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Abstract

In this paper we propose a calibration algorithm, by using a consistent
family of yield curves, that fits a Gaussian Heath–Jarrow–Morton model
jointly to the implied volatilities of caps and zero-coupon bond prices. The
calibration approach is evaluated in terms of in-sample data fitting as well
as stability of parameter estimates. Furthermore, the efficiency is tested
against a non-consistent traditional method by using simulated and market
data. Also we discuss the convergence of the algorithm by means of Monte
Carlo simulations.1

1This work has been partially supported by the grant number GV05/280 from the General-
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1 Introduction

Any acceptable model which prices interest rate derivatives must fit the
observed term structure. This idea pioneered by Ho and Lee [16], has been
explored in the past by many other researchers like Black and Karasinski
[11] and Hull and White [17].

The contemporary models are more complex because they consider the
evolution of the whole forward curve as an infinite system of stochastic
differential equations (Heath, Jarrow and Morton [15]). In particular, they
use a continuous forward rate curve as initial input. In reality, one only
observes a discrete set composed either of bond prices or swap rates. So,
in practice, the usual approach is to interpolate the forward curve by using
splines or other parametrized families of functions.

A very plausible question arises at this point: Choose a specific para-
metric family, G, of functions that represent the forward curve, and also
an arbitrage free interest rate model M. Assume that we use an initial
curve that lies within as input for model M. Will this interest rate model
evolve through forward curves that lies within the family? Motivated by
this question, Björk and Christensen [8] define the so–called consistent
pairs (M, G) as those whose answer to the above question is positive. In
particular, they studied the problem of consistency between the family of
curves proposed by Nelson and Siegel [22] and any HJM interest rate model
with deterministic volatility, obtaining that there is no such interest model
consistent with it.

We remark that the Nelson and Siegel interpolating scheme is an im-
portant example of a parametric family of forward curves, because it is
widely adopted by central banks (see for instance BIS [3]). Its forward
curve shape, GNS(z, ·) is given by the expression

GNS(z, x) = z1 + z2e
−z4x + z3xe−z4x,

where x denotes time to maturity and z the parameter vector

z = (z1, z2, . . . ).

Despite all the positive empirical features and general acceptance by the
financial community, Filipović [14] has shown that there is no Itô process
that is consistent with the Nelson-Siegel family. In a recent study De
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Rossi [13] applies consistency results to propose a consistent exponential
dynamic model, and estimates it using data on LIBOR and UK swap rates.
On the other hand, Buraschi and Corielli [12] add some results to this
theoretical framework indicating that the use of inconsistent parametric
families to obtain smooth interest rate curves violates the standard self
financing arguments of replicating strategies, with direct consequences in
risk management procedures.

In order to illustrate this situation, we describe a very common fixed-
income market procedure. In the real world, practitioners usually re-
estimate yield curve and HJM model parameters on a daily basis. This
procedure consists of two steps:

• They fit the initial yield curve from discrete market data (bond prices,
swap rates, short-term zero rates).

• They obtain an estimate of the parameters of the HJM model, mini-
mizing the pricing error of some actively traded (plain vanilla) interest
rate derivatives (commonly swap options or caps).

In contrast with the parsimonious assumption that model parameters are
constant, an unstable HJM model parameter estimation is often observed.
Perhaps, this fact is not relevant for mark to market, but it could have
practical consequences on the hedging portfolios associated with these fi-
nancial instruments. It must be remembered that such dynamic strategies
depend on the model assumptions. Thus, re-calibration is conceivable be-
cause the practitioners are aware of model risk. A particular HJM model
is not a perfect description of reality, and they are forced to re-estimate
day to day model parameters in order to include new information that
arrives from the market. On the other hand, unstable estimates may be
caused by reasons that are more theoretical, because the above mentioned
set-up does not take into account that HJM model parameters are linked,
in general, to the initial yield curve fit parameters. If a practitioner uses
an interpolation scheme which is not consistent with the model, then the
parameters will be artificially forced to change. Thus, it seems there are
a plethora of motivations for the study of the empirical evidence and the
practical implications that are predicted by a consistent HJM build model.

