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Introduction

The aim of this work is to study the portfolio decisions of an investor who face a

risky market, a topic that is a current subject of research in finance. In this regard,

Modern Portfolio Theory provides us with the solution to the short term portfolio

problem. The resulting strategy is suitable for one period horizon investments,

reason by which it is named myopic. Similar results can be obtained if we extend

the model to the more realistic situation of an investor in a multi period environment

who is able to rebalancing the portfolio composition. This is true, for instance, in

an economy where the investment opportunities does not change over time, and

whose individual’s risk preferences are represented by a power utility function. In

particular it holds when some statistical characteristics of the rates of return such

as the mean and the variance are identical and independently distributed. Despite

the mathematical tractability of this approach, the real financial market does not

behaves in such a way. A judicious study of financial time series suggest the presence

of common properties, the so called stylized facts, which are irrespective of markets

or instruments. As examples of these we find fluctuation over time of rates of return,

heavy tails, volatility clustering, and leverage effects, among others. These changing

market conditions are reflected in the portfolio decisions and accounted for by a

new term in the portfolio allocation solution, the inter temporal hedging demand.

In that context, we intend to study the financial market in order to determine

the consequences of those factors on portfolio decisions. We do this by varying

the underlying mathematical specification of the model in such a way that the

aforementioned characteristics are modeled explicitly.

The first chapter is motivated by the recent turmoil in the financial markets, where

we have observed large losses across markets. This phenomena, regarded as sys-

temic risk, is the risk of occurrence of rare, large, and highly correlated jumps

whose mechanism relies on the interactions between markets. To deal with this,
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we define a continuos multivariate model that includes a common jump component

to all assets. The jump accounts for instantaneous and simultaneous occurrence of

unexpected events in the market. The asset specific jump amplitude are defined as

an independent random variable, reflecting the individual response to the severity

of the shock. To gauge the impact of systemic risk to the portfolio, we match the

first two moments of the jump-diffusion model to that of the pure diffusion model

and compare the solutions.

As market data we use the monthly series of a low book-to-market (growth stocks)

portfolio, the high book-to-market (value stocks) portfolio, and an intermediate

portfolio of Fama and French. We find that the effects of systemic jumps may

be potentially substantial as long as market equity returns experiment very large

average (negative) sizes. However, it does not seem to be relevant that stock markets

experience very frequent jumps if they are not large enough to impact the most

levered portfolios. All potentially relevant effects are concentrated in portfolios

financed with a considerable amount of leverage. In fact, for conservative investors

with low leverage positions the potential effects of systemic jumps on the optimal

allocation of resources is not substantial even under large average size jumps. Finally,

the value premium is particularly high when the average size of the jumps of value

stocks is positive, large and relatively infrequent, while the average size of growth

stocks is also very large but negative. It seems therefore plausible to conclude that

the magnitude of the value premium is closely related to the characteristics of the

jumps experienced by value and growth stocks.

In chapter two, we follow the same line of including additional features of financial

series to the model, and consider a time varying volatility. We also expect to enhance

the the jump model’s ability to capture skewness. Thus, besides to the jump term,

we include a stochastic volatility term to the asset price dynamics. As in chapter one,

this specification results in an incomplete market model. And, although dynamic
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programing method is still available to address the problem, we sought to solve the

model through the use of duality methods which leads to deeper insights to the

portfolio solution.

From the theoretical point of view, we obtain the expression for the portfolio allo-

cation rule along with the market price of risk, the market price of volatility risk

and the market price of jump risk. We also find the explicit expressions for the

the mean, standard deviation, skewness and excess kurtosis in terms of the market

model parameters. The portfolio rule reduces to the standard myopic rule when

the correlation between the asset prices and volatility is zero, and the frequency

of extreme event vanishes. The market price of risk is found to be composed by

the Brownian market price of risk plus a jump contribution. The market price of

volatility risk is approximately proportional to the market price of risk for a very

low risk adverse investor and vanishes if the innovations in the returns are perfectly

correlated with the instantaneous volatility.

For the empirical analysis, besides the growth and value series, we also include

the Standard and Poor’s Composite index for comparison purposes. The numerical

results show that series’ mean is dominated by the diffusion mean compensated

by the long run variance. Volatility depends on model’s volatility parameters, i.e.,

jump volatility, long term volatility, volatility of stochastic volatility, and mean

reversion. Finally, skewness and kurtosis strongly depends on jump mean, and on

jump volatility respectively, and also on Poisson intensity. A closer look at Growth

and Value series reveals that the largest variance of Growth series is mainly due to

the low frequency of unexpected large events in Value series. Additionally, the long

term volatility of the Growth series is larger. It is worth to mention that shocks

with small jump mean’s absolute value happen more frequently than larger shocks,

in agreement with the results in the first chapter.

The portfolio weights are found to be low compared with those of a standard diffu-
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sion model. This is because the investor perceives more risk coming from jumps and

stochastic volatility. We calculate a myopic demand as the ratio of the risk premium

over the instantaneous volatility times the risk aversion. It proves to be greater than

the total portfolio weight. The discrepancy could be explained if we define an in-

tertemporal hedging demand as the difference between the total portfolio weight and

the myopic contribution. Given that the expectations of asset performance worsen,

the intertemporal hedging demand is negative thus reducing the participation of the

myopic component. This reduction diminishes as γ increases for Growth and Value

series, and is constant for the S&P500.

In the third chapter we deal with time varying excess returns, we aim to set the

basis of study for the time varying relative risk aversion as a useful tool for portfolio

allocation. To that end, we estimate the consumption based, external habit model of

Campbell and Cochrane. This model accounts for time varying and countercyclical

expected returns, as well as the high equity premium with a low and steady riskfree

rate. This model has the feature of deliver a counter cyclical varying risk aversion,

and allows predictability of asset returns. Afterwards, we test two specifications of

pricing models that includes surplus and risk aversion, under contemporaneous and

ultimate consumption risk.

As market data we examine the 25 portfolios formed on size and book to market

by Fama and French. Numerical results shows that curvature exhibits low values,

in spite of the high relative risk aversion. Its magnitude lessens as the lag of the

ultimate consumptions series increases. We render the surplus ratio, the stochastic

discount factor, and the time varying relative risk aversion. The linear relationship

between the price over dividend and the surplus ratio in the Campbell and Cochrane

model is most closely followed under ultimate consumption series for twelve months

lags. The stochastic discount factor exhibits a business cycle, attaining maxima at

the start of recessions and dropping at the end of them. Finally, the risk aversion
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proved to be time varying and countercyclical.

We estimate two factor pricing models derived from the habit model specification.

The data analysis suggest that ultimate consumption risk specification with time

varying aversion seems to explain relatively well the cross section of average returns.

Additionally, we conclude that the excess returns seems to be more sensitive to risk

aversion than to consumption growth. However, the estimated intercept for the

models is statistically significant indicating an overall rejection of them.
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THE EFFECTS OF SYSTEMIC RISK ON THE ALLOCATION
BETWEEN VALUE AND GROWTH PORTFOLIOS

Abstract. Given the striking effects of the recent financial turmoil, and the

importance of value and growth portfolios for both local and international portfolio

allocation, we investigate the effects of systemic jumps on the optimal portfolio

investment strategies across value and growth equity portfolios. We find that the

cost of ignoring systemic jumps is not substantial, unless the portfolio is highly

levered and the average size amplitude of the jump is large enough. From the

optimal asset allocation point of view, it seems more important the effects of few

but relatively large jumps than highly frequent but small jumps. Indeed, the

period in which the value premium is higher coincides with a period of few, but

large, and a positive average size jump for value stocks, and a negative and very

large average size jump for growth stocks.

