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1. Introduction

The Proper Generalized Decomposition (PGD) method has been recently
proposed [1, 15, 19] for the a priori construction of separated representations of
an element u in a tensor product space V = V1⊗ . . .⊗ Vd, which is the solution
of a problem

A(u) = l. (1)

A rank-n approximated separated representation un of u is defined by

un =
n∑
i=1

v1
i ⊗ . . .⊗ vdi , (2)

with vki ∈ Vk for 1 ≤ i ≤ n and 1 ≤ k ≤ d. The a posteriori construction of such
tensor decompositions, when the function u is known, have been extensively
studied over the past years in multilinear algebra community [6, 7, 13, 14, 4, 8]
(essentially for finite dimensional vector spaces Vi). The question of finding an
optimal decomposition of a given rank r is not trivial and has led to various
definitions and associated algorithms for the separated representations.
In the context of problems of type (1), the solution is not known a priori, nor
an approximation of it. An approximate solution is even unreachable with tra-
ditional numerical techniques when dealing with high dimensions d. It is the
so-called curse of dimensionality associated with the dramatic increase of the di-
mension of approximation spaces when increasing d. The PGD method aims at
constructing a decomposition of type (2) without knowing a priori the solution
u. The aim of the PGD is to construct a sequence un based on the knowledge
of operator A and right-hand side l. This can be achieved by introducing new
definitions of optimal decompositions (2). The Proper Generalized Decomposi-
tion (PGD) method have been first introduced under the name of “Radial-type
approximation” for the solution of time dependent partial differential equations
(PDE), by separating space and time variables, and used in the context of the
LATIN method in computational solid mechanics [15, 10, 16, 24, 17, 23]. It
has been also introduced for the separation of coordinate in multidimensional
PDEs [1, 2], with many applications in kinetic theory of complex fluids, finan-
cial mathematics, computational chemistry. . . It has also been introduced in the
context of stochastic or parametrized PDEs by introducing a separation of phys-
ical variables (space, time. . . ) and (random) parameters [19, 20, 21]. Still in
the context of stochastic PDEs, a further separation of parameters have also
been introduced, by exploiting the tensor product structure of stochastic func-
tion spaces [9, 22]. In this context, it leads to a representation of functionals of
random variables alternative to classical chaos expansions [28, 12, 27, 26, 29].
Of course, separated representations constitute an effective alternative only for
functionals of random variables that admit a low rank representation.

Several PGD definitions and associated algorithms have been proposed (see
e.g. [20, 23, 5]) and have proved their efficiency in practical applications. How-
ever, for most PGD definitions, their mathematical analysis remain open. In
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this paper, we investigate a particular case of PGD, which consists in defining
the decomposition (2) progressively. This is a basic definition of the PGD which
was proposed in [15, 19, 1]. A proof of convergence for this particular PGD has
been introduced in [18], for the case of a second order elliptic symmetric partial
differential equation defined in a 2-dimensional domain, and in [3], for the case
of linear systems with a full rank square matrix.

Here, we consider the mathematical analysis of this PGD for a larger class
of problems in an abstract setting. We introduce a generalization of Eckart and
Young theorem [11] which allows to prove the convergence of progressive PGDs
for a large class of linear problems defined in tensor product Hilbert spaces.

The outline of the paper is as follows. In section 2, we introduce the definition
of tensor product Hilbert spaces and their subsets Sn of rank-n tensors. We
then introduce the definition of a projection on the set S1, which is valid for
inner products making the set S1 weakly closed in V . We prove that this
property is satisfied for the classical inner product constructed by tensorization
of inner products on individual Hilbert spaces Vi. In section 3, we introduce the
definition of a progressive separated representation zn ∈ Sn of an element z ∈ V ,
based on successive rank-one projections. We prove its convergence in theorem
14, which constitutes a generalization of the Eckart-Young theorem. In section
4, we apply this theorem for proving the convergence of a progressive Proper
Generalized Decomposition for a class of linear symmetric elliptic problems in
abstract form. In section 5, we finally prove the convergence of a minimal
residual progressive Proper Generalized Decomposition for a particular class of
linear non-symmetric problems, which uses a minimal residual (least-square)
formulation of the problem.

