
ON THE STRUCTURE OF THE KNEADINGSPACE OF BIMODAL DEGREE ONE CIRCLEMAPSLL. ALSEDÀDepartament de MatemàtiquesUniversitat Autònoma de Bar
elona08193 Cerdanyola del VallèsSpainE-mail: alseda�mat.uab.
atA. FALCÓDepartamento de Cien
ias, Físi
as, Matemáti
as y de la Computa
iónUniversidad CEU Cardenal HerreraSan Bartolome 55, 46115 Alfara del Patriar
a, Valen
iaSpainE-mail: afal
o�u
h.
eu.esDedi
ated to the memory of Valery S. MelnikIn this paper we introdu
e an index spa
e and two ⋆�like operators that 
an be used to des
ribebifur
ations for parameterized families of degree one 
ir
le maps. Using these topologi
al toolswe give a des
ription of the kneading spa
e, that is, the set of all dynami
al 
ombinatorial typesfor the 
lass of all bimodal degree one 
ir
le maps 
onsidered as dynami
al systemsKeywords: Kneading Theory, Degree one 
ir
le maps, Bifur
ation spa
e.Mathemati
s Subje
t Classi�
ations (2000): 35B40
1. Introdu
tion and statement of Main The-oremFor 
ontinuous maps on the interval with �nitelymany monotoni
ity intervals, the kneading theorydeveloped by Milnor and Thurston [MT℄ gives asymboli
 des
ription of the dynami
s of these maps.This des
ription is given in terms of the kneadinginvariants whi
h essentially 
onsist on the symboli
orbits of the turning points of the map under 
onsid-eration. Moreover, this theory also gives a 
lassi�
a-tion of all su
h maps through these invariants. For


ontinuous bimodal degree one 
ir
le maps similarinvariants were introdu
ed by Alsedà and Mañosas[AM℄. In that paper, the �rst part of the programjust des
ribed was 
arried through, and relationsbetween the 
ir
le maps invariants and the rotationinterval were elu
idated. Later on, in [AF; Theo-rem A℄ the set of all these kneading invariants (thekneading spa
e) was 
hara
terized. The main goalof this paper is to give a des
ription of the knead-ing spa
e of the bimodal degree one 
ir
le maps us-ing some self�similarity operators whi
h allow us toidentify 
ertain subsets with known stru
ture. To1
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ó.state this des
ription we need the appropriate no-tation. This paper is, in some sense, a 
ontinua-tion of [AF℄ and we use heavily the notation andresults from that paper. Although we have tried tomake this paper self-
ontained in the introdu
tionwe have repeated 
ertain de�nitions from [AF℄ forreadability.As it is usual, instead of working with the 
ir-
le maps themselves we will rather use their liftingsto the universal 
overing spa
e R. To this end, weintrodu
e the following 
lass A of maps. First wede�ne L to be the 
lass of all 
ontinuous maps Ffrom R into itself su
h that F (x + 1) = F (x) + 1for all x ∈ R. That is, L is the 
lass of all liftingsof degree one 
ir
le maps. Then we will say that
F ∈ A if (see Figure 1):(1) F ∈ L.(2) There exists c

F
∈ (0, 1) su
h that F is stri
tlyin
reasing in [0, c

F
] and stri
tly de
reasing in

[c
F
, 1] .We note that every map F ∈ A has a unique lo-
al maximum and a unique lo
al minimum in [0, 1) .To de�ne the 
lass A we restri
ted ourselves to the
ase in whi
h F has the minimum at 0. Sin
e ea
hmap from L is 
onjugate by a translation to a mapfrom L having the minimum at 0, the fa
t that in (2)we �x that F has a minimum in 0 is not restri
tive.For a map F ∈ A one 
an de�ne the kneadingpair denoted by K(F ) (see De�nition 2.4) whi
h
aptures all dynami
s of the map F (see [AM;Proposition A℄). The kneading spa
e is a subset ofthe produ
t spa
e Eǫ × Eδ where both Eǫ and Eδare totally ordered spa
es equipped with the ordertopology (see Subse
tion 2.1). Also, the set of allkneading pairs will be 
alled the kneading spa
e.Now, we introdu
e the following index spa
e. Itwill be used to 
hara
terize a 
lass of basi
 subsetsfrom ea
h 
omponent of the kneading spa
e.De�nition 1.1. Let J be the index spa
e whoseelements are sequen
es x = {xj}

n
j=1 with termsin [0, 1] ∪ {δ, ǫ}, where n ∈ N ∪ {∞} and either

n < ∞, {xj}
n−1
j=1 ⊂ Q∩(0, 1) and xn ∈ {0, 1, δ, ǫ} ∪

{(0, 1) \ Q} or n = ∞ and {xj}
n
j=1 ⊂ Q \ Z.Consider the set J endowed with the lexi
o-graphi
al ordering indu
ed by the usual ordering ofthe real numbers and the following ordering:

δ < 0 < 1 < ǫ.

The ordering of J will denoted by ≺ . Let J∞ bethe subset of J whi
h 
ontains all the in�nite se-quen
es in J , and let J ∗
ǫ (respe
tively, J ∗

δ ) be theset of all �nite sequen
es in J ending with an ir-rational number union the �nite sequen
es whi
hdo not end with δ (respe
tively, ǫ). Finally, set
Jǫ = J∞∪J ∗

ǫ and Jδ = J∞∪J ∗
δ . Note that Jǫ (re-spe
tively, Jδ) has as maximum the �nite sequen
e

ǫ (respe
tively, 1) and as minimum 0 (respe
tively,
δ). Also we denote by I the set of all �nite sequen
eswhi
h do not end with 0, 1, ǫ or δ, union the emptysequen
e.Now we are ready to state the main result of thispaper. A 
ru
ial observation to the next theoremis that all maps appearing in it are de�ned in a
onstru
tive way using four symboli
 operators tobe de�ned in Se
tion 3.Main Theorem For F ∈ A there exist a, b ∈ R,
a ≤ b, and two 
losed intervals Qǫ(a) in Eǫ and
Qδ(b) in Eδ su
h that K(F ) ∈ Qǫ(a)×Qǫ(b). More-over, the numbers a and b are the endpoints of therotation interval of F. and the following statementshold.1. There exists pǫ,a : Jǫ → Qǫ(a) whi
h is non�de
reasing, maps the endpoints of Jǫ into theendpoints of Qǫ(a) and if a ∈ Q \Z then pǫ,ais one�to�one. Moreover,

Impǫ,a = Qǫ(a) \
⋃

x∈I

(pǫ,a(x1), pǫ,a(xǫ)) .2. There exists
Pǫ(a) ⊂

⋃

x∈I

[pǫ,a(x1), pǫ,a(xǫ)]with the following property. For ea
h α ∈
Pǫ(a) there is an x ∈ I and a bije
tive stri
tlymonotone map uǫ

α from the kneading spa
eof all unimodal maps on the interval to a
losed subinterval of [pǫ,a(x1), pǫ,a(xǫ)] whi
h
ontains α as an endpoint. Moreover, forea
h x ∈ I there exists α ∈ Pǫ(a) su
h that
max(Imuǫ

α) = pǫ,a(xǫ).3. There exists pδ,b : Jδ → Qδ(b) whi
h is non-de
reasing, maps the endpoints of Jδ into the
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lass A.endpoints of Qδ(b) and if b ∈ Q \Z then pδ,bis one�to�one. Moreover,
Impδ,b = Qδ(b) \

⋃

x∈I

(pδ,b(xδ), pδ,b(x0))4. There exists
Pδ(b) ⊂

⋃

x∈I

[pδ,b(xδ), pδ,b(x0)]with the following property. For ea
h β ∈
Pδ(b) there is an x ∈ I and a bije
tive stri
tlymonotone map uδ

β from the kneading spa
e ofall unimodal maps on the interval to a 
losedsubinterval of [pδ,b(xδ), pδ,b(x0)] whi
h 
on-tains β as an endpoint. Moreover, for ea
h
x ∈ I there exists β ∈ Pδ(b) su
h that
min(Imuδ

β) = pδ,b(xδ).Thus, the above theorem e�e
tively gives a de-
omposition of the spa
e Qǫ(a) (respe
tively, Qδ(b))into a set
Kǫ,a = Impǫ,a ∪




⋃

α∈Pǫ(a)

Imuα




(respe
tively,
Kδ,b = Impδ,b ∪




⋃

β∈Pδ(b)

Imuβ


)whose points are 
ompletely 
hara
terized, and theopen intervals in the 
omplement of this set (whi
hare gaps where we have not been able to 
hara
ter-ize the sequen
es in their interior). The role of theabove gaps in Qǫ(a) (respe
tively, Qδ(b)) is to dealwith the �rst (respe
tively, se
ond) 
omponent ofthe kneading pairs 
ontaining unbounded symbols(see Figure 2 and 
ompare with [HH; Figure 5℄).These unbounded symbols appear in the kneadingsequen
es due to the fa
t that b (respe
tively, a) 
anbe 
an be arbitrarily far from a (respe
tively, b).Another feature of the above de
ompositiontheorem is the following one. Assume that weknown the �rst (respe
tively, se
ond) 
omponentof the kneading pair of a given map from 
lass Ahaving a (respe
tively, b) as a left (respe
tively,right) endpoint of the rotation interval up to a given�ne length n. Then, from the above theorem we
an obtain the minimal interval in Qǫ(a) (respe
-tively, Qδ(b)) with endpoints in Kǫ,a (respe
tively,

Kδ,b) 
ontaining all the �rst (respe
tively, se
ond)
omponents of kneading pairs whi
h 
oin
ide with
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These open intervals contain copies

of closed intervals of unimodal type 
Fig. 2. The de
ription of the 
losed interval Qǫ(a) using the map pǫ,a. Note that the gaps also 
ontain thesequen
es with unbounded symbols.

Fig. 3. The kneading spa
e and its des
ription using the index spa
e and the map given in the MainTheorem.
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le maps 5the given one in the �rst n symbols (see Figures 3and 2). Thus, the study of the dynami
s (periodi
points, topologi
al entropy, ...) of maps asso
iatedto the endpoints on these intervals should allow usto bound the dynami
s of the given map by usingthe standard tools arising from kneading theory. Inparti
ular, this theorem gives some basi
 topologi-
al tools that we 
an used to des
ribe bifur
ations inparametrized families of bimodal degree one 
ir
lemaps (see Ho
kett and Holmes [HH℄).The paper is organized as follows. Unfortu-nately, the de�nitions of the ∗ �like operators andthe statements of the results using to proved theMain Theorem are rather te
hni
al and require agood deal of notation. In parti
ular, before thesede�nitions and statements, for 
ompleteness, weneed to make a survey on Kneading Theory for mapsin A and to �x the notation we will use when talkingabout unimodal interval maps (see Se
tion 2). InSe
tion 3 we introdu
e the four operators to statethe results that we use in Se
tion 4 to prove theMain Theorem. Finally, in Se
tions 5 and 6 we shallprove the results stated in Se
tion 3.2. A survey on kneading theory for maps in
A and unimodal mapsThis se
tion is divided into two se
tions. The �rstone it is essentially a survey of the papers by Alsedàand Mañosas [AM℄ and Alsedà and Fal
ó [AF℄.The se
ond one we will re
all basi
 
on
epts of thekneading theory of unimodal maps.2.1. Kneading theory for maps in AWe start by re
alling the notion of itinerary of apoint. For F ∈ A and x ∈ R let

s(x) =





R if D(x) ∈ (cF , 1),
C if D(x) = cF ,
L if D(x) ∈ (0, cF ),
M if D(x) = 0,and d(x) = E(F (x)) − E(x).Then the redu
ed itinerary of x, denoted by

Î
F
(x), is de�ned as follows. For i ∈ N, set si =

s(F i(x)) and di = d(F i−1(x)). Then Î
F
(x) is de-

�ned by




ds1

1 ds2

2 . . . if si ∈ {L,R} for all i ≥ 1,
ds1

1 ds2

2 . . . dsn
n if sn ∈ {M,C}and si ∈ {L,R} for all

i ∈ {1, . . . , n − 1}.Note that sin
e F ∈ L we have that ÎF (x) =
ÎF (x + k) for all k ∈ Z. Let x, y ∈ R be su
h that
D(x) 6= D(y). We say that x and y are 
onjugateif and only if F (D(x)) = F (D(y)). Note also thatif x and y are 
onjugate then they have the sameredu
ed itinerary.Let S = {M,L,C,R} and let α = α0α1 . . . be asequen
e of elements αi = dsi

i of Z×S. We say that
α is admissible if one of the following two 
onditionsis satis�ed:De�nition 2.1. 1. α is in�nite, si ∈ {L,R} forall i ≥ 1 and there exists k ∈ N su
h that

|di| ≤ k for all i ≥ 1.2. α is �nite of length n, sn ∈ {M,C} and si ∈
{L,R} for all i ∈ {1, . . . , n − 1}.Noti
e that any redu
ed itinerary is an admis-sible sequen
e. Now we shall introdu
e some nota-tion for admissible sequen
es (and hen
e for redu
editineraries).The 
ardinality of an admissible sequen
e α willbe denoted by |α| ( if α is in�nite we write |α| = ∞).We denote by S the shift operator whi
h a
tson the set of admissible sequen
es of length greaterthan one as follows : S(α) = α2α3 . . . if α =