1. Introduction

The value premium is one of the most relevant anomalies discussed in the asset

pricing literature. Value stocks, which are characterized by high book-to-market

ratios, earn higher average returns than growth stocks. In principle, growth options

strongly depend upon future economic conditions which suggest that growth stocks

should have higher betas than value stocks. Using monthly data from January 1963

to December 2010, the market beta of the Fama-French growth portfolio is 1.067

while the market beta of the value portfolio is 1.068. Although contrary to the theo-

retical prediction these betas are basically the same, it turns out that the annualized

average return of the growth portfolio is 9.6% while the annualized average return of

the value portfolio is 16.5%. This represents a value premium of 6.9% which is even

higher that the well known market equity premium magnitude of 5.5% for the same

sample period.1A key issue of the research agenda of the asset pricing literature is to

1These numbers correspond to the 10 Fama-French monthly portfolios sorted by book-to-market,
and using a value-weighted scheme to obtain the portfolio returns. The value premium using an
equally weighted approach is an even much higher 14.0% on annual basis.

7
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understand why value stocks earn higher average returns than growth stocks. This

paper does not pretend to answer this question.2On the contrary, our paper takes

this anomaly as given to investigate optimal asset allocation decisions between value

and growth portfolios. In particular, the paper investigates the effects of systemic

jumps on the asset allocation these two key characteristics of equity returns.

Recent financial crisis has shown that the failures of large institutions can gener-

ate large costs on the overall financial system. Systemic risk is one of the main issues

to be resolved by the new regulation of financial markets over the world. It seems

widely accepted that previous regulation focuses excessively on individual institu-

tions ignoring critical interactions between institutions.3 These interactions are the

leading source of systemic risk around the world. From this point of view, it is im-

portant to analyze the impact of systemic risk on portfolio asset allocation among

potential institutional investors. Given that two of the most popular investment

strategies of large institutional investment employ value and growth assets, this pa-

per analyzes how relevant is to ignore systemic risk on the ex-post performance of

these strategies. We understand systemic risk as the risk arising from infrequent

but arbitrarily large jumps that are highly correlated across the world and across a

large number of assets.

We borrow from the mathematical jump-diffusion model developed by Das and

Uppal (2004) to recognize that jumps occurs at the same time all over the world

and across all portfolios, but allowing that the size of the jump may be different

across them. These authors derive the optimal portfolio weights when equity returns

follow a systemic jump-diffusion process. We calibrate the model to three monthly

2Zhang (2005) argues that costly reversibility and countercyclical market price of risk cause assets
in place to be harder to reduce so they, in fact, become riskier than growth options. A related
argument is given by Yogo (2006) who employs non-separability between durable and non-durable
consumption to show that value stocks are more pro-cyclical than growth stocks. This implies that
they perform especially badly during economic downturns. However, recent evidence provided
by Belo et al. (2010) shows that the q-theory dynamic investment framework fails to explain the
value spread. This is the case despite the fact that Chen and Zhang (2009) argue that a simple
three-factor model inspired on the q-theory of investment is able to explain anomalies associated
with short-term prior returns, financial distress, net stock issues, asset growth, earnings surprises,
and some valuation ratios.
3See the Squam Lake Report prepared by French and others (2010) for a clarifying discussion of
these issues.
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Fama-French book-to-market portfolios where portfolio one is composed of securities

with low bookto-market (growth stocks), portfolio 5 contains intermediate book-to-

market assets, and portfolio 10 includes securities with high book-to-market (value

stocks). For robustness, we also employ U.S. dollar monthly value and growth

portfolios constructed by MSCI for three important geographic regions around the

world, Europe, North America, and the Pacific.

It is well known that to properly describe equity-index returns one must allow

for discrete jumps. As shown, among others, by Andersen, Benzoni, and Lund

(2002) jumps play an important role for understanding of U.S. market returns over

and above stochastic volatility and the negative relationship between return and

volatility shocks. González, Novales, and Rubio (2011) also show that the relevance

of jumps characterizes the French (CAC), German (DAX), and Spanish (IBEX-35)

equity-index European returns. One may therefore expect jumps to impact optimal

asset allocation between value and growth portfolios. Our evidence shows that this

is not necessarily the case. We find that the effects of systemic jumps are indeed not

negligible from 1982 to 1997 for low levels of risk aversion (highly levered portfolios)

when the frequency of jumps is small but its average size is large. In fact, this period

is characterized by an especially large value premium. These effects may therefore

seem to be particularly relevant for the allocation of funds between growth and

value portfolios. When systemic jumps are recognized, the average investor should

optimally go long in value and short in growth in higher proportions than when

assuming a pure diffusion process. However, and rather surprisingly, an average

investor would have not been penalized ignoring systemic jumps from 1997 to 2010

when the frequency of jumps is much higher but the average magnitude is also

smaller. The magnitude of the average jumps size seems to be very important to

assess the impact of systemic jumps on asset allocation between value and growth

portfolios. In the overall period and in both sub-periods, independently of using

a pure diffusion or a jump-diffusion process, value stocks dominate growth stocks

especially for highly levered portfolios.
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This paper is structured as follows. In Section 2, we discuss a model of equity

returns that allows for systemic risk. Moreover, we also describe optimal portfolio

weights when equity returns have a systemic risk component. Section 3 discusses

the estimation procedure, and Section 4 presents the key results of the paper using

the Fama-French book-to-market portfolios. Section 5 provides a robustness analy-

sis using value and growth portfolios across three geographic regions in the world.

Concluding remarks are in Section 6.

2. Asset Returns, Systemic Risk, and the Optimal Allocation of

Equity-Returns

This section first present a model of asset equity returns which is based on the

asset pricing model proposed by Das and Uppal (2004). This model introduces

systemic risk by imposing jumps that occur simultaneously across all assets but also

allowing for a varying distribution of the jump size across all portfolios. Secondly,

we discuss optimal portfolio allocation given that the underlying assets follow a

jump-diffusion process with systemic jumps. We compare these results relative to

the case in which asset returns follow a pure diffusion process.

2.1. Asset Equity Returns and Systemic Risk. There is an instantaneous risk-

less asset which follows the return process given by,

(2.1)
dP

P
= rdt,

where r is the constant continuous riskless rate of return. Moreover, there are N

risky assets in the economy. Each of them follows a pure-diffusion process given by

the well known expression,

(2.2)
dSj
Sj

= µdjdt+ σdj dZj; j = 1, 2, . . . N

where Sj is the price of asset j, Zj is a Brownian motion, µdj is the drift, and σdj is the

volatility, and superscript d highlights the pure diffusion character of the process.

We denote by Σd the N × N covariance matrix of the diffusion components where
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the typical component of this matrix is σdij = ρdijσ
d
i σ

d
j with ρdij being the correlation

between the Brownian shocks dZj and Zi. In matrix notation, µd is the N−vector

of expected returns, Σd = σdρd(σd)′, where σd is the diagonal matrix of volatilities,

and ρd is the symmetric matrix of correlations.