The consistency hypothesis stated by Björk, implies that the zero coupon
bond curve has to be determined at the same time as the parameters of
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the model. In [1] and [2], Angelini and Herzel, propose the use of an op-
timization program related to the mentioned daily calibrations, which is
compatible with this joint estimation. The milestone of this methodology is
the use of an objective function based on an error measure for just the caps
portfolio. Then, the theoretical prices for the caps along the minimization
of this measure can be calculated at the same time that yield-curve is fit-
ted. This is an efficient method because consistent families of yield-curves
behave well in a Gaussian framework.

The purpose of this work is to extend the above strategy to a more
general framework. It modifies the objective function mentioned, by taking
into account the error measure for the discount bonds estimation. To this
we add an objective function using a convex combination of the cap and the
bond error measures, by means of a fixed parameter. As a matter of fact,
this approach is richer in possible outcomes. We also test the robustness
of this extension by using Monte-Carlo Simulation.

To this end, we restrict ourselves to a particular humped volatility HJM
model, proposed by Mercurio and Moraleda [20] and Ritchen and Chuang
[23] independently. We will discuss this formalization and give some the-
oretical results relevant to our analysis. We chose this model because
it is quite popular and analytically treatable. In particular, it provides
closed formulas for Europeans caps. Moreover, it is the one-factor Gaus-
sian model that seems better able to reproduce the humped shape of the
implied volatility term structure for caps, that the normal market scenar-
ios usually depict. Moreover, it is also the most flexible in other market
conditions. We perform our study by calibrating this model, first by using
simulated data and second by a market data set composed of the Euro and
US discount factors and the cap at-the-money flat volatilities quotes in two
different periods, as shown by the Figure 1 for the particular case of the US
market. For both Euro and US markets, the first scenario depicts a normal
fixed-income market scenario, the term structure of implied volatilities for
caps (hereafter TSV) have humped shape and the term structure of interest
rates (hereafter TSIR) is decreasing in the short term with a local mini-
mum, and then it increases to mid-long term maturities –spoon-shaped.
On the other hand, a second period may be considered a volatile period
with a TSV monotonically decreasing, and with a higher overall implied
volatility and a TSIR monotonically increasing without local minimum. To
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our knowledge this is the first attempt to extend the search for empirical
evidence to the US–market data.

This paper is organized as follows. In Section 2 we give a brief overview
of the model and present in this context the option valuation and the
construction of the consistent families with the model. In Section 3 the
calibration procedure is described. Section 4 is devoted to empirical results,
first comparing the consistent calibration algorithm to the non-consistent
approaches with simulated data, then presenting the results of the fitting
of the different models with market data. In the last section we give some
final conclusions and remarks.

2 The Model

Let W be a one dimensional Wiener-Einstein stochastic process defined
in a complete probability space (Ω,F , P ).

Single factor Heath-Jarrow-Morton [15] framework is based on the dy-
namics of the entire forward rate curve, {rt(x), x > 0}. Thus, under
Musiela’s [21] parametrisation it follows that the infinite dimensional dif-
fusion process given by{

drt(x) = β(rt, x)dt + σ(rt, x)dWt

r0(x) = r∗(x),
(1)

where {r∗(x), x ≥ 0}, can be interpreted as the observed forward rate
curve.

The standard drift condition derived in Heath, Jarrow and Morton [15]
can easily transferred to the Musiela parametrisation (see, for instance,
Musiela [21]),

β(rt, x) =
∂

∂x
rt(x) + σ(rt, x)

∫ x

0
σ(rt, s)ds.

Thus, a particular model is constructed by the choice of an explicit volatil-
ity function σ(rt, x).

Our work is devoted to a Gaussian humped volatility model where

σ(rt, x) = σ(x) = (α + βx)e−ax,

i.e. σ is a deterministic function depending only on time to maturity, and
then rt(x) is a Gaussian process.
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Finite Dimensional Realizations of Gaussian Mod-

els

It should be also noted that σ(x) is a one dimension quasi-exponential
function (QE for short), because it is of the form

f(x) =
∑

i

eλix +
∑

i

eαix[pi(x) cos(ωix) + qi(x) sin(ωix)],

with λi, αi, ωi being real numbers and pi, qi are real polynomials.
It is well-known that if f(x) is a m-dimensional QE function, then it

admits the following matrix representation

f(x) = ceAxB,

where A is a (n×n)-matrix, B is a (n×m)-matrix and c is a n–dimensional
row vector (see Lemma 2.1 in Björk [5]). Thus, σ(x) can be written as

σ(x) = ceAxb, where (2)

c = [α β − aα],

A =

[
0 −a2

1 −2a

]
,

b =

[
1
0

]
.

