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Fungal vacuoles are involved in a diverse range of cellular functions, participating in cellular homeostasis,
degradation of intracellular components, and storage of ions and molecules. In recent years there has been
a significant increase in the number of studies linking these organelles with the regulation of growth and con-
trol of cellular morphology, particularly in those fungal species able to undergo yeast-hypha morphogenetic
transitions. This has contributed to the refinement of previously published protocols and the development of
new techniques, particularly in the area of live-cell imaging of membrane trafficking events and vacuolar
dynamics. The current review outlines recent advances in the imaging of fungal vacuoles and assays for char-
acterization of trafficking pathways, and other physiological activities of this important cell organelle.
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1. Introduction

Vacuoles are the largest organelle in fungi (Gow, 1997). They par-
ticipate in a wide range of processes and play a key role in the regu-
lation of cellular homeostasis. The basic functions of fungal vacuoles,
common to mammalian lysosomes and plant vacuoles, include
; fax: +34 96139 5272.
).

license.
degradation of cell components, storage of ions and metabolites and
various aspects of cellular homeostasis (see reviews in Klionsky et
al., 1990; Weber, 2002; Li and Kane, 2009). In this context, many
studies have focused on yeast vacuoles, and have generated novel
protocols to elucidate mechanisms of membrane trafficking and vac-
uolar inheritance, aspects of which are often conserved from yeast to
humans (Roberts et al., 1991; Conibear and Stevens, 1998; Weisman,
2006). The methodology relating to vacuole biology is however
dispersed across organismal and discipline boundaries. This review
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integrates and evaluates this information, and presents a critical eval-
uation of the state of the art in vacuole methodologies.

Certain specialized functions of fungal vacuoles are not conserved
across kingdoms and are adapted to the particular requirements of
the fungal life style in the context of the niche of individual organisms
(reviewed in Veses et al., 2008). The kingdom Fungi includes sapro-
phytic, symbiotic and pathogenic species. Many of these species
alter their cellular morphology in response to environmental triggers
and when the fungi encounter a potential host. Vacuoles play a funda-
mental role in the regulating of this morphological plasticity and
niche-specific adaptation. For example, altered vacuolar morphology
and physiology have been linked with impairment of hyphal growth
and virulence in human pathogens (such as Candida albicans) and
plant pathogens (such as Ustilago maydis and Magnaporthe grisea)
(Veses et al., 2008; Steinberg et al., 1998; Weber et al., 2001). We pro-
vide in this work an overview of the techniques available to charac-
terize different aspects in vacuolar physiology, from staining
methods for the characterization of trafficking pathways, vacuole
acidification, macromolecule and ion storage and hydrolytic activities.

2. Vacuole morphology

Because vacuoles often occupy a significant fraction of the overall
cell volume they can usually be seen directly using conventional
A

B

C

Fig. 1. Appearance of vacuoles using phase contrast and differential interference contrast
compared to the cytosol. Dark vacuoles are indicated by black arrows and the lighter cyto
part of C. albicans hyphae. Vacuoles appear as hollows. Black arrows indicate some vacuoles
(BSA). Black arrows indicate vacuoles, now brighter compared to the cytosol, since BSA cha
microscopical techniques such as phase contrast and differential in-
terference contrast (DIC) microscopy (Gow, 1997). When they are
viewed by phase contrast imaging differences in the refractive index
of the watery vacuole and the protein-rich cytosol generates obvious
differences in their refractivity (Fig. 1A). Viewed with DIC vacuoles
are again easily distinguished by their size and boundary shape
(Fig. 1B). The visibility of vacuoles viewed by light microscopy can
be enhanced by the addition of a mounting medium solution of 20–
50% (w/v) bovine serum albumin (BSA). Because BSA has a high mo-
lecular weight high concentrations of BSA do not result in a signifi-
cant alteration in the osmotic potential of the mountant and this
does not result in cell plasmolysis. However, the change in the refrac-
tive index of mounting medium becomes similar to the refractive
index of the cytoplasm and consequently the lower refractive index
of the vacuole becomes phase-bright. Fig. 1C shows a C. albicans cell
viewed in phase contrast with 35% (w/v) BSA applied directly to
slides just before the cover slip is added. This contrasts with the
hypha shown in Fig. 1A, which does not have BSA in the mounting
medium (Gow and Gooday, 1982). Addition of polyvinylpyrrolidone
can also be used to aid visualisation of Saccharomyces cerevisiae vacu-
oles (Gomes de Mesquita et al., 1991). Visualisation of vacuoles
has also been studied by transmission electron microscopy (TEM;
Chanda et al., 2009) and high resolution scanning electron micros-
copy (HRSEM; Isola et al., 2009).
microscopy. A) Phase contrast image of a C. albicans hypha. Vacuoles appear darker
sol by a white arrow within the tip cell. B) Differential interference contrast image of
. C) Phase contrast image of C. albicans hyphae with 35% (W/V) Bovine serum albumin
nges the refractive index. Scale bar 10 μm.