We next allow for unexpected rare systemic events by introducing a jump to the

process given by (2.2). Following Das and Uppal (2004), we assume that the jump

arrives at the same time across all equity portfolios, and that all portfolios jump in

the same direction. Then,

(2.3)
dSj
Sj

= µjdt+ σjdZj + (J̃j − 1)dQ(λ); j = 1, 2, . . . N

where Q is a Poisson process with common constant intensity λ and (J̃j − 1) is the

random jump magnitude that generates the percentage change in the price of asset

j if the Poisson event is observed. It is important to note that the arrival of jumps

occur at the same time for all equity portfolios. We assume that the Brownian shock,

the Poisson jump, and the jump amplitude J̃j are independent, and that Jj ≡ ln(J̃j)

has a Normal distribution Ψ with constant mean ηj and variance ν2
j . Therefore, the

distribution of the jump size is allowed to be different for each portfolio, although

all jumps arrive at the same time.

We define µ and Σ = σρσ′ as the drift N−vector and the N × N covariance

matrix of the diffusion components of (2.3) respectively. It must be noted that they

are now the drift and the covariance matrix of the diffusion components when there

are jumps in the return process. In this case, we also have an additional drift, µJ ,

and an additional covariance matrix, ΣJ , from the jump components of the process.

Given that we select the parameters of the jump-diffusion process in (2.3) such that

the first two moments for this process match exactly the first two moments of the

pure diffusion process in (2.2), it must be the case that,

µd = µ+ µJ

Σd = Σ + ΣJ

(2.4)
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2.2. Portfolio Allocation. Our representative investor maximizes the expected

power utility defined on terminal wealth, WT , given by the well known expression

U(WT ) = W 1−γ
T /(1−γ), where γ > 0 is the constant relative risk aversion coefficient.

We first briefly describe the optimal portfolio weights using the pure-diffusion process

given by (2.2) Denoting the vector of the proportions of wealth invested in risky

equity portfolios by ω, the optimal portfolio problem at t is

(2.5) V (Wt, t) = max
{ω}

E

(
W 1−γ
T

1− γ

)
,

subject to the dynamic budget constraint

(2.6)
dWt

Wt

= (ω′Rd + r)dt+ ω′σddZt,

Where Rd = µd−1Nr is the N−vector of excess returns, σd is the diagonal matrix of

volatilities, dZt is the vector of diffusion shocks, and 1N is an N−vector of ones. The

solution is the vector of portfolio weights obtained by Merton (1969) corresponding

to the standard diffusion process (2.2),

(2.7) ωdop =
1

γ
(Σd)−1Rd

When the process includes a jump component as in expression (2.3), the dynamics

of wealth for the initial wealth W0 = 1 can be written as

(2.8)
dWt

Wt

= (ω′R + r)dt+ ω′σdZt + ω′J̃tdQ(λ),

where R = µ− 1Nr is the N−vector of excess returns , σ is the diagonal matrix of

volatilities, dZt is the vector of diffusion shocks under a jump-diffusion process, and

J̃t = (J̃1 − 1, J̃2 − 1, . . . , J̃N − 1)′ is the vector of random jump amplitudes for the

N equity portfolios.
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One can employ stochastic dynamic programming to solve for the optimal weights,4

0 = max
{ω}

®
1

dt
E[dV (Wt, t)]

´
,

where in this equation, we can use the generalized jump-diffusion Itos lemma to

calculate the differential of the value function, dV .5 Then, the Hamilton-Jacobi-

Bellman equation is

(2.9) 0 = max
{ω}

®
∂V (Wt, t)

∂t
+ (ω′R + r)Wt

∂V (Wt, t)

∂Wt

1

2
ω′Σω W 2

t

∂2V (Wt, t)

∂W 2
t

+ λE[V (Wt +Wtω
′J̃t, t)− V (Wt, t)]

´

The impact of the jumps in the return process is given by the last term of equation

(2.9). This term employs the fact that EdQt = λdt, and the assumption of inde-

pendence of the Poisson jump and the jump amplitude except for the fact that the

jump size is conditional on the Poisson event happening. As usual in this type of

problems, one can guess the solution to the value function as having the following

form:

(2.10) V (Wt, t) = F (t)
W 1−γ
t

1− γ

Replacing this solution into the Hamilton-Jacobi-Bellman equation we get:

(2.11) 0 = max
{ω}

®
1

F (t)

dF (t)

dt
+ (1− γ)(ω′R + r)

−γ(1− γ)
1

2
ω′Σω + λE[(1 + ω′J̃t)

1−γ − 1]

´

By differentiating with respect to ω we obtain the optimal weights with systemic

jumps as the solution for each time t to the system of N nonlinear equations which

4see the Appendix for an alternative procedure to solve the portfolio problem by calculating directly
the conditional expectation.
5Alternatively, we may employ the infinitesimal generator of the jump-diffusion process of Duffie
et al. (2000).
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must be solved numerically:

(2.12) 0 = R− γΣωop + λE[J̃t(1 + ω′opJ̃t)
−γ]

It should be pointed out that if we replace equation (2.10) into the Hamilton-Jacobi-

Bellman equation and evaluate at ωop we obtain:

1

F (t)

dF (t

dt
= −k,

where,

k = (1− γ)(ω′opR + r)− γ(1− γ)
1

2
ω′opΣωop + λE[(1 + ω′opJ̃t)

1−γ − 1]}

We next employ the boundary condition F (T ) = 1 to obtain,

F (ω, t) = ek(T−t) = ekτ

Therefore, the value function is given by the expression

(2.13) V (Wt, t) = ekτ
W 1−γ
t

1− γ

2.3. Certainty Equivalent Cost. As an additional analysis of the effects of ignor-

ing systemic risk on asset allocation, we can also calculate the certainty equivalent

cost (CEQ hereafter) of following an allocation strategy that ignores the simulta-

neous jumps occurred in the data. The CEQ gives the additional amount in U.S

dollars that must be added to match the expected utility of terminal wealth under

the pure-diffusion suboptimal allocation to that under the optimal strategy with the

jump-diffusion process of equity returns. In other words, as in Das and Uppal (2004),

we calculate CEQ as the marginal amount of money that equalizes pure-diffusion

expected utility with the jump-diffusion expected utility. The compensating CEQ

wealth is therefore computed by equating the following expressions:

(2.14) V ((1 + CEQ)Wt, t;ω
d
op) = V (Wt, t;ωop)
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Then, using expression (2.10) we have that

(2.15) CEQ =

(
F (t, ωop)

F (t, ωdop)

)1/(1−γ)

− 1

3. The Estimation Procedure to Analyze the Effects of Systemic

Risk

Let us start again with the pure-diffusion case given by equation (2.2). The

parameters to be estimated are {µd,Σd} where µd and Σd are the N−vector of

expected returns and the N × N covariance matrix of the diffusion components.

The moment conditions for individual equity portfolios are given by

Et

Ç
dSj
Sj

å
= µdjdt

Et

Ç
dSi
Si
× dSj

Sj

å
= σdijdt = ρdijσ

d
i σ

d
j dt

(3.1)

This implies that moment conditions {µd,Σd} can be estimated directly from the

means and the covariance of the actual sample series available. On the other hand, to

derive the four unconditional moments of the jump-diffusion process given by (2.3),

we follow Das and Uppal (2004) to identify the characteristic function which can

be differentiated to obtain the moments of the equity portfolio returns process. We

next present a detailed exposition of the procedure employed to obtain the moments

under the systemic-jump-diffusion process.

