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Abstract Tensor-based methods are receiving a growing interest in scienti�c comput-

ing for the numerical solution of problems de�ned in high dimensional tensor product

spaces. A family of methods called Proper Generalized Decompositions methods have

been recently introduced for the a priori construction of tensor approximations of the

solution of such problems. In this paper, we give a mathematical analysis of a family

of progressive and updated Proper Generalized Decompositions for a particular class

of problems associated with the minimization of a convex functional over a re�exive

tensor Banach space.
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1 Introduction

Tensor-based methods are receiving a growing interest in scienti�c computing for the

numerical solution of problems de�ned in high dimensional tensor product spaces, such

as partial di�erential equations arising from stochastic calculus (e.g. Fokker-Planck
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equations) or quantum mechanics (e.g. Schrödinger equation), stochastic parametric

partial di�erential equations in uncertainty quanti�cation with functional approaches,

and many mechanical or physical models involving extra parameters (for parametric

analyses) among others. For such problems, classical approximation methods based

on the a priori selection of approximation bases su�er from the so called �curse of

dimensionality� associated with the exponential (or factorial) increase in the dimension

of approximation spaces. Tensor-based methods consist in approximating the solution

u ∈ V of a problem, where V is a tensor space generated by d vector spaces Vj (assume

e.g. Vj = Rnj )1, using separated representations of the form

u ≈ um =
m∑
i=1

w
(1)
i ⊗ . . .⊗ w(d)

i , w
(j)
i ∈ Vj (1)

where ⊗ represents the Kronecker product. The functions w
(j)
i are not a priori selected

but are chosen in an optimal way regarding some properties of u.

A �rst family of numerical methods based on classical constructions of tensor

approximations [18,23,35] have been recently investigated for the solution of high-

dimensional partial di�erential equations [3,19,21,22,28]. They are based on the sys-

tematic use of tensor approximations inside classical iterative solvers. Another family

of methods, called Proper Generalized Decomposition (PGD) methods [9,16,27,33,34],

have been introduced for the direct construction of representations of type (1). PGD

methods introduce alternative de�nitions of tensor approximations, not based on nat-

ural best approximation problems, for the approximation to be computable without a

priori information on the solution u. The particular structure of approximation sets

allows the interpretation of PGDs as generalizations of Proper Orthogonal Decompo-

sition (or Singular Value Decomposition, or Karhunen-Loève Decomposition) for the

a priori construction of a separated representation um of the solution. They can also

be interpreted as a priori model reduction techniques in the sense that they provide

a way for the a priori construction of optimal reduced bases for the representation of

the solution. Several de�nitions of PGDs have been proposed. Basic PGDs are based

on a progressive construction of the sequence um, where at each step, an additional

elementary tensor ⊗dk=1w
(k)
m is added to the previously computed decomposition um−1

[2,26,30]. Progressive de�nitions of PGDs can thus be considered as Greedy algorithms

[37] for constructing separated representations [1,6]. A possible improvement of these

progressive decompositions consists in introducing some updating steps in order to

capture an approximation of the optimal decomposition, which would be obtained by

de�ning the whole set of functions simultaneously (and not progressively). For many

applications, these updating strategies allow recovering good convergence properties of

separated representations [31,33,34].

In [6], convergence results are given for the progressive Proper Generalized Decom-

position in the case of the high-dimensional Laplacian problem. In [16], convergence

is proved in the more general setting of linear elliptic variational problems in tensor

Hilbert spaces. The progressive PGD is interpreted as a generalized singular value

decomposition with respect to the metric induced by the operator, which is not neces-

1 More precisely, V is the closure with respect to a norm ‖ · ‖ of the algebraic tensor space
V = a

⊗d
j=1 Vj = span

{⊗d
j=1 v

(j) : v(j) ∈ Vj and 1 ≤ j ≤ d
}
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sarily a crossnorm on the tensor product space.

In this paper, we propose a theoretical analysis of progressive and updated Proper

Generalized Decompositions for a class of problems associated with the minimization

of an elliptic and di�erentiable functional J ,

J(u) = min
v∈V

J(v),

where V is a re�exive tensor Banach space. In this context, progressive PGDs consist

in de�ning a sequence of approximations um ∈ V de�ned by

um = um−1 + zm, zm ∈ S1

where S1 is a tensor subset with suitable properties (e.g. rank-one tensors subset,

Tucker tensors subset, ...), and where zm is an optimal correction in S1 of um−1,

de�ned by

J(um−1 + zm) = min
z∈S1

J(um−1 + z)

Updated progressive PGDs consist in correcting successive approximations by using

the information generated in the previous steps. At step m, after having computed an

optimal correction zm ∈ S1 of um−1, a linear (or a�ne) subspace Um ⊂ V such that

um−1 + zm ∈ Um is generated from the previously computed information, and the

next approximation um is de�ned by

J(um) = min
v∈Um

J(v) ≤ J(um−1 + zm)

The outline of the paper is as follows. In section 2, we brie�y recall some classical

properties of tensor Banach spaces. In particular, we introduce some assumptions on

the weak topology of the tensor Banach space in order for the (updated) progressive

PGDs to be well de�ned (properties of subsets S1). In section 3, we introduce a class of

convex minimization problems on Banach spaces in an abstract setting. In section 4, we

introduce and analyze the progressive PGD (with or without updates) and we provide

some general convergence results. While working on this paper, the authors became

aware of the work [7], which provides a convergence proof for the purely progressive

PGD when working on tensor Hilbert spaces. The present paper can be seen as an

extension of the results of [7] to the more general framework of tensor Banach spaces

and to a larger family of PGDs, including updating strategies and a general selection

of tensor subsets S1. In section 5, we present some classical examples of applications of

the present results: best approximation in Lp tensor spaces (generalizing the multidi-

mensional singular value decomposition to Lp spaces), solution of p-Laplacian problem,

and solution of elliptic variational problems (involving inequalities or equalities).

2 Tensor Banach spaces

We �rst consider the de�nition of the algebraic tensor space a
⊗d
j=1 Vj generated from

Banach spaces Vj (1 ≤ j ≤ d) equipped with norms ‖·‖j . As underlying �eld we choose
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R, but the results hold also for C. The su�x `a' in a
⊗d
j=1 Vj refers to the `algebraic'

nature. By de�nition, all elements of

V := a

d⊗
j=1

Vj

are �nite linear combinations of elementary tensors v =
⊗d
j=1 v

(j)
(
v(j) ∈ Vj

)
.

A typical representation format is the Tucker or tensor subspace format

u =
∑
i∈I

ai

d⊗
j=1

b
(j)
ij
, (2)

where I = I1 × . . . × Id is a multi-index set with Ij = {1, . . . , rj}, rj ≤ dim(Vj),

b
(j)
ij
∈ Vj (ij ∈ Ij) are linearly independent (usually orthonormal) vectors, and ai ∈ R.

Here, ij are the components of i = (i1, . . . , id). The data size is determined by the

numbers rj collected in the tuple r := (r1, . . . , rd). The set of all tensors representable
by (2) with �xed r is

Tr(V) :=

{
v ∈ V :

there are subspaces Uj ⊂ Vj such that

dim(Uj) = rj and v ∈ U := a
⊗d
j=1 Uj .

}
(3)

To simplify the notations, the set of rank-one tensors (elementary tensors) will be

denoted by

R1(V) := T(1,...,1)(V) =
{
⊗dk=1w

(k) : w(k) ∈ Vk
}
.

By de�nition, we then have V = spanR1(V). We also introduce the set of rank-m

tensors de�ned by

Rm(V) :=

{
m∑
i=1

zi : zi ∈ R1(V)

}
.