α1α2α3 . . . . We will write Sk for the k-th iterateof S. Obviously Sk is only de�ned for admissiblesequen
es of length greater than k. Clearly, forea
h x ∈ R we have Sn(Î
F
(x)) = Î

F
(Fn(x)) if

|Î
F
(x)| > n.Let α = α1α2 . . . αn and β = β1β2 . . . be twosequen
es of symbols in Z × S. We shall write α βto denote the 
on
atenation of α and β (i. e. thesequen
e α1α2 . . . αnβ1β2 . . .). We also shall use thesymbols αn to denote n times︷ ︸︸ ︷

α α . . . α and α∞ to denote
α α . . . .Let α = α1α2 . . . αn, be a sequen
e of symbolsin Z × S. Set αi = dsi

i for i = 1, 2, . . . , n. We saythat α is even if Card{i ∈ {1, . . . , n}|si = R} iseven. Otherwise we say that α is odd.
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ó.Now we endow the set of admissible sequen
eswith a total ordering. First set M < L < C < R.Then we extend this ordering to Z×S lexi
ographi-
ally. That is, we write ds < tm if and only if either
d < t or d = t and s < m. Let now α = α1α2 . . .and β = β1β2 . . . be two admissible sequen
es su
hthat α 6= β. Then there exists n ∈ N su
h that
αn 6= βn and αi = βi for i = 1, 2, . . . , n−1. We write
α < β if either α1α2 . . . αn−1 is even and αn < βnor α1α2 . . . αn−1 is odd and αn > βn.Let α = α1α2α3 . . . be an admissible sequen
e.We say that α is periodi
 of period n if Sn(α) = αand Si(α) 6= α for i = 1, 2, . . . , n − 1. We notethat if α is a periodi
 sequen
e of period n, then
|α| = ∞ and there exist α1, . . . , αn ∈ Z × Ssu
h that α = (α1 . . . αn)∞. We also note thatif x is a periodi
 (mod 1) point of F su
h that
|Î

F
(x)| = ∞, then Î

F
(x) is periodi
 (re
all that

Sn(Î
F
(x)) = Î

F
(Fn(x))) but their periods are notne
essarily equal.The following results show that the above or-dering of redu
ed itineraries is, in fa
t, the orderingof points in [0, c
F
].Proposition 2.2. Let F ∈ A. Then(a) If x, y ∈ [0, c

F
], and x < y then Î

F
(x) ≤

Î
F
(y).(b) If x, y ∈ [c

F
, 1) , and x < y then Î

F
(x) ≥

Î
F
(y).Corollary 2.3. Let F ∈ A. For all x ∈ R we have

Î
F
(0) ≤ Î

F
(x) ≤ Î

F
(c

F
).To de�ne the kneading pair of a map F ∈ Awe introdu
e the following notation. For a point

x ∈ R we de�ne the sequen
es Î
F
(x+) and Î

F
(x−)as follows. For ea
h n ≥ 0 there exists δ(n) > 0 su
hthat d(Fn−1(y)) and s(Fn(y)) take 
onstant valuesfor ea
h y ∈ (x, x + δ(n)) (resp. y ∈ (x − δ(n), x)).Denote these values by d(Fn−1(x+)) and s(Fn(x+))(resp. d(Fn−1(x−)) and s(Fn(x−))). Then we set

Î
F
(x+) = d(x+)s(F (x+))d(F (x+))s(F

2(x+)) . . .and̂
I

F
(x−) = d(x−)s(F (x−))d(F (x−))s(F

2(x−)) . . . .

Clearly, Î
F
(x+) and Î

F
(x−) are in�nite admissi-ble sequen
es and, Î

F
(x+) = Î

F
((x + k)+) and

Î
F
(x−) = Î

F
((x + k)−) for all k ∈ Z. Moreover,if x /∈ Z and |Î

F
(x)| = ∞ then Î

F
(x−) = Î

F
(x) =

Î
F
(x+).De�nition 2.4. Let F ∈ A. The pair

(Î
F
(0+), Î

F
(c−

F
)) will be 
alled the kneadingpair of F and will be denoted by K(F ).From [AM; Proposition A℄ it follows that K(F )
hara
terizes the set of redu
ed itineraries (andhen
e the dynami
s) of a map F ∈ A.Let AD denote the set of all in�nite admissiblesequen
es.Note that for ea
h F ∈ A we have that K(F ) ∈

AD × AD. To 
hara
terize the pairs in AD × ADthat 
an o

ur as a kneading pair of a map from Awe will de�ne a subset E of AD×AD whi
h turns tobe the set of all kneading pairs of all maps from A(see [AF℄). To this end we introdu
e the followingnotation.Let α = ds1

1 α2 . . ., be an admissible sequen
e.We will denote by α′ the sequen
e (d1 + 1)s1α2 . . . .Note that sin
e for F ∈ A we have d(F (0+)) =
d(F (0−)) − 1 we 
an write (Î

F
(0+))′ = Î

F
(0−).We will denote by E∗ the set of all pairs

(ν1, ν2) ∈ AD × AD su
h that the following 
on-ditions hold:(1) ν ′
1 < ν2.(2) ν1 ≤ Sn(νi) ≤ ν2 for all n > 0 and i ∈ {1, 2}.(3) If for some n ≥ 0, Sn(νi) = dR . . . , then

Sn+1(νi) ≥ ν ′
1 for i ∈ {1, 2} .We note that 
ondition (2) says, in parti
u-lar, that ν1 and ν2 are minimal and maximal, re-spe
tively, a

ording the following de�nition. Let

α ∈ AD , we say that α is minimal (respe
tivelymaximal) if and only if α ≤ Sn(α) (respe
tively
α ≥ Sn(α)) for all n ∈ {1, 2, . . . | α | −1} .As we will see, the above set 
ontains (amongothers) the kneading pairs of maps from A withnon�degenerate rotation interval. To deal withsome spe
ial kneading pairs asso
iated to maps withdegenerate rotation interval we introdu
e the follow-ing de�nitions.
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le maps 7For a ∈ R we set ǫi(a) = E(ia) − E((i − 1)a)and δi(a) = Ẽ(ia) − Ẽ((i − 1)a). Also, we set
Îǫ(a) = ǫ1(a)Lǫ2(a)L . . . ǫn(a)L . . .and
Îδ(a) = δ1(a)Lδ2(a)L . . . δn(a)L . . .Let Î

∗

ǫ (a) = (Îǫ(a))′ and let Î
∗

δ(a) denote the se-quen
e that satis�es (Î
∗

δ(a))′ = Îδ(a). Let a = p/qwith (p, q) = 1. We denote by ÎR(a) the sequen
e
(δ1(a)L . . . δq−1(a)Lδq(a)R)∞and by Î
∗

R(a) the sequen
e whi
h satis�es
(Î

∗

R(a))′ = ÎR(a).To simplify the use of the above sequen
es thefollowing lemma will be helpful (see [AM; (4.1)�(4.3)℄).Lemma 2.5. Let a ∈ R. Then the following state-ments hold.(a) If a /∈ Z then δ1(a) = ǫ1(a)+1. Furthermore,if a/∈Q then δi(a) = ǫi(a) for all i > 1. Thatis, Î
∗

δ(a) = Îǫ(a) and Îδ(a) = Î
∗

ǫ (a). If a =
p/q with (p, q) = 1 and q > 1 then ǫi(a) =
δi(a) for i = 2, . . . , q − 1, δq(a) = ǫq(a) − 1and, ǫi+q(a) = ǫi(a) and δi+q(a) = δi(a) forall i ∈ N.(b) If a ∈ Z then ǫi(a) = δi(a) = a for all i > 0.Now, for ea
h a ∈ R, we set

Ea =





{(Îǫ(a), Î
∗

ǫ (a)), (Î
∗

δ(a), Îδ(a)), (Î
∗

R(a), ÎR(a))}if a = p/q ∈ Q, with (p, q) = 1,{
(Î

∗

δ(a), Îδ(a))
} if a /∈ Q.Finally we denote by E the set E∗ ∪ (∪a∈REa).The following two results, given by Alsedà and Fal
ó[AF; Theorem A℄, 
hara
terizes the kneading pairsof the maps from 
lass A.Theorem 2.6. For F ∈ A we have that K(F ) ∈ E .Conversely, for ea
h (ν1, ν2) ∈ E there exists F ∈ Asu
h that K(F ) = (ν1, ν2).To de�ne the ambient spa
e of the set E weintrodu
e the following two sets. Let

Eǫ =
{
α ∈ AD : ∃ β ∈ AD su
h that (α, β) ∈ E

}

and
Eδ =

{
β ∈ AD : ∃α ∈ AD su
h that (α, β) ∈ E

}
.The following result 
hara
terizes the sets Eǫand Eδ (see [F; Theorem 3.1.1℄).Proposition 2.7. The following statements hold.(a) α ∈ Eǫ if and only if it is minimal and satis�esthat if for some n ≥ 0, Sn(α) = dR . . . then

Sn+1(α) ≥ α′.(b) β ∈ Eδ if and only if it is maximal.We 
onsider Eǫ and Eδ endowed with the or-der topology and let Eǫ × Eδ be with the produ
ttopology. We note that E is stri
tly 
ontained in
Eǫ × Eδ. To see this 
onsider for example the set
A = {(0L)∞, (1L)∞} of admissible sequen
es. Sin
e
((−1L)∞, (0L)∞), ((0L)∞, (1L)∞), ((1L)∞, (2L)∞) ∈ E ,we have that A ⊂ Eǫ and A ⊂ Eδ. In 
onsequen
e
{((0L)∞, (1L)∞), ((1L)∞, (0L)∞)} ⊂ Eǫ × Eδ. How-ever, ((0L)∞, (1L)∞) ∈ E but ((1L)∞, (0L)∞) /∈ E .For a ∈ R we de�ne Qǫ(a) as [Î

∗

δ(a), Îǫ(a)] ⊂ Eǫand Qδ(a) = [Îδ(a), Î
∗

ǫ(a)] ⊂ Eδ (re
all that fromTheorem 2.6 Î
∗

δ(a), Îǫ(a) ∈ Eǫ and Îδ(a), Î
∗

ǫ (a) ∈ Eδfor all a ∈ R). From Lemma 2.5(a) we have thatif a /∈ Q then Qǫ(a) and Qδ(a) are 
losed intervalsdegenerated to a point.The next result gives a 
hara
terization of therotation interval by using the kneading pair (see[AM; Theorem B℄). To see this we re
all that for
F ∈ L the rotation interval RF is de�ned to be theset

{ρF (x) : x ∈ R},where
ρF (x) = ρ(x) = lim sup

n→∞

Fn(x) − x

n
.It is well known (see [I℄) that the set RF is a 
losedinterval, perhaps degenerate to a single point. Also,if F ∈ L is a non�de
reasing map then

RF = { lim
n→∞

Fn(x) − x

n
}.Theorem 2.8. Let F ∈ A. Then RF = [a, b] if andonly if

K(F ) ∈ Qǫ(a)×Qδ(b) = [Î
∗

δ(a), Îǫ(a)]×[Îδ(b), Î
∗

ǫ (b)].



8 Ll. Alsedá and A. Fal
ó.2.2. Kneading theory for unimodal mapsIn the last step of this survey we introdu
e the no-tation we shall use for the kneading theory of uni-modal interval maps. Let I be a 
losed interval andlet f : I −→ I be a 
ontinuous map. We say that fis unimodal if1. f(max I) = f(min I) ∈ ∂I2. There exists c ∈ Int(I) su
h that the maps
f |[min I,c] and f |[c,max I] are homeomorphisms.The set of all unimodal maps from I to itselfwill be denoted by U(I). A map f ∈ U(I) will be
alled positive if f |[min I,c] is in
reasing. Otherwise,

f will be 
alled negative.Let f ∈ U(I) and let x ∈ I. We asso
iatewith x a �nite or in�nite sequen
e of the symbols
L,C,R 
alled its itinerary. To do it we introdu
e thefollowing notation. Let f : I −→ I be 
ontinuous.We will say that f is lo
ally in
reasing (respe
tivelyde
reasing) at x ∈ I if there exists an open (in I)neighborhood V of x su
h that f |V is in
reasing(respe
tively de
reasing). Now, we de�ne the i− thaddress of a point x, that we denote by θi(x), asfollows:

θi(x) =





L if f i is lo
ally in
reasing at x.
C if f i(x) = c,
R if f i is lo
ally de
reasing at x.We de�ne the itinerary of x denoted by θf (x)as follows1. θf (x) = θ0(x)θ1(x) . . . θn(x) . . . if θi(x) ∈

{L,R} for all i ≥ 0.2. θf (x) = θ0(x)θ1(x) . . . θn(x) if θn(x) = C, and
θi(x) ∈ {L,R} for all i ∈ {0, 1, . . . n − 1}.Given n ∈ N and y ∈ I, there exists δ > 0 su
hthat θn(y) takes 
onstant value L or R in the inter-val (x, x + δ) . We denote this value by for θn(x+).In a similar way we 
an de�ne θn(x−). With thisnotation we set θf (x+) = θ1(x

+)θ2(x
+) . . . and

θf (x−) = θ1(x
−)θ2(x

−) . . . . We note that if θf (x)is in�nite then θf (x) = θf (x+) = θf (x−).The sequen
e θf (f(c)+) is 
alled the kneadingsequen
e of f. We will denote it by k(f).Let A = A0A1 . . . be a sequen
e of elements
Ai ∈ {L,C,R}. We say that A is admissible if oneof the following two 
onditions is satis�ed:

1. A = A0A1 . . . An . . . if Ai ∈ {L,R} for all i ≥
0.2. A = A0A2 . . . An if An = C, and Ai ∈ {L,R}for all i ∈ {0, 1, . . . n − 1}.Now, we introdu
e an ordering in the set of alladmissible sequen
es. We set L < C < R and weextend this ordering lexi
ographi
ally to the set ofall admissible sequen
es as follows. Let K0K1 . . . Knbe a �nite (or empty) sequen
e of symbols L,R. Wesay that K0K1 . . . Kn is even (respe
tively odd) ifit has an even (respe
tively odd) number of R′s.Assume that K = K0K1 . . . and K ′ = K ′

0K
′
1 . . . areadmissible sequen
es su
h that K 6= K ′. Let n ∈ Nbe su
h that Ki = K ′

i for i < n and Kn 6= K ′
n. Thenwe say that K < K ′ if either1. Kn < K ′

n and K0K1 . . . Kn−1 is even.2. Kn > K ′
n and K0K1 . . . Kn−1 is odd.We note that if x < y and f ∈ U(I) then

θf (x) ≤ θf (y) if f is positive and θf (x) ≥ θf (y)if f is negative.The shift operation S on admissible sequen
esis de�ned as follows. If K = K0K1 . . . then weset S(K) = K1K2 . . . whi
h is also an admissiblesequen
e. If K0 = C, then S is unde�ned. Wewrite Sn to denote the n−th iterate of S. Notethat for ea
h x ∈ I and f ∈ U(I) we have S(θ(x)) =
(θ(f(x))).An admissible sequen
e K will be 
alled max-imal if and only if Sn(K) ≤ K for ea
h n < |K|,where |K| denotes the length of K. We note thatfor ea
h f ∈ U(I) (independently of the fa
t that
f is positive or negative), k(f) is maximal and ad-missible with length in�nite. Given K = K0K1 . . . ,an admissible sequen
e, we will write K̂ to denote
K̂0K̂1 . . . where L̂ = R, R̂ = L and Ĉ = C. Wenote that K is maximal if and only if K̂ is minimal;that is, Sn(K̂) ≥ K̂ for ea
h n < |K|.From [CE℄, it follows that for ea
h admissiblein�nite maximal sequen
e K there exist f, g ∈ U(I),
f positive and g negative, su
h that k(f) = k(g) =
K. We shall denote by K the set of all admissiblein�nite maximal sequen
es.3. Self�similarity operatorsIn this se
tion �rst we state the results that we willuse to prove the Main Theorem. In Subse
tion 3.1
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e of bimodal degree one 
ir
le maps 9we de�ne the ⋆−operators and we state the mainresult about this operators. In Subse
tion 3.2 wede�ne the ⊙−operators and state the result whi
hstudies them.3.1. The ⋆−operatorsThe aim of this subse
tion is to 
hara
terize the setsof sequen
es whi
h appear as the �rst (respe
tivelyse
ond) 
omponent of the kneading pair of a map
F ∈ A for whi
h there exist p ∈ N, q ∈ Z anda 
losed interval J 
ontaining c

F
(respe
tively 0)su
h that (F q − p)|J is a unimodal map. We makethis study at a symboli
 level by using a ⋆−operatorwhi
h relates 
ertains subsets of the symboli
 spa
es

Eǫ and Eδ with the spa
e of kneading sequen
es ofunimodal maps. Moreover, we will show how the�unimodal symboli
 spa
e� is embedded into Eǫ and
Eδ. We start by introdu
ing some notation. Let Ξdenote the set of all �nite sequen
es with symbolsin Z × {L,R} (of 
ourse we 
onsider the empty se-quen
e as an element of Ξ).Now we 
onsider the set of sequen
es whi
h o
-
ur as redu
ed itineraries of periodi
 
riti
al points.Indeed we will denote by Pǫ (respe
tively Pδ) theset of all minimal sequen
es of the form βdM with
β ∈ Ξ and d ∈ Z satisfying that if for some n ∈

{1, . . . , |β|}, Sn−1(βdM ) = tR . . . then Sn(βdM ) >

β′dM (respe
tively the set of all maximal sequen
esof the form βdC) and su
h that if β is not emptythen {
(βdL)∞, β(d − 1)R(β′(d − 1)R)∞

}
⊂ Eǫ (re-spe
tively {

(βdL)∞, (βdR)∞
}
⊂ Eδ).We are now ready to de�ne the ⋆−operators.We start by de�ning the operator ⋆δ : Pδ × K −→

AD as follows. Let γ = βdC ∈ Pδ and K =
K1K2 . . . ∈ K. Then we de�ne

γ ⋆δ K =

{
βdK1βdK2β . . . if β is even,
βd

cK1βd
cK2β . . . if β is odd.Now we de�ne ⋆ǫ : Pǫ × K −→ AD. Let β ∈ Ξand s ∈ {L,R}. We set

χ(s, β) =

{
β if s = L,

β′ if s = R.Also, for d ∈ Z we set
ϕ(s, d) =

{
dL if s = L,
(d − 1)R if s = R.

Let γ = βdM ∈ Pǫ and K = K1K2 . . . ∈ K. Thenwe de�ne γ ⋆ǫ K as follows. If β is not empty then
γ⋆ǫK =





βϕ(K1, d)χ(K1, β)ϕ(K2, d)χ(K2, β) . . .if β is even,
βϕ(K̂1, d)χ(K1, β)ϕ(K̂2, d)χ(K2, β) . . .if β is odd.If β is empty then γ ⋆ǫ K = dK1

1 dK2

2 . . . where, if
K1 = L then di = d for all i ≥ 1 and if K1 = Rthen d1 = d − 1 and

di =





d + 1 if Ki−1Ki = RL,
d if Ki−1Ki ∈ {LL,RR} ,
d − 1 if Ki−1Ki = LR,for i ≥ 2.The main result of this subse
tion whi
h studiesthe properties of the ⋆−operators is the following.Theorem A Let γ = βdM ∈ Pǫ, α = βdC ∈ Pδand K ∈ K. Then γ ⋆ǫK ∈ Eǫ and α⋆δ K ∈ Eδ. If βis even then γ⋆ǫ is order reversing and α⋆δ is orderpreserving. Otherwise, γ⋆ǫ is order preserving and

α ⋆δ is order reversing. Moreover γ ⋆ǫ K and γ ⋆δ Kare 
onne
ted in Eǫ and Eδ respe
tively.Theorem A will be proved in Se
tion 5. It 
har-a
terizes at a symboli
 level the �unimodal boxes�in the spa
es Eǫ and Eδ. Indeed, if we 
onsider theset K endowed with the order topology (that is,
K = [L∞, RL∞]) then, from Theorem A, we seethat if γ = βdM ∈ Pǫ (respe
tively γ = βdC ∈ Pδ),then

γ ⋆ǫ K =

{
[γ ⋆ǫ RL∞, γ ⋆ǫ L∞] if β is even,
[γ ⋆ǫ L∞, γ ⋆ǫ RL∞] if β is odd.(respe
tively

γ ⋆δ K =

{
[γ ⋆δ RL∞, γ ⋆δ L∞] if β is odd,
[γ ⋆δ L∞, γ ⋆δ RL∞] if β is even)where, given two sequen
es α, β ∈ AD with α ≤

β, [α, β] denotes the set of all admissible sequen
eslying between α and β.The set γ ⋆ǫ K will be 
alled the ǫ−unimodalbox of γ and the set γ ⋆δ K will be 
alled the δ−unimodal box of γ.
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ó.3.2. The ⊙−operatorsLet k ∈ Z. We denote by Σk the set of sequen
es in
{kL, (k + 1)L}N. Let α = dL

1 dL
2 . . . and β = tL1 tL2 . . .be two sequen
es in Σk. We 
onsider in Σk the topol-ogy de�ned by the metri
 d(α, β) =

∞∑
i=0

2−i|di − ti|.With this topology, Σk is a 
ompa
t metri
 spa
e.Let Sk : Σk −→ Σk denote the usual shift trans-formation restri
ted to Σk. Clearly, Sk is 
ontin-uous. Let πk : Σk −→ Σ0 be the order pre-serving homeomorphism de�ned by πk(d
L
1 dL

2 . . .) =
(d1 − k)L(d2 − k)L . . . . Clearly, S0 ◦ πk = πk ◦ Sk.For k ∈ Z we de�ne the sets Bǫ(k) = Σk ∩ Eǫand Bδ(k) = Σk ∩ Eδ. We note that the sets Eǫ and
Eδ are invariant under �translations�. That is, if
ds1

1 ds2

2 . . . is a sequen
e in Eǫ (respe
tively in Eδ)then (d1 + k)s1(d2 + k)s2 . . . also belongs to Eǫ (re-spe
tively Eδ). Therefore, Bǫ(k) = π−1
k (Bǫ(0)) and

Bδ(k) = π−1
k (Bδ(0)). From Proposition 2.7 we havethat Bǫ(k) (respe
tively Bδ(k)) are the minimal (re-spe
tively maximal) sequen
es in Σk.For a ∈ R we will denote a − Ẽ(a) by D̃(a).Also, Q \ Z will be denoted by Q∗.We note that from Lemma 2.5, if a = p/q ∈ Q∗with (p, q) = 1 and q 6= 2 then the �nite se-quen
es ǫ2(a)L . . . ǫq−1(a)L and δ2(a)L . . . δq−1(a)Lare equal. We will denote this �nite sequen
e by

r(a) (we take the empty sequen
e as r(1/2)).Now we are ready to de�ne the ⊙−operators.For α = dL with d ∈ {0, 1} we set α̂ = (1−d)L.Then for a ∈ (0, 1] and α = α1α2 . . . ∈ Bǫ(0) wede�ne
a⊙ǫα =





0Lr(a)α1α̂1r(a)α2α̂2 . . . if a ∈ Q∗,

Îǫ(a) if a /∈ Q∗and α = (1L)∞,

Î
∗

δ(a) if a /∈ Q∗and α 6= (1L)∞.We extend the above de�nition to ea
h a ∈ R bysetting a ⊙ǫ α = π−1
eE(a)

(D̃(a) ⊙ǫ α).Now, we de�ne the ⊙δ version of the
⊙−operator as follows. Let a ∈ [0, 1) and α =
α1α2 . . . ∈ Bδ(0) be. Then we set
a⊙δα =





1Lr(a)α1α̂1r(a)α2α̂2 . . . if a ∈ Q∗,

Îδ(a) if a /∈ Q∗and α = (0L)∞,

Î
∗

ǫ(a) if a /∈ Q∗and α 6= (0L)∞.

and we extend the above de�nition to ea
h a ∈ Rby a ⊙δ α = π−1
E(a)(D(a) ⊙δ α).The next result whi
h we will be proved inSubse
tion 6.1 gives a �rst motivation to the

⊙−operators.Proposition 3.1. Let a ∈ R. Then a ⊙ǫ (0L)∞ =

Î
∗

δ(a), a ⊙ǫ (1L)∞ = Îǫ(a), a ⊙δ (0L)∞ = Îδ(a) and
a ⊙δ (1L)∞ = Î

∗

ǫ(a).From the above proposition we see that the fun-damental boxes 
an be written as Qǫ(a) = [a ⊙ǫ

(0L)∞, a ⊙ǫ (1L)∞] and Qδ(a) = [a ⊙δ (0L)∞, a ⊙δ

(1L)∞]. The next theorem is the main result of thissubse
tion.For α ∈ Σk, α = dL
1 dL

2 . . . we de�ne the symboli
rotation number of α as
ρ(α) = lim sup

n→∞

1

n

n∑

i=1

di.Theorem B Let a, b ∈ R with a ≤ b. Then thefollowing statements hold:(a) Let α, β ∈ Bǫ(0) with α < β . Then a⊙ǫ α ≤
b⊙ǫβ. Moreover if a ∈ Q∗ then a⊙ǫα < a⊙ǫβ.(b) Let α, β ∈ Bδ(0) with α < β. Then a ⊙δ α ≤
b ⊙δ β. Moreover if a ∈ Q∗ then a ⊙δ α <
a ⊙δ β.(
) Let α ∈ Bǫ(0). Then a ⊙ǫ α ∈ Bǫ(Ẽ(a)) ⊂ Eǫand ρ(a ⊙ǫ α) = a.(d) Let α ∈ Bδ(0). Then a⊙δ α ∈ Bδ(E(a)) ⊂ Eδand ρ(a ⊙ǫ α) = a.(e) Let a ∈ Q∗ and (α, β) ∈ Bǫ(0) × Bδ(0) besu
h that α 6= (1L)∞ and β 6= (0L)∞. If
Sn(α) ≤ β and Sn(β) ≥ α for all n ≥ 0, then
(a ⊙ǫ α, a ⊙δ β) ∈ E∗ ⊂ E .We note that if (α, β) ∈ E , by Theorem 2.6and Proposition 4.3 of [AF℄ we have that α′ ≤ β,

Sn(α) ≤ β and Sn(β) ≥ α for all n ≥ 0. Thus fromTheorem B(e) we have the following.Corollary 3.2. Let a ∈ Q∗ and let (α, β) ∈