By means of Proposition 2.1 in Björk [6] we can write the forward rate
equation (1) as:

dqt(x) = Fqt(x) dt + σ(x) dWt, q0(x) = 0 (3)

rt(x) = qt(x) + δt(x), (4)

here F is a linear operator that is defined by

F =
∂

∂x
,

and δt(x) is the deterministic process given by

δt(x) = r∗(x + t) +
∫ t

0
Σ(x + t − s) ds,

with Σ(·) = σ(·)
∫ ·
0 σ(s) ds. Moreover, qt(x) has the concrete finite dimen-

sional realization

dZt = AZt dt + b dWt, Z0 = 0, (5)

qt(x) = C(x)Zt, (6)
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because σ is a QE function (see, for instance, Proposition 2.3 in Björk
[5]) with A, b as in (2) and C(x) = ceAx. Thus, (5) is a linear SDE in
the narrow sense (see Kloeden and Platen [19] for details) with explicit
solution

Zt = Φt

∫ t

0
Φ−1

s b dWs, (7)

where

Φt = eAt = e−at

[
1 + at −a2t

t 1 − at

]
.

Now, with the definition of S(x) =
∫ x
0 σ(u)du, it is easy to obtain that∫ t

0
Σ(t + x − s) ds =

1
2

[
S2(t + x) − S2(x)

]
,

and, therefore, combining these explicit results with decomposition (4) we
arrive at the operative expression

rt(x) = r∗(x + t) +
1
2

[
S2(t + x) − S2(x)

]
+ C(x)Zt. (8)

The most striking feature of the result sketched in (8) is that, starting from
the initial forward curve r∗(x), it allows the use of the Monte Carlo sim-
ulation of future forward curves produced by this HJM particular model.
On the other hand, as we will show later, equation (8) can also be used to
build the initial forward rate curve r∗(x). It must be remembered that it
is consistent with the dynamics of the model.

Interest Rate Option Pricing

To calibrate the model by means of real data, we actually need to de-
termine the vector parameter θ = (α, β, a). In order to estimate the
forward rate volatility, the statistical analysis of past data is a possible ap-
proach, but the practitioners usually prefer implied volatility, lying within
some derivative market prices, based techniques. This strategy involves a
minimization problem where the loss function can be taken as

l(θ) =
n∑

i=1

(ζ∗i − ζ(θ, Ti))2,

where ζ(θ, Ti) is the i–th theoretical derivative price maturing at time
t = Ti, and ζ∗i ≡ ζ∗(Ti) is the i–th market price. As is well known, see
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Proposition 24.15 and pages 364–366 in Björk [4], the price, at t = 0, of
the cap is given by

ζ(T ) = (1 + τK)

n−1∑
j=0

κD(xj)N(−d+) − D(xj+1)N(−d−)

 , (9)

where

d± =
ln D(xj)

κD(xj+1) ±
1
2ϑ2(xj)

ϑ(xj)
, (10)

the interval [0, T ] is subdivided with equidistant points, i.e.,

xj = (j + 1)τ j = 0, 1, . . . , n; (11)

D(·) is the initial discount function; and κ equals to (1 + τK)−1 with K

denoting the cap rate.
The variable ϑ in (10) is intimately related with the concrete multifactor

Gaussian HJM model realization via the particular [A, B, c] forward rate
TSV selection:

ϑ2(xj) = M(xj)F (xj)M ′(xj),

where M(xj) is the matrix

M(xj) = cA−1
(
eA(xj+τ) − eAxj

)
,

and F (·) satisfies

F (·) =
∫ ·

0
e−AsBB′e−A′sds.

Although the inversion of the matrix A, the series expansion of eAx, re-
veals that M is not a singular matrix even for small values of parameter
a. This result is also true for other Gaussian HJM models built from QE
forward TSV families, because the matrix elements of A are, fortunately,
polynomial functions of the model parameters. However, due to numeri-
cal instability of the calibration process, when a → 0, an asymptotically
equivalent expression for ϑ must be used.

The equations (9) and (10), also express the effective influence of ab

initio yield curve estimation on cap pricing.
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Consistent Curves with Gaussian Models

If we want to measure the actual impact that alternatives to the Nelson-
Siegel yield curve interpolating approach produces on derivatives pricing
and hedging, we need to determine consistent families for this particular
model. The fundamental results can be found in Björk and Christensen [8]
in more detail. We adapt some of them to our Gaussian case study without
further technical discussion for the general case.