Table 1
Summary of available techniques for vacuolar studies.

Objective Method Target/mechanism

Vacuolar
morphology

Fluorescence microscopy
— CMAC/CMFDA Lumen
— CFDA (and derivatives) Lumen
— Neutral red Lumen
— FM-464 Membrane
— (G/C/Y)FP-fusion
proteins

Various

— Mono/Polyclonal
Immunohistochemistry
(See Table 2)

Peripheral and integral
membrane proteins/soluble
lumen proteins

Vacuolar size 2D software
— CalMorph Determination of pixels

associated with vacuolar
fluorescence

— OpenLab
3D software Analysis of z-stack fluorescence

microscopy images combined
with pixel complexity
algorithms

— V3D
Fusion analysis Enzymatic assays

— Pho8/Pep4 assay Fusion events are detected by
generation of a coloured
metabolite

— E. coli β lactamase/
carboxypeptidase
Y fusion protein

Fusion events are detected by
restoration of β lactamase
activity

Fluorescence microscopy Docking site proteins
Vacuolar
acidification

Fluorescence microscopy
with Quinacrine

Acidic vacuolar lumen

Flow cytometry with
BCECF

Alkaline vacuolar lumen

Protein sorting
in vacuoles

CPY detection See Table 3
Immunodetection
— ALP detection Antibody-mediated detection

of ALP
— API detection Antibody-mediated detection

of API
Macromolecule Radiolabelled C14 time

course experiments
Arginine transport and storage

Microscopy
— Toluidine Blue O
staining

Polyphosphate transport
and storage

— Fluorescently tagged
antibody mediated

Polyphosphate transport
and storage

— SEM Polyphosphate transport
and storage

Colourimetric
spectrophotometry

Quantification of vacuolar
polyphosphate
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Vacuoles are dynamic organelles which undergo extensive expan-
sion and remodelling during morphogenetic transitions, such as germ
tube formation of C. albicans (Gow, 1997); appressorium formation of
M. grisea (Weber et al., 2001), formation of dikaryotic hyphae of
U. maydis (Steinberg et al., 1998). These morphogenetic transitions
involve modifications in the cell cycle programmes during the alter-
ation of cell shape (Berman and Gow, 2004). This is accompanied by
divergent patterns of vacuolar inheritance between the various cellu-
lar morphologies (Veses and Gow, 2008). A wide range of techniques
have been made available in recent years to follow vacuolar dynamics
associated with these morphological transitions.

2.1. Use of vacuolar markers

The majority of vacuolar marker molecules take advantage of
the intrinsic acidity of this organelle. Cells are usually incubated
with non-fluorescent compounds that, upon reaching the vacuole,
undergo a chemical reaction generating a fluorescent derivative
that is trapped in the vacuolar lumen. For example, chloromethyl
coumarin-derived Cell Tracker vacuole markers, including CMAC
(7-amino-4-chloromethylcoumarin; Molecular Probes) and CMFDA
(5-chloromethylfluorescein diacetate), have been used to visualise
vacuoles in a range of fungi such as Aspergillus nidulans (Leeder and
Turner, 2008), Aspergillus parasiticus (Chanda et al., 2009), Aspergillus
oryzae (Ohneda et al., 2005; Shoji et al., 2006; Tatsumi et al., 2007),
U. maydis (Steinberg et al., 1998), Cryptococcus neoformans (Liu et al.,
2006), Pisolithus tinctorius (Cole et al., 1997, 1998) and Phanerochaete
velutina (Zhuang et al., 2009). These compounds readily diffuse across
cell membranes due to their hydrophobic nature. The chloromethyl
group reacts with thiols such as glutathione producing fluorescent
conjugates that are membrane impermeable and so are retained within
the vacuole lumen (Haugland, 1995; Cole et al., 1997). Similarly, a set
of fluorescent vacuole markers based on 6-carboxyfluorescein di-
acetate (CFDA) and its derivatives (CDCFDA, 5-[and 6-] carboxy-2′,
7′-dichlorofluorescein diacetate, cDFFDA, and Oregon Green 488
carboxylic acid diacetate) have been used to visualise vacuoles in a
range of fungi such as C. albicans (Veses et al., 2009b), P. tinctorius
(Hyde et al., 2002), Paxillus involutus (Tuszynska, 2006), P. velutina
(Darrah et al., 2006; Fricker et al., 2008; Zhuang et al., 2009),
A. nidulans (Peñalva, 2005), Gigaspora margarita (Saito et al., 2004),
S. cerevisiae (Shiflett et al., 2004), U. maydis (Torralba and Heath,
2002) and C. neoformans (Harrison et al., 2002). They work by the
same principle as CMAC, and are colourless non-polar compounds
which readily diffuse across cell membranes. Once within the vacuole
the compounds are hydrolysed by intracellular esterases and become
desterified yielding a fluorescent product that is polar and unable to
re-cross the vacuolar membrane by diffusion. Transport into the vacu-
ole is mediated by an anion transport mechanism across the vacuole
membrane and no such mechanism operates in the opposite direction.
Therefore the fluorescent product is sequestered and retained within
the vacuole lumen (Roberts et al., 1991; Slayman et al., 1994; Cole
et al., 1997, 1998; Weber, 2002).