2. Tensor product sums and tensor rank-1 projection

2.1. Tensor product sums on tensor product Hilbert spaces
Let V =

⊗d
i=1 Vi be a tensor product Hilbert space where Vi, for i =

1, 2, . . . , d, are separable Hilbert spaces. We denote by (·, ·) and ‖ · ‖ a gen-
eral inner product on V and its associated norm. We introduce norms ‖ · ‖i and
associated inner products (·, ·)i on Vi, for i = 1, 2, . . . , d. These norms and inner
products define a particular norm on V , denoted ‖ · ‖V , defined by

‖ ⊗di=1 vi‖V =
d∏
i=1

‖vi‖i,

for all (v1, v2, . . . , vd) ∈ V, where V is the product space V1 × · · · × Vd. The
associated inner product (·, ·)V is defined by

(
⊗di=1ui,⊗di=1vi

)
V

=
d∏
i=1

(ui, vi)i,
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Recall that V , endowed with inner product (·, ·)V , is in fact constructed by tak-
ing the completion under this inner product.

Now, we introduce the set of V of vectors that can be written as a sum of
tensor-rank 1 elements. For each n ∈ N, we define the set of rank-n tensors

Sn = {u ∈ V : rank⊗u ≤ n},

introduced in [8] in the following way. Given u ∈ V we say that u ∈ S1 if
u = u1 ⊗ u2 ⊗ · · · ⊗ ud, where ui ∈ Vi, for i = 1, . . . , d. For n ≥ 2 we define
inductively Sn = Sn−1 + S1, that is,

Sn =

{
u ∈ V : u =

k∑
i=1

u(i), u(i) ∈ S1 for 1 ≤ i ≤ k ≤ n

}
.

Note that Sn ⊂ Sn+1 for all n ≥ 1. We will say for u ∈ V that rank⊗u = n if
and only if u ∈ Sn \ Sn−1.

We first consider the following important property of the set S1 and inner
product ‖ · ‖V .

Lemma 1. S1 is weakly closed in (V, ‖ · ‖V ).

Proof. Since

⊗di=1vi = v1

(
d∏
i=2

‖vi‖i

)
⊗
(
⊗di=2

vi
‖vi‖i

)
,

we may assume, without loss of generality, that ‖vi‖i = 1 for i = 2, . . . , d. Now,
assume that the sequence {⊗di=1v

n
i }∞n=1 ⊂ S1 converges weakly to v ∈ V in

the ‖ · ‖V -norm. It implies that {
⊗d

i=1 v
n
i }∞n=1 is a bounded sequence in the

‖ · ‖V -norm. Moreover, since for i = 2, . . . , d, the sequence {vni }∞n=1 is bounded
in the ‖ · ‖i-norm, there exists a subsequence {vnki }∞k=1 that converges weakly
to v∗i ∈ Vi. Since ‖

⊗d
i=1 v

nk
i ‖V = ‖vnk1 ‖1, then {v

nk
1 }∞n=1 is also bounded in

the ‖ · ‖1-norm. In consequence, there exists a further subsequence {vnk1 }∞k=1

that converges weakly to v∗1 ∈ V1. Clearly, {⊗di=1v
nk
i }∞k=1 converges weakly to

⊗di=1v
∗
i and by the uniqueness of the limit, we obtain that v ∈ S1. This proves

the lemma. �

Since equivalent norms induce the same weak topology on V , we have the fol-
lowing corollary.

Corollary 2. If the norm ‖ · ‖ on V is equivalent to the norm ‖ · ‖V , then S1

is weakly closed in (V, ‖ · ‖).