(Bǫ(0) × Bδ(0)) ∩ E be su
h that α 6= (1L)∞ and
β 6= (0L)∞. Then (a ⊙ǫ α, a ⊙δ β) ∈ E∗ ⊂ E .
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le maps 11We will prove Theorem B in Subse
tion 6.2.We re
all that in Subse
tion 3.1 we have de�nedthe unimodal box of a periodi
 sequen
e γ from Pǫ(respe
tively Pδ) as γ ⋆ǫ K = γ ⋆ǫ [L∞, RL∞] (re-spe
tively γ ⋆δ K = γ ⋆δ [L∞, RL∞]). Thus, in orderthat the unimodal boxes of a ⊙ǫ α and a ⊙δ α arede�ned, it is ne
essary that these sequen
es are pe-riodi
. The next result 
hara
terizes the periodi
sequen
es of the form a ⊙ǫ α and a ⊙δ α. It will beproved in Subse
tion 6.3.Proposition 3.3. Let a ∈ R. The following state-ments hold.(a) Let α ∈ Bǫ(0) \ {(0
L)∞} be periodi
. If a /∈ Qthen a⊙ǫα is not periodi
. If a ∈ Z then a⊙ǫαis periodi
 if and only if α = (1L)∞. Moreover,

aM ∈ Pǫ and a⊙ǫ(1
L)∞ = aM ⋆ǫL

∞. If a ∈ Q∗then a⊙ǫ α is periodi
. Moreover, there exists
βdM ∈ Pǫ su
h that a ⊙ǫ α = βdM ⋆ǫ L∞.(b) Let α ∈ Bδ(0)\{(1

L)∞} be periodi
. If a /∈ Qthen a⊙δα is not periodi
. If a ∈ Z then a⊙δαis periodi
 if and only if α = (0L)∞. Moreover,
aC ∈ Pδ and a⊙δ (0L)∞ = aC ⋆δ L∞. If a ∈ Q∗then a⊙δ α is periodi
. Moreover, there exists
βdC ∈ Pδ su
h that a ⊙δ α = βdC ⋆δ L∞.Now we 
an de�ne the unimodal box of a se-quen
e of the form a ⊙ǫ α as follows. Let a ∈ Qand α ∈ Bǫ(0) \ {(0L)∞} be periodi
. Then, withthe notation of Proposition 3.3(a), we set

Uǫ(a⊙ǫα) =

{
βdM ⋆ǫ K if a ∈ Q∗,
aM ⋆ǫ K if a ∈ Z and α = (1L)∞.Let now α ∈ Bδ(0)\{(1

L)∞} be periodi
. With thenotation of Proposition 3.3(b), we set
Uδ(a⊙δα) =

{
βdC ⋆δ K if a ∈ Q∗,
aC ⋆δ K if a ∈ Z and α = (0L)∞.4. Proof of Main TheoremLet F ∈ A be su
h that RF = [a, b] for some a, b ∈ Rwith a ≤ b. By using Theorem 2.8 it follows the �rststatement of the Main Theorem.Now, we will de�ne the map pǫ,a : Jǫ → Qǫ(a)(respe
tively, pδ,a : Jδ → Qδ(a)) in two steps. First,we will introdu
e the notation that will allow us tospeak about iterated ⊙− operators.

Let x1, x2 ∈ (0, 1] and α ∈ Bǫ(0). We note thatif β ∈ Bǫ(0) then, by Theorem B(
) and the de�ni-tion of ⊙ǫ, xi ⊙ǫ β also lies in Bǫ(0). Therefore, thesequen
e
x1 ⊙ǫ (x2 ⊙ǫ α)is well de�ned. Now we take x1, x2 ∈ (k, k + 1] with

k ∈ Z and we extend the notation to this 
ase asfollows. Let
x1 ⊙ǫ (x2 ⊙ǫ α) = π−1

k (D̃(x1) ⊙ǫ (D̃(x2) ⊙ǫ α)).In a similar way let x1, x2 ∈ [0, 1) and α ∈ Bδ(0).Then, by using Theorem B(d), the sequen
e
x1 ⊙δ (x2 ⊙δ α)is well�de�ned. If x1, x2 ∈ [k, k + 1) with k ∈ Zthen we set

x1 ⊙δ (x2 ⊙δ α) = π−1
k (D(x1) ⊙δ (D(x2) ⊙δ α)).In the �rst steep we de�ne pǫ,a from J ∗

ǫ (re-spe
tively, J ∗
δ ) into Qǫ(a) (respe
tively, Qδ(a)). Let

a ∈ R and xω ∈ J ∗
ǫ (respe
tively, xω ∈ J ∗

δ ). As-sume that x = {xi}
n−1
i=1 ∈ I, if n = 1 (i.e. x is theempty sequen
e) we set

pǫ,a(ω) =





a ⊙ǫ Îǫ(0) if ω = 0,

a ⊙ǫ Îǫ(ω) if ω /∈ (0, 1) ∩ Q,

a ⊙ǫ Î
∗

δ(1) if ω = 1,

a ⊙ǫ Îǫ(1) if ω = ǫ(respe
tively,
pδ,a(ω) =





a ⊙ǫ Îδ(0) if ω = δ,

a ⊙ǫ Î
∗

ǫ (0) if ω = 0,

a ⊙ǫ Îδ(ω) if ω /∈ (0, 1) ∩ Q,

a ⊙ǫ Îδ(1) if ω = 1.


Otherwise, if n ≥ 2 we set pǫ,a(xω) = a ⊙ǫ

pǫ,x1
(x2x3 · · · xn−1ω) (respe
tively, pǫ,a(xω) = a⊙δ

pδ,x1
(x2x3 · · · xn−1ω)).Re
all that Îǫ(1) = Îδ(1) = (1L)∞ and Îǫ(0) =

Îδ(0) = (0L)∞. From Proposition 3.1 and TheoremB(a)�(b) it follows the following.Lemma 4.1. Let a ∈ R. Then the maps pǫ,a :
J ∗

ǫ → Qǫ(a) and pδ,a : J ∗
δ → Qδ(a) are non�de
reasing. Moreover, if a ∈ Q∗ then pǫ,a and pδ,aare stri
tly in
reasing.
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ó.To extend the de�nition of pǫ,a and pδ,a to J∞,respe
tively, we introdu
e the following notation.For x = {xi}
∞
i=1 ∈ J we set λn

0 (x) = x1x2 · · · xn0and λn
1 (x) = x1x2 · · · xn1 for ea
h n ∈ N.Proposition 4.2. Let a ∈ R. Then for ea
h x =

{xi}
∞
i=1 ∈ J∞ we have that

⋂∞
n=1 [pǫ,a(λ

n
0 (x)), pǫ,a(λ

n
1 (x))] ∈ Bǫ(Ẽ(a)) and⋂∞

n=1 [pδ,a(λ
n
0 (x)), pδ,a(λ

n
1 (x))] ∈ Bδ(E(a)).To prove this proposition we shall use the fol-lowing.Lemma 4.3. Let a ∈ Q∗. Then

lim
n→∞

d(pǫ,a(λ
n
0 (x)), pǫ,a(λ

n
1 (x))) = 0 and

lim
n→∞

d(pδ,a(λ
n
0 (x)), pδ,a(λ

n
1 (x))) = 0Proof. Let a = p/q ∈ Q∗, with (p, q) = 1. Withoutloss of generality may assume that Ẽ(a) = 0. If

pǫ,x1
(0) = dL

1,1d
L
1,2 . . . and pǫ,x1

(1) = tL1,1t
L
1,2 . . . aretwo sequen
es in Bǫ(0) then, sin
e

pǫ,a(λ
1
0(x)) = a ⊙ǫ pǫ,x1

(0)

= 0Lr(a)dL
1,1d̂

L
1,1r(a)dL

1,2d̂
L
1,2r(a) . . .and

pǫ,a(λ
1
1(x)) = a ⊙ǫ pǫ,x1

(1)

= 0Lr(a)tL1,1t̂
L
1,1r(a)tL1,2t̂

L
1,2r(a) . . . ,we have that

d(pǫ,a(λ
1
0(x)), pǫ,a(λ

1
1(x)))

=

∞∑

i=1

(
2−qi|d1,i − t1,i| + 2−(q+1)i|d̂1,i − t̂1,i|

)
.Be
ause the di�eren
es between these two sequen
eso

ur at the positions q, q+1, 2q, 2q+1, . . . . Finally,by using the fa
t that |d1,i − t1,i| = |d̂1,i − t̂1,i|, weobtain

d(pǫ,a(λ
1
0(x)), pǫ,a(λ

1
1(x)))

=

∞∑

i=1

(
2−qi + 2−(qi+1)

)
|d1,i − t1,i|

=
3

2

∞∑

i=1

2−qi|d1,i − t1,i|

<
3

2

(
1

1 − 2−q
− 1

)
.

Now, assume that x1 = p1/q1, with (p1, q1) = 1,
pǫ,x2

(0) = dL
2,1d

L
2,2 . . . and pǫ,x2

(1) = tL2,1t
L
2,2 . . . ,then

pǫ,x1
(x20) = x1 ⊙ǫ pǫ,x2

(0)

= 0Lr(x1)d
L
2,1d̂

L
2,1r(x1)d

L
2,2d̂

L
2,2r(x1) . . .and

pǫ,x1
(x21) = x1 ⊙ǫ pǫ,x1

(1)

= 0Lr(x1)t
L
2,1t̂

L
2,1r(x1)t

L
2,2t̂

L
2,2r(x1) . . . .Note that in this 
ase the di�eren
es betweenthese two sequen
es appear at the positions q1q1 +

1, 2q1, 2q1+1, . . . . Sin
e pǫ,a(λ
2
i (x)) = a⊙ǫpǫ,x1

(x2i)for i = 0 and 1 and by using some similar argumentsas above, it is not di�
ult to prove that the di�er-en
es between the two sequen
es will take pla
e atthe qq1, qq1 + 1, 2qq1, 2qq1 + 1, . . . positions. Thus,
d

(
pǫ,a(λ

2
0(x)), pǫ,a(λ

2
2(x))

)

=

∞∑

i=1

(
2−qq

1
i + 2−(qq

1
i+1)

)
|d2,i − t2,i|

<
3

2

(
1

1 − 2−qq
1

− 1

)
.Pro
eeding indu
tively, set xi = pi/qi, with

(pi, qi) = 1 for i = 1, 2, . . . , n − 1, pǫ,xn(0) =
dL

n,1d
L
n,2 . . . and pǫ,xn(1) = tLn,1t

L
n,2 . . . then

d (pǫ,a(λ
n
0 (x)), pǫ,a(λ

n
2 (x)))

=

∞∑

i=1

(
2−qq

1
···q

n−1
i + 2−(qq

1
···q

n−1
i+1)

)
|dn,i − tn,i|

<
3

2

(
1

1 − 2−qq
1
···q

n−1

− 1

)
.Thus,

lim
n→∞

d(pǫ,a(λ
n
0 (x)), pǫ,a(λ

n
1 (x))) = 0,be
ause qi, q ≥ 2, and then the �rst equality follows.The se
ond one 
an be 
omputed in a similar wayProof of Proposition 4.2. We only prove the�rst statement, the se
ond one is given in a similarway. First at all we remark that Bǫ(Ẽ(a)), the min-imal sequen
es in two symbols, is a 
losed invariantset of Σ eE(a), be
ause the shift map is 
ontinuous.



On the stru
ture of the kneading spa
e of bimodal degree one 
ir
le maps 13Let x = {xi}
∞
i=1 ∈ J∞, if a /∈ Q∗ then by the de�ni-tion of ⊙ǫ we have that pǫ,a(λ

n
0 (x)) = pǫ,a(λ

n
1 (x)) =

Î
∗

δ(a) ∈ Bǫ(Ẽ(a)) for all n ∈ N and the propositionfollows. Now, assume that a ∈ Q∗. By using thefa
t that
λn

0 (x) ≺ λn+1
0 (x) ≺ λn+1

1 (x) ≺ λn
1 (x),from Lemma 4.1 we have that[

pǫ,a(λ
n+1
0 (x)), pǫ,a(λ

n+1
1 (x))

] is stri
tly 
ontainedin [pǫ,a(λ
n
0 (x)), pǫ,a(λ

n
1 (x))] ⊂ Bǫ(Ẽ(a)) ⊂ Σ eE(a).Then, ⋂∞

n=1 [pǫ,a(λ
n
0 (x)), pǫ,a(λ

n
1 (x))] 6= ∅,be
ause Σ eE(a)

is a 
ompa
t set. More-over, by using Lemma 4.3 and the fa
t that
Bǫ(Ẽ(a)) is a 
losed set in Σ eE(a)

, we have that
⋂∞

n=1 [pǫ,a(λ
n
0 (x)), pǫ,a(λ

n
1 (x))] ∈ Bǫ(Ẽ(a)) and theproposition follows.Now, let a ∈ R then, by using Proposition 4.2,we 
an de�ne pǫ,a : J∞ → Qǫ(a) by

pǫ,a(x) =

∞⋂

n=1

[pǫ,a(λ
n
0 (x)), pǫ,a(λ

n
1 (x))]and pδ,a : J∞ → Qδ(a) by

pδ,a(x) =
∞⋂

n=1

[pδ,a(λ
n
0 (x)), pδ,a(λ

n
1 (x))] .We note that for x = {xi}∞i=1 ∈ J∞ we have that

pǫ,a(x) /∈ (pǫ,a(x1x2 · · · xn1), pǫ,a(x1x2 · · · xnǫ))and
pǫ,a(x) /∈ (pδ,a(x1x2 · · · xnδ), pδ,a(x1x2 · · · xn0))for all n ∈ N.By the 
onstru
tion of pǫ,a and pδ,a we obtainthe following 
orollary, it resumes all said above andgives the proof of statements 1 and 3 of our MainTheorem.Corollary 4.4. Let a ∈ R. Then the followingstatements hold.(a) The map pǫ,a : Jǫ → Qǫ(a) is non�de
reasing,maps the endpoints of Jǫ into the endpoints of

Qǫ(a) and if a ∈ Q\Z then pǫ,a is one�to�one.Moreover,
Impǫ,a = Qǫ(a) \

⋃

x∈I

(pǫ,a(x1), pǫ,a(xǫ)) .