We say that V‖·‖ is a Banach tensor space if there exists an algebraic tensor space

V and a norm ‖·‖ on V such that V‖·‖ is the completion of V with respect to the

norm ‖·‖, i.e.

V‖·‖ := ‖·‖

d⊗
j=1

Vj = a

⊗d

j=1
Vj

‖·‖
.

If V‖·‖ is a Hilbert space, we say that V‖·‖ is a Hilbert tensor space.

2.1 Topological properties of Tensor Banach spaces

Observe that spanR1(V) is dense inV‖·‖. SinceR1(V) ⊂ Tr(V) for all r ≥ (1, 1, . . . , 1),
then span Tr(V) is also dense in V‖·‖.

Any norm ‖·‖ on a
⊗d
j=1 Vj satisfying∥∥∥∥⊗d

j=1
v(j)

∥∥∥∥ =
∏d

j=1
‖v(j)‖j for all v(j) ∈ Vj (1 ≤ j ≤ d) (4)

is called a crossnorm.
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Remark 1 Eq. (4) implies the inequality ‖
⊗d
j=1 v

(j)‖ .
∏d
j=1 ‖v

(j)‖j which is equiv-

alent to the continuity of the tensor product mapping

⊗
:

d×
j=1

(
Vj , ‖·‖j

)
−→

a

d⊗
j=1

Vj , ‖·‖

 , (5)

given by ⊗
(
(v(1), . . . , v(d))

)
= ⊗dj=1v

(j), where (X, ‖ · ‖) denotes a vector space X

equipped with norm ‖ · ‖.

As usual, the dual norm to ‖·‖ is denoted by ‖·‖∗. If ‖·‖ is a crossnorm and also

‖·‖∗ is a crossnorm on a
⊗d
j=1 V

∗
j , i.e.∥∥∥∥⊗d

j=1
ϕ(j)

∥∥∥∥∗ =∏d

j=1
‖ϕ(j)‖∗j for all ϕ(j) ∈ V ∗j (1 ≤ j ≤ d) , (6)

‖·‖ is called a reasonable crossnorm. Now, we introduce the following norm.

De�nition 1 Let Vj be Banach spaces with norms ‖·‖j for 1 ≤ j ≤ d. Then for

v ∈ V = a
⊗d
j=1 Vj , we de�ne the norm ‖·‖∨ by

‖v‖∨ := sup


∣∣∣(ϕ(1) ⊗ ϕ(2) ⊗ . . .⊗ ϕ(d)

)
(v)
∣∣∣∏d

j=1 ‖ϕ(j)‖∗j
: 0 6= ϕ(j) ∈ V ∗j , 1 ≤ j ≤ d

 . (7)

We recall that a sequence vm ∈ V is weakly convergent if limm→∞〈ϕ, vm〉 exists
for all ϕ ∈ V ∗. We say that (vm)m∈N converges weakly to v ∈ V if limm→∞〈ϕ, vm〉 =
〈ϕ, v〉 for all ϕ ∈ V ∗. In this case, we write vm ⇀ v.

De�nition 2 A subset M ⊂ V is called weakly closed if vm ∈M and vm ⇀ v implies

v ∈M .

Note that `weakly closed' is stronger than `closed', i.e., M weakly closed ⇒ M

closed. The following proposition has been proved in [15].

Proposition 1 Let V‖·‖ be a Banach tensor space with a norm satisfying ‖ · ‖ & ‖·‖∨
on V. Then the set Tr(V) is weakly closed.

2.2 Examples

2.2.1 The Bochner spaces

Our �rst example, the Bochner spaces, are a generalization of the concept of Lp-spaces

to functions whose values lie in a Banach space which is not necessarily the space R or

C.
Let X be a Banach space endowed with a norm ‖ · ‖X . Let I ⊂ Rs and µ a �nite

measure on I (e.g. a probability measure). Let us consider the Bochner space Lpµ(I;X),
with 1 ≤ p <∞, de�ned by

Lpµ(I;X) =

{
v : I → X :

∫
I

‖v(x)‖pXdµ(x) <∞
}
,
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and endowed with the norm

‖v‖∆p =

(∫
I

‖v(x)‖pXdµ(x)
)1/p

We now introduce the tensor product space V‖·‖∆p = X⊗‖·‖∆p L
p
µ(I). For 1 ≤ p <∞,

the space Lpµ(I;X) can be identi�ed with V‖·‖∆p (see Section 7, Chapter 1 in [11]).

Moreover, the following proposition can be proved (see Proposition 7.1 in [11]):

Proposition 2 For 1 ≤ p <∞, the norm ‖·‖∆p satis�es ‖·‖∆p & ‖·‖∨ on X⊗aLpµ(I).

By Propositions 2 and 1, we then conclude:

Corollary 1 For 1 ≤ p <∞, the set Tr (X ⊗a Lpµ(I)) is weakly closed in Lpµ(I;X). In
particular, for K ⊂ Rk, we have that Tr (Lpν (K)⊗a Lpµ(I)) and R1 (L

p
ν (K)⊗a Lpµ(I))

are weakly closed sets in Lpν⊗µ (K × I) .

2.2.2 The Sobolev spaces

Let Ω = Ω1 × . . . × Ωd ⊂ Rd, with Ωk ⊂ R. Let α ∈ Nd denote a multi-index and

|α| =
∑d
k=1 αk. D

α(u) = ∂α1
x1
. . . ∂αdxd (u) denotes a partial derivative of u(x1, . . . , xd)

of order |α|. For a �xed 1 ≤ p <∞, we introduce the Sobolev space

Hm,p(Ω) = {u ∈ Lp(Ω) : Dα(u) ∈ Lp(Ω), 0 ≤ |α| ≤ m}

equipped with the norm

‖v‖m,p =
∑

0≤|α|≤m

‖Dα(v)‖Lp(Ω)

We let Vk = Hm,p(Ωk), endowed with norms ‖ · ‖m,p;k de�ned by

‖w‖m,p;k =
m∑
j=0

‖∂jxk(w)‖Lp(Ωk).

Then we have the following equality

Hm,p(Ω) = ‖·‖m,p

d⊗
j=1

Hm,p(Ωj) .

A �rst result is the following.

Proposition 3 For 1 < p <∞, m ≥ 0 and Ω = Ω1 × . . .×Ωd, the set

R1

a

d⊗
j=1

Hm,p(Ωj)

 =
{
⊗dk=1w

(k) : w(k) ∈ Hm,p(Ωk)
}
,

is weakly closed in (Hm,p(Ω), ‖ · ‖m,p).

To prove the above proposition we need the following two lemmas.
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Lemma 1 Assume 1 < p <∞ and Ω = Ω1×. . .×Ωd. Then the set R1

(
a
⊗d
j=1 L

p(Ωj)
)

is weakly closed in Lp(Ω).

Proof Let {vn}n∈N, with vn = ⊗dj=1v
(j)
n , be a sequence in R1

(
a
⊗d
j=1 L

p(Ωj)
)
that

weakly converges to an element v ∈ Lp(Ω). Then the sequence {vn}n∈N is bounded in

Lp(Ω), and also the sequences {v(j)n }n∈N ⊂ Lp(Ωj) for each j ∈ {1, 2, . . . , d}. Then,
for each j ∈ {1, 2, . . . , d}, we can extract a subsequence, namely {v(j)nk }k∈N, that weakly
converges to some v(j) ∈ Lp(Ωj).Weak convergence in Lp(Ωj) implies the convergence

in distributional sense, that is, the subsequence {v(j)nk }k∈N converges to v(j) in D′(Ωj).
From Proposition 6.2.3 of [4], we have that {⊗dj=1v

(j)
nk }k∈N converges to ⊗dj=1v

(j) in

D′(Ω). By uniqueness of the limit, we obtain the desired result. ut

Lemma 2 Assume 1 < p < ∞, m ≥ 1 and Ω = Ω1 × . . . × Ωd. For any measurable

functions wk : Ωk → R such that ⊗dk=1wk 6= 0, we have ⊗dk=1wk ∈ H
m,p(Ω) if and

only if wk ∈ Hm,p(Ωk) for all k ∈ {1 . . . d}.