Corollary 3. If the Vi are finite-dimensional vectors spaces, then S1 is weakly
closed in (V, ‖ · ‖) whatever the norm ‖ · ‖.
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2.2. A characterization of a tensor rank-one projection
Now we want to characterize a projection on S1, called a tensor rank-one

projection, with respect to a given inner product (·, ·) on V , with associated
norm ‖ · ‖. We make the following assumption on the inner product.

Assumption 4. We suppose that inner product (·, ·), with associated norm ‖·‖,
is such that S1 is weakly closed in (V, ‖ · ‖).

Let us recall that by Corollary 2, the particular norm ‖ · ‖V verifies Assumption
4.

Definition 5. A tensor rank-one projection with respect to inner product (·, ·),
with associated norm ‖·‖ verifying Assumption 4, is a map Π : z ∈ V 7→ Π(z) ⊂
S1 defined by

Π(z) = arg min
v∈S1

‖z − v‖2 (3)

The following Lemma 6 proves that Assumption 4 is a sufficient condition on
the inner product (·, ·) for the map Π to be well defined.

Lemma 6. Under Assumption 4, for each z ∈ V , there exists v∗ ∈ S1 such that

‖z − v∗‖2 = min
v∈S1

‖z − v‖2

Proof. We have

min
v∈S1

‖z − v‖2 = min
λ∈R,w∈S1:‖w‖=1

‖z − λw‖2 (4)

= min
λ∈R,w∈S1:‖w‖=1

‖z‖2 − λ(w, z) + λ2 (5)

= min
w∈S1:‖w‖=1

‖z‖2 − (z, w)2 (6)

= ‖z‖2 − max
w∈S1:‖w‖=1

(z, w)2 (7)

= ‖z‖2 −
(

max
w∈S1:‖w‖=1

(z, w)
)2

(8)

Since S1 is a weakly closed set, then the set {w ∈ S1 : ‖w‖ ≤ 1} is weakly
compact. The existence of minimizers v∗ then follows from the existence of
maximizers w∗ of the linear functional w → (z, w) on a weakly compact set. To
end the proof we need to show that ‖w∗‖ = 1. Assume that ‖w∗‖ < 1 then it
follows that

(z, w∗) ≥ λ (z, w∗)

for all λ ≤ 1/‖w∗‖. In particular, for λ = 1/‖w∗‖ we obtain ‖w∗‖ ≥ 1, a
contradiction. �

We now introduce a generalization of the concept of dominant singular value
and dominant singular vectors for an element in a tensor product space.
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Definition 7. The dominant singular value σ(z) ≥ 0 of an element z ∈ V and
the associated set of dominant singular vectors V(z) are respectively defined by

σ(z) = max
w∈S1:‖w‖=1

(z, w), (9)

and

V(z) = {w ∈ S1 : ‖w‖ = 1 and σ(z) = (z, w)}. (10)

The tensor rank-one projector Π can be written

Π(z) = σ(z)V(z) (11)

which means that for v∗ ∈ Π(z), there exists w∗ ∈ V(z) such that v∗ = σ(z)w∗.
Let us note that for a given z, Π(z) is a multi-valuated map if singular value
σ(z) is associated with multiple singular vectors. We now introduce other char-
acterization and properties of projector Π.

Theorem 8. Let z ∈ V . Then the following statements are equivalent

(a) v∗ ∈ Π(z).
(b) v∗ ∈ S1 satisfies

Ez(v∗) = min
v∈S1

Ez(v). (12)

where the map Ez is defined as

Ez(v) =
1
2
‖v‖2 − (z, v).

Moreover,

Ez(v∗) = −1
2
σ(z)2 = −1

2
‖v∗‖2, (13)

‖z − v∗‖2 = ‖z‖2 − σ(z)2 = ‖z‖2 − ‖v∗‖2, (14)

and
(z − v∗, v∗) = 0. (15)

Proof. Since

Ez(v) =
1
2

(v, v)− (z, v) =
1
2
‖z − v‖2 − 1

2
‖z‖2.