(b) The map pδ,b : Jδ → Qδ(a) is non-de
reasing,maps the endpoints of Jδ into the endpoints of
Qδ(b) and if a ∈ Q\Z then pδ,b is one�to�one.Moreover,

Impδ,b = Qδ(a) \
⋃

x∈I

(pδ,b(xδ), pδ,b(x0))Remark 4.5. It is not di�
ult to see that in the
ase that a ∈ Q∗ and x = {xi}
∞
i=1 ∈ J∞ is su
hthat xi = a for all i ≥ 1. Then we have that

a ⊙ǫ pǫ,a(x) = pǫ,a(x) and a ⊙δ pδ,a(x) = pδ,a(x).That is, the sequen
es pǫ,a(x) ∈ Qǫ(a) and pδ,a(x) ∈
Qδ(a) are, respe
tively, �xed points of the operators
a⊙ǫ : Bǫ(0) → Qǫ(a) and a⊙δ : Bδ(0) → Qδ(a), re-spe
tively.Finally, statements 2 and 4 follow from the de�-nition of Pǫ, Pδ and the ⋆�operators given in Se
tion3.1 and Proposition 6.3. This ends the proof of theMain Theorem.5. Proof of Theorem AThis se
tion is organized as follows. In Subse
tion5.1 we give some te
hni
al results and in Subse
tion5.2 we prove Theorem A. Lastly, in Subse
tion 5.3,we give some remarks to Theorem A.5.1. Preliminary resultsIn this subse
tion we study the itineraries of the
riti
al points when they are periodi
 and some ofthe basi
 properties of the ⋆−operators. We startwith the following te
hni
al lemmas and de�nitions.Let F ∈ L and let x ∈ R. Then the set {y ∈ R :
y = Fn(x)(mod. 1) for n = 0, 1, . . .} will be 
alledthe (mod. 1) orbit of x by F. We stress the fa
t thatif P is a (mod. 1) orbit and x ∈ P, then x + k ∈ Pfor all k ∈ Z. Let P be a (mod. 1) orbit of a map
F ∈ L. We say that P is a twist orbit if F restri
tedto P is in
reasing. If a periodi
 (mod. 1) orbit istwist then we say that P is a twist periodi
 orbit.Lemma 5.1. Let F ∈ A. Then the following state-ments hold.(a) Assume that 0 is a periodi
 (mod 1) point ofperiod n. Then there exist β ∈ Ξ and d ∈ Z,su
h that Î

F
(0+) is either (βdL)∞ with β
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ó.even or βdR(β′dR)∞ with β odd. Moreover,if Î
F
(0+) = (βdL)∞ then β(d − 1)R(β′(d −

1)R)∞ ∈ Eǫ and if Î
F
(0+) = βdR(β′dR)∞ then

(β(d + 1)L)∞ ∈ Eǫ.(b) Assume that c
F
is a periodi
 (mod 1) point ofperiod n. Then there exist β ∈ Ξ and d ∈ Z,su
h that Î

F
(c−

F
) is either (βdL)∞ with β evenor (βdR)∞ with β odd. Moreover, if Î

F
(c−

F
) =

(βdL)∞ then (βdR)∞ ∈ Eδ and if Î
F
(c−

F
) =

(βdR)∞ then (βdL)∞ ∈ Eδ.Proof. We start proving statement (a). Assume�rst that Î
F
(0) = βtM for some β ∈ Ξ of length

n − 1 even. If x > 0 is su�
iently 
lose to 0we have that Fn |[0,x] is in
reasing and Fn(x) isalso 
lose to Fn(0) = 0. Therefore, Î
F
(0+) =

βtLÎ
F
(0+). So Î

F
(0+) = (βtL)∞. Now, assume that

β is odd. Take x < 0 su�
iently 
lose to 0. Then
Fn |[x,0] is in
reasing and Fn(x) is also 
lose to
Fn(0). Thus Î

F
(0−) = β′(t − 1)RÎ

F
(0−). There-fore Î

F
(0−) = (β′(t − 1)R)∞ and, in 
onsequen
e,

Î
F
(0+) = β(t − 1)R(β′(t − 1)R)∞.To prove the se
ond statement of (a) in this
ase we only need to show that there exists G ∈ Asu
h that Î

G
(0+) = β(t − 1)R(β′(t − 1)R)∞ if β iseven or Î

G
(0+) = (βtL)∞ if β is odd. We note thatthe proof of Lemma 5.4 of [AF℄ does not dependon the fa
t that the orbit under 
onsideration istwist. So, if Î

F
(0) = βtM the statement followsfrom Lemma 5.4 of [AF℄ and the part of (a) alreadyproven.Now, assume that Î

F
(0) = γkC and Î

F
(c

F
) =

νtM where γ, ν ∈ Ξ, γ has length n1 − 1, ν haslength n2 − 1 and n1 + n2 = n. If x > 0 is suf-�
iently 
lose to 0 then Fn1(x) is 
lose to c
F
. If

γ is even then Fn1 |[0,x] is stri
tly in
reasing and,hen
e, Î
F
(0+) = γkRÎ

F
(c+

F
). Otherwise, if γ isodd, Fn1 |[0,x] is stri
tly de
reasing and Î

F
(0+) =

γkLÎ
F
(c−

F
). Let now x > c

F
be su�
iently 
lose to

c
F
. If ν is even, then Fn2 |[cF ,x] is stri
tly de
reasingand Î

F
(c+

F
) = ν(t − 1)RÎ

F
(0−). Otherwise, if ν isodd, Fn2 |[cF ,x] is stri
tly in
reasing and Î

F
(c+

F
) =

νtLÎ
F
(0+). We re
all that Î

F
(c+

F
) = Î

F
(c−

F
) and

that if Î
F
(0−) = (Î

F
(0+))′. Hen
e, if we set

β =

{
γkRν if γ is even,
γkLν if γ is odd,we get

Î
F
(0+) =

{
β(t − 1)R(β′(t − 1)R)∞ if ν is even,
(βtL)∞ if ν is odd.This ends the proof of the �rst part of statement(a). Now, we prove the se
ond part of statement (a)in this 
ase. Let P be the (mod. 1) orbit of 0by F. Then 0, c

F
∈ P. Let x0 = min(P ∩ (c

F
, 1]),

x1 = max(P ∩ (0, c
F
)) and J = (c

F
, x0) if γ is evenand J = (x1, cF

) if γ is odd. Let G ∈ A ∩ C1(R, R)be 
lose enough to F su
h that c
G
∈ J , G|[0,1]\J =

F |[0,1]\J and G(c
G
) ∈ (F (c

F
),min(P∩(F (c

F
),∞))).Thus, 
learly, Î

G
(0) = βkM . From the proof of theprevious 
ase, sin
e β has always di�erent paritythan ν, we get

Î
G
(0+) =





(βtL)∞ if ν is odd(β even),
β(t − 1)R(β′(t − 1)R)∞ if ν is even(β odd),and the proof of (a) follows by using G instead of

F. Statement (b) follows in a similar way.The next lemma gives some properties of thesequen
es in Pǫ an Pδ.Lemma 5.2. Let β = β1 . . . βn−1 ∈ Ξ. The follow-ing statements hold.(a) If βdM ∈ Pǫ. Then (βdL)∞ and (β′(d−1)R)∞are periodi
 of period n.(b) If βdC ∈ Pδ. Then (βdL)∞ and (βdR)∞ areperiodi
 of period n.Proof. By the minimality of βdM we have that
Sj(βdM ) > βdM for j = 1, 2, . . . , n − 1. Assumethat (βdL)∞ is periodi
 of period k < n and set
m = n/k. Then βdL = (β1 . . . βk−1d

L)m and, hen
e,
(β1 . . . βk−1d

L)m−1β1 . . . βk−1d
M

= βdM < Sn−k(βdM ) = β1 . . . βk−1d
M .
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ture of the kneading spa
e of bimodal degree one 
ir
le maps 15In 
onsequen
e β1 . . . βk−1 is even and so
β1 . . . βk−1d

L > β1 . . . βk−1(d − 1)R.Sin
e βdM ∈ Pǫ then
β1 . . . βk−1d

L(β(d − 1)R)(β′(d − 1)R)∞ ∈ Eǫ.Hen
e, by Proposition 2.7(a), we have that
(β1 . . . βk−1d

L)m−1β1 . . . βk−1(d − 1)R(β′(d − 1)R)∞

≤ β1 . . . βk−1(d − 1)R . . .
= Sn−k(β(d − 1)R(β′(d − 1)R)∞);a 
ontradi
tion. The proof of statement (a) in the
ase (β′(d − 1)R)∞ and statement (b) follow in asimilar way.The next lemma studies the relation betweenthe periodi
 sequen
es in Eǫ and Eδ and their shifts.Lemma 5.3. The following statements hold.(a) Let β = (β1 . . . βn)∞ ∈ Eǫ. Then Sj(β) > β∗for all j = 1, 2, . . . , n− 1 where β∗ is either βif βj = dL . . . or β

′ if βj = dR . . . .(b) Let β = (β1 . . . βn)∞ ∈ Eδ. Then Sj(β) < βfor all j = 1, 2, . . . , n − 1.Proof. We prove (a). Statement (b) follows in a sim-ilar way. Let j ∈ {2, . . . , n}. If βj−1 = dL for some
d ∈ Z then, by Proposition 2.7, sin
e Sj−1(β) ≥ βand Sj−1(β) 6= β the lemma follows in an obvi-ous way. If βj−1 = dR for some d ∈ Z, we have
Sj−1(β) ≥ β′. Assume that Sj−1(β) = β′. Then

n︷ ︸︸ ︷
βjβj+1 . . . βnβ1 . . . βj−1

n︷ ︸︸ ︷
βj . . . βnβ1 . . . βj−1 . . .

= β′
1β2 . . . βnβ1 . . . βn . . .and, hen
e, β′

1 = βj = β1; a 
ontradi
tion. Thisends the proof of (a).The proof of the following lemma follows by di-re
t 
omputation.Lemma 5.4. The following statements hold.(a) Let f ∈ U(I) be negative. If f(c) ≥ c,then k(f) = L∞. Otherwise k(f) = RS(k(f))and there exists c− < c < c+ with f(c−) =
f(c+) = c. Then the following statementshold.

(a.1) θ(x) = RL . . . if and only if x ∈
[inf I, c−) .(a.2) θ(x) = RR . . . if and only if x ∈ (c−, c) .(a.3) θ(x) = LR . . . if and only if x ∈ (c, c+) .(a.4) θ(x) = LL . . . if and only if x ∈
(c+, sup I] .(b) Let f ∈ U(I) be positive. If f(c) ≤ c, then

k(f) = L∞. Otherwise k(f) = RS(k(f))and there exists c− < c < c+ with f(c−) =
f(c+) = c. Then the following statementshold.(b.1) θ(x) = LR . . . if and only if x ∈

(c+, sup I] .(b.2) θ(x) = RR . . . if and only if x ∈ (c, c+) .(b.3) θ(x) = LR . . . if and only if x ∈ (c−, c) .(b.4) θ(x) = LL . . . if and only if x ∈
[inf I, c−) .Let I, J ⊂ R be two 
losed intervals. Let f :

I −→ I and g : J −→ J be two 
ontinuous maps.We say that f is topologi
ally 
onjugate to g if thereexists a homeomorphism h : I −→ J su
h that h ◦
f = g ◦ h. From [CE℄ (see also [dMvS℄) we havethat if f ∈ U(I) and g ∈ U(J) are topologi
ally
onjugate then k(f) = k(g).The next proposition justi�es the de�nition ofthe ⋆−operators in the 
ase β empty.Proposition 5.5. Let K ∈ K and d ∈ Z. Then thefollowing statements hold.(a) There exist F ∈ A and J ⊂ R, a 
losedinterval 
ontaining 0, su
h that (F − d) |Jis unimodal with k((F − d) |J) = K and

ÎF (0+) = dM ⋆ǫ K.(b) There exists F ∈ A and J ⊂ R, a 
losedinterval 
ontaining c
F
, su
h that (F − d) |Jis unimodal with k((F − d) |J) = K and