Proof Suppose that wk ∈ Hm,p(Ωk) for all k ∈ {1 . . . d}. Since

‖ ⊗dk=1 wk‖m,p =
∑

0≤|α|≤m

d∏
k=1

‖∂αkxk (wk)‖Lp(Ωk)

≤
∑

α∈{0,...,m}d

d∏
k=1

‖∂αkxk (wk)‖Lp(Ωk)

=
d∏
k=1

 m∑
j=0

‖∂jxk(wk)‖Lp(Ωk)

 =
d∏
k=1

‖wk‖m,p;k,

we have ⊗dk=1wk ∈ H
m,p(Ω).

Conversely, if ⊗dk=1wk ∈ H
m,p(Ω), then

‖ ⊗dk=1 wk‖m,p =
∑

0≤|α|≤m

‖Dα(⊗dk=1wk)‖Lp(Ω) <∞

which implies that ‖Dα(⊗dk=1wk)‖Lp(Ω) <∞ for all α such that 0 ≤ |α| ≤ m. Taking

α = (0, . . . , 0), we obtain

‖ ⊗dk=1 wk‖Lp(Ω) =
d∏
k=1

‖wk‖Lp(Ωk) <∞

and therefore ‖wk‖Lp(Ωk) <∞ for all k. Now, for k ∈ {1 . . . d}, taking α = (. . . , 0, j, 0, . . .)
such that αk = j, with 1 ≤ j ≤ m, and αl = 0 for l 6= k, we obtain

‖Dα(⊗dl=1wl)‖Lp(Ω) = ‖∂
j
xkwk‖Lp(Ωk)

∏
l 6=k
‖wl‖Lp(Ωl)

and then ‖∂jxkwk‖p,Ωk < ∞ for all j ∈ {1, . . . ,m}. Therefore wk ∈ Hm,p(Ωk) for all
k ∈ {1 . . . d}. ut
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Proof of Proposition 3 For m = 0 the proposition follows from Lemma 1. Now, assume

m ≥ 1, and let us consider a sequence

{zn}n∈N ⊂ R1

a

d⊗
j=1

Hm,p(Ωj)


that weakly converges to an element z ∈ Hm,p(Ω). Since

R1

a

d⊗
j=1

Hm,p(Ωj)

 ⊂ R1

a

d⊗
j=1

Lp(Ωj)

 ,

we have z ∈ R1

(
a
⊗d
j=1 L

p(Ωj)
)
because, from Lemma 1, the latter set is weakly

closed in Lp(Ω). Therefore, there exist wk ∈ Lp(Ωk) such that z = ⊗dk=1wk. Since

z ∈ Hm,p(Ω), from Lemma 2, wk ∈ Hm,p(Ωk) for 1 ≤ k ≤ d, and therefore z =

⊗dk=1wk ∈ R1

(
a
⊗d
j=1H

m,p(Ωj)
)
. ut

From Proposition 5.18 and Example 5.19 in [15] it follows the following statement.

Proposition 4 The set Tr
(
a
⊗d
j=1H

m,2(Ωj)
)
is weakly closed in Hm,2(Ω).

3 Optimization of functionals over Banach spaces

Let V be a re�exive Banach space, endowed with a norm ‖ · ‖. We denote by V ∗ the
dual space of V and we denote by 〈·, ·〉 : V ∗ × V → R the duality pairing. We consider

the optimization problem

J(u) = min
v∈V

J(v) (π)

where J : V → R is a given functional.

3.1 Some useful results on minimization of functionals over Banach spaces

In the sequel, we will introduce approximations of (π) by considering an optimization

on subsets M ⊂ V , i.e.

J(u) = min
v∈M

J(v) (8)

We here recall classical theorems for the existence of a minimizer (see e.g. [14]).

De�nition 3 We say that a map J : V −→ R is weakly sequentially lower semicon-

tinuous (respectively, weakly sequentially continuous) in M ⊂ V if for all v ∈ M and

for all vm ∈ M such that vm ⇀ v, it holds J(v) ≤ lim infm→∞ J(vm) (respectively,
J(v) = limm→∞ J(vm)).

If J ′ : V −→ V ∗ exists as Gateaux derivative, we say that J ′ is strongly continuous

when for any sequence vn ⇀ v in V it holds that J ′(vn)→ J ′(v) in V ∗.
Recall that the convergence in norm implies the weak convergence. Thus, J weakly

sequentially (lower semi)continuous in M ⇒ J (lower semi)continuous in M. It can be

shown (see Proposition 41.8 and Corollary 41.9 in [39]) the following result.
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Proposition 5 Let V be a re�exive Banach space and let J : V → R be a functional,

then the following statements hold.

(a) If J is a convex and lower semicontinuous functional, then J is weakly sequentially

lower semicontinuous.

(b) If J ′ : V −→ V ∗ exists on V as Gateaux derivative and is strongly continuous (or

compact), then J is weakly sequentially continuous.

Finally, we have the following two useful theorems.

Theorem 1 Assume V is a re�exive Banach space, and assume M ⊂ V is bounded

and weakly closed. If J : M → R ∪ {∞} is weakly sequentially lower semicontinuous,

then problem (8) has a solution.

Proof Let α = infv∈M J(v) and {vn} ⊂ M be a minimizing sequence. Since A is

bounded, {vn}n∈N is a bounded sequence in a re�exive Banach space and therefore,

there exists a subsequence {vnk}k∈N that converges weakly to an element u ∈ V . Since
M is weakly closed, u ∈ M and since J is weakly sequentially lower semicontinu-

ous, J(u) ≤ lim infk→∞ J(vnk) = α. Therefore, J(u) = α and u is solution of the

minimization problem. ut

We now remove the assumption thatM is bounded by adding a coercivity condition

on J .

Theorem 2 Assume V is a re�exive Banach space, and M ⊂ V is weakly closed. If

J :M → R∪{∞} is weakly sequentially lower semicontinuous and coercive on M , i.e.

lim‖v‖→∞ J(v) = +∞, then problem (8) has a solution.

Proof Pick an element v0 ∈ M such that J(v0) 6= ∞ and de�ne M0 = {v ∈ M :
J(v) ≤ J(v0)}. Since J is coercive, M0 is bounded. Since M is weakly closed and J

is weakly sequentially lower semicontinuous, M0 is weakly closed. The initial problem

is then equivalent to J(u) = minv∈M0
J(v), which admits a solution from Theorem 1.

ut

3.2 Convex optimization in Banach spaces

From now on, we will assume that the functional J satis�es the following assumptions.

(A1) J is Fréchet di�erentiable, with Fréchet di�erential J ′ : V → V ∗.
(A2) J is elliptic, i.e. there exist α > 0 and s > 1 such that for all v, w ∈ V ;

〈J ′(v)− J ′(w), v − w〉 ≥ α‖v − w‖s (9)

In the following, s will be called the ellipticity exponent of J .

Lemma 3 Under assumptions (A1)-(A2), we have

(a) For all v, w ∈ V,

J(v)− J(w) ≥ 〈J ′(w), v − w〉+ α

s
‖v − w‖s. (10)

(b) J is strictly convex.