A variant of these compounds is Neutral Red, a dye that also accu-
mulates within any membrane bound compartment with an acidic
lumen (Weber, 2002). Neutral Red has been used successfully in
studies of Botrytis cinerea (Weber et al., 1999), M. grisea (Weber
et al., 2001), Trichophyton mentagrophytes (Naka et al., 1995) and
Colletotrichum graminicola (Schadeck et al., 2003). The compound is
non-toxic, is visible using bright field light microscopy, and is not
prone to photobleaching, the major problem when using fluorescent
vacuolar markers (Hickey et al., 2004). This information is summa-
rized in Table 1. Another staining method that does not involve the
use of fluorescent molecules is the use of acid phosphomonoesterase,
a substrate of vacuolar acid phosphatase (Weber et al., 2001). The
hydrolysed substrate forms a coloured product, highlighting the
vacuole lumen. The disadvantage of this technique is the lack of
specificity, since acid phosphatase is also secreted, particularly at
the growing hyphal apex, and therefore the stain may be seen in
the endomembrane system throughout the cytoplasm (Weber and
Pitt, 1997).

A used vacuole stain is FM4-64 (N-[triethylammoniumpropyl]-
4-[p-diethylaminophenylhexatrienyl] pyridium dibromide; Molecular
Probes)— a lipophilic styryl compound. It does not permeate cell mem-
branes, but inserts into the plasmamembrane, and becomes fluorescent
upon doing so. It is taken up by the cell via endocytosis, staining com-
partments of the endocytic pathway, and ultimately accumulates in
the vacuole membrane (Vida and Emr, 1995; Steinberg et al., 1998;
Fischer-Parton et al., 2000). FM4-64 has been used to visualise vacuoles
in a range of fungi such as C. albicans (Veses and Gow, 2008; Veses et al.,
2009b), U. maydis (Steinberg et al., 1998), A. nidulans (Peñalva, 2005),
A. oryzae (Shoji et al., 2006; Tatsumi et al., 2007), S. cerevisiae
(Meaden et al., 1999; Shiflett et al., 2004; Ogita et al., 2010), Yarrowia
lipolytica (Nazarko et al., 2005) and C. neoformans (Liu et al., 2006).
FM4-64 is virtually non-fluorescent in water and more photostable
than CMAC and CMFDA. This range of characteristics makes it very suit-
able for live cell imaging since it can be added directly to the medium
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without the need of washing out steps and has a higher resistance to
photobleaching (Hickey et al., 2004). However because the dye follows
membrane internalisation via the endocytosis pathway, vacuoles are
not revealed up shorter incubation times and pilot experiments need
to be performed to determine when the vacuole becomes stained
with this dye. In yeast cells pulse-chase staining with FM4-64 results
ultimately in staining of the vacuole but, in hyphae of filamentous
fungi, FM4-64 eventually accumulates in the secretory vesicles in the
hyphal tip that defines the Spitzenkörper (Hickey et al., 2004).

A limiting factor in the use of all of these techniques is the optimi-
zation of the methodology to enable the fungus to be visualised in
the microscope in a flat focal plane. Cells have successfully been
immobilised on glass surfaces treated with (i) poly-L-lysine slides
or (ii) on microscope slides coated with thin films of agar. These
techniques were used to show differences in vacuole segregation
during cell division in yeast and filamentous growth forms of
C. albicans. In this fungus the presence of a vacuole segregation
structure was revealed in pseudohyphae and true hyphae whereas
in yeast cells a stream of vacuole vesicles was observed during
vacuolar inheritance (Veses and Gow, 2008). Slide cultures using
agar prevent desiccation and therefore longer time lapse sequences
can be imaged. Poly-L-lysine-coated slides have proved useful when
media need to be perfused or exchanged within the system — for ex-
ample to trigger morphogenetic transitions or to study vacuolar
responses in response to nutritional changes. One of the possible
inconveniences of using FM4-64 can be the non-desired staining
of other membranes. This can be helped by introducing a second
co-staining agent that targets the vacuolar lumen. Combining
CDCFDA and FM4-64 has been used successfully in this way — they
fluoresce at different wavelengths and they localise to the vacuole
lumen and vacuole membrane respectively. Addition of a third dye,
Calcofluor White, which stains fungal cell walls (Pringle, 1991) can
A