3.1. The Characteristic Function. We first write the previous process in log

returns with Xj = ln(Sj). It is well known that the pure-diffusion process in (2.2)

becomes

(3.2) dXj = αdjdt+ σdj dZj,

where αdj = µdj − 1
2
(σdj )

2. As before, the model in matrix notation is dX = αddt +

σddZ, where αd is the N−vector of expected returns, and σd is the diagonal matrix

of volatilities. On the other hand, the jump-diffusion return process can be written
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as

(3.3) dXj = αjdt+ σjdZj + JjdQ,

where αj = µj − 1
2
σ2
j . Hence, in matrix notation, the continuously compounded

asset return vector for the jump-diffusion model satisfies the following stochastic

differential equation dX = αdt+ σdZ + JdQ where α is the N−vector of expected

returns, σ is the diagonal matrix of volatilities for the jump-diffusion case, and J is

the N−vector of jump amplitudes. The N−vector of the average size of the jumps

amplitude is denoted by η, while the diagonal variance matrix of the size of the

jumps is denoted by ν.

As mentioned before, the theoretical moments for the jump-diffusion process are

calculated using the characteristic function which in turn can be derived from the

Kolmogorov theorem. We formally work in a probability space (Ω,F, P ) where, in

the jump-diffusion case, both the process Q and the Brownian motion Z generate the

filtration Ft. The conditional characteristic function of the process X conditioned on

Ft is defined as the expected value of eiζ
′XT , where ζ = (ζ1, . . . , ζN)′ is the argument

of the characteristic function, Φt, given by

(3.4) (ζ,XT , T, t)→ Φ(τ, ζ,Xt) = E(eiζ
′XT

∣∣∣Ft),

where τ = T − t.
From the process X, we know that α, σ, and λ are constant on X. Therefore,

under some technical regularity conditions discussed in Duffie, Pan, and Singleton

(2000), the conditional characteristic function has an exponential affine form given

by

(3.5) Φt(τ, ζ,Xt) = eAt(τ,ζ)+B
′
t(τ,ζ)Xt
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According to the Feynman-Kac theorem, the conditional characteristic function is

the solution to6

(3.6) `Φt = −∂Φt

∂t
,

where ` is the infinitesimal generator for the jump-diffusion process X given by

(3.7) `Φt =

Ç
∂Φt

∂X

å′
α+

1

2
Trace

Ç
σρσ′

∂2Φt

∂X2

å
+λ

∫ ∞

−∞
[Φt(X + Y )− Φt(X)] dΨ(Y ),

where, as already pointed out, Ψ is the jump amplitude Normal distribution. The

boundary condition for the differential equation is the value of the conditional char-

acteristic function at the equity portfolio horizon ΦT (0, ζ,XT ) = eiζ
′XT . Thus, from

(3.5), it must be the case that AT (0, ζ) = 0 and BT (0, ζ) = iζ. In order to find

out the expressions for the functions At(τ, ζ) and Bt(τ, ζ), equation (3.5) is replaced

into equation (3.7) to obtain

(3.8)

ñ
∂At
∂τ

+

Ç
∂Bt

∂τ

å′
Xt

ô
= B′tα +

1

2
B′tΣBt + λ

∫ ∞

−∞

î
eB

′
t(τ,ζ)Y − 1

ó
dΨ(Y ),

where Σ = σρσ′.

Thus, the two ordinary differential equations are

∂At
∂τ

= B′tα +
1

2
B′tΣBt + λ

∫ ∞

−∞

î
eB

′
t(τ,ζ)Y − 1

ó
dΨ(Y )

∂Bt

∂τ
= 0

(3.9)

The second equation in (3.9) implies that B does not depend on τ . Thus, using

the boundary condition, we obtain Bt(τ, ζ) = iζ. We now replace B in the first

equation, we integrate, and we use the remaining boundary condition to get

(3.10) At(τ, ζ) =

ñ
−1

2
ζ ′ΣBt + iζ ′α + λ

∫

RN

î
eiζ

′Y − 1
ó
dΨ(Y )

ô
τ

The integral in the right hand side of (3.10) can be recognized as the jump ampli-

tude’s characteristic function, given that the random variable J follows a Normal

6see the Appendix for an alternative procedure to calculate the conditional characteristic function
directly from the conditional expectation.
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distribution:
∫

RN
eiζ

′Y dΨ(Y ) = exp

Ç
iζ ′η − 1

2
ζ ′ΣJζ

å

Therefore,

(3.11) At(τ, ζ) =

ñ
−1

2
ζ ′ΣBt + iζ ′α + λ exp

Ç
iζ ′η − 1

2
ζ ′ΣJζ

å
− λ
ô
τ ,

and, finally, the characteristic function is given by

(3.12)

Φt(τ, ζ,Xt) = exp

Çñ
−1

2
ζ ′ΣBt + iζ ′α + λ exp

Ç
iζ ′η − 1

2
ζ ′ΣJζ

å
− λ
ô
τ + iζ ′Xt

å

3.2. Unconditional Moments. Using the characteristic function one can derive

the K co-moments throughout the following expression:

(3.13) E[Xk1
1 , X

k2
2 , . . . , X

kN
N

∣∣∣Ft] = i−K
∂KΦt(τ, ζ,Xt)

∂ζk11 , ∂ζ
k2
2 , · · · , ∂ζkNN

∣∣∣∣∣
ζ=0

,

where K =
∑N
j=1 kj. The gradient and the Hessian, ∂Φ/∂ζ and ∂2Φ/∂ζζ ′ are used

to find the first and second moments respectively. For the one-period investment

horizon, τ = 1, and using the conversion from the non-central to central moments

we obtain the mean, covariance, co-skewness, and excess kurtosis:7

(3.14) µ1 = α + λη =

Ç
µ− 1

2
σ2IN

å
+ λη

(3.15) µ2 = Σ + λ(ηη′ + νIν ′)

(3.16) µ3 = λσ−1Iσ−2 ◦
î
2(νη)(νIN)′ + (η◦2 + ν2IN)η′

ó

(3.17) µ4 = λσ−4
Ä
3ν4IN + 6ν2η◦2 + η◦4

ä

7See the Appendix at the end of the paper for alternative procedures to obtain the unconditional
moments. These derivations extend and complete the mathematical technicalities suggested by
Das and Uppal (2004).
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In the expressions above, I is the N×N matrix of ones, and ◦ denotes the N−times

element-by-element multiplication. It should be noted that µ1 and µ4 areN−vectors,

and µ2 and µ3 are N ×N matrices.

If we now compare the mean and covariance for the jump-diffusion process above

with those for the pure-diffusion processes for λ = 0, we observe that

(3.18) µJ = λη

(3.19) ΣJ = λ(ηη′ + νIν ′)

Then, the diffusion moments of the jump-diffusion process are retrieved using the

expressions in (2.4) as:

(3.20) µ = µd − λη

(3.21) Σ = Σd − λ(ηη′ + νIν ′)

From the moment conditions in equations (3.14) to (3.17) the parameters to be esti-

mated are {α,Σ, η, ν, λ}. For the universe of N assets there are N jump amplitude

means and N jump amplitude volatilities. This represents 2N + 1 parameters to be

estimated including the Poisson intensity λ. On the other hand, there are N2 co-

skewness moments and N excess kurtosis moments for a total of N(N + 1) moment

conditions to be employed in the generalized method of moment (GMM) estimation

procedure.