(c) J is bounded from below and coercive.
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Proof (a) For all v, w ∈ V ,

J(v)− J(w) =
∫ 1

0

d

dt
J(w + t(v − w))dt =

∫ 1

0

〈J ′(w + t(v − w)), v − w〉dt

= 〈J ′(w), v − w〉+
∫ 1

0

〈J ′(w + t(v − w))− J ′(w), v − w〉dt

≥ 〈J ′(w), v − w〉+
∫ 1

0

α

t
‖t(v − w)‖sdt

= 〈J ′(w), v − w〉+ α

s
‖v − w‖s

(b) From (a), we have for v 6= w,

J(v)− J(w) > 〈J ′(w), v − w〉

(c) Still from (a), we have for all v ∈ V ,

J(v) ≥ J(0) + 〈J ′(0), v〉+ α

s
‖v‖s ≥ J(0)− ‖J ′(0)‖‖v‖+ α

s
‖v‖s

which gives the coercivity and the fact that J is bounded from below.

ut

The above properties yield the following classical result (see for example Theo-

rem 7.4.4 in [10]).

Theorem 3 Under assumptions (A1)-(A2), the problem (π) admits a unique solution

u ∈ V which is equivalently characterized by

〈J ′(u), v〉 = 0 ∀v ∈ V (11)

Proof We here only give a sketch of proof of this very classical result. J is continuous

and a fortiori lower semicontinuous. Since J is convex and lower semicontinuous, it is

also weakly sequentially lower semicontinuous (Proposition 5(a)). The existence of a

solution then follows from Theorem 2. The uniqueness is given by the strict convexity of

J , and the equivalence between (π) and (11) classically follows from the di�erentiability

of J . ut

Lemma 4 Assume that J satis�es (A1)-(A2). If {vm} ⊂ V is a sequence such that

J(vm) −→
m→∞

J(u), where u is the solution of (π), then vm → u, i.e.

‖u− vm‖ −→
m→∞

0

Proof By the ellipticity property (10) of J , we have

J(vm)− J(u) ≥ 〈J ′(u), vm − u〉+
α

s
‖u− vm‖s =

α

s
‖u− vm‖s. (12)

Therefore,
α

s
‖u− vm‖s ≤ J(vm)− J(u) −→

m→∞
0,

which ends the proof. ut
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4 Progressive Proper Generalized Decompositions in Tensor Banach

Spaces

4.1 De�nition of progressive Proper Generalized Decompositions

We now consider the minimization problem (π) of functional J on a re�exive tensor

Banach space V = V‖·‖. Assume that we have a functional J : V‖·‖ −→ R satisfying

(A1)-(A2) and a weakly closed subset S1 in V‖·‖ such that

(B1) S1 ⊂ V, with 0 ∈ S1,
(B2) for each v ∈ S1 we have λv ∈ S1 for all λ ∈ R, and
(B3) spanS1 is dense in V‖·‖.

Using the notation introduced in Section 2.2 we give the following examples.

Example 1 Consider V‖·‖ = Lpµ(I;X) and S1 = Tr (X ⊗a Lpµ(I)).

Example 2 Consider V‖·‖ = Hm,2(Ω) and S1 = Tr
(
a
⊗d
j=1H

m,2(Ωj)
)
.

Example 3 Consider V‖·‖ = Hm,p(Ω) and S1 = R1

(
a
⊗d
j=1H

m,p(Ωj)
)
.

The set S1 can be used to characterize the solution of problem (π) as shown by the

following result.

Lemma 5 Assume that J satis�es (A1)-(A2) and let u∗ ∈ V‖·‖ satisfy

J(u∗) = min
z∈S1

J(u∗ + z). (13)

Then u∗ solves (π).

Proof For all γ ∈ R+ and z ∈ S1,

J(u∗ + γz) ≥ J(u∗)

and therefore

〈J ′(u∗), z〉 = lim
γ↘0

1

γ
(J(u∗ + γz)− J(u∗)) ≥ 0

holds for all z ∈ S1. From (B2), we have

〈J ′(u∗), z〉 = 0 ∀z ∈ S1,

From (B3), we then obtain

〈J ′(u∗),v〉 = 0 ∀v ∈ V‖·‖,

and the lemma follows from Theorem 3. ut

In the following, we denote by Sm the set

Sm =

{
m∑
i=1

zi : zi ∈ S1

}
The next two lemmas will be useful to de�ne a progressive Proper Generalized

Decomposition.
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Lemma 6 For each v ∈ V‖·‖, the set

v+ S1 = {v+w : w ∈ S1}

is weakly closed in V‖·‖.

Proof Assume that v+wn ⇀ w for some {wn}n≥1 ⊂ S1, then wn ⇀ w−v and since

S1 is weakly closed, w − v ∈ S1. In consequence w ∈ v + S1 and the lemma follows.

ut

Lemma 7 (Existence of a S1-minimizer) Assume that J : V‖·‖ −→ R satis�es

(A1)-(A2). Then for any v ∈ V‖·‖, the following problem admits a solution:

J(w∗) = min
w∈v+S1

J(w)

Proof Fréchet di�erentiability of J implies that J is continuous and since J is convex,

we have that J is weakly sequentially lower semicontinuous by Proposition 5. Moreover,

J is coercive on V‖·‖ by Lemma 3(c). By Lemma 6, v + S1 is a weakly closed subset

in V‖·‖. Then, the existence of a minimizer follows from Theorem 2. ut

De�nition 4 (Progressive PGDs) Assume that J : V‖·‖ −→ R satis�es (A1)-(A2),

and let u ∈ V‖·‖ satisfy

J(u) = min
v∈V‖·‖

J(v). (14)

We de�ne a progressive Proper Generalized Decomposition {um}m≥1 over S1 of u, as

follows. We let u0 = 0 and for m ≥ 1, we construct um ∈ V‖·‖ from um−1 ∈ V‖·‖ as
we show below. We �rst �nd an element ẑm ∈ S1 ⊂ V such that

J(um−1 + ẑm) = min
z∈S1

J(um−1 + z) (∗).

Next before to updatem tom+1, we can choose one of the following strategies denoted

by c, l and r, respectively:

(c) Let zm = ẑm. De�ne um = um−1 + zm, update m to m+ 1 and goto (∗).
(l) Let zm = ẑm. Construct a closed subspace U(um−1 + zm) in V‖·‖ such that

um−1 + zm ∈ U(um−1 + zm). Then, de�ne um by

J(um) = min
v∈U(um−1+zm)

J(v),

update m to m+ 1 and goto (∗).
(r) Construct a closed subspace U(ẑm) in V‖·‖ such that ẑm ∈ U(ẑm), and de�ne zm

by

J(zm) = min
z∈U(ẑm)

J(um−1 + z).

Then, de�ne um = um−1 + zm, such that

J(um) = J(um−1 + zm) = min
v∈um−1+U(ẑm)

J(v),

update m to m+ 1 and goto (∗).
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Strategies of type (l) and (r) are called updates. Observe that to each progressive

Proper Generalized Decomposition {um}m≥1 of u we can assign a sequence of symbols

(perhaps �nite), that we will denote by

α(u) = α1α2 · · ·αk · · ·

where αk ∈ {c, l, r} for all k = 1, 2, . . . . That means that uk was obtained without

update if αk = c, or with an update strategy of type l or r if αk = l or αk = r

respectively. In particular, the progressive PGD de�ned in [7] coincides with a PGD

where αk = c for all k ≥ 1. Such a decomposition is called a purely progressive PGD,

while a decomposition such that αk = l or αk = r for some k is called an updated

progressive PGD.