B

Fig. 2. Co-staining vacuoles using fluorescent markers. A) Triple staining (FM4-64+
((FM4-64+CDCFDA+CFW) in hyphae of C. albicans). FM4-64 stains vacuolar membranes
Scale bar 10 μm.
improve further the visualisation of the vacuolar dynamics by defin-
ing the cell boundary (Veses et al., 2008). At high concentrations
Calcofluor White has been shown to increase chitin synthesis and
interfere with cell growth (Roncero and Duran, 1985; Pringle, 1991)
but can be used as a benign live cell stain at low concentrations
(around 1.5 mM) (Hickey et al., 2004). Fig. 2 shows merged images
of CDCFDA (yellow) and FM4-64 (red) stained vacuoles, in addition
to cell wall staining (blue) with Calcofluor White in C. albicans yeast
and pseudohyphal (A) and hyphal (B) cells, grown in poly-L-lysine.
More co-staining protocols have been developed for other fungi,
such as A. nidulans, to trace the endocytic pathway (Peñalva, 2005).

2.2. Fusion proteins

Molecules such as Green Fluorescent Protein from Aequorea
victoria and modified versions (Cormack et al., 1997; Gerami-Nejad
et al., 2001) have been used to tag vacuolar proteins, including pro-
teins targeted to the lumen and integral vacuole membrane proteins
(Table 1). The vast majority of studies which use vacuolar proteins
fused to GFP or derivatives YFP, RFP, etc., have been used to investi-
gate the functions of unknown gene products and confirm subcellular
localisations (in combination with other fluorescent fusion proteins or
vacuole stains). Examples include studies of a range of GFP-tagged vac-
uolar proteins (the alkaline phosphatase Pho8, components of theHOPS
complex Vps39 and Vps33, small G protein Ypt7, V-ATPase component
Vma11) to show enrichment of proteins at docking sites (Wang et al.,
2002). Fluorescent protein-fusions have also been used to demonstrate
the role of the vacuolar transporter chaperone (VTC) complex in micro-
autophagy. GFP tagged versions of the Vtc components were localised
to the vacuole using GFP-Pho8 as a marker control (Uttenweiler et al.,
2007). In Neurospora crassa heterokaryons of RFP and GFP tagged
proteins have been used to identify calcium transporters located on
CDCFDA+CFW) in yeast and pseudohyphae of C. albicans. B) Triple staining
(in red); CDCFDA stains vacuolar lumen (in yellow); CFW stains cell walls (in blue).



Table 2
Monoclonal antibodies available for immunohistochemistry of vacuolar components.

Antigen Protein Location References

V-ATPase 69 kDa
subunit

Vma1 Vacuole membrane Doherty and Kane (1993)

V-ATPase 100 kDa
subunit

Vph1 Vacuole membrane Doherty and Kane (1993)

V-ATPase 60 kDa
subunit

Vma2 Vacuole membrane Doherty and Kane (1993)

Alkaline phosphatase Pho8 Vacuole membrane Nothwehr et al. (1996)
Carboxypeptidase Y Prc1 Vacuole lumen Piper et al. (1994)
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vacuole membranes. For example, heterokaryons containing the calci-
um transporter NCA2-GFP and the vacuolar membrane SNARE protein
RFP-VAM3 exhibited co-localisation indicating that Nca2 is located
at the vacuole membrane (Bowman et al., 2009). Vacuole membrane
fluorescent stain FM4-64 was used in conjunction with GFP to lo-
calise Rab7 homologue Ypt71 to vacuole membranes in fission yeast
Schizosaccharomyces pombe (Kashiwazaki et al., 2009). All these reports
however, focus on pinpointing characteristics of particular proteins, and
the number of studies that use GFP fused to vacuolar proteins as tool
for live cell imaging are relatively low, despite the fact that fluorescent
protein fusions allow stable, high-resolution prolonged observation of
vacuole dynamics at different developmental stages. Examples include
studies of the recombinant protein Vam3-GFP in A. oryzae, to study
vacuolar morphology (Shoji et al., 2006), and Vph1, a component of
the vacuolar ATPase in S. cerevisiae, that was used to examine the
vertex ring during vacuole fusion (Wang et al., 2002). The infrequent
use of GFP technology in vacuolar studies may be due to the availabil-
ity of convenient dyes which, although less photostable, do not require
construction and testing of protein fusion reporters. Additionally, a clear
disadvantage of GFP fusions is the possible reduction of fluorescence
intensity caused by changes in pH, reported in A. oryzae when using a
GFP-vacuolar enzyme carboxypeptidase Y (CPY) (Ohneda et al., 2002;
Tatsumi et al., 2007). This problem can be offset by the use of alkaline
growth medium at around pH 8.0. However, there are obvious limita-
tions of this approach for fungi that do not exhibit growth or morpho-
genesis in more alkaline pH media.

