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1. Introduction and statement of Main The-
orem

For continuous maps on the interval with finitely
many monotonicity intervals, the kneading theory
developed by Milnor and Thurston [MT]| gives a
symbolic description of the dynamics of these maps.
This description is given in terms of the kneading
invariants which essentially consist on the symbolic
orbits of the turning points of the map under consid-
eration. Moreover, this theory also gives a classifica-
tion of all such maps through these invariants. For

continuous bimodal degree one circle maps similar
invariants were introduced by Alsedd and Manosas
[AM]. In that paper, the first part of the program
just described was carried through, and relations
between the circle maps invariants and the rotation
interval were elucidated. Later on, in [AF; Theo-
rem A| the set of all these kneading invariants (the
kneading space) was characterized. The main goal
of this paper is to give a description of the knead-
ing space of the bimodal degree one circle maps us-
ing some self-similarity operators which allow us to
identify certain subsets with known structure. To
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state this description we need the appropriate no-
tation. This paper is, in some sense, a continua-
tion of |[AF| and we use heavily the notation and
results from that paper. Although we have tried to
make this paper self-contained in the introduction
we have repeated certain definitions from [AF] for
readability.

As it is usual, instead of working with the cir-
cle maps themselves we will rather use their liftings
to the universal covering space R. To this end, we
introduce the following class A of maps. First we
define £ to be the class of all continuous maps F
from R into itself such that F(z + 1) = F(z) + 1
for all x € R. That is, £ is the class of all liftings
of degree one circle maps. Then we will say that
F € Aif (see Figure 1):

(1) FeL.

(2) There exists ¢, € (0,1) such that F' is strictly
increasing in [0, ¢, | and strictly decreasing in
[ep: 1]

We note that every map F' € A has a unique lo-
cal maximum and a unique local minimum in [0,1) .
To define the class A we restricted ourselves to the
case in which F' has the minimum at 0. Since each
map from L is conjugate by a translation to a map
from £ having the minimum at 0, the fact that in (2)
we fix that F' has a minimum in 0 is not restrictive.
For a map F' € A one can define the kneading
pair denoted by K(F) (see Definition 2.4) which
captures all dynamics of the map F (see [AM;
Proposition A]). The kneading space is a subset of
the product space & x & where both & and &
are totally ordered spaces equipped with the order
topology (see Subsection 2.1). Also, the set of all
kneading pairs will be called the kneading space.
Now, we introduce the following index space. It
will be used to characterize a class of basic subsets

from each component of the kneading space.

Definition 1.1. Let J be the index space whose
elements are sequences z = {x;}7_; with terms
in [0,1] U {0,€e}, where n € N U {oo} and either
n < 0o, {:L"J}SL:_ll C QN(0,1) and =, € {0,1,0,¢} U
{(0,1)\ Q} or n = oo and {z;}}_; C Q\ Z.

Consider the set J endowed with the lexico-
graphical ordering induced by the usual ordering of
the real numbers and the following ordering:

i<l0<l<e

The ordering of J will denoted by < . Let J> be
the subset of J which contains all the infinite se-
quences in J, and let J* (respectively, J,°) be the
set of all finite sequences in J ending with an ir-
rational number union the finite sequences which
do not end with & (respectively, €). Finally, set
Je = J>®UJF and J5 = J*UJy . Note that Je (re-
spectively, Js) has as maximum the finite sequence
€ (respectively, 1) and as minimum 0 (respectively,
J). Also we denote by 7 the set of all finite sequences
which do not end with 0,1, € or §, union the empty
sequence.

Now we are ready to state the main result of this
paper. A crucial observation to the next theorem
is that all maps appearing in it are defined in a
constructive way using four symbolic operators to
be defined in Section 3.

Main Theorem For F € A there ezist a,b € R,
a < b, and two closed intervals Qc(a) in & and
Qs5(b) in Es such that K(F) € Qc(a) x Qc(b). More-
over, the numbers a and b are the endpoints of the

rotation interval of F. and the following statements
hold.

1. There exists peq : Je — Qe(a) which is non—
decreasing, maps the endpoints of J. into the
endpoints of Qc(a) and if a € Q\ Z then pcq
is one—to—one. Moreover,

Impe , = Qc(a) \ U (pE,a(Ql)J)e,a(ge)) .

z€T

2. There exists

Pe(a) - U [pga(zl),ps,a@ﬁ)]

zel

with the following property. For each o €
Pe(a) there is an x € T and a bijective strictly
monotone map us, from the kneading space
of all unimodal maps on the interval to a
closed subinterval of [peq(21),peq(xe)] which
contains « as an endpoint. Moreover, for
each x € T there exists a € Pc(a) such that
max(Imuf) = pe q(ze).

3. There exists psp : Js — Qs(b) which is non-
decreasing, maps the endpoints of Js into the
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Fig. 1. An example of a map F' in class A.

endpoints of Qs(b) and if b € Q\Z then psy

15 one—to—one. Moreover,

Impsp = Qs(b) \ U (ps,p(26), ps.p(20))

zeT

4. There exists

Ps(b) € | [pss(@s), psp(20)]

z€l

with the following property. For each (8 €
Ps(b) there is an z € T and a bijective strictly
momnotone map u% from the kneading space of
all unimodal maps on the interval to a closed
subinterval of [psy(20),psp(20)] which con-
tains B as an endpoint. Moreover, for each
x € I there exists B € Ps(b) such that
min(Imug) = psp(29).

Thus, the above theorem effectively gives a de-
composition of the space Q.(a) (respectively, Qs(b))
into a set

Ke,a = Impe,a U

(respectively,

Ksp = Impsp, U

whose points are completely characterized, and the
open intervals in the complement of this set (which
are gaps where we have not been able to character-
ize the sequences in their interior). The role of the
above gaps in Q.(a) (respectively, Qs(b)) is to deal
with the first (respectively, second) component of
the kneading pairs containing unbounded symbols
(see Figure 2 and compare with |[HH; Figure 5|).
These unbounded symbols appear in the kneading
sequences due to the fact that b (respectively, a) can
be can be arbitrarily far from a (respectively, b).
Another feature of the above decomposition
theorem is the following one. Assume that we
known the first (respectively, second) component
of the kneading pair of a given map from class A
having a (respectively, b) as a left (respectively,
right) endpoint of the rotation interval up to a given
fine length n. Then, from the above theorem we
can obtain the minimal interval in Q.(a) (respec-
tively, Q5(b)) with endpoints in K¢, (respectively,
Ksp) containing all the first (respectively, second)
components of kneading pairs which coincide with
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p/g <w<p/q
Pea(p/a'0) Pea(p’d'l) pea(piqr)

Pe.a(p/q0) pea(p/ql) Pea(plce)
R

pea(0) ,‘ pea(w) ,:4 peal) * Pea(d)

A
v

Qe(a)f

These open intervals contain copies
of closed intervals of unimodal type

Fig. 2. The decription of the closed interval Q(a) using the map pc . Note that the gaps also contain the
sequences with unbounded symbols.

Kneading Space

60 Index Space e

Fig. 3. The kneading space and its description using the index space and the map given in the Main
Theorem.
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the given one in the first n symbols (see Figures 3
and 2). Thus, the study of the dynamics (periodic
points, topological entropy, ...) of maps associated
to the endpoints on these intervals should allow us
to bound the dynamics of the given map by using
the standard tools arising from kneading theory. In
particular, this theorem gives some basic topologi-
cal tools that we can used to describe bifurcations in
parametrized families of bimodal degree one circle
maps (see Hockett and Holmes [HH]).

The paper is organized as follows. Unfortu-
nately, the definitions of the x —like operators and
the statements of the results using to proved the
Main Theorem are rather technical and require a
good deal of notation. In particular, before these
definitions and statements, for completeness, we
need to make a survey on Kneading Theory for maps
in A and to fix the notation we will use when talking
about unimodal interval maps (see Section 2). In
Section 3 we introduce the four operators to state
the results that we use in Section 4 to prove the
Main Theorem. Finally, in Sections 5 and 6 we shall
prove the results stated in Section 3.

2. A survey on kneading theory for maps in
A and unimodal maps

This section is divided into two sections. The first
one it is essentially a survey of the papers by Alseda
and Manosas [AM| and Alseda and Falco [AF)|.
The second one we will recall basic concepts of the
kneading theory of unimodal maps.

2.1. Kneading theory for maps in A

We start by recalling the notion of itinerary of a
point. For F' € A and z € R let

R if D(z) € (cp,1),
) C if D(z) =cp,
W= L it D) e (0, ep),
M if D(z) =0,

and d(z) = E(F(x)) — E(x).

_ Then the reduced itinerary of z, denoted by
I, (x), is defined as follows. For i € N, set s; =
s(Fi(z)) and d; = d(F*~'(z)). Then IF(x) is de-

fined by

S1 S92
d5rds? ...

51 752 Sn
dTdy .. d

if s; € {L,R} for all i > 1,
it s, € {M,C}

and s; € {L, R} for all
ief{l,...,n—1}.

_ Note that since ' € £ we have that Ip(z) =
Ip(x+ k) for all k € Z. Let xz,y € R be such that
D(z) # D(y). We say that = and y are conjugate
if and only if F(D(z)) = F(D(y)). Note also that
if x and y are conjugate then they have the same
reduced itinerary.

Let § ={M,L,C,R} and let « = apr; ... be a
sequence of elements «; = d;" of Z x S. We say that
a is admussible if one of the following two conditions
is satisfied:

Definition 2.1. 1. « is infinite, s; € {L, R} for
all # > 1 and there exists £ € N such that
|d;| <k for all i > 1.

2. « is finite of length n, s, € {M,C} and s; €
{L,R} foralli e {1,...,n—1}.

Notice that any reduced itinerary is an admis-
sible sequence. Now we shall introduce some nota-
tion for admissible sequences (and hence for reduced
itineraries).

The cardinality of an admissible sequence a will
be denoted by |a| (if ais infinite we write |a| = 00).

We denote by S the shift operator which acts
on the set of admissible sequences of length greater
than one as follows : S(a) = aas... if a =
ajagas . ... We will write S¥ for the k-th iterate
of S. Obviously S* is only defined for admissible
sequences of length greater than k. Clearly, for
eEch r € R we have S"([_(z)) = I (F"(z)) if
L,()] > n.