Remark 2 The update αm = l can be de�ned with several updates at each iteration.

Letting u
(0)
m = um−1 + ẑm, we introduce a sequence {u(p)

m }dmp=1 ⊂ V‖·‖ de�ned by

J(u
(p+1)
m ) = min

v∈U(u
(p)
m )

J(v)

with U(u
(p)
m ) being a closed linear subspace of V‖·‖ which contains u

(p)
m . We �nally

let um = u
(dm)
m .

In [15] it was introduced the following de�nition. For a given v in the algebraic

tensor space V, the minimal subspaces Uj,min(v) ⊂ Vj are given by the intersec-

tion of all subspaces Uj ⊂ Vj satisfying v ∈ a
⊗d
j=1 Uj . It can be shown [15] that

a
⊗d
j=1 Uj,min(v) is a �nite dimensional subspace of V.

Example 4 (Illustrations of updates) For a given vm ∈ V‖·‖ (e.g. vm = um−1 + zm if

αm = l or vm = ẑm if αm = r) there are several possible choices for de�ning a linear

subspace U(vm). Among others, we have

� U(vm) = a
⊗d
j=1 Uj,min(vm) . In the case of αm = l, all subspacesU(um−1+zm)

are �nite dimensional and we have that um ∈ V for all m ≥ 1.
� Assume that vm =

∑m
i=1 αizi for some {z1, . . . , zm} ⊂ V‖·‖, αi ∈ R, 1 ≤ i ≤ m.

Then we can de�ne

U(vm) = span {z1, . . . , zm}.

In the context of Greedy algorithms for computing best approximations, an up-

date of type αm = r by using an orthonormal basis of U(vm) corresponds to an

orthogonal Greedy algorithm.

� Assume vm ∈ V. Fix k ∈ {1, 2, . . . , d}. By using a
⊗d
j=1 Vj

∼= Vk⊗a
(
a
⊗
j 6=k Vj

)
,

we can write vm =
∑m
i=1 w

(k)
i ⊗

(⊗
j 6=k w

(j)
i

)
for some elementary tensors w

(k)
i ⊗(⊗

j 6=k w
(j)
i

)
for i = 1, . . . ,m. Then we can de�ne the linear subspace

U(vm) =


m∑
i=1

v
(k)
i ⊗

⊗
j 6=k

w
(j)
i

 : v
(k)
i ∈ Vk, 1 ≤ i ≤ m

 .

The minimization onU(vm) corresponds to an update of functions along dimension

k (functions in the Banach space Vk). Following the remark 2, several updates could

be de�ned by choosing a sequence of updated dimensions.
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4.2 On the convergence of the progressive PGDs

Now, we study the convergence of progressive PGDs. Recall that ẑm ∈ S1 is a solution

of

J(um−1 + ẑm) = min
z∈S1

J(um−1 + z),

For αm = c, we have zm = ẑm and um = um−1 + zm, so that

J(um) = J(um−1 + zm) = J(um−1 + ẑm)

For αm = l, we have zm = ẑm and um is obtained by an update (or several updates)

of um−1 + zm, so that

J(um) ≤ J(um−1 + zm) = J(um−1 + ẑm)

Otherwise, for αm = r, we have um = um−1 + zm with zm obtained by an update of

ẑm, such that

J(um) = J(um−1 + zm) ≤ J(um−1 + ẑm)

We begin with the following Lemma.

Lemma 8 Assume that J satis�es (A1)-(A2), and let u ∈ V‖·‖ satisfy (14). Then

{J(um)}m≥1, where {um}m≥1 is a progressive Proper Generalized Decomposition over

S1 of u, is a non increasing sequence:

J(um) ≤ J(um−1) for all m ≥ 1.

Moreover, if J(um) = J(um−1), um−1 is the solution of (π).

Proof By de�nition, we have

J(um) ≤ J(um−1 + zm) ≤ J(um−1 + ẑm) ≤ J(um−1 + z) ∀z ∈ S1

In particular, since 0 ∈ S1 by assumption (B1), we have J(um) ≤ J(um−1). If
J(um) = J(um−1), we have

J(um−1) = min
z∈S1

J(um−1 + z)

and by Lemma 5, we have that um−1 solves (π). ut

Remark 3 If J(um) = J(um−1) holds for some m > 1, that is um−1 is the solution

of (π), then the updated PGD is described by a �nite sequence of symbols α(u) =
α1α2 · · ·αm−1, where αk ∈ {c, l, r} for 1 ≤ k ≤ m− 1. Otherwise, {J(um)}m∈N is a

strictly decreasing sequence of real numbers and α(u) ∈ {c, l, r}N.

De�nition 5 Let α ∈ {c, l, r}. Then α∞ ∈ {c, l, r}N denotes the in�nite sequence of

symbols αα · · ·α · · · .

From now on, we will distinguish two convergence studies, one with a weak conti-

nuity assumption on functional J , the other one without weak continuity assumption

on J but with an additional Lipschitz continuity assumption on the di�erential J ′.
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4.2.1 A �rst approach for weakly sequentially continuous functionals

Here, we introduce the following assumption.

(A3) The map J : V‖·‖ −→ R is weakly sequentially continuous.

Theorem 4 Assume that J satis�es (A1)-(A3), and let u ∈ V‖·‖ satisfy (14). Then

every progressive Proper Generalized Decomposition {um}m≥1 over S1 of u, converges

in V‖·‖ to u, that is,

lim
m→∞

‖u− um‖ = 0

Proof From Lemma 8, {J(um)} is a non increasing sequence. If there exists m such

that J(um) = J(um−1), from Lemma 8, we have um = u, which ends the proof.

Let us now suppose that J(um) < J(um−1) for all m. J(um) is a strictly decreasing

sequence which is bounded below by J(u). Then, there exists

J∗ = lim
m→∞

J(um) ≥ J(u).

If J∗ = J(u), Lemma 4 allows to conclude that um → u. Therefore, it remains to

prove that J∗ = J(u). Since J is coercive, the sequence {um}m∈N is bounded in V‖·‖.
Then, there exists a subsequence {umk}k∈N that weakly converges to some u∗ ∈ V .
Since J is weakly sequentially continuous, we have

J∗ = lim
k→∞

J(umk) = J(u∗).

By de�nition of the PGD, we have for all z ∈ S1,

J(um(k+1)) ≤ J(umk+1) ≤ J(umk + z)

Taking the limit with k, and using the weak sequential continuity of J , we obtain

J(u∗) ≤ J(u∗ + z) ∀z ∈ S1,

and by Lemma 5, we obtain u∗ = u and a fortiori J(u∗) = J(u), that concludes the
proof. ut

4.2.2 A second approach for a class of functionals with Lipschitz continuous

derivative on bounded sets

Now, assume that assumption (A3) is replaced by

(A3) J ′ : V‖·‖ −→ V∗‖·‖ is Lipschitz continuous on bounded sets, i.e. for A a bounded

set in V‖·‖, there exists a constant CA > 0 such that

‖J ′(v)− J ′(w)‖ ≤ CA‖v −w‖ (15)

for all v,w ∈ A.

The next �ve lemmas will give some useful properties of the sequence {zm}m≥1.