GFP fusions have also been a key tool in the characterization of
protein trafficking pathways converging in the vacuole. Although
Kunze and coworkers have described the common mislocalisation of
many secretory proteins to the vacuole in S. cerevisiae (Kunze et al.,
1999), this problem has been overcome by preferentially using
COOH-terminal fusions rather than amino terminal fusion, since
targeting signals are usually within the NH2-terminal sequences of
proteins (Veses et al., 2005). In many studies both COOH and NH2 fu-
sions have been constructed, to ensure that the vacuolar localisation
is not an artefact caused by the construction of the fusion protein.
This approach has proved useful in establishing the role of the vacuo-
lar enzymes in the synthesis of aflatoxins produced by Aspergillus
spp., such as Nor-1 and Ver-1 in A. parasiticus (Hong and Linz, 2008,
2009).

2.3. Immunohistochemistry

There are several antibodies specific for vacuolar proteins avail-
able for use in immunohistochemistry, western blot and ELISA proto-
cols. Some of them are specifically reactive against yeast vacuole
proteins, but others are reactive against human or mouse cells and
their reactivity against fungal vacuoles should be assessed before
use. The range of antibodies includes polyclonal antibodies made ad
hoc for specific studies and monoclonal antibodies raised against vac-
uole membrane proteins and soluble proteins located in the vacuolar
lumen (Table 1).

Monoclonal antibodies are commercially available from Molecular
Probes (Invitrogen), and their characteristics are described in Table 2.
Detection normally involves the use of a secondary antibody, coupled
to a colourimetric enzymatic assay, or fluorophore. Antibodies at-
tached to a wide variety of fluorescent dyes are commercially avail-
able (e.g. Texas Red, FITC), and new generation fluorophores such as
Alexa Fluor (Molecular Probes) or Dylight Fluor (Thermo Scientific)
which exhibit superior brightness and photostability are being used
increasingly. For antibodies targeting specific vacuolar proteins
which are not commercially available, an immunological epitope
such as hemagglutinin (HA) or Myc, can be used to tag the protein,
allowing recognition with a secondary antibody. A range of compa-
nies such as Sigma Aldrich, Aviva Systems Biology or Pierce (Thermo
scientific) all generate bespoke antibodies against purified epitopes.
2.4. Quantification of vacuolar size

As mentioned previously vacuoles are the largest organelle in fun-
gal cells. In mycorrhizal fungi tubular vacuoles expand over many cel-
lular compartments, creating a complex network with a key role in
long-distance transport of nutrients. In fungal plant pathogens such
as Puccinia and Ustilago, vacuoles undergo dramatic expansions to
support fungal extension without increasing anabolic demands whilst
growing in leaf surfaces (reviewed in Veses et al., 2008). Similar ex-
pansions occur prior to hyphal development in C. albicans (Gow,
1997) and prior to appresorium formation in the rice pathogen
M. grisea (Weber et al., 2001). In this context it has been useful to
generate 3D images showing location, shape and size of vacuoles to
further elucidate the physiological mechanisms that govern expan-
sions and partitioning of fungal vacuoles in response to environmen-
tal and internal cues.

Most developments in quantitative analysis have facilitated enu-
meration of organelle abundance and are based on the development
of new software (Table 1), imaging equipment (confocal laser
scanning microscope) and improved fluorescent probes (such as
photoactivatable proteins) (reviewed extensively in van Zutphen
and van der Klei, 2011). Specific software was used to obtain volu-
metric measurements in the study by Barelle and co-workers
(Barelle et al., 2003), focused on vacuolation of C. albicans germ
tubes using a digital image analysis system (3D-DIAS) (Soll et al.,
2003). Images were captured through optical sections on the z-axis.
Cell perimeters were outlined with pixel complexity algorithms
and vacuoles outlined manually. With these measurements the
programme composes a composite 3D reconstruction of a cell and
its vacuoles although smaller vacuoles cannot easily be resolved
(Barelle et al., 2003), and the generation of 3D data is time con-
suming. Several recent software packages (V3D software; copyright
Howard Hughes Medical Institute, Janelia Farm Research Campus)
have been developed making 3D image analysis faster and capable
of analysing multidimensional and multi-gigabyte data image sets
(Peng et al., 2010). Two dimensional measurements of vacuole size,
based on 2D medial optical images of cells, are more frequent in
research studies. These provide fast and reliable datasets that allow
quick comparisons between different experimental conditions or
sets of mutants. Available software for these 2D measurements
includes:

i) CalMorph (Ohtani et al., 2004), a multi-dimensional high through-
put image processing software that makes measurements of cell
parameters using fluorescent images of ellipsoidal budding yeast
cells (Ohtani et al., 2004). Using this software, vacuolar measure-
ments are based on the area of fluorescence determined by pixel
counting. Calmorph has been used to study vacuole morphology
in the budding and mitotic stages of cell division of S. cerevisiae
(Negishi et al., 2009).

