We obtain that
F (x(Sjn−1(γ))) > F (1) as above by using Lemma6.11. This ends the proof of the laim. Lastly,we have ÎF (0) = γ by onstrution. Also, fromLemma 5.1(a) we have that γ ∈ Pǫ. This ends theproof of the proposition.The next lemma haraterizes the periodi se-quenes in Bǫ(0) and Bδ(0).Lemma 6.13. The following statements hold.(a) Let α ∈ Bǫ(0)\{(0

L)∞, (1L)∞} be periodi.Then α = (0Lβ1L)∞ for some β ∈ Ξ.(b) Let α ∈ Bδ(0)\{(0
L)∞, (1L)∞} be periodi.Then α = (1Lβ0L)∞ for some β ∈ Ξ.Proof. Clearly α is of the form (dL

1 βdL
n)∞ with β ∈

Ξ. Assume that d1 = 1. Sine α is minimal we havethat α = 1L . . . ≤ Sj(α) for all j. Then Sj(α) =
1L . . . for all j and, in onsequene, α = (1L)∞;a ontradition. Hene d1 = 0. Now, assume that
dn = 0. Then α = (0Lβ0L)∞. If β is the emptysequene then α = (0L)∞; a ontradition. Nowassume that β is not the empty sequene and set
β = β2 . . . βn−1. Sine α is minimal α = 0Lβ2 . . . ≤

0L0Lβ2 . . . = Sn−1(α). Thus β2 = 0L. Proeedingindutively we obtain that βi = 0L for i = 2, . . . , n−
1. Thus α = (0L)∞; a ontradition. This endsthe proof of (a). Statement (b) follows in a similarway.Proof of Proposition 3.3. We will only provestatement (a). Statement (b) follows in a similarway. The fat that a ⊙δ α is not periodi when
a /∈ Q and when a ∈ Z is periodi if and only if
α = (1L)∞ follows from the de�nitions of ⊙ǫ and ofthe sequenes Î

∗

δ(a) and Îǫ(a). The third statementfollows diretly from the de�nitions. Now we provethe last two statements. Assume that a ∈ Q∗. If
α = (1L)∞ then a ⊙ǫ α is periodi by Proposition3.1 and Lemma 6.1(a). Moreover if a = p/q with
(p, q) = 1 then a⊙δ α = (ǫ1(a)Lǫ2(a)L . . . ǫq(a)L)∞.Let α ∈ Bǫ(0)\{(1

L)∞}. By Lemma 6.13(a) we get
α = (0Lα2 . . . αn−11

L)∞. Without loss of generalityassume that Ẽ(a) = 0. Then
a⊙ǫα = (0Lr(a)0L1Lr(a)α2 . . . r(a)αn−1α̂n−1r(a)1L)∞

is periodi. Now, let
γ = 0Lr(a)0L1Lr(a)α2 . . . r(a)αn−1α̂n−1r(a)1M .Clearly, a ⊙ǫ α = γ ⋆ǫ L∞. Sine, from Proposition4.6(b) of [AF℄, 0Lr(a)1M is a minimal sequene, byusing Lemma 6.10(a)�(b), we have that γ is a mini-mal sequene (note that ǫ1(a) = 0). Then by Propo-sition 6.12 (a) we have that γ ∈ Pǫ.ReferenesAlsedà Ll., Faló A., A haraterization of thekneading pair for bimodal degree one irle maps,Ann. Inst. Fourier 47 (1997), 273�304.Alsedà Ll., Mañosas F., Kneading theory and rota-tion interval for a lass of irle maps of degreeone, Nonlinearity 3 (1990), 413�452.Collet P. Ekmann J. P., Iterated maps on the in-terval as dynamial systems, Progress in Physis,Birkhäuser, 1980Faló A., Bifurations and symboli dynamis forbimodal degree one irle maps: The Arnol'dtongues and the Devil's stairase, Ph. D. Thesis,Universitat Autònoma de Barelona, 1995.Hokett K., Holmes P., Bifurations to badly orderedorbits in one parameter families of irle mapsor Angels fallen from the Devil's stairase, Pro.Amer. Math. So. 102 (1988), 1031�1051.Ito R., Rotation sets are losed, Math. Pro. Camb.Phil. So. 89 (1981), 107�111.de Melo W., van Strien S., One dimensional dynam-is, Springer-Verlag, 1993.Milnor J. Thurston P., On iterated maps on the in-terval, I, II, �Dynamial Systems�, Leture Notesin Math 1342, Springer, 1988.