Definition 1. Consider the space H is defined as the space of all C∞-
functions,

r : R+ → R

satisfying the norm condition:

||r||2 =
∞∑

n=0

2−n

∫ ∞

0

(
dnr

dxn
(x)

)2

e−γx dx < ∞

where γ is a fixed positive real number.

As proved by Björk and Svensson [10] in Proposition 4.2, this space H
is a Hilbert space.

Theorem 1. Consider as given the mapping

G : Z → H

where the parameter space Z is an open connected subset of Rd, H a Hilbert
space and the forward curve manifold G ⊆ H is defined as G = Im(G).
The family G is consistent with the one-factor model M with deterministic
volatility function σ(·), if and only if

∂xG(z, x) + σ(x)
∫ x

0
σ(s)ds ∈ Im [∂zG(z, x)] , (12)

σ(x) ∈ Im [∂zG(z, x)] , (13)

for all z ∈ Z.

The statements 12 and 13 are called, respectively, the consistent drift
and the consistent volatility conditions. These are easy to apply in con-
crete cases as shown by Björk and Christensen [8] or De Rossi [13], among
others. For the particular one-factor model we consider throuhgout this
work, Proposition 7.2 and 7.3 in Björk and Christensen [8] may be directly
applied to get the useful result:
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Proposition 1. The family

Gm(z, x) = (z1 + z2x)e−ax + (z3 + z4x + z5x
2)e−2ax, (14)

is the minimal dimension consistent family with the model characterized by
σ(x) = (α + βx)e−ax.

Moreover, it should also be noted that augmented families related with
(14) can be constructed by adding to Gm an arbitrary function φ, that is,
the map

G(z, x) = Gm(z, x) + φ(z, x),

is also consistent with this model.
There is an alternative way to justify (14) focusing on forward rate

evolution deduced at (8), and to get an insight on how the Monte-Carlo
procedure is implemented, we describe it next. By the definition of S(x),
we have that S′(x) = σ(x). Then it is easy to derive that deterministic
term 1

2

[
S2(t + x) − S2(x)

]
is of the form

g1(t)e−2ax + g2(t)xe−2ax + g3(t)x2e−2ax + h1(t)e−ax + h2(t)xe−2ax.

On the other hand, the explicit expansion of stochastic term C(x)Zt

ceAx

[
Z1

t

Z2
t

]
= e−ax [α β − aα]

[
1 + ax −a2x

x 1 − ax

][
Z1

t

Z2
t

]

= e−ax
(
αZ1

t − aαZ2
t + βZ2

t

)
+ xe−ax

(
βZ1

t − aβZ2
t

)
,

and the forward rate evolution becomes

rt(x) = r∗(x + t) + g1(t)e−2ax + g2(t)xe−2ax + g3(t)x2e−2ax+(
h1(t) + αZ1

t − aαZ2
t + βZ2

t

)
e−ax +

(
h2(t) + βZ1

t − aβZ2
t

)
xe−ax.

(15)

From (15) we see that a family which is invariant under time translation
is consistent with the model if and only if it contains the linear space
{e−ax, xe−ax, e−2ax, xe−2ax, x2e−2ax}. Consequently, to make a consistent
version of a translation invariant family φ(z, x) it is enough to add Gm(z, x).

The following concluding remarks about the families used throughout
this work should now be clear:

10



• The Nelson-Siegel family (henceforth NS)

GNS(z, x) = z1 + z2e
−z4x + z3xe−z4x,

is not consistent with the model.

• The family

Gm(z, x) = (z1 + z2x)e−ax + (z3 + z4x + z5x
2)e−2ax,

is the lowest dimension family consistent with the model (hereafter
MC).

• The family

GANS(z, x) = z1 + z2e
−ax + z3xe−ax + (z4 + z5x + z6x

2)e−2ax,

is the simplest adjustment based on restricted NS family that allows
model consistency (hereafter ANS).