ÎF (c−F ) = dC ⋆δ K.Proof. Let f ∈ U(I) be negative su
h that k(f) =
K. Take ǫ > 0 and J = [−ǫ, ǫ] , and let h : I −→ Jbe the unique in
reasing map su
h that h(c) = 0and h is a�ne in [min I, c], [c,max I]. Let F ∈ Abe su
h that F (x) = h ◦ f ◦ h−1(x) + d for ea
h
x ∈ J. Clearly, (F − d) |J is topologi
ally 
onjugate
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ó.to f. Then k((F − d) |J) = k(f) = K1K2 . . . . Weobserve that sin
e (F − d) maps J into itself wehave that F (J) ⊂ J + d. Sin
e F ∈ L we havethat for all j ≥ 1, F j(J) ⊂ J + jd. On the otherhand, sin
e s((F − d)j(0+)) = s(F j(0+)) we getthat for all j ≥ 1, s(F j(0+)) = Kj. Assume that
(F − d)(0) ≥ 0, then f(c) ≥ c and, from Lemma5.4, we have that k(f) = L∞. Sin
e F (0) ≥ d wehave that F j(0) ∈ [0, ǫ] + jd for all i ≥ 0. Then forall i ≥ 1 we have d(F j(0+)) = jd− (j−1)d = d and
ÎF (0+) = dM⋆ǫK. Now, assume that (F−d)(0) < 0.Then f(c) < c and, from Lemma 5.4(a), we havethat K1 = R. Sin
e F (0) < d we obtain that F (0) ∈
[−ǫ, 0] + d. Then d(0+) = d − 1 and so ÎF (0+) =
(d − 1)R . . . . Let j ≥ 2. Assume that Kj−1Kj =
RL. Then Sj−2(k(f)) = θ(f j−2(x)) = RL . . . for
x > f(c), 
lose enough to f(c). From Lemma 5.4(a.1) we have that f j−1(c) ∈ [min I, c−) and, hen
e,
F j−1(0) ∈ [−ǫ, h(c−))+ (j − 1)d. Moreover F j(0) ∈
(0, ǫ]+jd. Then d(F j−1(0+)) = jd−((j−1)d−1) =
d+1. If Kj−1Kj = LL, then, F j−1(0) ∈ (h(c+), ǫ]+
(j − 1)d and F j(0) ∈ (0, ǫ] + id. So d(F j−1(0+)) =
jd−(j−1)d = d. If Kj−1Kj = RR, then F j−1(0+) ∈
(h(c−), 0)+(j−1)d and F j(0+) ∈ [−ǫ, 0)+jd. Thus,
d(F j−1(0+)) = (jd−1)−((j −1)d−1) = d. Finally,if Kj−1Kj = LR then F j−1(0) ∈ (0, h(c+)) + (j −
1)d, F j(0) ∈ [−ǫ, 0)+ jd. Therefore, d(F j−1(0+)) =
(jd − 1) − (j − 1)d = d − 1. From the de�nition of
⋆ǫ we have that ÎF (0+) = dM ⋆ǫ K. Statement (b)follows in a similar way.5.2. Proof of Theorem AWe only will prove Theorem A for ⋆ǫ. The proof for
⋆δ follows in a similar way. Let γ = βdM ∈ Pǫ and
K ∈ K. We only will prove the statement in the
ase β even. The 
ase β odd follows analogously.First we are going to prove that γ ⋆ǫ K ∈ Eǫ. If βis empty then this follows from Proposition 5.5(a),the de�nition of Eǫ and Theorem 2.6. Assume nowthat β is not empty. We note that γ ⋆ǫ L∞ =

(βdL)∞ and γ ⋆ǫ R∞ = β(d − 1)R(β′(d − 1)R)∞.Sin
e βdM ∈ Pǫ these two sequen
es belong to
Eǫ and we are done. Thus we 
an assume that
K /∈ {L∞, R∞}. From Collet and E
kmann [CE℄ wehave that K = RL . . . . Let β = β1β2 . . . βn−1, K =
K1K2 . . . and j = nm with m ≥ 0. Then we have
γ⋆ǫK = βϕ(K1, d)χ(K1, β)ϕ(K2, d)χ(K2, β) . . . . Itis not di�
ult to see that, sin
e K is maximal, then
ϕ(K1, d)ϕ(K2, d) . . . ∈ AD is minimal. Therefore,

if Km−1 = L then
Sj(γ ⋆ǫ K) = βϕ(Km, d)χ(Km, β)ϕ(Km+1, d) . . .

≥ γ ⋆ǫ K.Otherwise,
Sj(γ ⋆ǫ K) = β′ϕ(Km, d)χ(Km, β)ϕ(Km+1, d) . . .

≥ (γ ⋆ǫ K)′and, by Proposition 2.7(a), we are done. So, takenow j = nm + p with m ≥ 0, 1 ≤ p < n. Then wehave to 
ompare
Sj(γ ⋆ǫ K)

= βp+1 . . . βn−1ϕ(Km, d)χ(Km, β)ϕ(Km+1, d) . . .

= υϕ(Km, d)χ(Km, β)ϕ(Km+1, d) . . . , (1)with
γ ⋆ǫ K

= β1 . . . βn−p−1βn−p . . . βn−1ϕ(K1, d) . . .
= υβn−p . . . βn−1ϕ(K1, d) . . . .

(2)Set
υ∗ =

{
υ if βp = tL,
υ′ if βp = tR,where t ∈ Z and (γ ⋆ǫ K)∗ =

υ∗βn−p . . . βn−1ϕ(K1, d) . . . . By Proposition 2.7(a)we have to show that Sj(γ ⋆ǫ K) ≥ (γ ⋆ǫ K)∗. Sin
e
βdM ∈ Pǫ, β(d − 1)R(β′(d − 1)R)∞, (βdL)∞ ∈ Eǫ.Therefore, by Proposition 2.7(a) and Lemma5.3(a), for all 1 ≤ p < n, we have

υ(d − 1)R(β′(d − 1)R)∞

≥ υ∗βn−p . . . βn−1(d − 1)R(β′(d − 1)R)∞
(3)and

υdL(βdL)∞ > υ∗βn−p . . . βn−1d
L(βdL)∞. (4)Clearly if υ 6= υ∗ then Sj(γ ⋆ǫ K) > (γ ⋆ǫ K)∗and we are done. So assume that υ = υ∗. First we
onsider the 
ase υ even. If ϕ(Km, d) = dL theneither dL > βn−p and, from (1) and (2), we see that

Sj(γ ⋆ǫ K) > (γ ⋆ǫ K)∗ or dL = βn−p. In the latter,sin
e υdL is even, from (4) we have that
(βdL)∞ > βn−p+1 . . . βn−1d

L(βdL)∞;a 
ontradi
tion with Lemma 5.3(a). Now, let
ϕ(Km, d) = (d − 1)R. From (3) we have

βn−p ≤ (d − 1)R.
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le maps 17If βn−p < (d − 1)R, then Sj(γ ⋆ǫ K) > (γ ⋆ǫ K)∗by ( 1) and (2). So, assume that βn−p = (d − 1)R.Then υ(d − 1)R = υ∗(d − 1)R is odd and, from (3),we have that
(β′(d−1)R)∞ ≤ βn−p+1 . . . βn−1(d−1)R(β′(d−1)R)∞.We note that Sn−p((β′(d − 1)R)∞) =

(βn−p+1 . . . βn−1(d − 1)Rβ′
1 . . . βn−p)

∞. There-fore, if
β′

1β2 . . . βn−1(d − 1)R

= βn−p+1 . . . βn−1(d − 1)Rβ′
1 . . . βn−pthen, Sn−p((β′(d−1)R)∞) = (β′(d−1)R)∞ whi
h isa 
ontradi
tion by Lemma 5.2(a). In 
onsequen
e,

β′
1β2 . . . βn−1(d − 1)R

< βn−p+1 . . . βn−1(d − 1)Rβ′
1 . . . βn−p

(5)and, by (1) and (2), Sj(γ ⋆ǫ K) > (γ ⋆ǫ K)∗ if
ϕ(Km+1, d) = (d − 1)R (re
all that ϕ(K1, d) =
(d − 1)R). Now, assume that ϕ(Km+1, d) = dL. If
β′

1β2 . . . βn−1 < βn−p+1 . . . βn−1(d−1)Rβ′
1 . . . βn−p−1then we also have Sj(γ⋆ǫK) > (γ⋆ǫK)∗. Otherwise,sin
e β′ is even, from (5), we have that

β′
1β2 . . . βn−1 = βn−p+1 . . . βn−1(d−1)Rβ′

1 . . . βn−p−1and βn−p ≥ dL. If βn−p > dL then the statementfollows as above. Hen
e, βn−p = dL and so
β′

1β2 . . . βn−1d
L

= βn−p+1 . . . βn−1(d − 1)Rβ′
1 . . . βn−p−1βn−p.This is a 
ontradi
tion be
ause the left hand sideof the above equation has di�erent parity that theright hand side. The 
ase υ odd is handled by anal-ogy. This ends the proof of the �rst statement ofthe theorem.Now, we are going to prove that γ⋆ǫ is orderreversing. Let K,K ′ ∈ K be su
h that K < K ′.Set K = K1K2 . . . and K ′ = K ′
1K

′
2 . . . . Then thereexists n ≥ 1 su
h that K1 . . . Kn−1 = K ′

1 . . . K ′
n−1and Kn < K ′

n if K1 . . . Kn−1 is even and Kn > K ′
nif K1 . . . Kn−1 is odd. We will only 
onsider the 
ase

K1 . . . Kn−1 even. The proof in the 
ase odd followssimilarly. Then we have Kn = L < R = K ′
n. As-sume that β is not the empty sequen
e. Then γ ⋆ǫ

K = βdK1

1 χ(K1, β)dK2

2 . . . χ(Kn−1, β)dKn
n . . . and

γ ⋆ǫ K ′ = βt
K ′

1

1 χ(K1, β)t
K ′

2

2 . . . χ(Kn−1, β)t
K ′

n
n . . . .Then

βdK1

1 χ(K1, β)dK2

2 . . . χ(Kn−1, β)

= βt
K ′

1

1 χ(K1, β)t
K ′

2

2 . . . χ(Kn−1, β),

dKn
n = dL, t

K ′

n
n = (d − 1)R and

βds1

1 χ(K1, β)ds2

2 . . . χ(Kn−1, β) is even. Then,
learly, γ ⋆ǫ K ′ < γ ⋆ǫ K. Now, assume that β is theempty sequen
e. Then
γ ⋆ǫ K = dK1

1 . . . d
Kn−1

n−1 dKn
n . . .and

γ ⋆ǫ K ′ = t
K ′

1

1 . . . t
K ′

n−1

n−1 tK
′

n
n . . .

= dK1

1 . . . d
Kn−1

n−1 tK
′

n
n . . .and the result follows as in the 
ase β not empty.From the assumptions only one of the following twopossibilities 
an o

ur: either Kn−1Kn = RL and

K ′
n−1K

′
n = RR, or Kn−1Kn = LL and K ′

n−1K
′
n =

LR. Assume that Kn−1Kn = RL and K ′
n−1K

′
n =

RR. Then dKn
n = (d + 1)L and t

K ′

n
n = dR and

γ ⋆ǫ K ′ < γ ⋆ǫ K. Now, let Kn−1Kn = LL and
K ′

n−1K
′
n = LR. Then dKn

n = dL and t
K ′

n
n = (d−1)Rand also, γ ⋆ǫ K ′ < γ ⋆ǫ K. This 
on
ludes the proofof the se
ond statement.The third statement follows from TheoremII.2.7 of [CE℄.5.3. Remarks to Theorem AIn the pre
eding subse
tion we have shown that theunimodal boxes γ ⋆ǫ K and γ ⋆δ K are 
onne
ted.However, the topologi
al stru
ture of the spa
es

Eǫ(γ) = (γ ⋆ǫ K) × Eδ(respe
tively
Eδ(γ) = Eǫ × (γ ⋆δ K))is mu
h more 
ompli
ated. We illustrate thisfa
t with the following examples. Let γ =

0L1M . Then γ ⋆ǫ L∞ = (0L1L)∞ and γ ⋆ǫ

RL∞ = 0L0R1L1L(0L1L)∞. Therefore, γ ⋆ǫ K =

[(0L1L)∞, 0L0R1L1L(0L1L)∞].Example 1: the spa
e Eǫ(γ) 
ontains �a

umulat-ing� holes in E 
onsisting of �horizontal lines�. Let
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α = (3L)∞ ∈ Eδ. Clearly [γ⋆ǫRL∞, γ⋆ǫL

∞]×{α} ⊂

E∗ ⊂ E . Let now αn = (3L)n(−1L)∞ ∈ Eδ. Then
αn < αn+1 < α for all n ∈ N. Sin
e Sn−1(αn) =
(−1L)∞ < ω for all ω ∈ γ ⋆ǫ K we have that for all
n ∈ N, [γ ⋆ǫ RL∞, γ ⋆ǫ L

∞]×{αn} /∈ E . We also notethat d(αn, α) tends to 0 as n → ∞.Example 2: the �a

umulating� holes in E 
onsist-ing of �horizontal lines� are intertwined with �hori-zontal lines� inside E. Let β
n

= (3L)n(2L)∞ ∈ Eδ.Then for all n ∈ N, [γ ⋆ǫ RL∞, γ ⋆ǫ L∞]×{β
n
} ⊂ Ebut d(αn, β

n
) =

∑∞
i=n+1

1
2i = 1

2n whi
h tends to 0when n → ∞.Example 3: there exists �re
tangles� in
E ∩ (γ ⋆ǫ K × β ⋆δ K).Let β = 3M . Then β⋆δL

∞ = (3L)∞ and β⋆δRL∞ =

3R(3L)∞. It is not di�
ult to see that [γ⋆ǫRL∞, γ⋆ǫ

L∞] × [β ⋆δ L∞, β ⋆δ RL∞] ⊂ E .6. Proof of Theorem BIn Subse
tion 6.1 we give some preliminary resultsand prove Proposition 3.1 and in Subse
tion 6.2 weprove Theorem B.6.1. Preliminary resultsWe start by introdu
ing some te
hni
al resultsabout the sequen
es Î
∗

δ(a), Î ǫ(a), Îδ(a) and Î
∗

ǫ (a).The following lemma is due to Alsedà and Mañosas[AM℄.Lemma 6.1. The following statements hold:(a) If a = p/q with (p, q) = 1 then Îǫ(a) and Îδ(a)are periodi
 with period q (i.e. Sq(Îǫ(a)) =
Îǫ(a) and Sq(Îδ(a)) = Îδ(a)).(b) Let a, b ∈ R with a < b. Then Îǫ(a) < Îǫ(b),
Îδ(a) < Îδ(b), Î

∗

ǫ (a) < Î
∗

ǫ(b) and Î
∗

δ(a) <

Î
∗

δ(b).From Theorem 2.6 and Proposition 2.7 we havethe following.Lemma 6.2. Let a ∈ R. Then Î
∗

δ(a), Î ǫ(a) ∈ Eǫ areminimal and Îδ(a), Î
∗

ǫ(a) ∈ Eδ are maximal.