Lemma 9 Assume that J satis�es (A1)-(A2), and let u ∈ V‖·‖ satisfy (14). If {um}m≥1

is a progressive Proper Generalized Decomposition over S1 of u, then

〈J ′(um−1 + zm), zm〉 = 0,

hold for all m ≥ 1.
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Proof Let zm = λmwm, with λm ∈ R+ and ‖wm‖ = 1. In the cases αm = c (purely

progressive PGD) and αm = l, we have J(zm) = J(ẑm) = minz∈S1 J(um−1 + z).
From assumption (B2), we obtain

J(um−1 + λmwm) ≤ J(um−1 + λwm)

for all λ ∈ R. This inequality is also true forαm = r since J(zm) = minz∈U(ẑm) J(um−1+

z) and U(ẑm) is a linear space. Taking λ = λm ± γ, with γ ∈ R+, we obtain for all

cases

0 ≤ 1

γ
(J(um−1 + λmwm ± γwm)− J(um−1 + λmwm)) .

Taking the limit γ ↘ 0, we obtain 0 ≤ ±〈J ′(um−1 + λmwm),wm〉 and therefore

〈J ′(um−1 + λmwm),wm〉 = 0,

which ends the proof. ut

Lemma 10 Assume that J satis�es (A1)-(A2), and let u ∈ V‖·‖ satisfy (14). Then

the corrections {zm}m≥1 of a progressive Proper Generalized Decomposition {um}m≥1

over S1 of u, satisfy

∞∑
m=1

‖zm‖s <∞, (16)

for the ellipticity constant s > 1 and thus,

lim
m→∞

‖zm‖ = 0. (17)

Proof By the ellipticity property (10), there exist s > 1 and α > 0 such that

J(um−1)− J(um−1 + zm) ≥ −〈J ′(um−1 + zm), zm〉+
α

s
‖zm‖s.

Using Lemma 9 and J(um) ≤ J(um−1 + zm), we then obtain

J(um−1)− J(um) ≥ α

s
‖zm‖s (18)

Now, summing on m, and using limm→∞ J(um) = J∗ <∞, we obtain

α

s

∞∑
m=1

‖zm‖s ≤
∞∑
m=1

(J(um−1)− J(um)) = J(0)− J∗ < +∞.

which implies limm→∞ ‖zm‖s = 0. The continuity of the map x 7→ x1/s at x = 0
proves (17). ut

Lemma 11 Assume that J satis�es (A1)-(A3), and let u ∈ V‖·‖ satisfy (14). Then

for every progressive Proper Generalized Decomposition {um}m≥1 over S1 of u, there

exists C > 0 such that for m ≥ 1,

|〈J ′(um−1), z〉| 6 C‖zm‖‖z‖,

holds for all z ∈ S1.
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Proof Since J(um) converges and since J is coercive, {um}m≥1 is a bounded sequence.

Since ‖zm‖ → 0 as m → ∞ (Lemma 10), {zm}m≥1 is also a bounded sequence. Let

a > 0 such that supm ‖um‖+ supm ‖zm‖ ≤ a and let CB be the Lipschitz continuity

constant of J ′ on the bounded set B = {v ∈ V‖·‖ : ‖v‖ ≤ a}. Then

−〈J ′(um−1), z〉 = 〈J ′(um−1 + z)− J ′(um−1), z〉 − 〈J ′(um−1 + z), z〉

≤ CB‖z‖2 − 〈J ′(um−1 + z), z〉

for all z ∈ A = {z ∈ S1 : ‖z‖ ≤ supm ‖zm‖}. By convexity of J and since J(um−1 +
zm) ≤ J(um−1 + z) for all z ∈ S1, we have

〈J ′(um−1 + z), zm − z〉 ≤ J(um−1 + zm)− J(um−1 + z) ≤ 0

Therefore, for all z ∈ A, we have

−〈J ′(um−1), z〉 ≤ CB‖z‖2 − 〈J ′(um−1 + z), zm〉

≤ CB‖z‖2 − 〈J ′(um−1 + z)− J ′(um−1 + zm), zm〉 (Lemma 9)

≤ CB‖z‖2 + CB‖z− zm‖‖zm‖ (Choice of B)

≤ CB
(
‖z‖2 + ‖z‖‖zm‖+ ‖zm‖2

)
Let z = w‖zm‖ ∈ A, with ‖w‖ = 1. Then

|〈J ′(um−1),w〉| ≤ 3CB‖zm‖ ∀w ∈ {w ∈ S1 : ‖w‖ = 1}

Taking w = z/‖z‖, with z ∈ S1, and C = 3CB > 0 we obtain

|〈J ′(um−1), z〉| ≤ C‖zm‖‖z‖ ∀z ∈ S1

ut

Since V‖·‖ is re�exive, we can identify V∗∗‖·‖ with V‖·‖ and the duality pairing

〈·, ·〉V∗∗‖·‖,V∗‖·‖ with 〈·, ·〉V∗‖·‖,V‖·‖ (i.e. weak and weak-∗ topologies coincide on V∗‖·‖).

Lemma 12 Assume that J satis�es (A1)-(A3), and let u ∈ V‖·‖ satisfy (14). Then

for every progressive Proper Generalized Decomposition {um}m≥1 over S1 of u, the se-

quence {J ′(um)}m∈N weakly-∗ converges to 0 in V∗‖·‖, that is, limm→∞〈J ′(um), z〉 =
0 for all z in a dense subset of V‖·‖.

Proof The sequence {um}m∈N being bounded, and since J ′ is Lipschitz continuous on
bounded sets, we have that there exists a constant C > 0 such that

‖J ′(um)‖ = ‖J ′(um)− J ′(u)‖ ≤ C‖u− um‖

That proves that {J ′(um)} ⊂ V∗‖·‖ is a bounded sequence. Since V∗‖·‖ is also re-

�exive, from any subsequence of {J ′(um)}m∈N, we can extract a further subsequence

{J ′(umk)}k∈N that weakly-∗ converges to an element ϕ ∈ V∗‖·‖. By using Lemma 11,

we have for all z ∈ S1,
|〈J ′(umk), z〉| ≤ C‖zmk+1‖‖z‖.

Taking the limit with k, and using Lemma 10, we obtain

〈ϕ, z〉 = 0 ∀z ∈ S1,

By using assumption (B3), we conclude that ϕ = 0. Since from any subsequence of

the initial sequence {J ′(um)}m∈N we can extract a further subsequence that weakly-∗
converges to the same limit 0, then the whole sequence converges to 0. ut
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Lemma 13 Assume that J satis�es (A1)-(A3), and let u ∈ V‖·‖ satisfy (14). Let

us consider a progressive Proper Generalized Decomposition {um}m≥1 over S1 of u,

such that for the ellipticity constant s of J and α(u) = α1 · · ·αm · · · , one of the two

following conditions hold:

(a) s > 1 and there exists a subsequence {αmk}k∈N such that αmk = l for all k ≥ 1.
(b) 1 < s ≤ 2 and there exists k ≥ 1 such that α(u) = α1 · · ·αk−1α

∞ where α ∈
{c, r}.

Then, there exists a subsequence {umk}k∈N such that

〈J ′(umk),umk 〉 → 0.

Proof First, assume that condition (a) holds. Recall that if αm = l for somem ≥ 1, the
um is obtained by the minimization of J on the closed subspaceU(um−1+zm) ⊂ V‖·‖.

The global minimum is attained and unique, and it is characterized by
〈
J ′(um),v

〉
= 0

for all v ∈ U(um−1+ zm). Thus, under condition (a), there exists a subsequence such
that 〈J ′(umk),umk 〉 = 0 for all k ≥ 1. Now, we consider that statement (b) holds.

Without loss of generality we may assume that α(u) = α∞ where α ∈ {c, r}. In both

cases, um =
∑m
k=1 zk. Thus, we have

|〈J ′(um),um〉| ≤
m∑
k=1

|〈J ′(um), zk〉|

≤ C
m∑
k=1

‖zm+1‖‖zk‖ (By Lemma 11).