Let @« = aqan ..., and B = (102... be two
sequences of symbols in Z x S. We shall write a 8
to denote the concatenation of o and § (i. e. the

sequence a1ag . .. 3152 ...). We also shall use the
n times

symbols a™ to denote m and a®™ to denote
aQ....

Let a« = ajase ... a,, be a sequence of symbols
in Z xS. Set a; = d;" for i =1,2,...,n. We say
that « is even if Card{i € {1,...,n}|s; = R} is
even. Otherwise we say that o is odd.
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Now we endow the set of admissible sequences
with a total ordering. First set M < L < C < R.
Then we extend this ordering to Z x S lexicographi-
cally. That is, we write d®° < t"* if and only if either
d<tord=1tand s < m. Let now a = ajas...
and 8 = (8102 ... be two admissible sequences such
that o # 3. Then there exists n € N such that
an # Bpand a; = B; fori = 1,2,...,n—1. We write
a < (if either ajas...ap,_1 is even and o, < 0,
or a1s ... a,_1 is odd and o, > On.

Let o = ajasas ... be an admissible sequence.
We say that « is periodic of period n if S™(a) = «
and S(a) # a for i = 1,2,...,n — 1. We note
that if a is a periodic sequence of period n, then
la] = oo and there exist aq,...,a, € Z x S
such that @ = (a1...0,)®. We also note that
if x is a periodic (mod 1) point of F' such that
]ZF(:U)\ = 00, then ZF(JJ) is periodic (recall that
S”(ZF (x)) = ZF (F™(x))) but their periods are not
necessarily equal.

The following results show that the above or-
dering of reduced itineraries is, in fact, the ordering
of points in [0, ¢,.].

Proposition 2.2. Let F € A. Then

(a) Q‘:E,y € [0,¢c.], and x < y then zF($) <
I, (y).

(b) Q‘:E,y € gy 1), and © < y then IF($) >
I.(y).

(A}orollarAy 2.3. Iiet F e A. For all z € R we have
lF(O) S lF(‘T) S lF(cF)'

To define the kneading pair of a map F € A
we introduce the following notation. For a point
x € R we define the sequences IF (zT) and ZF (x7)
as follows. For each n > 0 there exists 6(n) > 0 such
that d(F"~1(y)) and s(F™(y)) take constant values
for each y € (z,x 4+ d(n)) (resp. y € (z — d(n),x)).
Denote these values by d(F™~!(2%1)) and s(F™(z1))
(resp. d(F"1(27)) and s(F™(x~))). Then we set

(x+) — d(x—l—)s(F(x*))d(F(x-i-))S(FZ(:NL)) o

Clearly, ZF(az+) and Zp(x_) are infinite admissi-
ble sequences and, zF(er) = ZF((JJ + k)*) and
I.(x7) = lF(/(\x + k)7) for all E € Z. Mgreover,
if v ¢ Z and |I_(v)] =oo0then [ (v7)=1_(x)=
I.(z%).

Definition 2.4. Let F € A The pair
(L,(0M),I (c;)) will be called the kneading
pair of F and will be denoted by K(F).

From [AM; Proposition A] it follows that K(F')
characterizes the set of reduced itineraries (and
hence the dynamics) of a map F' € A.

Let AD denote the set of all infinite admissible
sequences.

Note that for each F' € A we have that IC(F') €
AD x AD. To characterize the pairs in AD x AD
that can occur as a kneading pair of a map from A4
we will define a subset £ of AD x AD which turns to
be the set of all kneading pairs of all maps from A
(see |AF]). To this end we introduce the following
notation.

Let @ = dj'as..., be an admissible sequence.
We will denote by o’ the sequence (d; +1)%ay... .
Note that since for FF € A we have d(F(07)) =
d(F(07)) — 1 we can write (L, (0))" =1 _(07).

We will denote by &£* the set of all pairs
(v1,v9) € AD x AD such that the following con-
ditions hold:

(1) vy < v
(2) v; <S™(v;) <wvyforalln>0andiec{l,2}.

(3) If for some n > 0, S"(y;) = d®..., then
S"(y;) > v} fori € {1,2}.

We note that condition (2) says, in particu-
lar, that v; and v, are minimal and maximal, re-
spectively, according the following definition. Let
a € AD , we say that « is minimal (respectively
mazimal) if and only if @ < S™(a) (respectively
a>S"(a)) forallne{1,2,...|a|—1}.

As we will see, the above set contains (among
others) the kneading pairs of maps from A4 with
non-degenerate rotation interval. To deal with
some special kneading pairs associated to maps with
degenerate rotation interval we introduce the follow-
ing definitions.
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For a € R we set ¢;(a) =
and 6;(a) = E(ia) — E((i — 1)a

I.(a) = e1(a)les(a)

E(ia) — E((i — 1)a)
). Also, we set

~

cen(a)t

and
I5(a) = 61(a) 65(a)" ... 6,(a)" . ..

Let I.(a) = (I.(a)) and let I;(a) denote the se-
quence that satisfies (fg(a))’ = Is(a). Let a = p/q

with (p,q) = 1. We denote by Ip(a) the sequence
(d1(@)® ... 6g-1(a)"0,(a) )™
and by I R( ) the sequence which satisfies

(Ix(a)) = Ig(a).
To simplify the use of the above sequences the
following lemma will be helpful (see [AM; (4.1)—

(4.3)])-

Lemma 2.5. Let a € R. Then the following state-
ments hold.

(a) If a ¢ Z then 61(a) = €1(a)+ 1. Furthermore,

if a§é@ then 5( ) = (A) for all i > 1. That
i L) = L) and L) = L) 1=
p/q with (p,q) = 1 and ¢ > 1 then €i(a) =
5i(a)f0ri:2,..., — 1, 04(a) = €g(a) — 1
and, cisqfa) = ci(a) and isq(a) = 0i(a) for
all i € N.

(b) If a € Z then €;(a) = 6;(a) = a for all i > 0.
Now, for each a € R, we set

{(Z(a),I.(a)), (Ls(a), I5(a)), (Ix(a), Lx(a))}
if a =p/q € Q, with (p,q) =1,

{G@. L)} g Q

Finally we denote by & the set £* U (Uger&,)-
The following two results, given by Alseda and Falco
|[AF; Theorem A|, characterizes the kneading pairs
of the maps from class A.

£, =

Theorem 2.6. For F' € A we have that IC(F) € €.
Conversely, for each (v1,v4) € E there exists F € A
such that IK(F) = (v;,vs).

To define the ambient space of the set £ we
introduce the following two sets. Let

& ={aecAD: 33 € AD such that (o, 8) € £}

and

E={B € AD: 3o € AD such that (o, 8) € £}.

The following result characterizes the sets &
and & (see [F; Theorem 3.1.1]).

Proposition 2.7. The following statements hold.

(a) a € & if and only if it is minimal and satisfies
that if for some n > 0, S"(a) = d¥... then
Sn""l(g) Z g/'

(b) B € & if and only if it is mazimal.

We consider & and & endowed with the or-
der topology and let & x & be with the product
topology. We note that £ is strictly contained in
E x &s. To see this consider for example the set
A = {(0F)>=, (1)} of admissible sequences. Since
((=15)%2, (0%)%), ((0%)%, (15)%), ((17)>, (2")®) € €,
we have that A C & and A C &;. In consequence
{((0%)%, (17)>°), (1), (0%)=)} C & x 5. How-
ever, ((0F)%°, (1£)>°) € € but ((1%)>®, (0L)>) ¢ &.

For a € R we define Q.(a) as [fg(a),ze(a)] C &
and Qs(a) = [I5( ) fk(a)] C & (recall that from
Theorem26[5( ).1.(a) € & and Is(a), fk(a) €&
for all @ € R). From Lemma 2.5(a) we have that
if a ¢ Q then Q.(a) and Qs(a) are closed intervals
degenerated to a point.

The next result gives a characterization of the
rotation interval by using the kneading pair (see
[AM; Theorem BJ). To see this we recall that for

F € L the rotation interval R is defined to be the
set

{pr(x) : z € R},

where

pr(@) = p(a) = lim sup DT

n—oo

It is well known (see [I]) that the set Rp is a closed
interval, perhaps degenerate to a single point. Also,
it ' € L is a non-decreasing map then
F(x) —
r = { lim M}‘
n—oo n

Theorem 2.8. Let F € A. Then Rp = [a,b] if and
only if

K(F) € Qe(a)xQs(b) = [L;
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2.2. Kneading theory for unimodal maps

In the last step of this survey we introduce the no-
tation we shall use for the kneading theory of uni-
modal interval maps. Let I be a closed interval and
let f: I — I be a continuous map. We say that f
is unimodal if

1. f(maxI) = f(minl) € 0I

2. There exists ¢ € Int(I) such that the maps
flimin 1,¢] and f|[¢max 1 are homeomorphisms.

The set of all unimodal maps from I to itself
will be denoted by U(I). A map f € U(I) will be
called positive if f|imin 1, is increasing. Otherwise,
f will be called negative.

Let f € U(I) and let x € I. We associate
with x a finite or infinite sequence of the symbols
L, C, R called its itinerary. To do it we introduce the
following notation. Let f : I — I be continuous.
We will say that f is locally increasing (respectively
decreasing) at x € I if there exists an open (in I)
neighborhood V' of = such that f|y is increasing
(respectively decreasing). Now, we define the i —th
address of a point x, that we denote by 6;(x), as
follows:

L if f%is locally increasing at .
C if fi(z) =,
R if f%is locally decreasing at .

Hz(a;) =

We define the itinerary of x denoted by 8,(x)
as follows

L 8y(x) = Go(a)b(a)..
{L,R} for all i > 0.

2. 0p(z) = 0o(x)01 () ... 0n(2) if 0, (2) = C, and
0;(x) € {L,R} for all i € {0,1,...n—1}.

Given n € N and y € I, there exists § > 0 such
that 6,,(y) takes constant value L or R in the inter-
val (z,z + ) . We denote this value by for 6, (™).
In a similar way we can define 0, (7). With this
notation we set f;(z*) = 61(z")fa(z)... and
Op(x~) = O1(z7)02(x7).... We note that if 0,(x)
is infinite then 0,(z) = 8,(z%) = 0;(z7).