ii) Openlab (Improvision, UK). This software makes manual mea-
surements in which the overall cell or vacuole volume is
expressed within different fluorophore-delimited compartments.
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The total cell volume is expressed as the total number of pixels
within Calcofluor White stained fungal cells and the vacuole
space is traced manually to include the pixels associated with
the fluorescence of a particular vacuolar stain such as CDCFDA.
This method proves useful in the generation of ratios “total cell
volume to vacuolar size” in C. albicans hyphal compartments
(Veses et al., 2009b).

3. Characterization of trafficking pathways

Fungal vacuoles have proved to be valuable models for studies of
membrane trafficking processes. In particular this has been studied
in S. cerevisiae, which has served as a model for mammalian lysosome
biology (Weisman, 2006). Vacuoles are essential organelles for fungal
viability (Weisman, 2003). They can be formed by fission of pre-
existing vacuoles, or synthesised de novo (Warren and Wickner,
1996; Fagarasanu and Rachubinsky, 2007). Organelle fusion can also
occur between vacuoles, leading to a decrease in organelle number
(reviewed in Richards et al., 2010). Many genes governing vacuolar
biogenesis and homotypic membrane fusion have been identified, in-
cluding the VAM genes, involved in vacuole morphology and biogen-
esis (Wada et al., 1992; Wang et al., 1996), and VAC genes, involved in
vacuole inheritance (Weisman et al., 1990; Weisman and Wickner,
1992). Several biochemical-based protocols have been developed to
purify vacuoles and study vacuolar fusion in vitro (Table 1). The pro-
cess of vacuole fission is less well understood. In vitro assays of vacu-
ole fission have not yet been described, in particular with respect to
the dynamin-like Vps1 protein (Peters et al., 2004). Purified vacuoles
have been used to begin elucidating components and the order of
events occurring during vacuolar fission (Peters et al., 2004; Baars
et al., 2007).

3.1. Purification of vacuoles

Protocols for the purification of vacuoles from yeast cells have
been reviewed (Cabrera and Ungermann, 2008; Ostrowicz et al.,
2008). The procedure involves creating spheroplasts from yeast
cells, breakage and separation of vacuoles from the rest of the cellular
debris. Separation is achieved by flotation of vacuoles in a discontin-
uous gradient of Ficoll via density gradient centrifugation. Vacuoles
can be purified using this procedure in around 4 h and can be stored
frozen in glycerol (Conibear and Stevens, 1998). This procedure has
been used successfully to isolate vacuoles from yeast cells (Perzov
et al., 2002; Ogita et al., 2010). A similar process can be used in fila-
mentous fungi—for example protoplast formation followed by centri-
fugation on a high-density sucrose cushion has allowed vacuole
isolation in A. parasiticus (Chanda et al., 2009). Purity of the isolated
vacuole fraction was confirmed using specific markers for vacuoles,
mitochondria and the cytosol and by microscopic methods (Chanda
et al., 2009).

3.2. Vacuole fusion assays

In vitro vacuolar fusion assays have used complementary combi-
nations of strains to elucidate the components of fusion stages and
the order of events (Conradt et al., 1994; Haas et al., 1994). One com-
mon assay is the Pho8/Pep4 test. Pho8 (alkaline phosphatase; ALP) is
synthesised as an inactive precursor form that is transported to the
vacuole via the Golgi. Proteinase A (Pep4) converts Pho8/ALP into
its mature active form within the vacuole lumen. The assay requires
vacuoles purified from two different strains — one lacking Pep4
which accumulates inactive Pho8/ALP within the vacuoles; and the
other strain lacking Pho8 but containing active Pep4. When purified
vacuoles from opposite strains fuse, Pep4 activates Pho8/ALP whose
enzymatic activity can be measured via a colourimetric reaction
(Haas et al., 1994; Haas et al., 1995; Cabrera and Ungermann, 2008).
Another assay that is based on the same rationale uses vacuoles puri-
fied from two strains in which each contains a different portion of
Escherichia coli β-lactamase, which is targeted to the vacuole by
fusion with a fragment of carboxypeptidase Y (CPY). On fusion
β-lactamase activity is restored (Jun and Wickner, 2007). Other ap-
proaches do not require the use of specific background strains, mak-
ing possible the study of specific stages of the vacuole fusion
process such as docking. Docked vacuoles aggregate and form clumps,
which can be observed microscopically. This assay has been used in
conjunction with labelled proteins to localise proteins to docking
sites (Mayer and Wickner, 1997; Wang et al., 2003; Fratti et al.,
2004), to assay trans-SNARE complex assembly by addition of various
trans-acting factors (Ungermann et al., 1998; Collins and Wickner,
2007), and to analyse palmitoylation of the membrane protein Vac8
on vacuole membranes (Veit et al., 2001; Dietrich et al., 2004, 2005).