3 Calibration to Market Data Approaches

The calibration procedures can be described formally as follows. Let
θ be the vector (α, β, a) of parameter values for the model under con-
sideration. Assume that we have time series observations of the implied
volatilities, σB

i , of N caps, with different ATM strikes, Ki, and maturities
Ti with i = 1, . . . , N, here N = 7. Suppose that at time t = 0 we are also
equipped with the discount function estimation, D(x), and that the mar-
ket participants translate volatility quotes to cash quotes adopting Black

framework. In doing so, they adopt the convention that Ki quantities must
match forward swap rates of the interest rate swaps (IRS) with same reset
periods that the i-th cap (these IRS start their cash flows at t = x0 + τ as
the corresponding cap and have no cash value at t = 0):

Ki =
D(τ) − D(Ti)
τ

∑n
j=1 D(xj)

, (16)

where τ is the length of the underlying caplets, and x1 = 2τ, . . . , xn = Ti.
The derivation of the formula (16) can be found, for example, in Björk [4]
(Proposition 20.7 on page 313).
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Now, by inspection, it is clear that this market convention means that
Ki depends on the yield-curve estimation. It allows us to denote market
prices of caps with ζ∗(Ti, D(x), Ki(D(x)), σB

i ). This last expression empha-
sizes explicit and implicit dependence (through ATM strikes) on discount
function estimation even for market prices. Let ζ(Ti, D(x),Ki(D(x)), θ) be
the corresponding theoretical price under our particular model.

The Two-Step Traditional Method

First, we choose a non-consistent parametrized family of forward rate
curves G(z, x). Let D(z, x) be the zero-coupon bond prices reported by
G(z, x). Let D∗

k be the corresponding discount factor observations on ma-
turities xk with k = 1, . . . , M = 11. For each zero-coupon bond denoted
with subscript k, the logarithmic pricing error2 is written as follows

εk(z) = log D∗
k − log D(z, xk).

Then, we have chosen in this work the sum of squared pricing errors, SSE,
as objective function to minimize:

SSED = min
z

‖ log D∗ − log D(z, x)‖2 = min
z

M∑
k=1

ε2k(z). (17)

Now, via the least squares estimators ẑ, an entire discount factor estima-
tion allows us to price the caps using market practice or a HJM model.
Following a similar scheme for the derivatives fitting to that used at the
bond side we have

εi(θ) = log ζ∗i − log ζ(θ, Ti).

and

SSEC = min
θ

‖ log ζ∗ − log ζ(θ, T )‖2 = min
θ

N∑
i=1

ε2
i (θ), (18)

where we have suppressed dependencies for simplicity. Note that yield-
curve estimation is external to the model in the sense that there is no need
to know beforehand any of the model parameters θ for solving non-linear
program (17).

2Recall that, for small εk, it is also the relative pricing error D∗
k−D(z,xk)
D(z,xk) .
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The Joint Calibration to Cap and Bond Prices

Let us now describe in detail the joint cap-bond calibration procedure
which makes sense in a consistent family framework. We note that in this
situation the parameters of the model are determined together with the
initial forward rate curve. This is different from the traditional fitting of
HJM models, where the two steps are separate, as we discussed before.

From expression (14), we notice the dependency of the family from the
parameter a. Let G(z, x, a) be a family consistent with our model (for
instance, Gm and GANS) and define least-squares estimators, ẑ(a)

ẑ(a) = arg min
z

M∑
k=1

(log D∗
k − log D(z, xk, a))2. (19)

From the expression

log D(z, xk, a) = −
∫ xk

0
G(z, s, a) ds =

np∑
j=1

Mkj(a)zj ,

we note that, for consistent families and for a fixed a, the problem (19)
is linear in z-parameters (for the Gm family np = 5, and for the GANS

family np = 6). Thus, ẑ is an explicit and continuous function of a. With
yield-curve estimation implemented for every fixed a, the entire discount
function D(ẑ(θ), x, a) may be determined and it could be thought that the
estimates θ̂ have to be found by solving the non-linear program

SSEC =min
θ

‖ log ζ∗ [D(ẑ(θ))] − log ζ [D(ẑ(θ), θ, T )] ‖2 =

=min
θ

N∑
i=1

ε2
i (θ).