3.3. Sampling Moments. The sampling mean and co-moments of a variable X

with respect to variable Y are:

mX =
1

T

T∑

t=1

Xt

mXY
2 =

1

T − 1

T∑

t=1

(Xt −mX)(Yt −mY )
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mXY
r = θr

1

T − 1

T∑

t=1

εXt (εYt )r−1,

for r ≥ 3 and εXt = Xt−mX√
mXY2

, where θr is the adjustment term for the unbiasedness

correction.

4. Optimal Allocation for Value and Growth Portfolios with

Systemic Risk: Empirical Results

We first estimate the model using 3 portfolios from the 10 monthly book-to-market

sorted portfolios taken from Kenneth French’s web page. Portfolio 1 contains the

companies with low book-to-market, while portfolio 10 includes assets with high

book- to-market. We refer to portfolio 1 as the growth portfolio, and portfolio 10 as

the value portfolio. We also employ portfolio 5 denoted as the intermediate portfolio.

In order to pay special attention to these characteristics we use the equally-weighted

scheme of the individual stocks rather than the more popular value-weighted port-

folios. This weighting approach also amplifies the value effect anomaly.

4.1. Parameter Estimates for the Jump-Diffusion Return Process. Table 1

reports the descriptive statistics of the three monthly Fama-French book-to- market

portfolios for the full sample period from January 1982 to October 2010, and two

sub-periods from January 1982 to February 1997, and from March 1997 to October

2010. Both sub-periods contain episodes with large negative shocks. The first sub-

period includes the market crash of October 1987, the Gulf War I in August 1990,

and the Mexican crisis in December 1994. On other hand, the second sub-period

contains the Asian crisis of July 1997, the Russian crisis of August 1998, the bursting

of the dot.com bubble, the terrorist attack of September 2001, the outbreak of the

Gulf War II in March 2003, the beginning of the sub-prime crisis, and the Lehmann

Brothers default in September 2008.

Panel A of Table 1 shows that the use of the equally-weighted growth and value

portfolios leads to an impressive value premium of 15.8% on annual basis for the full

sample period. Moreover, the value premium is 13.0% and 18.4% for the second and
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first sub-periods respectively. As expected, the annualized volatility of the growth

portfolio is higher than the corresponding volatility of the value portfolio is all three

sample periods. On annual basis, the growth volatility premium is 4.7% for the full

period, and 5.6% and 3.9% for the second and first sub-periods respectively. Indeed,

the growth portfolio seems to be riskier than the value portfolio. The problem is, of

course, the enormous average return of the value portfolio.

The third and fourth moments of both portfolios also present an interesting be-

haviour. For the full period, the growth portfolio has positive skewness, while the

value portfolio has a slightly negative skewness. Moreover, growth stocks have lower

kurtosis than the value portfolio. The overall behaviour is the consequence of two

very different sub-periods. From 1997 to 2010, the value portfolio has negative

skewness, and, on the contrary, growth stocks have positive skewness. The excess

kurtosis is similar for both portfolios. However, from 1982 to 1997, we report a very

high negative skewness for the growth portfolio, and a positive skewness for value

stocks. Similarly, the behaviour of excess kurtosis is also surprising. Value stocks

present a much higher kurtosis than the growth portfolio. The changes observed in

both skewness and kurtosis from one sub-period to the other for growth and value

portfolios are striking and deserve further attention. For completeness, Figure 1

shows the density functions for both sub-periods of the growth, intermediate and

value portfolios, and the QQ plots to assess the deviations of their returns from the

Normal distribution.

Panel B of Table 1 reports the correlation coefficients among the three book-to-

market portfolios. The results show that from 1997 to 2010 the value and growth

portfolios are less correlated than in the previous sub-period.

Panel A of Table 2 contains the parameter estimates obtained by the generalized

method of moments with the identity matrix using expressions (3.14) to (3.17). The

estimated value for λ of 0.152 for the full sample period implies that on average

the chance of a simultaneous jump in any month across book-to-market portfolios

is about 15%, or one jump is expected every 6.6 months or, equivalently, 0.55 years.
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The average size of the jump across three portfolios is −1.307, and it seems much

higher (in absolute value) for the value portfolio than for the growth stocks. Al-

though, the intermediate portfolio has the highest average size of the jump, the

volatilities of the size of the jumps are higher for the extreme growth and value

portfolios.

As before, the more interesting results come from the changing behavior of the

growth and value stocks across sub-periods. The estimated value for λ of 0.938

from 1997 to 2010 implies that on average the chance of a simultaneous jump in

any month across book-to-market portfolios is almost 94%, or one jump is expected

every 1.1 months or 0.09 years. Hence, the frequency of simultaneous jumps in the

last sub-periods is extremely high. However, during this sub-period, the average size

of the jump is −0.243 which is a relatively low relative to the estimate for the full

sample period. This relatively small average size is partly due to the compensation

between the positive average size for growth stocks, and the negative average size

for value stocks. Hence, form 1997 to 2010, growth stocks have on average positive

jumps, while value stocks present on average negative jumps. At the same time,

the volatility of the size of the jumps seems to be lower than the volatility for the

full sample period. The crisis episodes of the last decade or so, seems to affect

much more negatively value than growth stocks. This is clearly consistent with the

negative (positive) skewness for the value (growth) stocks from 1997 to 2010. The

economic implication is that value stocks seem to be more pro-cyclical than growth

stocks.

Once again, the estimation results are very different for the first sub-period from

1982 to 1997. The estimated value for λ of 0.031 from 1982 to 1997 implies that,

on average, the chance of a simultaneous jump in any month across book-to-market

portfolios is about 3%, or one jump is expected every 32.3 months or 2.7 years.

Hence, the frequency of simultaneous jumps in the first sub-period is much lower

than in the most recent sub-period. This is, by itself, a relevant result. During

the last fourteen years, there seems to be many more systemic jump episodes than
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during the previous fifteen years. Somehow surprisingly, however, the average size

of the jump from 1982 to 1997 is strongly negative and much larger in absolute

value than during the last sub-period. Also, the volatility of the size of the jumps

is much larger than the volatility reported from 1997 to 2010. Interestingly, the

average size of the jump is positive (negative) for value (growth) stocks which are

precisely the opposite reported from 1997 to 2010. Again, this is consistent with the

negative (positive) skewness for the growth (value) portfolio shown in Table 1. It

is also important to point out that it is precisely in this sub-period when the value

premium is as high as 18.4% on annual basis. The jumps of the first sub-period are

therefore much less frequent but of larger magnitude than the jumps observed from

1997 to 2010. The relatively few but larger jumps affect more negatively growth

stocks, while very frequent although smaller jumps impact more negatively value

stocks. Again, it should be recalled that the value premium is much larger from

1982 to 1997 than from 1997 to 2010.

Panel B of Table 2 compares the reconstructed moments that are obtained by

substituting the parameter estimates in the theoretical jump-diffusion model and

the sample moments. As before, the comparison exercise is performed for each of

the three sample periods. Overall, the jump-diffusion model captures very well the

sample excess kurtosis for all time periods and portfolios. However, the model seems

to have more problems fitting the magnitudes of the asymmetry of the distribution

of returns. This is especially true for the value portfolio, where the theoretical

process overstates the magnitude of skewness. This result comes basically from the

bad performance of the model capturing the skewness of value stocks from 1997 to

2010. The jump-diffusion process generates much more negative skewness than the

one observed in the data.