Let s∗ > 1 be such that 1/s∗ + 1/s = 1. By Holder's inequality, we have

|〈J ′(um),um〉| ≤ C‖zm+1‖m1/s∗

(
m∑
k=1

‖zk‖s
)1/s

= C
(
m‖zm+1‖s

∗)1/s∗ ( m∑
k=1

‖zk‖s
)1/s

. (19)

From Lemma 10, we have
∑∞
k=1 ‖zk‖

s <∞. Then there exists a subsequence such that

mk‖zmk+1‖s → 0. For 1 < s ≤ 2, we have s ≤ s∗. Since limk→∞ ‖zk‖ = 0, we have

‖zk‖s
∗
≤ ‖zk‖s for k large enough, and therefore we also have mk‖zmk+1‖s

∗
→ 0,

which from (19) ends the proof of the lemma. ut

Theorem 5 Assume that J satis�es (A1)-(A3), and let u ∈ V‖·‖ satisfy (14). Let us

consider a progressive Proper Generalized Decomposition {um}m≥1 over S1 of u, such

that for the ellipticity constant s of J and α(u) satisfy one of the following conditions:

(a) s > 1 and there exists a subsequence {αmk}k∈N such that αmk = l for all k ≥ 1.
(b) 1 < s ≤ 2 and there exists k ≥ 1 such that α(u) = α1 · · ·αk−1α

∞ where α ∈
{c, r}.

(c) s > 1 and α(u) is �nite.

Then {um}m≥1, converges in V‖·‖ to u, that is,

lim
m→∞

‖u− um‖ = 0.
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Proof From the same argument used in the proof of Theorem 4, if (c) holds we have

um = u for some m. Thus, the theorem follows in this case. Otherwise, {J(um)} is
strictly decreasing and there exists

J∗ = lim
m→∞

J(um) ≥ J(u).

If J∗ = J(u), Lemma 4 allows to conclude that {um} strongly converges to u. There-

fore, it remains to prove that J∗ = J(u). By the convexity of J , we have

J(um)− J(u) ≤ 〈J ′(um),um − u〉 = 〈J ′(um),um〉 − 〈J ′(um),u〉

By Lemmas 12 and 13, we have that there exists a subsequence {umk}k∈N such that

〈J ′(umk),umk 〉 → 0 and 〈J ′(umk),u〉 → 0, and therefore

J∗ − J(u) = lim
k→∞

J(umk)− J(u) ≤ 0

Since we already had J∗ ≥ J(u), this yields J∗ = J(u), which ends the proof. ut

5 Examples

5.1 On the Singular Value Decomposition in Lp spaces for p ≥ 2

A Banach space V is said to be smooth if for any linearly independent elements x, y ∈ V ,
the function φ(t) = ‖x− ty‖ is di�erentiable. A Banach space is said to be uniformly

smooth if its modulus of smoothness

ρ(τ) = sup
x,y∈V

‖x‖=‖y‖=1

{
‖x+ τy‖+ ‖x− τy‖

2
− 1

}
, τ > 0,

satis�es the condition

lim
τ→0

ρ(τ)

τ
= 0.

In uniformly smooth spaces, and only in such spaces, the norm is uniformly Fréchet

di�erentiable. It can be shown that the Lp-spaces for 1 < p <∞ are uniformly smooth

(see Corollary 6.12 in [29]).

Following section 2.2.1, we introduce the tensor product of Lebesgue spaces

Lpµ(I1 × I2) = Lpµ1
(I1)⊗∆p L

p
µ2
(I2) = Lpµ1

(I1, L
p
µ2
(I2)),

with p ≥ 2, and µ = µ1 ⊗ µ2 a �nite product measure. Recall that

‖v‖∆p =

(∫
I1×I2

|v(x)|pdµ(x)
)1/p

Let u be a given function in Lpµ(I1×I2). We introduce the functional J : Lpµ(I1×I2)→
R de�ned by

J(v) =
1

p
‖v − u‖p∆p .
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Let G : Lpµ(I1 × I2) → R be the functional given by the p-norm G(v) = ‖v‖∆p . It is
well known (see for example page 170 in [20]) that G is Fréchet di�erentiable, with

G′(v) = v |v|p−2 ‖v‖1−p∆p
∈ Lqµ(I1 × I2),

with q such that 1/q+1/p = 1. We denote by Ck the set of k-times Fréchet di�erentiable

functionals from Lpµ(I1 × I2) to R. Then, if p is an even integer, G ∈ C∞. Otherwise,
when p is not an even integer, the following statements hold (see [5] and 13.13 in [25]):

(a) If p is an integer, G is (p−1)-times di�erentiable with Lipschitzian highest Fréchet

derivative.

(b) Otherwise, G is [p]-times Fréchet di�erentiable with highest derivative being Hölde-

rian of order p− [p].
(c) G has no higher Hölder Fréchet di�erentiability properties.

As a consequence we obtain that G ∈ C2 for all p ≥ 2, and the functional J is also

Fréchet di�erentiable with Fréchet derivative given by J ′(v) = G(v−u)p−1G′(v−u),
that is,

〈J ′(v),w〉 =
∫
I1×I2

(v − u) |v − u|p−2 w dµ.

Thus, J satis�es assumption (A1). It is well-known that if a functional F : V −→ W,

where V and W are Banach spaces, is Fréchet di�erentiable at v ∈ V , then it is also

locally Lipschitz continuous at v ∈ V. Thus, if p ≥ 2, we have that J ′ ∈ C1, and as a

consequence J ′ satis�es (A3).
Finally, in order to prove the convergence of the (updated) progressive PGD for

each u ∈ Lpµ(I1 × I2) over S1 = T(r1,r2)(L
p
µ1
(I1)⊗a Lpµ2

(I2)), where (r1, r2) ∈ N2, we

have to verify that (A2) on J is satis�ed. Since there exists a constant αp > 0 such

that for all s, t ∈ R,

(|s|p−2s− |t|p−2t)(s− t) ≥ αp|s− t|p

(see for example (7.1) in [8]), then, for all v,w ∈ Lpµ(I1 × I2),

〈J ′(v)− J ′(w),v −w〉 ≥ αp‖v −w‖p,

which proves the ellipticity property of J, and assumption (A2) holds.

From Theorem 5, we conclude that the (updated) progressive Proper Generalized

Decomposition converges

� for all p ≥ 2 if conditions (a) or (c) of Theorem 5 hold.

� for p = 2 if condition (b) of Theorem 5 holds.

Let us detail the application of the progressive PGD over

S1 = T(r1,r2)(L
p
µ1
(I1)⊗a Lpµ2

(I2)).

We claim that in dimension d = 2, we can only consider the case r1 = r2 = r. The

claim follows from the fact that (see [15]) for each v ∈ Lpµ1
(I1)⊗a Lpµ2

(I2), there exist
two minimal subspaces Uj,min(v), j = 1, 2, with dimU1,min(v) = dimU2,min(v) and
such that v ∈ U1,min(v)⊗a U2,min(v). In consequence, for a �xed r ∈ N and for

u ∈ Lpµ(I1 × I2) \ Lpµ1
(I1)⊗a Lpµ2

(I2)
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we let u1 such that

J(u1) = min
z∈T(r,r)(Lpµ1 (I1)⊗aL

p
µ2 (I2))

J(z).

Then there exist two bases {u(j)1 , . . . , u
(j)
r } ⊂ Lpµj (Ij) of Uj,min(v), for j = 1, 2, such

that

u1 =
r∑

k=1

r∑
l=1

σk,l u
(1)
k ⊗ u(2)l ,

and u− u1 /∈ Lpµ1
(I1)⊗a Lpµ2

(I2). Proceeding inductively we can write

um =
mr∑
k=1

mr∑
l=1

σk,l u
(1)
k ⊗ u(2)l .