(20)

However, following the latter program we are not sure that the correspond-
ing yield-curve at the minimum θ̂, D(ẑ(θ̂), x, θ̂), was the optimal value of
the sequence of yield curve estimations implicit in this program (20). In
other words, there exist reasonable doubts about the convergence of this
algorithm because both error measures compete in general. Now, we con-
sider the following decomposition for the total loss function SSE(θ)

SSED(θ) = ‖ log D∗ − M(θ)ẑ(θ)‖2, (21)

SSEC(θ) = ‖ log ζ∗ [D(ẑ(θ))] − log ζ [D(ẑ(θ)), θ, T )] ‖2. (22)
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Then, as an heuristic solution, we propose to modify the latter program to
include pricing residuals for the discount through the convex combination

SSEλ = min
θ

((1 − λ) SSED(θ) + λ SSEC(θ)) , (23)

for some fixed λ ∈ [0, 1].
At this point, note that the program used by Angelini and Herzel [1, 2]

in their works uses a different goal attainment

SSE = min
θ

SSEC(θ) (24)

where SSEC(θ), and ẑ(a) are defined via the identities (20) and (19). As
a consequence, the program used by these authors is a degenerate case of
(23) with λ fixed equal to 1.

We test the robustness of this fitting algorithm for the MC family by
using 1000 extractions from three independent uniform distributions as ini-
tial guesses for the parameters, θ(0). As representative input data, (D∗, ζ∗),
we use the sample mean along the first 75 trading dates of the second (ex-
cited) period under study. Figure 2, shows the sample mean of the 1000
paths generated by the algorithm for SSEC(θ(k)) and first contribution,
SSED(θ(k)), departing from simulated θ(0). After the initial movements
in the wrong direction, first contribution corrects its behaviour for finding
its own minimum. Moreover, the second contribution exhibits a correct
minimization pattern. Note the slightly better results on both sides with
smaller λ. Similar results can be obtained with the ANS family and other
market scenarios.

4 Empirical Results

We compare three different estimations of initial yield curve based on
Nelson-Siegel family, MC and ANS.

Our first objective is to test the stability of the implicit estimation
of the model parameters θ. We consider mean, standard deviation and
coefficient of variation of parameter estimates time series. In this context
the main goal is to analyze the impact that an alternative interpolation
scheme has on the fitting capabilities of the model. To this end, we use as
a measure the mean of the daily sum of squared errors of derivatives log
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prices, hereafter MSEC . The same measure is used for the zero-coupon
bond prices (we denote it with MSED) and it is included in the analysis
with the market data.

The US data set consists of 150 daily observations divided into two
periods: first period covers from 1/1/2001 to 13/4/2001 (75 trading dates)
and the second one starts in 15/3/2002 and finishes on 27/6/2002 (75 trad-
ing dates). The Euro denominated set used for the analysis consists of 100
daily observations from 15/2/2001 to 4/7/2001. We point out that this
Euro zone database is the same used in Angelini and Herzel [1, 2]. Like
these authors, we divide the sample into two subperiods, Period 1 and Pe-
riod 2. Period 1 runs from the beginning to 19/4/2001 (46 observations)
and it is characterized by a humped implied volatility term structure. Pe-
riod 2 goes from 20/4/2001 to the end (54 observations) and presents a
decreasing implied volatility. The data set are composed of US and Euro
discount factors for thirteen maturities (3, 6 and 9 months and from 1 to
10 years) and of implied volatilities of at-the-money interest rate caps with
maturities 1,2,3,4,5,7,10 years. The data basis is provided by Datastream
Financial Service. The simulated data was obtained from 360 extractions
from the model of bond and cap prices under identical contractual features.

Simulations

We simulate, departing from alternative initial conditions r∗(x), the
forward curve until the time t attainable by this model. We accomplished
this by working out the expression (15), and writing the explicit formula
for the stochastic as well as the deterministic coefficients which are actually
variable in time evolution: the aforementioned gi(t), Zi

t and the additional
ones coming from initial curve translation, r∗(x+ t). Now, it is possible to
compute the prices of a set of zero-coupon bonds using exact integration of
rt(x) over cross-sectional variable x at a fixed time t, and then, the prices
of the seven caps with formula (9).

The fixed model parameters, θ = (0.002, 0.007, 0.35), have been chosen.
This particular choice has a similar order of magnitude as the empirical
estimations for this model reported by Angelini and Herzel [2]. As alterna-
tive initial curves, we choose MC, ANS and NS fitted to the zero coupon
bond prices shown in Figure 3.
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Starting from the initial fitted curves, which may be denoted with
r∗m(x), r∗ANS(x) and r∗NS(x), and according to (8), the corresponding three
different model evolutions are calibrated to MC, ANS and NS. In order
to make calibration results more comparable, Monte Carlo simulations are
built in from identical random sequence (Z1

t , Z2
t ) in all three cases.