This implies that the minimization problem (12) is equivalent to

min
v∈S1

‖z − v‖2, (16)

and

min
v∈S1

Ez(v) =
1
2

min
v∈S1

‖z − v‖2 − 1
2
‖z‖2. (17)
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If z = 0 then v∗ = 0 and the theorem clearly holds. Now, assume that z 6= 0.
From (17) and (7) we deduce

min
v∈S1

Ez(v) = −1
2

max
w∈S1: ‖w‖=1

(z, w)2. (18)

Thus, v∗ ∈ S1 solves (12) if and only if v∗ = σ(z)w∗ for some w∗ ∈ V(z). This
follows the first statement of the theorem. To prove the second one, from (18)
follows (13) and by using (17) we obtain (14). Finally, from (13) we have that

(v∗, v∗)− (z, v∗) = 0,

and this follows (15). �

Now, we briefly discuss the particular case d = 2 and prove that the definition
of σ(z) in definition (7) is closely related with the classical definition of the
dominant singular value of the singular value decomposition of an element z ∈
V = V1 ⊗ V2. By using the Riesz representation theorem, we introduce the
following definition. For each z ∈ V and w1 ∈ V1 (respectively, w2 ∈ V2) there
exists a unique {z, w1}2 ∈ V2 (respectively, {z, w2}1 ∈ V1) such that

(z, w1 ⊗ w2)V = ({z, w1}2, w2)2 (19)

for all w2 ∈ V2, (respectively,

(z, w1 ⊗ w2)V = ({z, w2}1, w1)1 (20)

for all w1 ∈ V1). Observe that since (u1 ⊗ u2, w1 ⊗ w2)V = (u1, w1)1(u2, w2)2
then {u1 ⊗ u2, w1}2 = (u1, w1)1u2 and {u1 ⊗ u2, w2}1 = (u2, w2)1u1. Recall the
classical definition of the dominant eigenvalue of a symmetric positive definite
operator A : V2 → V2 as

σ1 = max
‖w‖2=1

(w,w)1/2A .

The next proposition provide us a classical interpretation of σ(z) in the case
d = 2.

Proposition 9. If V = V1 ⊗ V2 and if (·, ·) = (·, ·)V , which is built from inner
products (·, ·)1 and (·, ·)2 on V1 and V2. Then

σ(z) = max
‖w2‖2=1

({z, w2}1, {z, w2}1)1/21 = max
‖w1‖1=1

({z, w1}2, {z, w1}2)1/22 . (21)

Proof. We have

σ(z) = max
w∈S1;‖w‖=1

(z, w)V = max
w1 ∈ V1; ‖w1‖1 = 1
w2 ∈ V2; ‖w2‖2 = 1

(z, w1 ⊗ w2)V

because ‖u1 ⊗ u2‖V = ‖u1‖1‖u2‖2 = 1 and we can write for all λ ∈ R \ {0},
u1 = λw1 with ‖w1‖1 = 1 and u2 = λ−1w2 with ‖w2‖2 = 1. Now, let us consider
the problem

max
w2∈V2;‖w2‖2=1

(z, w1 ⊗ w2)V = max
w2∈V2;‖w2‖2=1

({z, w1}2, w2)2 (22)
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To solve it, we consider the Lagrangian function

L(w2, λ) = ({z, w1}2, w2)2 −
λ

2
((w2, w2)2 − 1) .

Since
Dw2L(w2, λ) = ({z, w1}2, ·)2 − λ(w2, ·)2,

the maximum is attained at

w2 = λ−1{z, w1}2.

By using that ‖w2‖2 = 1 we obtain λ = ‖{z, w1}2‖2. Therefore

σ(z) = max
w1∈V1;‖w1‖1=1

({z, w1}2, {z, w1}2)1/22 (23)

which is closely related with the classical characterization of the dominant sin-
gular value of z. Let us note that in the same way, we could also prove that

σ(z) = max
w2∈V2;‖w2‖2=1

({z, w2}1, {z, w2}1)1/21 . (24)

�

3. A generalization of the Eckart-Young theorem

Now, we introduce an extension of Eckart-Young theorem, which can be
viewed as a generalization of multidimensional singular value decomposition
with respect to inner products not necessarily built by tensorization of inner
products. We introduce an inner product (·, ·) and associated norm ‖·‖ satisfying
Assumption 4. We denote by Π the associated tensor rank-one projector, defined
by (3) (or (11)).