The sequence 8,(f(c)*) is called the kneading
sequence of f. We will denote it by k(f).

Let A = ApA;i... be a sequence of elements
A; € {L,C, R}. We say that A is admissible if one
of the following two conditions is satisfied:

1. A:AoAl...An...ifAiE{L,R} for all ¢ >

o

2. A= ApAs..
for all 7 € {0,1,..

JAp if A, = C, and A; € {L, R}
.n—1}.

Now, we introduce an ordering in the set of all
admissible sequences. We set L < C < R and we
extend this ordering lexicographically to the set of
all admissible sequences as follows. Let KoK ... K,
be a finite (or empty) sequence of symbols L, R. We
say that KoK ... K, is even (respectively odd) if
it has an even (respectively odd) number of R's.
Assume that K = KoK; ... and K' = K)K] ... are
admissible sequences such that K # K'. Let n € N
be such that K; = K/ for i < n and K,, # K. Then
we say that K < K' if either

1. K, < K;L and KK ..
2. K, > f(,/2 and KK ..

. K,,_1 is even.
. K,,_1 is odd.

We note that if < y and f € U(I) then
Op(x) < O4(y) if f is positive and 0¢(z) > 04(y)
if f is negative.

The shift operation S on admissible sequences
is defined as follows. If K = KyK;... then we
set S(K) = K1K,... which is also an admissible
sequence. If Ky = C, then S is undefined. We
write S™ to denote the n—th iterate of S. Note
that for each « € I and f € U(I) we have S((z)) =
(O(f(x)))-

An admissible sequence K will be called maz-
imal if and only if S"(K) < K for each n < |K]|,
where |K| denotes the length of K. We note that
for each f € U(I) (independently of the fact that
f is positive or negative), k(f) is maximal and ad-
missible with length infinite. Given K = KoK ..
an admissible sequence, we will write K to denote
K0K1 .whereL—RR—LandC C. We
note that K is maximal if and only if K is minimal;
that is, S"(K) > K for each n < |K].

From [CE], it follows that for each admissible
infinite maximal sequence K there exist f,g € U(I),
f positive and g negative, such that k(f) = k(g) =
K. We shall denote by K the set of all admissible

infinite maximal sequences.

3. Self-similarity operators

In this section first we state the results that we will
use to prove the Main Theorem. In Subsection 3.1
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we define the x—operators and we state the main
result about this operators. In Subsection 3.2 we
define the ®—operators and state the result which
studies them.

3.1. The x—operators

The aim of this subsection is to characterize the sets
of sequences which appear as the first (respectively
second) component of the kneading pair of a map
F € A for which there exist p € N, ¢ € Z and
a closed interval J containing ¢, (respectively 0)
such that (F9 — p)|; is a unimodal map. We make
this study at a symbolic level by using a x—operator
which relates certains subsets of the symbolic spaces
& and & with the space of kneading sequences of
unimodal maps. Moreover, we will show how the
“unimodal symbolic space” is embedded into &, and
Es.

We start by introducing some notation. Let =
denote the set of all finite sequences with symbols
in Z x {L, R} (of course we consider the empty se-
quence as an element of =).

Now we consider the set of sequences which oc-
cur as reduced itineraries of periodic critical points.
Indeed we will denote by P, (respectively Ps) the
set of all minimal sequences of the form 3d™ with
B € E and d € Z satisfying that if for some n €
{1,...,18]}, S”_l(ng) =t ... then S”(ng) >
ﬁ'dM (respectively the set of all maximal sequences
of the form ﬁdc) and such that if ﬁ is not empty
then {(BdL) ,B(d — 1)R(ﬂ’(d } C & (re-
spectively { ﬂdL BdR } C 55

We are now ready to define the x—operators.
We start by defining the operator x5 : Py x K —
AD as follows. Let v = ﬁdc € Ps and K =

KiK5...€ K. Then we deﬁne
Bd¥1pd523 ... if B is even,
YRR K =9 T =T wn e
- Bdr1pd=2p. .. if B is odd.

Now we define % : P x K — AD. Let B € =
and s € {L, R}. We set

if s=1L
\(s.8) = { 5w

Also, for d € Z we set

L if s =
@(Svd) = { ?d— 1)R ! 5

if s=R.

Let y = Bd™ € P. and K = K1K, ... € K. Then
we define v x. K as follows. If 3 is not empty then

B (K1, d)x (K1, B)p(K2, d)x (K2, ) ...

ifﬁi/s\even, .

- Bo(Ky1,d)x (K1, B)p(K2,d)x (K2, ). ..
if 3 is odd.

If B is empty then v x. K = alKlalK2 .. where, if
K7 = L then d; —dforallz>1and1fK1:R
then di =d — 1 and

d+1
di=4¢ d
d—1

if K, 1K;=RL,
if K, 1K; € {LL, RR},
if K, 1K;=LR,

for ¢ > 2.
The main result of this subsection which studies
the properties of the x—operators is the following.

Theorem A Let v = BdM € P, a= Bdc € Ps
and K € K. Then yx K € & and axs K € &. If B
15 even then Yyx¢ is order reversing and axg s order
preserving. Otherwise, Y*xe s order preserving and
axg 1s order reversing. Moreover % K and s K
are connected in E. and Es respectively.

Theorem A will be proved in Section 5. It char-
acterizes at a symbolic level the “unimodal boxes”
in the spaces & and &s. Indeed, if we consider the
set K endowed with the order topology (that is,
K = [L*,RL>]) then, from Theorem A, we see
that if v = ﬁdM € Pe (respectively v = ﬁdc € Ps),
then

o K = [y *e RL™,y % L] if 3 is even,
- 7€ [y *e L™,y % RL>] if 3 is odd.

(respectively

o K = [y x5 RL™, v x5 L] if B is odd,
1= [y x5 L™,y %5 RL*] if (3 is even)

where, given two sequences o, € AD with a <
B, [a, 8] denotes the set of all admissible sequences
lying between « and 8.

The set v % K will be called the e—unimodal
boz of ~ and the set v 5 K will be called the §—
unimodal box of - B
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3.2. The ©—operators

Let k € Z. We denote by X the set of sequences in
{kE, (k+ 1)}, Let o = dfdy ... and g = tith ...
be two sequences in >;. We consider in Ek the topol-

ogy defined by the metric d(a, 3) = Z 27 d; — t].

With this topology, ¥ is a compact metrlc space.
Let Sy : X — Xj denote the usual shift trans-
formation restricted to Xj. Clearly, Sy is contin-
Let m, : X — X be the order pre-
serving homeomorphism defined by 74 (dFd% ...) =
(dy — k)E(dy — k) . Clearly, Sy o m = m 0 Sg.

For k € Z we define the sets B.(k) = X N &
and Bjs(k) = X N E. We note that the sets & and
&s are invariant under “translations”. That is, if
di*d3? ... is a sequence in & (respectively in &j)
then (di + k)**(da + k)*2 ... also belongs to & (re-
spectively &s). Therefore, B(k) = 7; ' (B(0)) and
Bs(k) = 7, *(Bs(0)). From Proposition 2.7 we have
that Be(k) (respectively Bs(k)) are the minimal (re-
spectively maximal) sequences in .

For a € R we will denote a — E(a) by D(a).
Also, Q \ Z will be denoted by Q*.

We note that from Lemma 2.5, if a = p/q € Q*
with (p,q) = 1 and ¢ # 2 then the finite se-
quences e2(a)’ ... e, 1(a)t and da(a)® ... 5—1(a)F
are equal. We will denote this finite sequence by
r(a) (we take the empty sequence as r(1/2)).

Now we are ready to define the ®—operators.

For o = d" with d € {0,1} we set & = (1 —d)".

uous.

Then for a € (0,1] and o = aqas... € B(0) we
define
0lr(a)ararr(a)asds ... if a € QF,
I(a) ifag¢Q
a®eq = and o = (1%)>®
I3(a) if o ¢ Q°

and o # (17)>°

We extend the above definition to each a € R by
setting a ©c o = ﬂé(la)(D(a) Oc Q).
we define the &g version of the

Let a € [0,1) and a =

Now,
(®—operator as follows.

ajay ... € Bs(0) be. Then we set
15r(a)oyayr(a)asas ... if a € Q%
I(;(a) if a ¢ Q*
a®so =
I (a) if o ¢ Q"

and we extend the above definition to each a € R
by a ®s a = wg(la)(D(a) O ).

The next result which we will be proved in
Subsection 6.1 gives a first motivation to the
O—operators.

Proposition 3.1. Let a € R. Then a ®. (0%)® =
Li(a), a ©c (17)* = L(a), a ©5 (0%)* = Ly(a) and
a®s (1¥)*° =1 (a).

From the above proposition we see that the fun-
damental boxes can be written as Q.(a) = [a ®
(05)>,a @ (1%)] and Qs(a) = [a ©5 (0%)®,a G5
(1)°°]. The next theorem is the main result of this
subsection.

Fora € ¥y, a = dld¥ ...
rotation number of o as

we define the symbolic

p(a) = lim sup —Zd

n—oo 1

Theorem B Let a,b € R with a < b. Then the
following statements hold:

(a) Let a,B € Bc(0) with a < 3. Then a ©ca <
bOB. Moreover if a € Q* then a®ca < a®cP.

(b) Let a, € Bs5(0) with a < 3. Then a ®5 a <
b ®s B. Moreover if a € QF then a ©s a <
a ©g ﬁ

(c) Let a € Be(0

). Thena@eozeb’( E(a)) C &
and p(a ®c o) =
)-

(d) Let a € B5(0). Then a®sa € Bs(E(a)) C &
and p(a O a) = a.

(e) Let a € QF and (a,B3) € Bc(0) x Bs(0) be
such that o # (1X)® and B # (01)>°. If
S™(a) < B and S™(B) > a for all n.> 0, then
(a ®c a, a®5ﬂ) e&E*Cé.