Lemma 6.3. Let a ∈ R. Then ǫ1(a) ≤ ǫi(a) ≤
ǫ1(a)+1 and δ1(a)−1 ≤ δi(a) ≤ δ1(a) for all i ≥ 1.Proof. We re
all that ǫi(a) = E(ia)−E((i−1)a) =
E(a + (i − 1)a) − E((i − 1)a). Then, from the fa
tthat E(x)+E(y) ≤ E(x+y) ≤ E(x)+E(y)+1 forall x, y ∈ R, we have that ǫ1(a) ≤ ǫi(a) ≤ ǫ1(a) + 1for all i ≥ 1. In a similar way we 
an prove that
δ1(a) − 1 ≤ δi(a) ≤ δ1(a) for all i ≥ 1.The next lemma follows by dire
t 
omputation.Lemma 6.4. Let a ∈ Z then ǫi(a) = δi(a) = a forall i > 0.Lemma 6.5. Let a ∈ R. Then Îǫ(a), Î

∗

δ(a) ∈ Σ eE(a)and Îδ(a), Î
∗

ǫ(a) ∈ ΣE(a).Proof. From Lemmas 6.1(a) and 2.5, the fa
t that
ǫ1(a) = δ1(a) − 1 = E(a) = Ẽ(a) if a /∈ Z andLemma 6.3 the statement follows when a /∈ Z. If
a ∈ Z, then from Lemma 6.4 we have that Îǫ(a) =

Îδ(a) = (aL)∞, Î
∗

ǫ (a) = (a + 1)L(aL)∞ and Î
∗

δ(a) =
(a − 1)L(aL)∞. Sin
e E(a) = a and Ẽ(a) = a − 1the statement follows also in this 
ase.We now have the following 
orollaries whi
h willbe useful in the next se
tion.Corollary 6.6. Let a ∈ R. Then Îǫ(a), Î

∗

δ(a) ∈

Bǫ(Ẽ(a)) and Îδ(a), Î
∗

ǫ (a) ∈ Bδ(E(a))).Proof. It follows from Lemmas 6.5 and 6.2.Corollary 6.7. Let a ∈ R. Then Îǫ(a) =

π−1
eE(a)

(Îǫ(D̃(a))), Î
∗

δ(a) = π−1
eE(a)

(Î
∗

δ(D̃(a))), Îδ(a) =

π−1
E(a)(Îδ(D(a))) and Î

∗

ǫ (a) = π−1
E(a)(Î

∗

ǫ (D(a))).Proof. Let a ∈ R. Then
ǫi(a) = E(ia) − E((i − 1)a)
= E(i(D(a) + E(a))) − E((i − 1)(D(a) + E(a))))
= E(iD(a)) + iE(a) − E((i − 1)D(a)) − (i − 1)E(a)
= E(iD(a)) − E((i − 1)D(a)) + E(a)
= ǫi(D(a)) + E(a).If a /∈ Z, sin
e Ẽ(a) = E(a) and D̃(a) = D(a)we have that Îǫ(a) = π−1

eE(a)
(Îǫ(D̃(a))). Other-wise, by Lemma 6.4, Îǫ(a) = (E(a)L)∞ and sin
e

D̃(a) = 1 and Ẽ(a) = E(a) − 1 we get Îǫ(a) =
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π−1

eE(a)
(Îǫ(D̃(a))). Also, Î

∗

ǫ (a) = π−1
E(a)(Î

∗

ǫ (D(a))) if
a /∈ Z. Otherwise, Î

∗

ǫ(a) = (E(a) + 1)L(E(a)L)∞ =

π−1
E(a)(Î

∗

ǫ (D(a))). The other two 
ases follow in asimilar way.Lemma 6.8. Let a ∈ Q∗ be with (p, q) = 1. Then
ǫq(a) = ǫ1(a) + 1.Proof. If ǫq(a) 6= ǫ1(a) + 1 then, by Lemma 6.3, we
an assume that ǫq(a) = ǫ1(a). Then, by Lemma6.1(a), Îǫ(a) = (ǫ1(a)Lr(a)ǫ1(a)L)∞. By Lemma6.2,

Sq−1(Îǫ(a)) = (ǫ1(a)Lǫ1(a)Lr(a))∞ ≥ Îǫ(a).Thus, by Lemma 6.3, ǫ2(a) = ǫ1(a) and, pro
eedingindu
tively, we obtain that Îǫ(a) = (ǫ1(a)L)∞; a
ontradi
tion by Lemma 6.1(a).Remark 6.9. In view of Lemmas 2.5 and 6.8, for a ∈
Q∗, we 
an write
Î
∗

δ(a) = ǫ1(a)Lr(a)(ǫ1(a)L(ǫ1(a) + 1)Lr(a))∞,

Îǫ(a) = (ǫ1(a)Lr(a)(ǫ1(a) + 1)L)∞,

Îδ(a) = ((ǫ1(a) + 1))Lr(a)ǫ1(a)L)∞ and
Î
∗

ǫ(a) = (ǫ1(a) + 1)Lr(a)((ǫ1(a) + 1)Lǫ1(a)Lr(a))∞.The above observation already allow us to proveProposition 3.1.Proof of Proposition 3.1. We will only provethat a ⊙ǫ (1L)∞ = Îǫ(a). The proof of the otherthree statements follows similarly. From Corollary6.7 and the de�nition of ⊙ǫ we 
an assume that a ∈
(0, 1]. Now, the statement follows dire
tly from thede�nitions if a /∈ Q∗. If a ∈ Q∗ the statement followsfrom Remark 6.9 and the fa
t that ǫ1(a) = 0.6.2. Proof of Theorem BWe start with a te
hni
al lemma.Lemma 6.10. Let a = p/q ∈ Q∗ be with (p, q) = 1,Then(a) ǫ1(a)L(ǫ1(a) + 1)Lr(a) > ǫ1(a)Lr(a)ǫ1(a)L.(b) For 1 < j ≤ q − 1 we have that

ǫj(a)L . . . ǫq−1(a)L

ǫ1(a)L(ǫ1(a) + 1)Lǫ2(a)L . . . ǫj−1(a)L

> ǫ1(a)Lr(a)ǫ1(a)L,

and
ǫj(a)L . . . ǫq−1(a)L

(ǫ1(a) + 1)Lǫ1(a)Lǫ2(a)L . . . ǫj−1(a)L

> ǫ1(a)Lr(a)(ǫ1(a) + 1)L.(
)
(ǫ1(a)+1)Lǫ1(a)Lr(a) < (ǫ1(a)+1)Lr(a)(ǫ1(a)+1)L.(d) For 1 < j ≤ q − 1 we have that

ǫj(a)L . . . ǫq−1(a)L

(ǫ1(a) + 1)Lǫ1(a)Lǫ2(a)L . . . ǫj−1(a)L

< (ǫ1(a) + 1)Lr(a)(ǫ1(a) + 1)L,and
ǫj(a)L . . . ǫq−1(a)L

ǫ1(a)L(ǫ1(a) + 1)Lǫ2(a)L . . . ǫj−1(a)L

< (ǫ1(a) + 1)Lr(a)ǫ1(a)L.Proof. Sin
e, by Remark 6.9 and Lemma 6.2,
Î
∗

δ(a) = ǫ1(a)Lr(a)(ǫ1(a)L(ǫ1(a) + 1)Lr(a))∞and is a minimal sequen
e we have
ǫ1(a)L(ǫ1(a) + 1)Lr(a) ≥ ǫ1(a)Lr(a)ǫ1(a)L.If
ǫ1(a)L(ǫ1(a) + 1)Lr(a) = ǫ1(a)Lr(a)ǫ1(a)L,then
Î
∗

δ(a) = ǫ1(a)Lr(a)ǫ1(a)L(ǫ1(a) + 1)L . . .
> ǫ1(a)L(ǫ1(a) + 1)Lr(a)ǫ1(a)L . . .

= Sq−1(Î
∗

δ(a));a 
ontradi
tion with the minimality of Î
∗

δ(a). Thisends the proof of (a). Now, we prove (b). Again bythe minimality of Î
∗

δ(a), for 1 < j ≤ q − 1 we have
ǫj(a)L . . . ǫq−1(a)Lǫ1(a)L

(ǫ1(a) + 1)Lǫ2(a)L . . . ǫj−1(a)L

≥ ǫ1(a)Lr(a)ǫ1(a)L.If in the above inequality the equality holds, we have
Sj−1(Î

∗

δ(a))
= ǫj(a)L . . . ǫq−1(a)Lǫ1(a)L

(ǫ1(a) + 1)Lǫ2(a)L . . . ǫj−1(a)Lǫj(a)L . . .
= ǫ1(a)Lr(a)ǫ1(a)Lǫ1(a)L . . .

< ǫ1(a)Lr(a)ǫ1(a)L(ǫ1(a) + 1)Lr(a) . . . = Î
∗

δ(a);



20 Ll. Alsedá and A. Fal
ó.a 
ontradi
tion. Hen
e,
ǫj(a)L . . . ǫq−1(a)Lǫ1(a)L

(ǫ1(a) + 1)Lǫ2(a)L . . . ǫj−1(a)L

> ǫ1(a)Lr(a)ǫ1(a)L.Now, we prove the se
ond part of statement (b).Sin
e by Remark 6.9 and Lemma 6.2
Îǫ(a) = (ǫ1(a)Lr(a)(ǫ1(a) + 1)L)∞is a periodi
 minimal sequen
e of period q then, for

1 < j ≤ q − 1, we have that Sj−1(Îǫ(a)) > Îǫ(a).Thus
ǫj(a)L . . . ǫq−1(a)L

(ǫ1(a) + 1)Lǫ1(a)Lǫ2(a)L . . . ǫj−1(a)L

> ǫ1(a)Lr(a)(ǫ1(a) + 1)L.Otherwise, the equality holds and so Sj−1(Îǫ(a)) =
Îǫ(a) with j < q; a 
ontradi
tion. This 
on
ludesthe proof of statement (b). By using the sequen
es
Î
∗

ǫ (a) and Îδ(a) instead of Î
∗

δ(a) and Îǫ(a), state-ments (
) and (d) follow in a similar way.Proof of Theorem B. We start by proving (a).Assume that Ẽ(a) = k < Ẽ(b). From the de�nitionof ⊙ǫ it follows that a⊙ǫ α ∈ Σk and a⊙ǫ β ∈ Σ eE(b)
.Then, if a ⊙ǫ α = kL . . . , 
learly, a ⊙ǫ α < a ⊙ǫ β.If a ⊙ǫ α = (k + 1)L . . . then, from the de�nitionof ⊙ǫ it follows that a /∈ Q∗. Moreover, from thede�nition of Îǫ(a) and Î

∗

δ(a) (see also Lemma 6.4)it follows that a = k + 1 and a ⊙ǫ α = Îǫ(k +
1) = ((k + 1)L)∞. Clearly, ((k + 1)L)∞ < γ forea
h γ ∈ Σm with m > k. This proves statement(a) in this 
ase. So, assume that Ẽ(a) = Ẽ(b).By the de�nition of ⊙ǫ, Corollary 6.7 and the fa
tthat π eE(a) is order preserving we may assume that
Ẽ(a) = Ẽ(b) = 0 (that is, a, b ∈ (0, 1]). We 
onsider�rst the 
ase a = b. If a /∈ Q∗ then, from Theorem2.8, we have that Î

∗

δ(a) ≤ Îǫ(a). Hen
e, for ea
h
α ∈ Bǫ(0) \ {(1L)∞}, a ⊙ǫ α = Î

∗

δ(a) ≤ Îǫ(a) =
a ⊙ǫ (1L)∞. Therefore, a ⊙ǫ α ≤ a ⊙ǫ β for ea
h
α, β ∈ Bǫ(0). Take now a ∈ Q∗ and set α = α1α2 . . .and β = β1β2 . . . . Sin
e α < β, there exists k ≥ 1su
h that α1 . . . αk−1 = β1 . . . βk−1 and αk < βk.Then a ⊙ǫ α < a ⊙ǫ β dire
tly from the de�nition.This ends the proof of statement (a) in the 
ase
a = b. We note that in parti
ular, from Proposition3.1, we have proved that
Î
∗