Definition 10 (Progressive separated representation of an element in V ).
For a given z ∈ V , we define the sequence {zn}n>0, with zn ∈ Sn, as follows:
z0 = 0 and for n > 1,

zn =
n∑
i=1

z(i), z(i) ∈ Π(z − zi−1) (25)

or equivalently

zn =
n∑
i=1

σiw
(i), σi = σ(z − zi−1), w(i) ∈ V(z − zi−1) (26)

zn is called an optimal rank-n progressive separated representation of z with
respect to the norm ‖ · ‖.
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We introduce the following definition of the progressive rank2.

Definition 11 (Progressive rank). We define the progressive rank of an el-
ement z ∈ V , denoted by rankσ(z), as follows:

rankσ(z) = min{n : σ(z − zn) = 0} (27)

where zn is the progressive separated representation of z, defined in definition
10, where by convention min(∅) =∞.

Before we state the Generalized Eckart-Young theorem we recall the classical
one that is equivalent to the existence of the Singular Value Decomposition.

Theorem 12 (Eckart-Young theorem). Let V = Rn ⊗Rm and let be ‖ · ‖F
the Frobenious norm on V. For each z ∈ V and 1 ≤ n ≤ rank z, there exists
zn =

∑n
i=1 σi vi ⊗ wi a (nonunique) minimizer of

min
w∈Sn

‖z − w‖F , (28)

where σi > 0, ‖vi ⊗ wi‖F = 1 for 1 ≤ i ≤ n, and such that

‖z −
n∑
i=1

σi vi ⊗ wi‖2F = ‖z‖2F −
n∑
i=1

σ2
i =

rank z∑
j=n+1

σ2
j ,

holds. Here rank z denotes the matrix rank of z ∈ V.

In this theorem the tensor product over the matrix space V = Rn ⊗ Rm is
defined by u ⊗ v = u · vT , where vT denotes the transpose of vector v. Then,
it is not difficult to see that the Frobenius norm ‖z‖2F =

∑n
i=1

∑m
j=1 z

2
i,j is a

crossnorm on Rn ⊗ Rm.

Remark 13. Unfortunately, in [8], it has been proved that tensors of order 3
or higher can fail to have best rank-n approximation, that is, (28) is ill-posed
for tensors of order 3 or higher. In consequence, only rank-one approximations
are available.

Now we state the Generalized Eckart-Young theorem.

Theorem 14 (Generalized Eckart-Young theorem). For z ∈ V , the se-
quence {zn =

∑n
i=1 σiw

(i)}n>0 constructed in definition 10 verifies:

z = lim
n→∞

zn = zrankσ(z) =
rankσ(z)∑
i=1

σiw
(i)

and

‖z − zn‖2 = ‖z‖2 −
n∑
i=1

σ2
i =

rankσ(z)∑
i=n+1

σ2
i .

2Note that in general, the progressive rank rankσ of an element z ∈ V is different from the
optimal rank rank⊗(z).
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Proof. Let en−1 = z − zn−1, for n ≥ 1, where by convention z0 = 0. We
have w(n) =

⊗d
i=1 w

n
i ∈ V(en−1) and σn = σ(z − zn−1) = σ(en−1). We let

z(n) = σnw
(n) ∈ S1. Let us first note that it holds for 1 ≤ n ≤ rankσ(z) that

z(n) 6= 0 since for such n, σ(z − zn−1) > 0 by definition of the progressive rank.
We have

‖en‖2 = ‖en−1 − z(n)‖2 (29)
= ‖en−1‖2 − ‖z(n)‖2 (by using (14)) (30)
= ‖en−1‖2 − σ2

n (31)