We note that if (a,3) € &, by Theorem 2.6
and Proposition 4.3 of [AF] we have that o/ < §,
S™(a) < B and S™(f) > a for all n > 0. Thus from

Theorem B(e) we have the following.

and o = (0%)>®, Corollary 3.2. Let a € Q* and let (a,3) €

(B.(0) x B5(0)) N E be such that o # (17)* and

and a # (0F)®. B # (0F)®. Then (a ®c a,a ©s B) € E* C E.
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We will prove Theorem B in Subsection 6.2.

We recall that in Subsection 3.1 we have defined
the unimodal box of a periodic sequence v from P,
(respectively Ps) as v xe K = 7 *c [L>°, RL*>®] (re-
spectively x5 I = %5 [L°°, RL*]). Thus, in order
that the unimodal boxes of a ®c @ and a ®s « are
defined, it is necessary that these sequences are pe-
riodic. The next result characterizes the periodic
sequences of the form a ®. a and a ®s . It will be
proved in Subsection 6.3.

Proposition 3.3. Let a € R. The following state-
ments hold.

(a) Let a € B.(0)\ {(0%)>°} be periodic. If a ¢ Q
then a®ca is not periodic. If a € Z then a®ea
is periodic if and only if o = (11)°°. Moreover,
a € P, and a® (11)® = aMx L. If a € Q*
then a ® a is periodic. Moreover, there exists
ﬁdM € P, such that a ®. a = ﬁdM *e L.

(b) Let a € Bs(0)\{(1X)>®} be periodic. If a ¢ Q
then a®sa s not periodic. If a € Z then a®sa
is periodic if and only if o = (01)°°. Moreover,
a® € Ps and a®s(0F)® = a®%s L. If a € Q*
then a ®s « s periodic. Moreover, there exists
gdc € Ps such that a ®5 o = ﬁdc *s L°°.

Now we can define the unimodal box of a se-
quence of the form a ®, « as follows. Let a € Q
and a € B.(0) \ {(01)*} be periodic. Then, with
the notation of Proposition 3.3(a), we set

~f BdM K ifa € QF,

UelaOea) = { aM % K ifa€Zand a=(1F)>.

Let now a € Bs5(0)\{(1¥)>*} be periodic. With the
),

notation of Proposition 3.3(b), we set

Us(a®sa) = { a x5 K ifa€Zand a= (OL)OO'

4. Proof of Main Theorem

Let F' € Abesuch that Rp = [a, b] for some a,b € R
with @ < b. By using Theorem 2.8 it follows the first
statement of the Main Theorem.

Now, we will define the map pq : Je — Qc(a)
(respectively, psq : J5 — Qs(a)) in two steps. First,
we will introduce the notation that will allow us to
speak about iterated ®— operators.

Let 21,22 € (0,1] and a € B.(0). We note that
if € B.(0) then, by Theorem B(c) and the defini-
tion of O, z; ®c A also lies in B(0). Therefore, the
sequence B

21 Oc (T2 Oc )

is well defined. Now we take x1,22 € (k, k + 1] with
k € Z and we extend the notation to this case as
follows. Let

71 Oc (22 Oc @) = ;. (D(21) @c (D(22) Oc a)).

In a similar way let z1,z2 € [0,1) and a € Bs(0).
Then, by using Theorem B(d), the sequence

x1 O (x2 O )

is well-defined. If z1,29 € [k,k+1) with k € Z
then we set

21 O5 (12 @5 a) = 1 (D(x1) @5 (D(x2) @5 ).

In the first steep we define p., from J* (re-
spectively, J5) into Qc(a) (respectively, Qs(a)). Let
a € R and zw € J* (respectively, zw € J5°). As-
sume that z = {z;}7"' € Z,if n = 1 (i.e. z is the
empty sequence) we set

a®I.(0) ifw=0,
a® I (w) fwé(0,1)NQ,
) | 10cL) g 0)NQ
a®Ls(1) ifw=1,
a®I.(1) fw=e
(respectively,
a®I5(0) ifw=4
poa(w) = a® L (0) ifw=0,
ba a® Li(w) ifwé(0,1)NQ,
a®I5(1) ifw=1.
Otherwise, if n > 2 we set pcqlzw) = a O

Peray (Taxs - - Tp_jw) (respectively, peq(zw) = a ®;
Ps,xy (1’2.’1’3 ce xn—lw))‘

Recall that I,(1) = I;(1) = (1£)> and I,(0) =
I5(0) = (0%)>°. From Proposition 3.1 and Theorem
B(a)—(b) it follows the following.

Lemma 4.1. Let a € R. Then the maps peq :
JE — Qcla) and psq = T§ — Qs(a) are non—
decreasing. Moreover, if a € Q" then peo and psq
are strictly increasing.
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To extend the definition of pe o and psq to J°°,
respectively, we introduce the following notation.
For x = {z;}2, € J we set \j(z) = z122--- 2,0
and \!'(z) = z122 - - x,1 for each n € N.

Proposition 4.2. Let a € R. Then for each x =
{z;}52, € T we have that

M1 [Pe.a(AG (2)), Pe.a (A (2))] € Be(E(a)) and
M2y [Ps.a(M(2)), ps.a( N (2))] € Bs(E(a)).

To prove this proposition we shall use the fol-
lowing.

Lemma 4.3. Let a € Q*. Then

nlLH;O d(pe,a(A(T]L(g))vpe,a()‘rf(i))) =0 and
Jimd(ps.a (NG (@), Pa.a(A () = 0

Proof. Let a = p/q € Q*, with (p,q) = 1. Without
loss of generality may assume that E(a) = 0. If
Pez: (0) = dflde ...and peg, (1) = tfltfz ... are
two sequences in B(0) then, since

pe,a(Aé (i)) = a Oc¢ Pe,xy (0)

= OLf(a)dfl%lf(a)dfﬂ%ﬁ(@ e
and
pe,a(A%(E)) = a Oc Pe,ay (1)

= OLf(a)tf1tAf11(a)tf72tA1L72£(a) el
we have that

A(Pea(M(2)), Pea(M (2)))

o0
=> (2_qi|d1,z‘ — | + 27 @ g tA1,2‘|) :
i=1
Because the differences between these two sequences
occur at the positions ¢, ¢+1,2¢,2¢+1,. .. . Finally,
by using the fact that |di; —t1:] = |d1; — ?1,2-|, we
obtain

A(Pe,a(A5(2)), Pe.a(A(2)))
= Z <2—qi + 2—(qi+1)) \dy; — t14]

i=1

3=
= 3 Z 27 dy ; — 14
=1

< > ! 1
2\1-27¢ ’

Now, assume that z; = pi/q1, with (p1,q1) = 1,
Pexy(0) = d£1d£2... and peg,(1) = t£1t£2...,
then

De,xy ($20) =T ®e De,xo (0)

= 0"r(e)df dF yr(21)d5 ydf pr(ai) ..
and
DPe,zq (x21) =21 Oc pe,xl(l)

Note that in this case the differences between
these two sequences appear at the positions q1q1 +
1,2q1,2q1+1, ... . Since pe o(A2(2)) = a®cpe x, (T27)
for ¢ = 0 and 1 and by using some similar arguments
as above, it is not difficult to prove that the differ-
ences between the two sequences will take place at
the qq1,q991 + 1,2qq1,29q1 + 1, ... positions. Thus,

d (Pe.a( M3 (2)), Pe,a(X5(2)))

[e.e]

_ Z (2—qq1i + 2—(qq1i+1)) |dai — to]
i=1

< 5 ! 1
2\1-279% )

Proceeding inductively, set z; = p;/q;, with
(pisqi) = 1 for i = 1,2,...,n — 1, Py, (0) =
dﬁ71dﬁ’2 [P and pnyn(l) == tﬁ,ltﬁ72 [P then

d (Pea(AG (2)), Pe,a(A3(2)))
= (2t DY g
=1

3 1 1
< s\ i@, )

Thus,

~

Jim_d(pe.a(Aj (2)), pea (N (2))) = 0,

because ¢;,q > 2, and then the first equality follows.
The second one can be computed in a similar way
|

Proor or PROPOSITION 4.2. We only prove the
first statement, the second one is given in a similar
way. First at all we remark that Be(E(a)), the min-
imal sequences in two symbols, is a closed invariant
set of ¥ Fla)’ because the shift map is continuous.
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Let z = {z;}2, € I, if a ¢ Q* then by the defini-
tion of ®, we have that pe o(A\j(2)) = pe,o(A\(2)) =
f:;(a) € B:(E(a)) for all n € N and the proposition

follows. Now, assume that a € Q*. By using the
fact that
Ag(z) < A (@) < AT () < Af (@),

from Lemma 4.1 we have that
[ ca AT @), Pea VT (2 )] s strictly contained
in [pea(M (@)X (@)] C Be(Ea) € S,
Then, (Ml [Pea(A5 (@), Pea(AL ()] # 0,
because X is a compact set. More-

E(a)
over, by using Lemma 4.3 and the fact that
B.(E(a)) is a closed set in Y 5(a)» We have that

Mozt [Pe.a( A (2)); Pea(AT (2))] € BG(E(G)) and the
proposition follows. [ |

Now, let a € R then, by using Proposition 4.2,
we can define p. , : J*° — Qc(a) by

DX

pe,a(&) = [pf,a()‘g(i))aps,a()‘?(i))]
n=1
and psq 1 T — Qs(a) b
Psalz ﬂ P5,a(AG (2)), Ps,a(AT (2))] -

We note that for x = {x;}2, € J° we have that

pe,a(i) ¢ (Ps,a(331332 to $n1)7pe,a($1$2 to xne))

and

Pea() & (psa(T122 -+ T00), psa(@122 - - - 2,0))

for all n € N.

By the construction of p., and ps, we obtain
the following corollary, it resumes all said above and
gives the proof of statements 1 and 3 of our Main
Theorem.

Corollary 4.4. Let a € R. Then the following
statements hold.

(a) The map peq : Je — Qc(a) is non—decreasing,
maps the endpoints of J. into the endpoints of
Qc(a) and if a € Q\Z then pe q is one-to-one.
Moreover,

)\ | (Peal@l), pealze)) .

zeT

Imps,a = Qe(a

(b) The map psp : Ts — Qs(a) is non-decreasing,
maps the endpoints of J5 into the endpoints of
Qs5(b) and if a € Q\Z then psy, is one-to-one.
Moreover,

)\ | (ps6(25), psp(20))

z€eT

Impsp = Qs(a

Remark 4.5. 1t is not difficult to see that in the
case that a € Q* and z = {x;}2, € J* is such
that #; = a for all ¢ > 1. Then we have that
a Oc Pe a( ) = De a( ) and a ©g p&a( ) = p&,a(&)'
That is, the sequences pe o(2) € Qc(a) and psq(z) €
Qs(a) are, respectively, fixed pomts of the operators
a®e : BE(O) — Qe(a) and a®; : Bs(0) — Qs(a), re-
spectively.