δ(a) = a ⊙ǫ (0L)∞ ≤ a ⊙ǫ α ≤ a ⊙ǫ (1L)∞ = Îǫ(a)

for ea
h α ∈ Bǫ(0). Now we assume that a 6= b.Take c ∈ (a, b) irrational. Then sin
e Îǫ(c) = Î
∗

δ(c)(see Lemma 2.5 ), from Lemma 6.1(b) we get that
Îǫ(a) < Îǫ(c) = Î

∗

δ(c) < Î
∗

δ(b). So, from above wehave
a ⊙ǫ α ≤ Îǫ(a) < Î

∗

δ(b) ≤ b ⊙ǫ β.This 
on
ludes the proof of statement (a). State-ment (b) follows in a similar way.Now, we prove the �rst statement of (
). With-out loss of generality we may assume that a ∈ (0, 1].If a /∈ Q∗ then the statement follows from the de�-nition of ⊙ǫ and Lemma 6.2. Now, assume that a ∈
Q∗. From Theorem 2.8 and Lemma 6.2 we also havethat a ⊙ǫ (0L)∞, a ⊙ǫ (1L)∞ ∈ Bǫ(0) ⊂ Eǫ. There-fore, we may assume that α /∈

{
(0L)∞, (1L)∞

}
.Sin
e α is minimal, we have α = 0L . . . . Indeed,otherwise we have Sn(α) ≥ α = 1L . . . for ea
h

n ≥ 0. Hen
e α = (1L)∞; a 
ontradi
tion. Conse-quently, a⊙ǫ α = 0Lr(a)0L1L . . . . To end the proofof the �rst statement of (
) we have to prove that
Sj(a⊙ǫ α) ≥ a⊙ǫ α for ea
h j ≥ 1. Let α = α1α2 . . .and a = p/q with (p, q) = 1 and m ≥ 1. Then

Sqm(a ⊙ǫ α) = α̂mr(a)αm+1α̂m+1 . . . .If αm = 1L, then α̂m = 0L and, sin
e α is minimal,we have Sqm(α ⊙ǫ a) ≥ a ⊙ǫ α. If αm = 0L and
α̂m = 1L then 
learly, we are done. Now we look at

Smq−1(a ⊙ǫ α) = αmα̂mr(a)αm+1α̂m+1 . . . .If αm = 1L, obviously Smq−1(α ⊙ǫ a) ≥ a ⊙ǫ α.Assume that αm = 0L. Then αmα̂m = 0L1L andthe desired inequality follows from Lemma 6.10(a)(re
all that we are assuming that a ∈ (0, 1] and
a ∈ Q∗; that is ǫ1(a) = 0). Now, assume that 1 <
j ≤ q − 1. Then
S(m−1)q+j−1(a ⊙ǫ α) = ǫj(a)L . . . ǫq−1(a)Lαmα̂m . . .and, from Lemma 6.10(b), we get S(m−1)q+j−1(α⊙ǫ

a) ≥ a ⊙ǫ α. This ends the proof of the �rst state-ment of (
). The fa
t that ρ(α ⊙ǫ a) = a followsstraightforwardly from the de�nition of ⊙ǫ and thefa
t that ρ(Îǫ(a)) = ρ(Î
∗

δ(a)) = a. This ends theproof of (
). Statement (d) follows in a similar way.Now, we prove (e). Assume that a = p/q with
(p, q) = 1 and set α = α1α2 . . . and β = β1β2 . . . .Sin
e a ∈ Q∗ we have that E(a) = Ẽ(a) = ǫ1(a).Hen
e,

a ⊙ǫ α = ǫ1(a)Lr(a)α1α̂1r(a)α2α̂2 . . .
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a ⊙δ β = (ǫ1(a) + 1)Lr(a)β1β̂1r(a)β2β̂2 . . . .Sin
e α 6= (1L)∞ is minimal and β 6= (0L)∞ ismaximal, in a similar way as before we obtain that

α = 0L . . . and β = 1L . . . . Therefore α < β and
(a⊙ǫα)′ < a⊙δβ.Moreover, sin
e Sn(α) ≤ β, we ob-tain Sn(a⊙ǫα) ≤ a⊙δβ in a similar way as above byusing Lemma 6.10(
) instead of Lemma 6.10(a) andLemma 6.10(d) instead of Lemma 6.10(b). On theother hand, from Sn(β) ≥ α and Lemma 6.10(a)�(b) we obtain Sn(a⊙δ β) ≥ a⊙ǫ α. Then statement(d) follows from the de�nition of E∗ ⊂ E .6.3. Proof of Proposition 3.3We need three preliminary results. The next lemmafollows easily.Lemma 6.11. Let α = α1α2 . . . , β = α1β2 . . . ∈
AD be su
h that α < β. Then the following state-ments hold.(a) If α1 = dL then S(α) < S(β).(b) If α1 = dR then S(α) > S(β).The following proposition 
hara
terizes the se-quen
es in Pǫ and Pδ.Proposition 6.12. The following statements hold.(a) Let β ∈ Ξ be su
h that γ = βdM is minimalsatisfying that if Sj−1(γ) = dR . . . for some

j = 0, 1, . . . , |γ| − 1, then Sj(γ) ≥ γ′. Thenthere exists F ∈ A su
h that ÎF (0) = γ. More-over γ ∈ Pǫ.(b) Let β ∈ Ξ be su
h that γ = βdC is maximal.Then there exists F ∈ A su
h that ÎF (c
F
) =

γ. Moreover γ ∈ Pδ.Proof. We will prove statement (a). Statement(b) follows similarly. The strategy of the proofwill be to 
onstru
t e�e
tively a map F ∈ Asu
h that ÎF (0) = γ. We pro
eed as follows. Set
γ = ds1

1 ds2

2 . . . d
sn−1

n−1 dsn
n with sn = M. Let k ∈ Zbe su
h that max{|di| : i = 1, . . . , n} < k and let

c ∈ (0, 1). Now, for j = 0, 1, . . . n − 1, we 
hoosepoints x(Sj(γ)) ∈ [0, 1) su
h that

1. x(γ) = 0,2. if for j = 1, . . . , n − 1 we have Sj−1(γ) =

dL
j . . . (respe
tively Sj−1(γ) = dR

j . . .) then
x(Sj(γ)) ∈ (0, c) (respe
tively x(Sj(γ)) ∈
(c, 1)),3. if for i 6= j, i, j ∈ {1, 2, . . . , n − 1} wehave x(Si(γ)), x(Sj(γ)) ∈ [0, c) (respe
tively
x(Si(γ)), x(Sj(γ)) ∈ (c, 1)), then x(Si(γ)) <
x(Sj(γ)) if and only if Si(γ) < Sj(γ) (respe
-tively Si(γ) > Sj(γ)).We note that, by the minimality of γ, we have

x(γ) < x(Sj(γ)) for j = 1, 2, , . . . n − 1. Thereforewe 
an write
x(γ) < x(Sj1(γ)) < . . .

< x(Sjk(γ)) < c < x(Sjk+1(γ)) < . . .

< x(Sjn−1(γ)).Then we set j0 = 0 and we take F ∈ L su
h that
F (c) = k, F (x(Sjt(γ)) = x(Sjt+1(γ)) + djt+1 if
jt 6= n − 1, F (x(Sn−1(γ)) = dn and F is a�ne in
[x(Sjt(γ)), x(Sjt+1(γ))] for t ∈ {0, 1, . . . , n− 1}\{k}and in [x(Sjk(γ)), c] and [c, x(Sjk+1(γ))]. Now,we 
laim that F ∈ A. To prove it note that
F (c) = k > F (x(Sj(γ)) for j = 0, . . . , n − 1.Then F |[x(Sjk (γ)),c] is stri
tly in
reasing and
F |[c,x(Sjk+1(γ))] is stri
tly de
reasing. Let t besu
h that [x(Sjt(γ)), x(Sjt+1(γ))] ⊂ [0, c). Wehave Sjt(γ) = d

sjt+1

jt+1 . . . < d
sjt+1+1

jt+1+1 . . . = Sjt+1(γ).If either djt+1 < djt+1+1 or djt+1 = djt+1+1 and
sjt+1 < sjt+1+1, then 
learly F (x(Sjt(γ))) <

F (x(Sjt+1(γ))). Now, assume d
sjt+1

jt+1 = d
sjt+1+1

jt+1+1 .From Lemma 6.11 we have that either
Sjt+1(γ) < Sjt+1+1(γ) if sjt+1 = L or
Sjt+1(γ) > Sjt+1+1(γ) if sjt+1 = R. In both
ases x(Sjt+1(γ)) < x(Sjt+1+1(γ)) and, in
onsequen
e, F (x(Sjt(γ))) < F (x(Sjt+1(γ))).Thus F |[x(Sjt (γ)),x(Sjt+1 (γ))] is stri
tly in-
reasing. In a similar way we 
an provethat if [x(Sjt(γ)), x(Sjt+1(γ))] ⊂ (c, 1) then
F |[x(Sjt (γ)),x(Sjt+1 (γ))] is stri
tly de
reasing. Toend the proof of the 
laim we have to prove that
F (x(Sjn−1(γ))) > F (1). Sin
e x(Sjn−1(γ)) ∈ (c, 1)we have that Sjn−1−1(γ) = dR

jn−1
. . . . Then

Sjn−1(γ) > γ′. If either djn−1+1 > (d1 + 1) or
djn−1+1 = (d1 + 1) and sjn−1+1 = R > L = s1 then,sin
e F (1) = F (0) + 1 = x(S(γ)) + d1 + 1 and
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F (x(Sjn−1(γ))) = x(Sjn−1+1(γ))+djn−1+1, we havethat F (x(Sjn−1(γ))) > F (1). On the other hand,assume that d

sjn−1+1

jn−1+1 = (d1 + 1)s1 . We obtain that
F (x(Sjn−1(γ))) > F (1) as above by using Lemma6.11. This ends the proof of the 
laim. Lastly,we have ÎF (0) = γ by 
onstru
tion. Also, fromLemma 5.1(a) we have that γ ∈ Pǫ. This ends theproof of the proposition.The next lemma 
hara
terizes the periodi
 se-quen
es in Bǫ(0) and Bδ(0).Lemma 6.13. The following statements hold.(a) Let α ∈ Bǫ(0)\{(0

L)∞, (1L)∞} be periodi
.Then α = (0Lβ1L)∞ for some β ∈ Ξ.(b) Let α ∈ Bδ(0)\{(0
L)∞, (1L)∞} be periodi
.Then α = (1Lβ0L)∞ for some β ∈ Ξ.Proof. Clearly α is of the form (dL

1 βdL
n)∞ with β ∈

Ξ. Assume that d1 = 1. Sin
e α is minimal we havethat α = 1L . . . ≤ Sj(α) for all j. Then Sj(α) =
1L . . . for all j and, in 
onsequen
e, α = (1L)∞;a 
ontradi
tion. Hen
e d1 = 0. Now, assume that
dn = 0. Then α = (0Lβ0L)∞. If β is the emptysequen
e then α = (0L)∞; a 
ontradi
tion. Nowassume that β is not the empty sequen
e and set
β = β2 . . . βn−1. Sin
e α is minimal α = 0Lβ2 . . . ≤

0L0Lβ2 . . . = Sn−1(α). Thus β2 = 0L. Pro
eedingindu
tively we obtain that βi = 0L for i = 2, . . . , n−
1. Thus α = (0L)∞; a 
ontradi
tion. This endsthe proof of (a). Statement (b) follows in a similarway.Proof of Proposition 3.3. We will only provestatement (a). Statement (b) follows in a similarway. The fa
t that a ⊙δ α is not periodi
 when
a /∈ Q and when a ∈ Z is periodi
 if and only if
α = (1L)∞ follows from the de�nitions of ⊙ǫ and ofthe sequen
es Î

∗

δ(a) and Îǫ(a). The third statementfollows dire
tly from the de�nitions. Now we provethe last two statements. Assume that a ∈ Q∗. If
α = (1L)∞ then a ⊙ǫ α is periodi
 by Proposition3.1 and Lemma 6.1(a). Moreover if a = p/q with
(p, q) = 1 then a⊙δ α = (ǫ1(a)Lǫ2(a)L . . . ǫq(a)L)∞.Let α ∈ Bǫ(0)\{(1

L)∞}. By Lemma 6.13(a) we get
α = (0Lα2 . . . αn−11

L)∞. Without loss of generalityassume that Ẽ(a) = 0. Then
a⊙ǫα = (0Lr(a)0L1Lr(a)α2 . . . r(a)αn−1α̂n−1r(a)1L)∞

is periodi
. Now, let
γ = 0Lr(a)0L1Lr(a)α2 . . . r(a)αn−1α̂n−1r(a)1M .Clearly, a ⊙ǫ α = γ ⋆ǫ L∞. Sin
e, from Proposition4.6(b) of [AF℄, 0Lr(a)1M is a minimal sequen
e, byusing Lemma 6.10(a)�(b), we have that γ is a mini-mal sequen
e (note that ǫ1(a) = 0). Then by Propo-sition 6.12 (a) we have that γ ∈ Pǫ.Referen
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