Following the expression (8), it is easy to observe that there are two
consistent families, Gm and GANS , for the first simulation E1, just one,
GANS , for the second simulation E2, and none for the last simulation E3.
Figure 4 shows main consequences of the theory when the model is the
true model. Notice that perfect calibration only occurs, although model
parameters are fixed a priori, when the family used to perform calibrations
is consistent with all the future forward curves generated from initial curve
r∗(x). This fact explains, for instance, bad performance by the NS family
even on E3 experiment. Moreover, parameter instability and imprecision
that produces an incorrect yield-curve selection can also be checked in
Figure 5.

Real Data

The objective of this section is to compare the performance of the two
different calibration approaches on two different periods of real trading
dates. Thus, from now on we will only consider the calibration results
obtained with the market data.

Concerning the US market, calibration with consistent families is car-
ried out by setting λ = 0.25 in program (23). The table on Figure 6 ex-
hibits the sample mean of the daily error fitting measures, namely MSEC

and MSED, and the mean and the coefficient of variation of parameter
estimates. On the other hand, Figure 7 shows in-sample fitting time series.

The two consistent families under study report better in-sample fitting
results when dealing with bond data. However, on the derivatives side
calibration, only the ANS family performs similar to the NS one in the two
periods. This fact may be motivated by the extra factor, z1, common for
the families GANS and GNS , which is independent of zero-coupon bond
maturities and responsible for these families better fitting observed short-
term discount factors than Gm family (note that this is not incompatible
with the better summary MSED reported in this sample by the minimal
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family when compared against the Nelson-Siegel ones).
Focusing on the the Euro market, we restrict ourselves to the compar-

ison of three different estimations of the initial yield curve based on the
minimal dimension family which is consistent with the model analysed in
the paper. The table in Figure 8 compares the results reported by Angelini
and Herzel [1, 2] (left column) with two of the possible extra outcomes that
our extension may produce (central and right column). Recall that the ob-
jective function of their works is a particular case of the extension presented
along the paper, whenever the fixed parameter, λ, is fixed to the value 1.

As can be seen, we stress that the results for derivatives calibration out-
perform those provided by the above authors in their works. As for the es-
timation of the discount function, in-sample mean statistics are marginally
worse only in the second period and preserving the same order of magni-
tude. Thus, in both periods and for the same Euro database, we can con-
clude that our proposed extension improves clearly non consistent method-
ologies that are traditionally carried out by the practitioners3.

5 Conclusions

When calibrating a HJM model, a TSIR curve choice to fit a few market
data observations is needed. In particular it seems natural to use families
of curves which do not modify their structure under the future evolution
of the model, the so-called consistent families.

In this work, we choose three families of curves (two consistent families
and the popular Nelson-Siegel family) and we conclude that this choice has
an effective impact on the quality of in-sample fitting as well as parameter
estimates on both simulated and US-market data.

When using simulated data it is very clear that the consistent families
for the E1 ans E2 experiments perform much better than the non-consistent
ones. Moreover, Nelson-Siegel family does not work even if it is chosen
as the starting yield-curve (recall E3 experiment). These empirical facts
constitute a nice demonstration of the theory, in the sense that even in

3At this point, we must to note the reader that our results for the Nelson and Siegel family
are omitted for shortness, but they are very close to the reported in [2] and available under
request
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the absence of model risk when only consistent families are used, perfect
calibration may occur.

Translation of these consequences to real data is less clear, due to model

risk and quality of data, and we can infer the following concluding remarks.
In this case, the introduction of sufficiently rich consistent families, MC as
well as ANS, well motivated theoretically by Björk et al., improves in-
sample fitting capabilities on bonds. However, consistent families lead to
somewhat stable parameter estimates and worse in-sample derivatives fit-
ting results than the NS family, this could be an insight that consistent
families may exhibit undesired asymptotic features in different markets,
and in this sense, complements empirical findings of Angelini and Herzel
in [1, 2] to different data sets like the US-market data. On the other hand,
note that the extension to the consistent calibration procedure presents
more general features. The extension to the first consistent calibration ap-
proach is structured to allow more numerical outcomes. According to the
results reported for the Euro database, this leads in general to better re-
sults also in derivatives calibration as compared to non-extended consistent
calibration and non-consistent methodologies.