Finally, statements 2 and 4 follow from the defi-
nition of Pe, Ps and the x—operators given in Section
3.1 and Proposition 6.3. This ends the proof of the
Main Theorem.

5. Proof of Theorem A

This section is organized as follows. In Subsection
5.1 we give some technical results and in Subsection
5.2 we prove Theorem A. Lastly, in Subsection 5.3,
we give some remarks to Theorem A.

5.1. Preliminary results

In this subsection we study the itineraries of the
critical points when they are periodic and some of
the basic properties of the x—operators. We start
with the following technical lemmas and definitions.
Let F' € £ and let x € R. Then the set {y € R :
y = F"(z)(mod. 1) for n = 0,1,...} will be called
the (mod. 1) orbit of x by F. We stress the fact that
if P is a (mod. 1) orbit and = € P, then x +k € P
for all k € Z. Let P be a (mod. 1) orbit of a map
F € L. We say that P is a twist orbit if F' restricted
to P is increasing. If a periodic (mod. 1) orbit is
twist then we say that P is a twist periodic orbit.

Lemma 5.1. Let F € A. Then the following state-
ments hold.

(a) Assume that 0 is a periodic (mod 1) point of
period n. Then there exist § € = and d € Z,

such that ZF(0+) is either (Bd™)> with (8
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even or ﬂdR(ﬂ/dR)oo with B odd. Moreover,
if 1.(07) = (8d") then 5(d — 1)"(8'(d —
DfY>® € & and zle( *) = BdR(B'dR)>® then
(Bld+1)l)> eé&..

(b) Assume that c, is a periodic (mod 1) point of
period n. Then there exist 3 € = and d € Z,
such that IF (c,) is either (Bd")> with 3 even
or (Bd™)> with 3 odd. Moreover, zsz (c;) =
(BdM)>® then (Bd™)* € & and if T, (c;) =
(Bd)>° then (Bd*)>™ € &;.

Proof. We start proving statement (a). Assume
first that z (0) = BtM for some B € = of length
If x > 0 is sufficiently close to 0
we have that F™ [, is increasing and F"(z) is
also close to F"(O) = 0. Therefore, zF(OJr) =
ﬂtLI (0M).So I . (0T) = (Bt¥)>°. Now, assume that
ﬂ is odd Take = < 0 sufficiently close to 0. Then

" w0 18 1ncreasmg and F"(x) 1s also close to
F"(O) Thus I (07) = B/t — )EL_(07). There-
fore I ~(07) = (ﬂ'(t — 1)%)> and, in consequence,

lF(0+) Bt = 1Rt - 1)),

To prove the second statement of (a) in this
case we only need to show that there exists G € A
such that I_(07) = B(t — 1)R(B'(t — 1)) if 3 is
even or I . (07) = (BtF)> if B is odd. We note that
the proof of Lemma 5.4 of _[AF] does not depend
on the fact that the orbit under consideration is
twist. So, if I -(0) = Bt the statement follows
from Lemma 5. 4 of [AF] and the part of (a) already
proven.

Now, assume that zF (0) = 7k¢ and IF (cp) =
vt where 7,v € E, 7 has length ny — 1, v has
length no — 1 and ny +ng = n. If £ > 0 is suf-
ficiently close to O then F™'(z) is close to c,. If
7 is even then F™ ][O,x} is strictly increasing and,
hence, ZF(0+) = szZF (c e,
odd, F™ |j is strictly decreasing and I, (0%) =
lksz (c;)- Let now = > c,. be sufficiently close to
¢, lf viseven, then F"? \[CF@] is strictly decreasing
and ZF(C::) =u(t— 1)RZF(O_). Otherwise, if v is
odd, F" |, o is strictly increasing and I, (cf) =
gtLZF(OJr). We recall that zF(c;) = zF(c;) and

n — 1 even.

+ . . .
+). Otherwise, if v is

that if ZF(O_) = (ZF(0+))’. Hence, if we set

3= lkRZ if 7 is even,
=7 ykPrif 4 is odd,
we get
~ L Bt — 1)@ (t—1)B)>° if vis even,
Loh=14 2 ) Ll
P (Bt*) if v is odd.

This ends the proof of the first part of statement
(a).

Now, we prove the second part of statement (a)
in this case. Let P be the (mod. 1) orbit of 0
by F. Then 0,¢, € P. Let 9 = min(P N (¢, 1]),
x1 = max(PN(0,c,)) and J = (c,,xo) if 7y is even
and J = (z1,¢;) if v is odd. Let G € ANCYHR,R)
be close enough to F' such that ¢, € J, G’[OJ]\J =
F’[O,l]\J and G(CG) S (F(cF),min(Pﬂ(F(cF),oo))).
Thus, clearly, zG (0) = BkM. From the proof of the
previous case, since § has always different parity
than v, we get B

(ﬁtL)OO if v is odd
R B (8 even),
1,(0M) = Bt — DR (t— 1)R)® if yis even
(8 odd),

and the proof of (a) follows by using G instead of
F. Statement (b) follows in a similar way. [ |

The next lemma gives some properties of the
sequences in P, an Ps.

Lemma 5.2. Let § = ;..
ing statements hold.

. Bn_1 € Z. The follow-

(a) If Bd™ € P.. Then (Bd")>

are periodic of period n.

and (ﬁ'(d— 1)’y

(b) If Bd° € Ps. Then (Bd")>

periodic of period n.

and (Bd™)> are

Proof. By the minimality of ﬁdM we have that
SI(BdM) > BdM for j = 1,2,...
that (3d%)>

= n/k. Then Bd" = (6 ..

,n — 1. Assume
is periodic of period £ < n and set

Bg—1dl)™
(B1 - Boerd™)™ 1By .. Bgd™

= Bd™ < S"F(BdM) = By ... Br_1d™.

and, hence,
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In consequence i ... 0B,_1 is even and so

Bi...Br—1d” > Bi...Br_1(d — 1)F.
Since ﬁdM € P, then
By ... Beord"(B(d — 1)) (d—1))> € &.
Hence, by Proposition 2.7(a), we have that

(B1 - Berd™)" 1 Br . Bpa(d = 1) (B(d —
<Bre P (d—1)F .
1)%)%);

=S H(B(d - 1)F(B'(d -
a contradiction. The proof of statement (a) in the
case (B'(d — 1)) and statement (b) follow in a
similar way. [ |

1))

The next lemma studies the relation between
the periodic sequences in & and & and their shifts.

Lemma 5.3. The following statements hold.

(a) Let = (Br...0,)® € E. Then S7(8) > B*
forall j =1,2,...,n—1 where 3" is either 3

if Bj=d-...or B if B =d....

(b) Let B = (B1...5n)>° € &. Then S7(3) < 8
forallj=1,2,...,n—1.

Proof. We prove (a). Statement (b) follows in a sim-
ilar way. Let j € {2,...,n}. If 8,1 = d¥ for some
d € 7 then, by Proposition 2.7, since S7=1(3) >
and S7~1(B) # f the lemma follows in an obvi-
ous way. If Bj_1 = df for some d € Z, we have
SI71(B) > . Assume that S771(3) = §'. Then

n n

5j5j+1---é:zﬂ1..-5j_fﬂj...ﬂnﬂl...5j_1__,
=B1B2-- b By

and, hence, §] = (; = [1; a contradiction. This
ends the proof of (a). [ |

The proof of the following lemma follows by di-
rect computation.

Lemma 5.4. The following statements hold.

(a) Let f € U(I) be negative. If f(c) > c,
then k(f) = L*°. Otherwise k(f) = RS(k(f))
and there exists c— < ¢ < cy with f(c_) =
flex) = e¢. Then the following statements
hold.

(a.1) 8(x) = RL... if and only if v €
[inf I,c_).

(a.2) 8(x) = RR... if and only if x € (c_,c).

(a.3) (x) = LR... if and only if x € (¢,cy) .

(a.4) 8(x) = LL... if and only if v €
(c4,sup I].

(b) Let f € U(I) be positive. If f(c) < ¢, then
E(f) = L*. Otherwise k(f) = RS(k(f)
and there exists c— < ¢ < cq with f(c_) =

flex) = c¢. Then the following statements

hold.

(b.1) 8(x) = LR... if and only if x €
(cy,sup I].

(b.2) 8(z) = RR... if and only if x € (c,c4).
(b.3) 0(z) = LR... if and only if x € (c—,c).

(b.4) 0(x) = LL... if and only if © €
[inf I,c_).

Let I,J C R be two closed intervals. Let f :
I — I and g : J — J be two continuous maps.
We say that f is topologically conjugate to g if there
exists a homeomorphism h : I — J such that ho
f = goh. From [CE| (see also [dMvS]) we have
that if f € U(I) and g € U(J) are topologically
conjugate then k(f) = k(g).

The next proposition justifies the definition of
the x—operators in the case 3 empty.

Proposition 5.5. Let K € K and d € Z. Then the
following statements hold.

(a) There exist FF € A and J C R, a closed
interval containing 0, such that (F — d) |;
is unimodal with k((F —d) [;) = K and
Tp(0%) = dM % K.

(b) There exists FF € A and J C R, a closed
interval containing c,, such that (F —d) |j
is unimodal with k((F — d) |;) = K and
Ip(cp) =d° s K.