4. Vacuole function

4.1. Acidification

The pH within the vacuole lumen is acidic (around pH 6.0) com-
pared to the neutral cytosol (Preston et al., 1989; Yamashiro et al.,
1990; Plant et al., 1999; Martínez-Muñoz and Kane, 2008). This is
due to active transport of protons from the cytosol into the vacuole
lumen by the vacuolar H+-ATPase (Kane, 2006). Many vacuolar func-
tions are dependent on its acidity — including vacuole lumenal and
membrane enzymes (Yamashiro et al., 1990), the efficient sorting of
soluble proteins (Klionsky et al., 1992a, 1992b), transport of ions and
metabolites across the vacuole membrane (Ohsumi and Anraku, 1981;
Booth and Guidotti, 1997; MacDiarmid et al., 2002; Poltermann et al.,
2005) and vacuolar fission and fusion (Peters et al., 2001; Bayer et al.,
2003; Baars et al., 2007). Several methods have been used to assess vac-
uolar acidity, and to screen for vacuolar acidificationmutants (vph) and
potential V-ATPase inhibitors (Preston et al., 1989; Johnson et al., 2010).
The simplestmethod takes advantage of fluorescent dyeswith emission
spectra sensitive to pH, such as quinacrine, which cross membranes by
diffusion, concentrating in acidic vacuole compartments. This is not vis-
ible in vacuoles with increased pH (Weisman et al., 1987). Quinacrine
staining has been widely used in yeast-like fungi, including S. cerevisiae
(Sambade et al., 2005) and C. neoformans (Harrison et al., 2002), fila-
mentous fungi, such as N. crassa (Bowman et al., 1992) and A. niger
(Schachtschabela et al., 2012) and pleomorphic fungi, such asC. albicans
(Veses et al., 2009a), in all cases for direct microscopic visualisation
(Table 1). For high-throughput screening of vacuole acidification inhib-
itors, Johnson and co-workers used the carboxyfluorescein derivative
2,7-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) fluorescent
signal in flow cytometry assays in living yeast cells (Johnson et al.,
2010). This fluoresces more intensely when the vacuole is alkalinized,
therefore providing a convenient screen for potential V-ATPase inhibi-
tors (Table 1).

4.2. Vacuolar protein sorting

Various routes operate in the transport of proteins of the vacuole
to the lumen and membrane. Vacuolar proteins traverse the secretory
pathway but then are sorted away from the rest of the secretory
traffic and diverted to the vacuole via: (a) — the carboxypeptidase Y
(CPY) pathway, which involves transit from the late Golgi through
an endosomal/prevacuolar compartment (Stevens et al., 1982; Piper
et al., 1995; Conibear and Stevens, 1998), (b) — the alkaline phos-
phatase (ALP) pathway, which transits via a Pep12p- and Vps45p-
independent route, in contrast to the CPY pathway (Klionsky and Emr,
1989; Raymond et al., 1992; Cowles et al., 1997),— or the (c) cytoplasm
to vacuole targeting pathway (Klionsky et al., 1992c; Harding et al.,
1996; Scott et al., 1997), which is used to transport aminopeptidase
(aminopeptidase I, API) and a mannosidase. This route partially



Table 3
Available methods for detection of mis-sorted CPY.

Technique Detection
method

Reference

Growth on CPY esterase
plates

Direct
visualisation

Rothman and Stevens, 1986;
Rothman et al., 1989

CPY-invertase fusion
protein

Enzymatic Robinson et al. (1988)

CPY specific substrate
(N-benzoyl-L-tyrosine
p-nitroanilide; NTPNA)

Colourimetric Jones, 2002; Palmer et al., 2003

Immunoprecipitation+SDS
PAGE

Immunologic Rothman and Stevens, 1986;
Bonangelino et al., 2002

Colony immunoblot assay Enzymatic Bonangelino et al. (2002)
CPY-eGFP fusion Fluorescence

microscopy
Ohneda et al. (2005)
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overlaps with the autophagy route, induced in yeast in response to star-
vation and is linked to morphogenic processes in some fungal patho-
gens (Weber et al., 2001).