At step m, an example of update of type αm = r would consist in updating the

coe�cients {σk,l : k, l ∈ {(m−1)r+1, . . . ,mr}}. An example of update of type αm = l

would consist in updating the whole set of coe�cients {σk,l : k, l ∈ {1, . . . ,mr}}.
In the case p = 2 and when we take orthonormal bases, it corresponds to the

classical SVD decomposition in the Hilbert space L2
µ(I1 × I2). In this case we have

um =
mr∑
j=1

σj u
(1)
j ⊗ u(2)j .

where σj = |〈u, u
(j)
1 ⊗ u(j)2 〉|, for 1 ≤ j ≤ mr.

In this sense, the progressive PGD can be interpreted as a SVD decomposition of a

function u in a Lp-space where p ≥ 2. Let us recall that for p > 2, an update strategy

of type (l) is required for applying Theorem 5 (at least for a subsequence of iterates).

The above results can be naturally extended to tensor product of Lebesgue spaces,

a ⊗dk=1 L
p
µk(Ik)

‖·‖∆p
with d > 2 and S1 = R1

(
a
⊗d
k=1 L

p
µk(Ik)

)
, leading to a gen-

eralization of multidimensional singular value decomposition introduced in [16] for the

case of Hilbert tensor spaces.

5.2 Nonlinear Laplacian

We here present an example taken from [8]. We refer to section 2.2.2 for the introduction

to the properties of Sobolev spaces. Let Ω = Ω1 × . . .×Ωd. Given some p > 2, we let
V‖·‖ = H1,p

0 (Ω), which is the closure of C∞c (Ω) (functions in C∞(Ω) with compact

support in Ω) in H1,p(Ω) with respect to the norm in H1,p(Ω). We equip H1,p
0 (Ω)

with the norm

‖v‖ =

(
d∑
k=1

‖∂xk(v)‖
p
Lp(Ω)

)1/p

which is equivalent to the norm ‖ · ‖1,p on H1,p(Ω) introduced in section 2.2.2. We

then introduce the functional J : V‖·‖ → R de�ned by

J(v) =
1

p
‖v‖p − 〈f ,v〉,
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with f ∈ V∗‖·‖. Its Fréchet di�erential is

J ′(v) = A(v)− f

where

A(v) = −
d∑
k=1

∂

∂xk

(∣∣∣∣ ∂v∂xk
∣∣∣∣p−2

∂v

∂xk

)
A is called the p-Laplacian. Assumptions (A1)-(A3) on the functional are satis�ed (see

[8]). Assumption (B3) on the set R1

(
a
⊗d
j=1H

m,p
0 (Ωj)

)
is also satis�ed. Indeed, it

can be easily proved from Proposition 3 that the set R1

(
a
⊗d
j=1H

1,p
0 (Ωj)

)
is weakly

closed in (H1,p
0 (Ω), ‖ · ‖1,p). Since the norm ‖ · ‖ is equivalent to ‖ · ‖1,p on H1,p

0 (Ω),
it is also weakly closed in (H1,p

0 (Ω), ‖ · ‖).
Then, from Theorem 5, the progressive PGD converges if there exists a subsequence

of updates of type (l).

5.3 Linear elliptic variational problems on Hilbert spaces

Let V‖·‖ = V1 ⊗a . . .⊗a Vd
‖·‖

be a tensor product of Hilbert spaces. We consider the

following problem

J(u) = min
v∈K

J(v), J(v) =
1

2
a(v,v)− `(v)

where K ⊂ V‖·‖, a : V‖·‖ × V‖·‖ → R is a coercive continuous symmetric bilinear

form,

a(v,v) ≥ α‖v‖2 ∀v ∈ V‖·‖,

a(v,w) ≤ β‖v‖‖w‖ ∀v,w ∈ V‖·‖,

` : V‖·‖ → R is a continuous linear form,

`(v) ≤ γ‖v‖ ∀v ∈ V‖·‖.

Case where K is a closed and convex subset of V‖·‖. The solution u is equivalently

characterized by the variational inequality

a(u,v − u) ≥ `(v − u) ∀v ∈ K

In order to apply the results of the present paper, we have to recast the problem as

an optimization problem in V‖·‖. We introduce a convex and Fréchet di�erentiable

functional j : V‖·‖ → R with Fréchet di�erential j′ : V‖·‖ → V∗‖·‖, such that j(v) = 0

if v ∈ K and j(v) > 0 if v /∈ K. We further assume that j′ is Lipschitz on bounded sets.
We let jε(v) = ε−1j(v), with ε > 0, and introduce the following penalized problem

Jε(uε) = min
v∈V‖·‖

Jε(v), Jε(v) = J(v) + jε(v)
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As ε → 0, jε tends to the indicator function of set K and uε → u (see e.g. [17]).

Assumptions (A1)-(A2) are veri�ed since Jε is Fréchet di�erentiable with Fréchet dif-

ferential J ′ε : V‖·‖ → V∗‖·‖ de�ned by

〈J ′ε(v), z〉 = a(v, z)− `(z) + 〈j′ε(v), z〉,

and Jε is elliptic since

〈J ′ε(v)− J ′ε(w),v −w〉 = a(v −w,v −w) + 〈j′ε(v)− j′ε(w),v −w〉 ≥ α‖v −w‖2

Assumption (A3) comes from the continuity of a and ` and from the properties of j′.

Case where K = V‖·‖. If K = V‖·‖, we recover the classical case of linear elliptic

variational problems on Hilbert spaces analyzed in [16]. In this case, the bilinear form

a de�nes a norm ‖v‖a =
√
a(v,v) on V‖·‖, equivalent to the norm ‖·‖. The functional

J is here equal to

J(v) =
1

2
‖u− v‖2a −

1

2
‖u‖2a

The progressive PGD can be interpreted as a generalized Eckart-Young decomposition

(generalized singular value decomposition) with respect to this non usual metric, and

de�ned progressively by

‖u− um‖2a = min
z∈S1

‖u− um−1 − z‖2a

We have

J(um−1)− J(um) =
1

2
‖zm‖2a :=

1

2
σ2m

and

‖u− um‖2a = ‖u‖2a −
m∑
k=1

σ2k −→
m→∞

0

where σm can be interpreted as the dominant singular value of (u − um−1) ∈ V‖·‖.
The PGD method has been successfully applied to this class of problems in di�erent

contexts: separation of spatial coordinates for the solution of Poisson equation in high

dimension [2,6], separation of physical variables and random parameters for the solution

of parameterized stochastic partial di�erential equations [30].

6 Conclusion

In this paper, we have considered the solution of a class of convex optimization problems

in tensor Banach spaces with a family of methods called progressive Proper General-

ized Decomposition (PGD) that consist in constructing a sequence of approximations

by successively correcting approximations with optimal elements in a given subset of

tensors. We have proved the convergence of a large class of PGD algorithms (including

update strategies) under quite general assumptions on the convex functional and on

the subset of tensors considered in the successive approximations. The resulting succes-

sion of approximations has been interpreted as a generalization of a multidimensional

singular value decomposition (SVD). Some possible applications have been considered.

Further theoretical investigations are still necessary for a better understanding of

the di�erent variants of PGD methods and the introduction of more e�cient algorithms
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for their construction (e.g. alternated direction algorithms). The analysis of algorithms

for the solution of successive approximation problems on tensor subsets is still an open

problem. In the case of dimension d = 2, further analyses would be required in order

to better characterize the PGD as a direct extension of SVD when considering more

general norms.
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