Thus {‖en‖}rankσ(z)
n=0 is a strictly decreasing sequence of non-negative real num-

bers.
We first assume that rankσ(z) = r < ∞. Then, σr = σ(z − zr) = 0 and
z(r+1) = 0 since

‖z − zr − z(r+1)‖2 = ‖z − zr‖2 − σ2
r = ‖z − zr‖2

We have
‖z − zr‖2 = min

v∈S1
‖z − zr − v‖2 ≤ ‖z − zr − λv‖2

for all λ ∈ R and v ∈ S1. This implies that(
z − zr,

(
⊗di=1vi

))
= 0

for all (v1, . . . , vd) ∈ V. Thus z − zr = 0 and the first statement of theorem
follows.
On the other hand, we assume that rankσ(z) =∞. Then {‖en‖}∞n=0 is a strictly
decreasing sequence of non-negative real numbers, and there exists

lim
n→∞

‖en‖ = lim
n→∞

‖z − zn‖ = R ≥ 0.

Proceeding from (31) and using that e0 = z, we obtain

‖en‖2 = ‖z‖2 −
n∑
k=1

σ2
k. (32)

In consequence,
∑∞
k=1 σ

2
k is a convergent series and limn→∞ σ2

n = 0. Thus, we
obtain also

lim
n→∞

σn = lim
n→∞

‖z(n)‖ = 0. (33)

For all n ≥ 1 and (w1, . . . , wd) ∈ V with
∥∥(⊗di=1wi

)∥∥ = 1, we have(
en−1,

(
⊗di=1wi

))2 ≤ max
w∈S1: ‖w‖=1

(en−1, w)2 = σ2
n (34)

and then
lim
n→∞

(
en−1,

(
⊗di=1wi

))2
= 0 (35)
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Assume that {en}∞n=0 is convergent in the ‖ · ‖-norm to some e∗ ∈ V. Since the
sequence is also weakly convergent to e∗, we obtain from (35) that(

e∗,
(
⊗di=1wi

))
= 0

for all (w1, . . . , wd) ∈ V with
∥∥(⊗di=1wi

)∥∥ = 1. Thus, e∗ = 0. To conclude the
proof we only need to show that {en}∞n=1 is a Cauchy sequence in V in the
‖ · ‖-norm. The following Lemmas will be useful.

Lemma 15. For each n,m ≥ 1, it follows that∣∣∣(em−1, z
(n)
)∣∣∣ ≤ σmσn

Proof. We have∣∣∣(em−1, z
(n)
)∣∣∣ =

∣∣∣(em−1, σnw
(n)
)∣∣∣ =

∣∣∣(em−1, w
(n)
)∣∣∣σn ≤ σmσn

where we have used

σm =
(
em−1, w

(m)
)

= max
w∈S1:‖w‖=1

(em−1, w) ≥
(
em−1, w

(n)
)
,

�

Lemma 16. For every ε > 0 and every N ∈ N there exists τ ≥ N such that

στ

τ∑
k=1

σk ≤ ε. (36)

Proof. Since
∑∞
j=1 σ

2
j < ∞, for a given ε > 0 and N ∈ N, we choose n ≥ N

such that
∞∑

j=n+1

σ2
j ≤ ε/2

Since limj→∞ σj = 0, we construct τ : N −→ N defined inductively by τ(1) = 1
and for all k ≥ 1,

τ(k + 1) = min
j>τ(k)

{
σj ≤ στ(k)

}
,

such that τ is strictly increasing and limk→∞ τ(k) = ∞. Observe that for all
k ≥ 1 and j satisfying τ(k) ≤ j < τ(k + 1), it follows that

στ(k+1) ≤ στ(k) ≤ σj .