4.2. Portfolio Weights. We want to solve numerically equation (2.12) to obtain

the optimal weights when the return process follows the jump-diffusion model of

equation (2.3). The parameters we employ for the return process are those reported

in Panel A of Table 2. We also assume that the annualized risk-free rate is equal to
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6%, and we solve for optimal weights assuming 10 alternative values of the relative

risk aversion coefficient. As the benchmark case, we use the pure-diffusion model

where the optimal weights are given by the well known expression (2.7).

Panel A of Table 3 contains the equity portfolio allocation results for the bench-

mark case, while Panel B reports the results for the jump-diffusion model. The

results show that, independently of the sample period employed and the level of risk

aversion, value stocks receive a higher investment proportion of funds than growth

stocks. The optimal allocation implies in all cases to go long in the value portfolio

and short on the growth portfolio. This is also true whether we recognize simulta-

neous jumps across assets or not. This is, of course, what a zero-cost investment on

the HML portfolio of Fama and French (1993) precisely does. Surprisingly, for the

full sample period, the intermediate book-to-market portfolio dominates the value

portfolio due to the large weights this portfolio gets from 1982 to 1997. For this first

sub-period, it must be pointed out that, when we incorporate jumps, the value port-

folio indeed gets more proportion of wealth than the intermediate portfolio but only

for the most levered position. It is interesting to observe the important impact that

jumps have in this case for the non-conservative investor. The proportion invested

in the intermediate assets decreases from 28.7% without jumps to 17.4% with jumps,

while the same proportions go from 14.0% to 18.5% for the value portfolio. Finally,

the value portfolio dominates the investment in the risky component of the optimal

asset allocation for the 1997 to 2010 sub-period independently of recognizing jumps

or not.

From Panel C of Table 3, where we report the differences in weights between

the benchmark case and the jump-diffusion model, we observe that, for the overall

sample period, the recognition of jumps diminishes the differences in the sense of

increasing the long position on the value portfolio while, at the same, it suggests not

short-selling as much on the growth portfolio.8 The recognition of jumps implies to

8A negative sign for the value portfolio in Panel C indicates that the recognition of simultaneous
jumps makes the investor to allocate more funds in the value portfolio. A negative sign on the
growth portfolio implies that the recommendation would be to short-sale growth stocks in less
proportion than the case of the pure-diffusion benchmark.
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put relatively fewer funds in the risky portfolio for all levels of risk aversion, although

this seems to be especially the case for the non-conservative investors and, therefore,

for the most levered positions. However, the main point is that the value portfolio

gets more weights for all γ. At the end, at least from 1982 to 2010, the use of

systemic jumps in the optimal allocation of funds, increases the proportion of value

stocks, reduces the amount of short-selling in the growth stocks, and diminishes the

proportion of funds invested in the intermediate portfolio.

As in other cases, the results of the full sample period seem to be the consequences

of two different sub-periods. The effects of jumps from 1997 to 2010 are, to all effects,

negligible. The differences of optimal weights between the benchmark case and the

jump-diffusion model are therefore basically zero except, if anything, for the highly

levered position. The main effects of jumps come from the first sub-period. From

1982 to 1997, there were very few jumps but with a relatively very large average

size. In fact, the average jump size for the value portfolio is positive, which makes

the proportion of funds invested in value to increase importantly and, especially,

for the most levered portfolios. These effects can be seen directly from Panel C of

Table 3 and they are also reflected in Figure 2. By recognizing systemic jumps,

optimal asset allocation increases significantly for value stocks and for all levels of

risk aversion, although more for the less conservative more levered case. At the

same time, jumps reduce considerably the proportion invested in the intermediate

portfolio. As a consequence of recognizing jumps, there is also a reduction in the

short-selling proportions of growth stocks. The same conclusion is obtained by the

results shown in Table 4. We report the percentages of the growth, intermediate,

and value portfolios in the total proportion invested in risky assets. We observe that

the spread between the proportions invested in value and growth assets is higher in

the first than in the second sub-period. It is also the case, that the spread in the

first sub-period is particularly important for the most levered portfolios, although

the relevance of risk aversion is negligible in the last sub-period.
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We may conclude that systemic jumps across portfolios seem to be important for

asset allocation as long as the average magnitude of the jumps is large enough. From

the point of view of asset allocation, it is therefore more important the amplitude

than the frequency of the jumps. In our specific sample, jumps turn out to be

relevant for value stocks given the combination of a large and positive average jump

size. Jumps also seems to favor value stocks even with a negative average size jump

as in the full sample period, but this is relatively less important and, in any case,

the possible effects are just concentrated in highly levered portfolios.

4.3. Certainty Equivalent Costs. We next analyze the effect on utility of the

optimal portfolio strategy that recognizes the occurrence of systemic jumps across

book-to-market assets relative to the strategy that ignores these simultaneous jumps.

We employ the CEQ given in expression (2.15) that calculates the additional wealth

per $1, 000 of investment needed to raise the expected utility of terminal wealth un-

der the non-optimal portfolio strategy to that under the optimal investment strategy.

We consider the effects for investment horizons of 1 to 5 years and for levels of risk

aversion of 2 to 10.

Table 5 reports the results. As before, the effects of frequent but relatively small

jumps observed from 1997 to 2010 is negligible. Even the U.S. dollar consequences of

the non-optimal strategy over the full sample period are very small. For highly risk-

taken investors and over a 5 years horizon, the cost of ignoring jumps is only about

$2.00. All the relevant effects come, once again, from the 1982 to 1997 sub-period

in which the average size jump seems to be high enough to impact the portfolio

allocation of equity portfolios. As we observe, the CEQ decreases as risk aversion

increases. This suggests that, as he becomes more risk averse, the investor holds a

smaller proportion of his wealth in risky portfolios and, therefore, both the exposure

to simultaneous jumps and the effects on CEQ are smaller. However, when the

investor is willing to accept higher risks, his optimal portfolio becomes much more

levered to buy additional risky assets. Then, the consequences of ignoring systemic

jumps should be higher. This is exactly what we observe from Table 5 and Figure
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3. For highly levered portfolios, the CEQ goes from $48.40 for a 1-year horizon to

$266.50 for the longest horizon per $1, 000 of investment. It should not be surprising

that the higher the leverage position of an investment is, the higher the impact of

jumps on portfolio strategies. It should be recognized however, that the dollar effects

diminish very rapidly as the investor becomes more risk averse. For γ = 4, even for

the longest horizon of 5 years, the CEQ is $30.42 per $1, 000 which does not seem

to be substantial.

4.4. Sample Average Riskless Rate. In the previous discussion, we impose a

0.5% monthly riskless rate for the full sample period and for both sub-periods.

Although this is a reasonable riskless rate for the first sub-period, it may be too

high for the second sub-period. For this reason, we estimate again the model from

1997 to 2010 imposing the actual average riskless rate of 0.5% per month or 3% per

year. It must be noted that the interest rate affects the parameter estimates and,

therefore, it may have consequences for the general conclusions about the optimal

portfolio allocation during the second sub-period.