Proof. Let f € U(I) be negative such that k(f) =
K. Take e >0 and J = [—€,¢],and let h: [ — J
be the unique increasing map such that h(c) = 0
and h is affine in [min 7, ¢], [¢c,max I]. Let F' € A
be such that F(z) = ho foh~!(z) + d for each
x € J. Clearly, (F —d) | is topologically conjugate
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to f. Then k((F — d) ‘J) = k(f) = KiKy.... We
observe that since (F' — d) maps J into itself we
have that F(J) C J + d. Since F' € £ we have
that for all j > 1, F¥(J) C J 4+ jd. On the other
hand, since s((F — d)?(07)) = s(F’(07)) we get
that for all j > 1, s(F7(0%)) = Kj. Assume that
(F —d)(0) > 0, then f(c) > ¢ and, from Lemma
5.4, we have that k(f) = L. Since F(0) > d we
have that F7(0) € [0, €] + jd for all i > 0. Then for
all i > 1 we have d(F7(07)) = jd—(j —1)d = d and
1-(07) = dMx K. Now, assume that (F—d)(0) < 0.
Then f(c¢) < ¢ and, from Lemma 5.4(a), we have
that K1 = R. Since F'(0) < d we obtain that F'(0) €
[—€,0] + d. Then d(07) =d—1 and so Ip(0") =
(d—1)f... . Let j > 2. Assume that K; 1 K; =
RL. Then S772(k(f)) = 0(f~%(z)) = RL... for
x > f(c), close enough to f(c). From Lemma 5.4
(a.1) we have that f/~!(c) € [min I, c_) and, hence,
Fi=1(0) € [—€,h(c=)) + (j — 1)d. Moreover F7(0) €
(0, €]+ jd. Then d(F7=1(0%)) = jd—((j —1)d—1) =
d+1.1f K;_1K; = LL, then, Fi~1(0) € (h(cy), ¢+
( — 1)d and F7(0) € (0,¢] + id. So d(Fi=1(0%)) =
jd—(j—1)d =d. If K;_1K; = RR, then F/~1(0T) €
(h(c_),0)+(j—1)d and F7(0F) € [~¢,0)+7d. Thus,
d(F7=1(0%)) = (jd—1)—((j —1)d—1) = d. Finally,
if K;_1K; = LR then F/=1(0) € (0,h(cy)) + (j —
1)d, F7(0) € [—¢,0)+ jd. Therefore, d(F7~1(0%)) =
(jd —1) = (j —1)d = d — 1. From the definition of
*c we have that I(0%) = d™ x. K. Statement (b)
follows in a similar way. [ |

5.2.  Proof of Theorem A

We only will prove Theorem A for x.. The proof for
x5 follows in a similar way. Let v = 8d™ € P, and
K € K. We only will prove the statement in the
case 3 even. The case § odd follows analogously.
First we are going to prove that yx K € E.If B
is empty then this follows from P;oposition 5.5(&)_,
the definition of & and Theorem 2.6. Assume now
that 3 is not empty. We note that v x. L™ =
(gdL)OO and v xe R* = [B(d — 1)R(g’(d — 1)),
Since Bd™ € P. these two sequences belong to
Ee and we are done. Thus we can assume that
K ¢ {L>°, R*}. From Collet and Eckmann [CE] we
have thatK:RL... . Let ﬁ:ﬁlﬁg...ﬁn_l,K:
KiKy...and j = nm with m > 0. Then we have
Ve K = Bo(K1, d)x (K1, B)p(K2, d)x (K2, ) ... . It
is not difficult to see that, since K is maximal, then
o(K1,d)p(K2,d)... € AD is minimal. Therefore,

if K;,—1 = L then

Sj(l *xe K) = EQD(Km, d)X(Km,ﬁ)QD(Km—Ha d)...
2> e K

Otherwise,

57 (1 *e K) = EISO(Kma d)X(Kmyﬁ)(P(Km-i-ly d)...

> (yxe K)'

and, by Proposition 2.7(a), we are done. So, take
now j =nm+4p with m >0, 1 < p <n. Then we
have to compare

SI(y *e K)

= ﬁp—i—l e ﬁn—l(p(Kmv d)X(Kmyﬁ)QD(Km—Hv d) cee
:Q(P(Kmyd)X(Kmag)gp(Km—I—lad)”’ ) M
1

with
Y *e K
= Bl "'Bn—p—lﬂn—p---Bn—lcp(Klad)--- (2)
= Eﬂn—p cee Bn—l‘p(Kla d) cee e

Set

vt = { v ifﬂp:tLa

-\ T if By = th,
where ¢ € Z and (v * K)* =
U Bnp.- Bu19(Ki,d). ... By Proposition 2.7(a)
we have to show that S7(y xc K) > (7 xc K)*. Since
pdM e P., B(d — D)E(B'(d — 1)E)>, (Bd*)>® € &..
Therefore, by Proposition 2.7(a) and Lemma
5.3(a), for all 1 < p < n, we have

v(d — 1)R(ﬁ/(d - 1)R)Oo (3)
> Q*ﬂn—p s Bn—l(d - 1)R(§/(d - 1)R)OO

and
vd (Bd")>® > v By ... Bprdb(BdF)®. (4)

Clearly if v # v* then S/(y * K) > (7 * K)*
and we are done. So assume that v = v*. First we
consider the case v even. If o(K,,,d) = d* then
either d¥ > (,_, and, from (1) and (2), we see that
Sj(l *xe ) > (7 %< K)* or dl = Bn—p- In the latter,
since vd” is even, from (4) we have that

(Bd")>® > Bu_pi - - . Ba1d™(Bd")>;

a contradiction with Lemma 5.3(a). Now, let

O(Kpm,d) = (d — 1), From (3) we have

Brp < (d— 1.
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If Bp—p < (d — 1), then S7(y * K) > (y * K)*
by (1) and (2). So, assume that 8,_, = (d — 1)
Then v(d — 1) = v*(d — 1)® is odd and, from (3),
we have that

(B8'(d-1)")® < Buepir ... Buoa(d-1) (B (d-1)R).

We note that S"P((5(d Ny =

(ﬁn—p—i—l s ﬁn—l(d - 1)R51 s ﬁn—p)oo' There-
fore, if

5iﬂ2 cee 5n—1(d - 1)R
= ﬁn—P‘H ce ﬁn—l(d - 1)Rﬁi cee ﬁn—p

then, S"P((8'(d—1)%)>) = (#'(d—1)")> which is
a contradiction by Lemma 5.2(a). In consequence,

BiPa ... Bpo1(d— )R (5)
< 5n—p+1 B Bn—l(d - 1)Rﬂi o Bn—p

and, by (1) and (2), S7(y xe K) > (y % K)* if
O(Kmy1,d) = (d — 1)E (recall that o(K;,d) =
(d — 1)®). Now, assume that ©(K,,41,d) = d>. If

5iﬂ2 cee 5n—1 < 5n—p+1 cee Bn—l(d_l)Rﬂi cee Bn—p—l

then we also have 57 (y% K) > (yx<K)*. Otherwise,
since 3 is even, from (5), we have that

5iﬂ2 o 5n—1 = 5n—p+1 s Bn—l(d_l)Rﬂi oo Bn—p—l

and B,—p > dt.If Brn—p > d" then the statement
follows as above. Hence, ,—, = d’ and so

3152 Bprd”
= 5n—p+1 oo Bn—l(d - 1)R51 oo Bn—p—lﬂn—p-

This is a contradiction because the left hand side
of the above equation has different parity that the
right hand side. The case v odd is handled by anal-
ogy. This ends the proof of the first statement of
the theorem.

Now, we are going to prove that yx. is order
reversing. Let K,K' € K be such that K < K'.
Set K = K1K5... and K' = K| K}, .... Then there
exists n > 1 such that Ky...K,—; = K{...K]_,
and K, < K], if Ky...K,_1 is even and K,, > K,
if Ky...K,_1is odd. We will only consider the case
Ki...K,_1 even. The proof in the case odd follows
similarly. Then we have K,, = L < R = K],. As-
sume that 3 is not the empty sequence. Then 7 *,

K = Bdi'x(Ky,B)dE? ... x(K,_1,8)d5" ... and

K/ K/ !
v *e K' = Bt 1x(Kl,g)t22...X(Kn_l,ﬂ)t,[f”... .

Then
B x (K1, B)dy > ... X (K1, )
K! K/
:gtl1X(K17g)t22”’X(Kn—17g)v
A = @b = @ - DR and

Bdi* x (K1, B8)d5” ... x(Kn—1,5) is even. Then,
clearly, 7 *c K' < 7 *e K. Now, assume that @ is the
empty sequence. Then

_ Kl anl K
Z*GK_dl cody M dy
and
K! K/ _ /
v K = )t e
- K1 Kn-1,K/’
= dyt...d, "t

and the result follows as in the case [ not empty.
From the assumptions only one of the ?ollowing two
possibilities can occur: either K,_1K, = RL and
K] K] =RR,or K, 1K, = LL and K, K] =
LR. Assume that K,,_1K,, = RL and K| K] =
RR. Then df» = (d + 1)F and ti" = d and
Y *e K < 7 *xe K. Now, let K, 1K, = LL and
K' | K'! = LR. Then df» = d* and t5» = (d—1)F
and also, yx. K’ < yx K. This concludes the proof
of the second statement.

The third statement follows from Theorem
I1.2.7 of [CE]. | |

5.3. Remarks to Theorem A

In the preceding subsection we have shown that the
unimodal boxes 7 x. K and v %5 K are connected.
However, the topological structure of the spaces

E(7) = (7 %K) x &

(respectively

Es(v) = & x (v x5 K))

is much more complicated. We illustrate this
fact with the following examples. Let 7 =
0X1M. Then 7y % L® = (0¥1%)* and 7y *
RL>® = 001215 (0F15)>. Therefore, v * K =
[(OLlL)OO,OLORlLlL(OLlL)OO].

Example 1: the space E(vy) contains “accumulat-
ing” holes in &€ consisting of “horizontal lines”. Let
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a = (3F)® € &. Clearly [y RL®, y*L>®]x {a} C
E* C &. Let now a,, = (3%)"(— 1L)°° € &. Then
a, < o, < a forall n € N. Since S" (a,,) =
(—15)° < w for all w € v * K we have that for all
n €N, [yxe RL™, y%. L®] x {a,,} ¢ £. We also note
that d(a,, ) tends to 0 as n — oo.

Example 2: the “accumulating” holes in € consist-
g of “horizontal lines” are intertwined with “hori-
zontal lines” inside . Let 8 = (32> ¢ &;.
Then for all n € N, [yxe RL™, yxe L*] x {8 } C &
but d(a,,8,) = >, 3 = 5+ which tends to 0
when n — oo.