Thus, for all 1 ≤ j < τ(k + 1), we have

στ(k+1) ≤ σj

Now, since limk→∞ στ(k) = 0, we can choose τ = τ(k + 1) > n large enough
satisfying

στ

n∑
j=1

σj ≤ ε/2.
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Then

στ

τ∑
j=1

σj = στ

n∑
j=1

σj + στ

τ∑
j=n+1

σj ≤ ε/2 + στ

τ∑
j=n+1

σj

≤ ε/2 +
τ∑

j=n+1

σ2
j ≤ ε/2 +

∞∑
j=n+1

σ2
j

≤ ε

This proves the lemma. �

Lemma 17. For all M > N > 0, it follows that

‖eN−1 − eM−1‖2 ≤ ‖eN−1‖2 − ‖eM−1‖2 + 2σM
M∑
k=1

σk

Proof. We have

‖eN−1 − eM−1‖2 = ‖eN−1‖2 + ‖eM−1‖2 − 2 (eM−1, eN−1)

= ‖eN−1‖2 + ‖eM−1‖2 − 2

(
eM−1, eM−1 +

M−1∑
k=N

z(k)

)

= ‖eN−1‖2 − ‖eM−1‖2 − 2
M−1∑
k=N

(
eM−1, z

(k)
)

≤ ‖eN−1‖2 − ‖eM−1‖2 + 2σM
M−1∑
k=N

σk (by using Lemma 15)

≤ ‖eN−1‖2 − ‖eM−1‖2 + 2σM
M∑
k=1

σk (by adding positive terms.)

This ends the proof of lemma. �

Since the limit of ‖en‖2 goes to R2 as n→∞, and it is a decreasing sequence,
for a given ε > 0 there exists kε > 0 such that

R2 ≤ ‖em−1‖2 ≤ R2 + ε2/2

for all m > kε. Now, we assume that m > kε. From Lemma 16, for each m+ p
there exists τ > m+ p such that

στ

τ∑
k=1

σk ≤ ε2/4.

Now, we would to estimate

‖em−1 − em+p−1‖ ≤ ‖em−1 − eτ−1‖+ ‖eτ−1 − em+p−1‖.

12



By using Lemma 17 with M = τ and N = m and m+ p , we obtain that

‖em−1 − eτ−1‖2 ≤ R2 + ε2/2−R2 + ε2/2 = ε2,

and

‖em+p−1 − eτ−1‖2 ≤ R2 + ε2/2−R2 + ε2/2 = ε2,

respectively. In consequence {en}∞n=0 is a Cauchy sequence in the ‖·‖-norm and
it converges to 0. �

4. Proper Generalized Decomposition of the solution of a class of
linear symmetric elliptic problem

4.1. Formulation of the problem
We consider the following variational problem, defined on the a tensor prod-

uct Hilbert space (V, ‖ · ‖V ):

u ∈ V, A(u, v) = L(v) ∀v ∈ V (37)

where A(·, ·) : V × V −→ R is a continuous, symmetric, V−elliptic bilinear
form, i.e. such that for all u, v ∈ V,

|A(u, v)| ≤M‖u‖V ‖v‖V , (38)
A(u, v) = A(v, u), (39)

A(v, v) ≥ α‖v‖2V (40)

for constants M > 0 and α > 0.

4.2. Problem in operator form
We introduce the operator A : V −→ V associated with A, and defined by

A(u, v) = (Au, v)V (41)

for all u, v ∈ V. We also introduce the element l ∈ V associated with L and
defined by

L(v) = (l, v)V (42)

for all v ∈ V.. The existence of A and l is ensured by the Riesz representation
theorem. Problem (37) can be rewritten in an operator form:

Au = l (43)

From the assumptions on the bilinear form A(·, ·), we know that A is bounded,
self-adjoint, and positive definite, i.e for all u, v ∈ V,

‖Av‖V ≤M‖v‖V ,
(Au, v)V = (u,Av)V
(Av, v)V ≥ α‖v‖2V

13



As usual, we will denote by (·, ·)A the inner product induced by the operator A,
where for all u, v ∈ V

(u, v)A = (Au, v)V = (u,Av)V ,

We denote by ‖u‖A = (u, u)1/2A the associated norm. Note that if A = I the
identity operator, then ‖ · ‖A = ‖ · ‖V .