Table 6 reports the results affected by the riskless rate. The empirical evidence is

almost identical to the evidence contained in Tables 2, 3, and 5. The average size

of jumps is even slightly lower, and the frequency of the jumps is now 1.231 relative

to the previous estimate of 0.938. Thus, the frequency of the simultaneous jumps is

higher than the one reported in Table 2. Once again, this sub-period is characterized

by many jumps of small average amplitude. The effects of jumps on the portfolio

weights and on the cost of ignoring jumps are very similar to the previously reported

results. As expected, given that now the risk-free investment offers a lower rate, the

optimal amount of the risky portfolios is higher with respect to the allocation shown

in previous tables. However, the effects about the distribution of resources among

book-to-market portfolios with or without jumps are negligible. All our previous

conclusions remain the same even with a much lower riskless rate.
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4.5. Specification Tests with a Pre-specified Weighting Matrix. Up to now,

the statistical performance of the model has been very informal. Intentionally, our

discussion has been based mainly on economic intuition rather than statistical for-

mality. We finally want to test the overall fit of the model. The test-statistic is the

GMM test of overidentification restrictions.

We denote by ft(θ) the K−vector of moment conditions containing the pricing er-

rors generated by the jump-diffusion model at time t, and by θ the set of parameters

to be estimated. The corresponding sample averages are denoted by gT (θ). Then,

the GMM estimator procedure minimizes the quadratic form gT (θ)′WTgT (θ) where

WT is a weighting squared matrix. The evaluation of the model performance is car-

ried out by testing the null hypothesis T [Dist(θ)] = 0, with Dist = g′T (θ)WTgT (θ)

where the weighting matrix, W , is in our case the identity matrix. If the weight-

ing matrix is optimal, T [Dist(θ̂)] is asymptotically distributed as a Chi-square with

K − P − 1 degrees of freedom, where P is the number of parameters. However,

for any other weighting matrix (including the identity matrix), the distribution of

the test statistic is unknown. Jagannathan and Wang (1996) show that, in this

case, T [Dist(θ̂)]2 is asymptotically distributed as a weighted sum of K − P − 1

independent Chi-squares random variables with one degree of freedom. That is

(4.1) T
î
Dist(θ̂)

ó2 d−→
K−P−1∑

i=1

λiχ
2
i (1)

where λi , for i = 1, 2, . . . , K − P − 1, are the positive eigenvalues of the following

matrix:

A = S
1/2
T W

1/2
T

[
IK − (W

1/2
T )−1DT (D′TWTDT )−1D′TW

1/2
T

]
(W

1/2
T )′(S1/2

T )′,

in which X1/2 means the upper-triangular matrix from the Choleski decomposition

of X, and IK is a K−dimensional identity matrix. Moreover, ST and DT are given

by,

ST =

∑T
t=1 ft(θ)ft(θ)

′

T
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DT =

∑T
t=1 ∂ft(θ)∂ft(θ)

′

T

Therefore, in order to test the different models we estimate, we proceed in the

following way. First, we estimate the matrix A and compute its nonzero K −
P − 1 eigenvalues. Second, we generate {υhi}, h = 1, 2, . . . , 100, i = 1, 2, . . . , K −
P − 1, independent random draws from a χ2(1) distribution. For each h, uh =

∑K−P−1
i=1 λiυhi is computed. Then we compute the number of cases for which uh >

T [Dist(θ̂)]2 . Let p denote the percentage of this number. We repeat this procedure

1000 times. Finally, the p−value for the specification test of the model is the average

of the p values for the 1000 replications.

It turns out that we are not able to reject the jump-diffusion model in any of

the alternative sample periods employed in the estimation. The p-values for the

full sample period, the first sub-period, and the second sub-period are 0.257, 0.103,

and 0.676 respectively. These results suggest that the jump-diffusion model fits the

actual data better from 1997 to 2010 than from 1982 to 1997. This is the case

despite the poor reconstruction of the actual skewess for the value portfolio from

1997 to 2010.

5. The Effects of Systemic Jumps for Value and Growth Portfolios

across Geographical Regions

We next check whether the previous results are sensitive to the choice of data. We

extend the analysis to a sample of international monthly return data which include

value and growth portfolios from Europe, North America, and the Pacific regions.

Additionally, this may be a more direct way for testing the effects of systemic weights

all over the world.

It is important to point out that this data comes from Morgan Stanley Capital

International (MSCI). They provide monthly data on indices for value and growth

portfolios which do not include only the extreme value and growth, as in the port-

folios constructed by Fama and French. In fact, every single asset traded in a
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particular region is included either on the value or the growth portfolios. Of course,

to be part of the value (growth) portfolio, the asset has a book-to-market ratio above

(below) the overall median of the book-to-market distribution. But, once again, it is

important to understand that they are not the portfolios generating the well know

value premium for the U.S. market.

Table 7 contains the descriptive statistics of these geographical portfolios. Panel

A shows that the usual value premium is only found for the Pacific region. The

premium is a relatively small 3.78% per year, and it is accompanied by the annualized

growth premium volatility of 3.0%. For Europe there is a very slight value premium,

although is volatility is also slightly higher for value stocks. The North American

region presents a surprising although very small growth premium. As expected,

these results suggest that the value premium for value stocks relative to growth

stocks is due to the extreme portfolios. The results are similar across sub-periods.

Moreover, the value portfolios always have negative skewness, and their magnitudes

are quite similar to the skewness of growth stocks for Europe and North America.

The only exception is the Pacific region. Growth stocks in this area tend to have

larger negative skewness than value stocks, except for the sub-period from 1982

to 1997 in which growth stocks in the Pacific have a small but positive skewness.

Excess kurtosis tends to be rather low, especially in the Pacific stock exchanges.

The only exception is the North America region during the first sub-period for both

value and growth stocks. It is also the case that excess kurtosis is higher during the

first sub-period for all cases except for value stocks in the Pacific.

The correlation coefficients contained in Panel B of Table 7 show that returns in

Europe and North America tend to be more correlated than the returns with the

Pacific area. The lowest correlation is between North America and the Pacific, and

this is particularly the case for the first sub-period. There is an important increase in

the correlation coefficients across regions during the most recent sub-period. It may

be a consequence of the recent financial crisis in which the correlation coefficients
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have increased among stock exchanges all over the world.9 It is also important to

point out that these results are practically the same for both value and growth

portfolios.

Panel A of Table 8 reports the parameter estimates of the jump-diffusion model

with systemic risk. As with the Fama-French dataset, the result show many more

frequent jumps in the last sub-period than in the first sub-period. The frequency of

simultaneous jumps is only slightly higher for growth stocks than for value stocks.

The estimated value for λ of 0.159 for the full sample period for value stocks implies

that on average the chance of a simultaneous jump in any month across value stocks

in Europe, North America and the Pacific is about 16%, or one jump is expected

every 6.3 months or 0.52 years. On the other, hand the λ of 0.183 for growth stocks

suggests one jump every 5.5 months.

The average size of the jump seems to be similar for the value and growth portfolios

across geographical regions for the full sample period. However, the average size of

the jump is larger (in absolute terms) for value stocks during the first sub-period,

while the size (again in absolute value) of the jumps is larger for growth stocks

in the second sub-period. The explanation of this difference lies on the surprising

behavior of the stocks in the Pacific region. Indeed, while the average size of value

stocks in this area is negative from 1982 to 1997, the size becomes positive for the

growth portfolio. This decreases the average size of the negative jump of growth

stocks across the regions from 1982 to 1997.