Identification of new genes involved in these vacuolar protein
sorting pathways has been investigated by genetic screens that select
for mis-sorting of the potential cargoes. This has involved detecting
proteins that would normally be targeted to the vacuole, but have
been mis-sorted to the cell surface and secreted into the medium.
The most extensively studied of these is the CPY pathway. The vast
majority of available techniques for CPY mis-sorting assays take ad-
vantage of the fact that after the precursor of CPY is mis-sorted, it is
converted into its active form in the periplasm (Table 3). Immunolog-
ical methods for detection of ALP and aminopeptidase I (a cargo pro-
tein of the cytoplasm to vacuole targeting pathway) were used to
characterize mutants defective in these pathways. In both cases puri-
fied antisera raised against ALP and API respectively were used to
immunolocalize or immunoprecipitate the mis-sorted ALP or API
(Table 1; Raymond et al., 1992; Scott et al., 1997).

4.3. Storage of macromolecules

Fungal vacuoles participate actively in the storage of a range of
ions, amino acids and phosphate (reviewed extensively in Klionsky
et al., 1990). The proton gradient generated by the vacuolar ATPase
is the primary driving force for the transport of these metabolites.
Seven different H+/amino acid antiport systems have been described
for arginine, arginine–lysine, histidine, phenylalanine-tryptophan, ty-
rosine, glutamine–asparagine and isoleucine–leucine in S. cerevisiae
(Sato et al., 1984a, 1984b), along with an additional arginine–histidine
exchange mechanism (Sato et al., 1984b). The majority of studies on
amino acid transport have focused on arginine, which has three
transport systems. Assays for determination of arginine transport
and storage into the vacuole have been based on the accumulation of
14C-arginine in vacuolar vesicles (Kim et al., 2005).

Regulation of ion concentration in the cytosol is crucial for a cell,
and the fungal vacuole participates actively in the regulation, accu-
mulating cations such as Sr2+, Co2+ Pb2+ Ca2+ and Zn2+ whose con-
centration in the cytosol must be controlled for physiological reasons
(reviewed in Klionsky et al., 1990). Calcium has been proposed to play
a key role in regulating growth at the hyphal tip (Silverman-Gavrila
and Lew, 2003). However, routine tests to assess Ca2+ transport into
the vacuole have not been developed. Recently Bowman and coworkers
described four calcium transport proteins, regulating intracellular calci-
um levels inN. crassa, including Cax, a proteinwhich encodes a Ca2+/H+

exchange protein in vacuolar membranes (Bowman et al., 2011).
Inorganic polyphosphate (polyP) is the only macromolecular

anion found within the vacuole. During growth large amounts of
polyP accumulate within vacuoles as granules that move by Brownian
motion, but little is known about its metabolism mobilisation
under conditions of phosphate limitation (Hürlimann et al., 2007).
Visualisation techniques of polyP storage are summarized in Table 1,
including the use of Toluidine Blue O, a metachromatic dye that
has been used in the plant pathogen U. maydis (Boyce et al., 2006).
Recently a new technique has been developed which exploits the
affinity of E. coli exopolyphosphatase to polyP. A recombinant
polyphosphate binding domain (RPBB) of the exopolyphosphatase is
tagged with an epitope to allow detection via immunohistochemistry.
Cells are labelled with the RPBB-epitope then localised with anti-
bodies conjugated with fluorophores or colloidal gold. This allows
more specific detection with fluorescence or electron microscopy. It
has been used successfully in yeast vacuoles and tubular vacuoles of fil-
amentous fungi (Saito et al., 2005, 2006; Kuga et al., 2008).Werner and
coworkers have developed an assay to determine spectrophotometri-
cally the amount of polyP in vacuoles. PolyP is extracted, purified, and
specifically digested with S. cerevisiae exopolyphosphatase. To quantify
the released phosphate, ammonium heptamolybdate and malachite
green are added. Then the malachite green solution is quantified by
spectrophotometry (Werner et al., 2005). This assay provides a system-
atic method to compare polyP storage for example across panels of
mutants of a particular fungal species or when comparing different
environmental conditions.

5. Conclusions

Vacuoles are complex and versatile organelles in fungi, as indicat-
ed by their diverse range of cellular functions. Their involvement in
cellular homeostasis has been widely studied in yeast, generating a
vast collection of protocols. Recent developments in the field of
live-cell imaging have contributed to deepening the knowledge of
such fields and have given rise to new series of roles for fungal vacu-
oles, as mediators of morphogenetic changes, which are particularly
relevant in pathogenic species. This review aims to highlight the
available repertoire of resources for investigation of vacuolar mor-
phology, physiology and classical functions for maintenance of the
cellular homeostasis.
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