Thus, comparative studies between the fitting of short-term zero-coupon
bond capabilities and its consequences on cap pricing performance for sev-
eral consistent families with a particular model and on different market
bases (for instance, using different market inputs apart from US or Euro
market data) should be analysed deeply in the future. Moreover, we re-
strict our studies to a flexible one-factor Gaussian HJM model. Future
empirical research on the matter should include multi-factor models in or-
der to more effectively capture the TSIR and TSV observed in the market.
Another theoretical point regards the analytical study of the total loss
function SSEλ(θ) and the convergence properties of the joint calibration
algorithm proposed in this work.
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Figure 1: Market TSIR and TSV data in the two different market scenarios.
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Figure 2: Convergence properties for the joint calibration algorithm with MC

family. SSEC contribution to total loss function on top SSED contribution,

from zero-coupon bond pricing errors on the bottom.
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Figure 3: Discrete data for initial yield-curve estimation.

Maturity, x 0.25 1 2 3 4

Discount Factor, D∗(x) 0.9886 0.9538 0.9069 0.8602 0.8142

Maturity, x 5 6 7 8 9 10

Discount Factor, D∗(x) 0.7693 0.7260 0.6843 0.6445 0.6066 0.5706
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Figure 4: Summary statistics for calibration results with simulated data.

MC ANS NS

εr(α) 0 0 0.23

εr(β) 0 0 0.13

εr(a) 0 0 8.7 10−2

E1: Cv(α) 0 0 0.18

r0(x) = r∗m(x) Cv(β) 0 0 0.14

Cv(a) 0 0 9.7 10−2

MSE 0 0 1.9 10−3

εr(α) 0.25 0 0.28

εr(β) 0.16 0 0.16

εr(a) 0.12 0 9.5 10−2

E2: Cv(α) 3.8 10−2 0 0.117

r0(x) = r∗ANS(x) Cv(β) 3.9 10−2 0 9.1 10−2

Cv(a) 3.2 10−2 0 4.8 10−2

MSE 2.6 10−4 0 6.7 10−4

εr(α) 0.313 2.7 10−4 0.18

εr(β) 0.20 2.10 10−4 0.10

εr(a) 0.16 1.6 10−5 6.7 10−2

E3: Cv(α) 2.3 10−2 1.4 10−4 0.17

r0(x) = r∗NS(x) Cv(β) 2.6 10−2 1.0 10−4 0.111

Cv(a) 2.2 10−2 8.3 10−5 6.3 10−2

MSE 3.8 10−4 3.9 10−9 3.5 10−4

Sample statistics of the calibration on simulated data. Relative errors of the pa-

rameters estimates are expressed in absolute value. We set to 0 table entries with

value < 103·eps (variable eps ∼ 10−16 measures Matlab internal accuracy).
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Figure 5: Daily estimates of parameters a and α for data simulated from the

model with α = 0.002 and a = 0.35 and starting forward curve r0(x) = r∗ANS(x).
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Figure 6: Summary statistics for calibration results with US data on both periods.

MC ANS NS

α 0.0078 0.0079 0.0081

β 0.0071 0.0067 0.0068

a 0.27 0.27 0.27

Period 1 Cv(α) 0.17 0.13 0.12

Cv(β) 0.31 0.28 0.24

Cv(a) 0.21 0.20 0.18

MSEC 8.2 10−4 6.2 10−4 5.7 10−4

MSED 6.4 10−6 1.1 10−6 1.4 10−5

α 0.0084 0.0076 0.0076

β 0.0089 0.0117 0.0114

a 0.30 0.39 0.37

Period 2 Cv(α) 0.15 0.18 0.12

Cv(β) 0.18 0.24 0.18

Cv(a) 0.06 0.12 0.10

MSEC 0.0027 8.9 10−4 2.9 10−4

MSED 5.8 10−6 1.1 10−6 2.3 10−5
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Figure 7: In-sample fitting time series for the first period (left) and the second

period (right) in the US market in logarithmic terms.
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Thick line corresponds to ANS family, normal line to MC family and the dashed

one to the Nelson-Siegel family.

Figure 8: In-sample mean statistics for calibration results with Euro data on both

periods.

λ = 1 λ = 0.25 λ = 0.01

Period 1 MSEC 2.3 10−4 2.18 10−4 2.19 10−4

MSED 8.8 10−7 8.8 10−7 8.4 10−7

Period 2 MSEC 3.2 10−4 2.7 10−4 2.7 10−4

MSED 6.1 10−7 7.0 10−7 6.8 10−7
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