Example 3: there exists “rectangles” in
EN(y * K x B x5 K).

Let 8 = 3M. Then x5 L = (3%)> and x5 RL*™ =
3% (3%)°. It is not difficult to see that [y*e RL™, ke
L®] x [Bxs L, Bxs RL™®] C £.

6. Proof of Theorem B

In Subsection 6.1 we give some preliminary results
and prove Proposition 3.1 and in Subsection 6.2 we
prove Theorem B.

6.1. Preliminary results

We start by 1ntr0ducmg some technical rggults
about the sequences 15( ),1.(a),I5(a) and I, (a).
The following lemma is due to Alseda and Manosas
[AM].

Lemma 6.1. The following statements hold:

(a) If a = p/q with (p,q) = 1 then I (a) andI(;( )
are periodic with period q (i.e. SU(I.(a)) =

I(a) and S9(I5(a)) = I;(a)).

(b) Let a,b € R with a < b. Then[() I.(b),
Lya) < Ly(b). I(a) < L(b) and Lj(a) <
Ls(b).

From Theorem 2.6 and Proposition 2.7 we have
the following.

Lemma 6.2. Leta € R. ThenI5( ).1.(a) € & are
minimal and I5(a ),f:( ) € & are mazimal.

Lemma 6.3. Let a € R. Then €1(a) < €i(a)
e1(a)+1 and 61(a) —1 < §;(a) < d1(a) for all i >

Proof. We recall that €;(a) = E(ia) — E((i —1)a) =
E(a+ (1 —1)a) — E((i — 1)a). Then, from the fact
that E(z)+ E(y) < E(z+vy) < E(x)+ E(y)+1 for
all ,y € R, we have that €1(a) < ¢(a) < e€(a)+1
for all © > 1. In a similar way we can prove that
51(&) —1 < 52((1) < 51((1) for all ¢ > 1. |

<
1

The next lemma follows by direct computation.

Lemma 6.4. Let a € Z then €;(a) = d;(a) = a for
all v > 0.

Lemma 6.5. Let a € R. Then Ze(a),i:(a) € i)
and[(;( ) I ( )EEE(a)

Proof. From Lemmas 6.1(a) and 2.5, the fact that
€1(a) = 61(a) — 1 = E(a) = E(a) if a ¢ Z and
Lemma 6.3 the statement follows when a ¢ Z. If
a € Z, then from Lemma 6.4 we have that I, (a)

Is(a) = (a¥), I, (a) = (a+1)"(a’)™ and I;(a) =
(a — 1) (a*)>®. Since E(a) = a and E(a) = a — 1
the statement follows also in this case. |

We now have the following corollaries which will
be useful in the next section.

Corollary 6.6. Let a € R. Then I.(a), fg(a) €
Be(E(a)) and I5(a), I, (a) € Bs(E(a))).

Proof. 1t follows from Lemmas 6.5 and 6.2. |

Corol/l\arz 6.7. Let a € R. Then E/(\a) =
ot L@, @) = 751, (G(D@). Iife) =
miky ((D(@) and I () = 5ty (@ (D(@).

Proof. Let a € R. Then

¢i(a) = E(ia) — E((i — 1)a)
= E(i(D(a) + E(a))) = E((i = 1)(D(a) + E(a))))
= E(iD(a)) +iE(a) = E((i —1)D(a)) — (i = 1)E(a)
= E(iD(a)) - E((i = 1)D(a)) + E(a)
= €i(D(a)) + E(a).

7

If a ¢ Z, since E( ) = E(a) and D(a) = D(a)
we have that I.(a) = 7= (I.(D(a))). Other-
wise, by Lemma 6.4, I.(a) = (E(a)k)> and since
D(a) = 1 and E(a) = E(a) — 1 we get I (a) =
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wé(la)(ze(ﬁ(a))). Also, z(a) = wg(la)(f;(D(a))) if

a ¢ 7. Otherwise, . (a) = (E(a) + 1)L(E(a)l)> =
7TE(1 )(fk(D(a))). The other two cases follow in a
similar way. [ |

Lemma 6.8. Let a € Q* be with (p,q) = 1. Then
€q(a) = €1(a) + 1.

Proof. If ¢4(a) # €1(a) + 1 then, by Lemma 6.3, we
can assume that €,(a) = €1(a). Then, by Lemma

6.1(a), I.(a) = (e1(a)Pr(a)er(a)*)™. By Lemma
6.2,

ST (I (a)) =

I)\«)

(e1(a) e1(a)"r(a)™ > I (a).

Thus, by Lemma 6.3, e2(a) = €1(a) and, proceedlng
inductively, we obtain that I.(a) = (e1(a)l)>; a
contradiction by Lemma 6.1(a). [ |

Remark 6.9. In view of Lemmas 2.5 and 6.8, for a €
Q*, we can write

= e(a)lr(a)
= (e(a)r(a

= ((e1(a) + 1) r(a)e
= (e(a) + )Fr(a)((er

==
N N N/
— —r \%/ N—

The above observation already allow us to prove
Proposition 3.1.

Proor or PRrROPOSITION 3.1. We will only prove
that a ®c (1£)>® = I (a). The proof of the other
three statements follows similarly. From Corollary
6.7 and the definition of ®. we can assume that a €
(0,1]. Now, the statement follows directly from the
definitions if a ¢ Q*. If a € Q* the statement follows
from Remark 6.9 and the fact that €;(a) = 0. [ |

6.2. Proof of Theorem B

We start with a technical lemma.

Lemma 6.10. Let a = p/q € Q* be with (p,q) =1,
Then

(a) ei(a)’(er(a) + 1) r(a) > er(a) r(a)er ()"
(b) For 1< j<q—1 we have that

ej(a)’ .. eg1(a)”
e1(a)” ( 1(a) + 1rey(a)”.

> e(a)’r(a)e(a)”,

- ej-1(a)*

and

.. Ej_l(a)L

(c)
(e1(a)+1) er(a)Er(a) < (e1(a)+1)lr

(d) For 1< j <q—1 we have that
(@)’ eg-1(a)”
( )

(1() )L a)Fex(a) .. -6 1(a)t

< (e1(a) + D¥r(a)(e(a) + 1),

L .. Ej_l(a)L

Proof. Since, by Remark 6.9 and Lemma 6.2,
I3(a) = e1(@)"r(a)(e1 (@) (er(a) + 1) r(a)™
and is a minimal sequence we have

e1(a)"(e1(a) + 1)'r(a) > e1(a) r(a)er(a)".

If
er(a)-(e1(a) + 1)rr(a) = e (a)r(a)a (a)h,
then
I3(a) = er(a)’r(a)er(a) (e (a) + 1)F
er(a)l ...

a contradiction with the minimality of f;(a). This
ends the proof of (a). Now, we prove (b). Again by
the minimality of fg(a), for 1 < j <gq—1 we have

ej(a)t .. € 1(a)=er(a)r
(e1(a) + 1)Fea(a)™ ... ej_1(a)
> e (a)lr(a)e (a)r.

If in the above inequality the equality holds, we have

8§77 (L(a))

= Ej(a)L . eq_l(a)Lel(a)L

(e1(a) + DEex(a)t ... ej_1(a)lej(a)l ...
= e1(a)'r(a)er(a)’ei(a)”

<eala)r(a)ea(a)(aa) + Drr(a)... = Ls(a);

(a)(er(@)+1)".
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a contradiction. Hence,

Ej(a)L . eq_l(a)Lel(a)L
(e1(a) + D)Eex(a)t ... ej—1(a)t
> e1(a)lr(a)e (a)r.

Now, we prove the second part of statement (b).
Since by Remark 6.9 and Lemma 6.2

L(a) = (a(@) (@) (e (a) + ")

is a periodic minimal sequence of period ¢ then, for
1 < j < q—1, we have that S7=Y(I (a)) > I.(a).
Thus

Ej(a)L N eq_l(a)L
(e1(a) + 1) ¥er(a)rez(a) . .. ej_l(a)L
> e1(a)fr(a)(er(a) + 1)F.

Otherwise, the equality holds and so Sj_l(zg(a)) =
I, (a) with j < ¢; a contradiction. This concludes
the proof of statement (b). By using the sequences
f:(a) and Z(;(a) instead of fg(a) and ze(a), state-
ments (c) and (d) follow in a similar way. [ |

Proor or THEOREM B. We start by proving (a).
Assume that E(a) = k < E(b). From the definition
of O it follows that a ©®ca € ¥j and a®, 8 € EE(b)'
Then, if a ©. a = k¥ ..., clearly, a O a < a®cf.
If a ® a = (k+ 1)F... then, from the definition
of ®, it follows that a ¢ Q*. Moreover, from the
definition of I, (a) and Z;(a) (see also Lemma 6.4)
it follows that a = k 4+ 1 and a G a = zﬁ(kz +
1) = ((k + 1D)E)>®. Clearly, ((k + 1)F)>® < 4 for
each v € X, with m > k. This proves statement
(a) in this case. So, assume that E(a) = E(b).
By the definition of ©®., Corollary 6.7 and the fact
that TB(a) is order preserving we may assume that
E(a) = E(b) = 0 (that is, a, b € (0,1]). We consider
first the case a = b. If a ¢ Q* then, from Theorem
2.8, we have that Z;(a) < I.(a). Hence, for each
a € B0\ {(1")*}, a©ca = Lj(a) < L(a) =
a ® (1¥)>®. Therefore, a ©. a < a ®. 3 for each
a, 8 € B.(0). Take now a € Q* and set a=aas...
and 3 = B132.... Since o < 3, there exists k > 1
such that o ...ap_; = 51---_@3—1 and ap < [j.
Then a © a < a ®¢ § directly from the definition.
This ends the proof of statement (a) in the case
a = b. We note that in particular, from Proposition
3.1, we have proved that

Ii@)=a0 (0)® <ao.a<ao (19)® =TI (a)

for each a € B(0). Now we assume that a # b.
Take ¢ € (a,b) irrational. Then since I (c) = f:;(c)
(see Lemma 2.5 ), from Lemma 6.1(b) we get that
I(a) <I(c)= E(c) < fg(b). So, from above we
have

a®ca < I(a) < I;(b) <bo.B.