4.3. Rank-one projector based on the A-norm
From properties of operator A, the norm ‖ ·‖A is equivalent to ‖ ·‖V . There-

fore, by Corollary 2, the set S1 is weakly closed in (V, ‖ · ‖A) and then, ‖ · ‖A
verifies assumption 4. For a given z ∈ V , we use definition 5 and 7 with
(·, ·) = (·, ·)A in order to define the rank-one projector ΠA(z), the singular value
σA(z) and the set of singular vectors VA(z).

4.4. Proper Generalized Decomposition
The progressive Proper Generalized Decomposition (PGD) of the solution

u = A−1l of problem (37) is defined as the optimal progressive separated rep-
resentation defined in Definition 10, associated with projector Π = ΠA. The
rank-n progessive PGD is then defined as

un =
n∑
i=1

u(i), u(i) ∈ ΠA(u− ui−1) (44)

From properties of the A-norm, the generalized Eckard-Young Theorem 14 en-
sures the convergence of this sequence.

Remark 18. Let us note that the proposed progressive PGD is the simplest
definition of PGD. Other definitions of PGD have been proposed, which have
better convergence properties [19, 20].

5. Minimal Residual Proper Generalized Decomposition

5.1. Formulation of the problem
We consider the following problem:

u ∈ V, A(u, v) = L(v) ∀v ∈ V (45)

where A and L are continuous bilinear and linear forms on V respectively. By
Riesz representation, we associate the operator A : V → V and vector l ∈ V to
bilinear form A and linear form L, respectively defined by equations (41) and
(42). The continuity of A implies that A is bounded, i.e.

∃M > 0 such that ‖Av‖V ≤M‖v‖V (46)

We further assume the following property on A: for all v ∈ V ,

∃c > 0 such that ‖Av‖V ≥ c‖v‖V (47)
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5.2. Least-square formulation
We introduce a least-square formulation of problem (45):

u ∈ V, Ã(u, v) = L̃(v) ∀v ∈ V (48)

with

Ã(u, v) = (A(u), A(v))D (49)

L̃(v) = (l, A(v))D (50)

where D : V → V is a symmetric continuous and V -elliptic operator which
defines an inner product (·, ·)D on V . Bilinear form Ã is associated with operator
Ã = A∗DA, where A∗ is the adjoint operator of A. From properties of A and
D, Ã : V → V is symmetric continuous and V -elliptic. It then defines an inner
product on V , denoted (·, ·)Ã, with associated norm ‖ ·‖Ã which is equivalent to
the norm ‖·‖V . Formulation (48) is equivalent to the following minimal residual
formulation:

u = arg min
v∈V

1
2
‖A(v)− l‖2D = arg min

v∈V

1
2
‖v −A−1l‖2

Ã
(51)

5.3. Progressive Minimal Residual Proper Generalized Decomposition
Since ‖ · ‖Ã is equivalent to ‖ · ‖V on V , S1 is weakly closed in (V, ‖ · ‖Ã),

by Corollary 2. We can then define a tensor rank-one projection ΠÃ associated
with Ã, as long as the dominant singular value σÃ(z) and the associated set of
dominant singular vectors VÃ(z), for each z ∈ V.

The minimal residual progressive Proper Generalized Decomposition (PGD)
of the solution u = A−1l of problem (45) is defined as the optimal progressive
separated representation defined in Definition 10, associated with projector Π =
ΠÃ. A rank-n minimal residual progessive PGD is defined as

un =
n∑
i=1

u(i), u(i) ∈ ΠÃ(u− ui−1)

From properties of the Ã-norm, the generalized Eckard-Young Theorem 14 en-
sures the convergence of this sequence.

Remark 19. The convergence of the minimal residual PGD strongly depends
on the choice of the D-norm. Choosing for D the identity operator on V , cor-
responding to (·, ·)D = (·, ·), usually leads to very poor convergence properties
(although it is very convenient from a computational point of view). Choosing a
“good” D is a critical problem. A compromise must be made between good con-
vergence properties of un and computational issues related to the construction
of un.
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