This concludes the proof of statement (a). State-
ment (b) follows in a similar way.

Now, we prove the first statement of (¢). With-
out loss of generality we may assume that a € (0, 1].
If a ¢ Q* then the statement follows from the defi-
nition of ®, and Lemma 6.2. Now, assume that a €
Q*. From Theorem 2.8 and Lemma 6.2 we also have
that a ®¢ (0Y)®,a ® (11)*® € B.(0) C &. There-
fore, we may assume that a ¢ {(0%)>,(1%)>}.
Since « is minimal, we have o = 0¥... . Indeed,
otherwise we have S"(a) > o = 1¥... for each
n > 0. Hence a = (1%)*; a contradiction. Conse-
quently, a ® a = 0%r(a)0*1% ... . To end the proof
of the first statement of (¢) we have to prove that
Si(a®ca) > aG.aforeach j > 1. Let o = ajas. ..
and a = p/q with (p,q) =1 and m > 1. Then

ST (a ®Oc a) = Amr(a)m+10mst - - - -

If o, = 1%, then @,, = 0% and, since « is minimal,
we have S9"(a ®¢ a) > a O a. If o, = 0F and
Qm = 17 then clearly, we are done. Now we look at

S0 O¢ @) = QO (@) Q1 Oy 1 - - - -

If a,,, = 17, obviously S™ 1 (a ©, a) > a O a.
Assume that a,, = 0. Then a,,&,, = 01 and
the desired inequality follows from Lemma 6.10(a)
(recall that we are assuming that a € (0,1] and
a € Q*; that is €1(a) = 0). Now, assume that 1 <
7 < q—1. Then

S(m—l)q—i-j—l(a Oc Q) = Ej(a)L .. eq_l(a)Lozm@m e

and, from Lemma 6.10(b), we get S~ Diti=1(q @,
a) > a ® a. This ends the proof of the first state-
ment of (c¢). The fact that p(a ®c a) = a follows
straightforwardly from the definition of ®,. and the
fact that p(I,.(a)) = p(fg(a)) = a. This ends the
proof of (c). Statement (d) follows in a similar way.

Now, we prove (e). Assume that a = p/q with
(p,q) =1 and set @ = ajag... and B = B3 .. .
Since a € Q* we have that E(a) = E(a) = ¢1(a).
Hence,

a@ca = el(a)Lf(a)alalf(a)a2@2 ..
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and

(e1(a) + 1)Er(a) 81 B1r(a)Bafa - - . -

Since a # (1%)* is minimal and B # (01) is
maximal, in a similar way as before we obtain that
o =0F... and 8 = 1¥... . Therefore a < f# and
(a®e)’ < a®;3. Moreover, since S™(a) < 3, we ob-
tain S"(a@Eg)_g a®s /3 in a similar way as above by
using Lemma 6.10(c) instead of Lemma 6.10(a) and
Lemma 6.10(d) instead of Lemma 6.10(b). On the
other hand, from S™(3) > a and Lemma 6.10(a)-
(b) we obtain S™(a ®s 3) > a @ a. Then statement
(d) follows from the definition of £* C &. [ |

a®s B =

6.3. Proof of Proposition 3.3

We need three preliminary results. The next lemma
follows easily.

Lemma 6.11. Let o = ajaz...,3 = a1ff2... €
AD be such that a < 3. Then the following state-
ments hold.

(a) If oy = d* then S(a) < S(B).
(b) If ay = df then S(a) > S(B).

The following proposition characterizes the se-
quences in P, and Ps.

Proposition 6.12. The following statements hold.

(a) Let B8 € E be such that v = Bd™ is minimal

satzsfymg that if S~ 1( ) = qR . for some

=0,1,...,|]7] = 1, then S7(y) > +'. Then

there exists F € A such that 1(0)
over 7y € Pe.

=7. More-

(b) Let B € E be such that v = Bd° is mazimal.
Then there exists F' € A such that ZF(CF) =
7. Moreover v € Ps.

Proof. We will prove statement (a). Statement
(b) follows similarly. The strategy of the proof
will be to construct effectively a map F € A
such that Iz(0) = 7. We proceed as follows. Set

= dj*d3?. ds" 1d8” with s, = M. Let k € Z
be such that max{|d |:i=1,...,n} < k and let

€ (0,1). Now, for j = 0,1,...n — 1, we choose
points z(57(7)) € [0,1) such that

L. z(y) =0,

2. if for j = 1,...,n — 1 we have $771(y) =
dL . (respectively S771(y) = df...) then
(S (7)) € (0,¢) (respectively x(57(y)) €

(¢ 1))

3.if for ¢« # 7, 4,7 € {1,2,...,n — 1} we
have x(S*(y ), z(S7(v)) € [0, ) (respectively
2(5°(7)),2(57(7)) € (¢, 1)), then z(5'(7)) <
x(57(y)) if and o l}; if (1) < §7(y) (respec-

n
tively S%(y) > S9(

We note that, by the minimality of 7, we have
z(y) < (57(y)) for j = 1,2,,...n — 1. Therefore
we can write

z(y) < 2(871 (7)) <
TS () < e < 2(SHH(y)) < ...
< z(S91(7)).

Then we set jo = 0 and we take F' € £ such that
F(c) = k, F(z(5(y)) = x(S" (7)) + dj41 if
gt #n—1, F(#(S""*(y)) = dyn and F is affine in
[£(S7 (7)), &(S7+1 (7))] for t € {0, 1,...,n — 1}\{k}
and in [z (Sjk(_)), c] and [e, :1:(5““(1))]. Now,
we claim that FF € A. To prove it note that
F(c) = k > F(z(S(y)) for j = 0,...,n — 1.
Then F’[x(sjk(,y))7c} is strictly increasing and

F|[C’x(sjk+1(l))} is strictly decreasing. Let ¢t be
such that [2(57(7)),z(S7*1(y))] C [0,¢). We
. s 1 S 41 .
hav(-e Sit(y) = d]zf:l < d]Zfll_H o= STL(y).
If either d]t+1 < d]t+1+1 or d]t+1 = dj;+1+l and
Sj41 < Sj.+1, then clearly F(2(S7(y))) <
F(z(S7+1(y))). Now, assume djzfll = djzt:lf:ll
From Lemma 6.11 we have that either
Sittl(y)y < Sitl(y) if s,y = L or

~
Sittl(y) > Sititl(y)7if s, = R. In both
cases x(S7t1(v)) <  x(Si+1tl(y)) and, in
consequence, F(z (S8 (y)) < F_(x(Sth(l))).
Thus F\ (S9(1)) (5741 (1)) is  strictly  in-
creasing. In a similar way we can prove
that if [2(57(7)),z(57*1(7))] C (¢, 1) then
F][I(Sjt(l))’x(SjHl(l))] is strictly decreasing. To
end the proof of the claim we have to prove that
F(z(Sm=1(v))) > F(1). Since z(5"-1(y)) € (¢, 1)
we have that S-171(y) = dﬁ,l---- Then
Sin=1(y) > o', If either d;,_,41 > (dy + 1) or
djn71+1 = (dl + 1) and Sjp_1+1l = R > L = s; then,
since FI(1) = F(0) +1 = z(5(y)) +di + 1 and
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F(z(Sm=1(7))) = x(S71*1(y)) +dj,_,+1, we have
that F(z(S/m-1(v))) > F(1). On the other hand,

assume that dji’:ﬂ: = (d1 + 1)**. We obtain that
F(x(S97-1(v))) > F(1) as above by using Lemma
6.11. This ends the proof of the claim. Lastly,
we have I, 7(0) = 7 by construction. Also, from
Lemma 5.1(a) we have that 7 € Pe. This ends the

proof of the proposition. [ |

The next lemma characterizes the periodic se-
quences in B(0) and B;(0).

Lemma 6.13. The following statements hold.

(a) Let a € B(0)\{(0%)>®, (1¥)>} be periodic.
Then o = (0% B15)> for some B € E.

(b) Let a € Bs(0)\{(0%)>®, (1X)>°} be periodic.
Then o = (1280%)> for some 3 € E.

Proof. Clearly a is of the form (d¥8d%)> with 3 €
=. Assume that d; = 1. Since « is minimal we have
that @ = 1%... < S7(a) for all j. Then S7(a) =
1% ... for all j and, in consequence, o = (1)>°;
a contradiction. Hence d; = 0. Now, assume that
dn = 0. Then o = (0£B0%)>. If B is the empty
sequence then o = (0%)*; a contradiction. Now
assume that ( is not the empty sequence and set
B =B2...08,—1. Since o is minimal o = 0LBy... <
0L0% B, ... = S Y(a). Thus B2 = 0F. Proceeding
inductively we obtain that 3; = 0 fori =2,...,n—
1. Thus a = (01)%°; a contradiction. This ends
the proof of (a). Statement (b) follows in a similar
way. |

Proor or ProproOSITION 3.3. We will only prove
statement (a). Statement (b) follows in a similar
way. The fact that a ®5 a is not periodic when
a ¢ Q and when a € Z is periodic if and only if
a = (1) follows from the definitions of ®, and of
the sequences E(a) and I (a). The third statement
follows directly from the definitions. Now we prove
the last two statements. Assume that a € Q*. If
a = (1%)® then a O, « is periodic by Proposition
3.1 and Lemma 6.1(a). Moreover if a = p/q with
(p,q) = 1 then a ©5 a = (e1(a)lea(a)t ... ey(a))™.
Let a € B.(0)\{(1¥)>®}. By Lemma 6.13(a) we get
a = (0Fay... a,_117)>. Without loss of generality
assume that E(a) = 0. Then

a®ea = (05r(a)0F 1 r(a)ay . . . 7(a)ap_10p—17(a)17)%®

is periodic. Now, let

v = 0Lr(a)of1tr(a)ay . . M

.r(a)ap—10p_1r(a)l

Clearly, a ©c @ = v ¢ L*. Since, from Proposition
4.6(b) of [AF], 0Lr(a)1™ is a minimal sequence, by
using Lemma 6.10(a)—(b), we have that ~ is a mini-
mal sequence (note that €;(a) = 0). Then by Propo-
sition 6.12 (a) we have that v € Pe. [ |
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