Panel B of Table 8 reports the comparison between the moments from the theo-

retical model and the actual sample moments. For Europe and North America, the

jump-diffusion process captures extraordinarily well all moments independently of

the sample period. However, the skewess of the Pacific area is not well explained

by the model. This is especially the case for both portfolios from 1982 to 1997.

The asymmetry generated by the jump-diffusion model tends to exaggerate both

the negative and the positive skewness of the value and growth stocks respectively.

9It may also be a sign of higher international integration. However, this is a rather subtle point.
Higher correlation does not necessarily imply higher integration among stock exchanges.
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Tables 9 and 10 present the optimal portfolio weights and the CEQ across different

geographical regions for value and growth portfolios. The results in both tables show

that the effects of systemic jumps on portfolio allocation strategies are very weak.

The performance of the value and growth portfolio reported in Table 7 is reflected

now on the optimal allocation across different regions for both value and growth

stocks. However, the effects of jumps for a given level of leverage hardly change the

optimal weights across regions.

6. Conclusions

Given the tendency of globalization and increasing integration of financial mar-

kets, it is generally accepted that equity portfolios of different characteristics and

also international equities are characterized by simultaneous jumps. We investigate

the effects of these jumps on optimal portfolio allocation using value and growth

stocks and two different sub-periods. It seems that the effects of systemic jumps

may be potentially substantial as long as market equity returns experiment very

large average (negative) sizes. However, it does not seem to be relevant that stock

markets experience very frequent jumps if they are not large enough to impact the

most levered portfolios. All potentially relevant effects are concentrated in portfolios

financed with a considerable amount of leverage. In fact, for conservative investors

with low leverage positions the potential effects of systemic jumps on the optimal al-

location of resources is not substantial even under large average size jumps. Finally,

the value premium is particularly high when the average size of the jumps of value

stocks is positive, large and relatively infrequent, while the average size of growth

stocks is also very large but negative. It seems therefore plausible to conclude that

the magnitude of the value premium is closely related to the characteristics of the

jumps experienced by value and growth stocks.
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Appendix A. The Central Moments under Alternative Derivation

Procedures

The idea of the appendix is to show how to calculate the central moments di-

rectly from the characteristic function. This approach is more direct and efficient

than the procedure employed by Das and Uppal (2004). At the outset we perform

the derivatives of the value function, equation (2.10), and of the characteristic func-

tion, equation (3.5). Alternatively, we present a procedure to calculate directly the

conditional expectations to find the characteristic function and to solve the portfolio

problem.

We first obtain the partial differential equation using the derivatives of equation

(2.10) as follows:

∂tV = ∂tF (t)
W 1−γ
t

1− γ =
∂tF (t)

F (t)
V

∂WtV = (1− γ)∂tF (t)
W 1−γ
t

1− γ =
(1− γ)

Wt

V

∂WtWtV = ∂Wt(1− γ)F (t)
W 1−γ
t

1− γ = −γ(1− γ)F (t)
W 1−γ
t

1− γ =
−γ(1− γ)

W 2
t

V

V (Wt +Wtω
′(J̃t − IN), t)− V (Wt, t) =

F (t)

1− γ
ÅÄ
Wt +Wtω

′(J̃t − IN)
ä1−γ −W 1−γ

t

ã

= F (t)
W 1−γ
t

1− γ
ÅÄ

1 + ω′(J̃t − IN)
ä1−γ − 1

ã

= V
ÅÄ

1 + ω′(J̃t − IN)
ä1−γ − 1

ã

We now obtain the ordinary differential equation for the characteristic function from

the Feynman-Kac equation (3.6). We calculate the following derivatives:

∂τΦt = −∂tΦt

= ∂τe
At(τ,ζ)+B′

t(τ,ζ)Xt =
î
eAt(τ,ζ)+B

′
t(τ,ζ)Xt

ó
[∂τAt + ∂τB

′
tXt]

= [∂τAt + ∂τB
′
tXt] Φt

∂XΦt = ∂Xe
At(τ,ζ)+B′

t(τ,ζ)Xt =
î
eAt(τ,ζ)+B

′
t(τ,ζ)Xt

ó
Bt
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= Bt(τ, ζ)Φt

∂XX′Φt = ∂X∂X′Φt = ∂X′ΦtB
′
t(τ, ζ) = Bt(τ, ζ)B′t(τ, ζ)Φt

Additionally, the jump term becomes:

Φt(X + Y )− Φt(X) = eAt(τ,ζ)+B
′
t(τ,ζ)(Xt+Y ) − eAt(τ,ζ)+B′

t(τ,ζ)Xt

= eAt(τ,ζ)+B
′
t(τ,ζ)Xt

î
eB

′
t(τ,ζ)Y − 1

ó

= Φt

î
eB

′
t(τ,ζ)Y − 1

ó

As an alternative to find the characteristic function we calculate the conditional

expected value directly. For this, consider the process Xt, whose dynamics in scalar

form are stated in equation (3.3), and whose vector form is given by Xt = X0 +αt+

σZt + Yt where Yt =
∑Qt
i=1 Ji. In particular, for t = T , we have

XT = X0 + αT + σ(ZT − Zt + Zt) + YT − Yt + Yt

d
= Xt + ατ + σZτ + Yτ

where τ = T −t, and “
d
= ” denotes equality in distribution. The process ατ+σZτ +

Yτ is of Lévy type represented by the Lévy triplet (α, σ,Ψ), where Ψ is a Lévy mea-

sure. Additionaly, Zτ ∼ Ψ(0,Στ) and Yτ ∼ Po(λτ). Our purpose is to calculate the

conditional expected value E[eiζ
′XT |Ft], i.e. the conditional characteristic function

with N × 1 vector parameter ζ. Recall that the jump component, the Brownian

motion and the jump amplitude are independent. Given that the Brownian motion

and the compound Poisson process have independent and stationary increments we

have

E[eiζ
′XT |Ft] = eiζ

′XtE
î
eiζ

′(ατ+σZτ+Yτ )
ó

And from the Lévy-Kintchine theorem

E[eiζ
′XT |Ft] = eiζ

′Xt exp

®Ç
iζ ′α− 1

2
ζ ′Σζ + λ

∫

RN
(eiζ

′z − 1)dΨ(z)

å
τ

´
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The integral in the right hand side is recognized as the jump amplitude’s character-

istic function. Given that the random variable J follows the Normal distribution Ψ,

J ∼ Ψ(η,ΣJ)
∫

RN
eiζ

′zdΨ(z) = exp

®
iζ ′η − 1

2
ζ ′ΣJζ

´

Hence, the conditional characteristic function Φt(τ, ζ,Xt) = E[eiζ
′XT |Ft] is

Φt(τ, ζ,Xt) = exp

®Ç
iζ ′α− 1

2
ζ ′Σζ + λ exp

®
iζ ′η − 1

2
ζ ′ΣJζ

´
− λ
å
τ + iζ ′Xt

´

Now we aim to solve the portfolio problem, for this we should calculate Et[u(WT )]

where u(WT ) = W 1−γ
T /(1 − γ), that is Et[u(WT )] = Et[W

1−γ
T ]/(1 − γ). And the

dynamics of the wealth process is given by

dWt

Wt

= (ω′R + r)dt+ ω′σdZt + ω′J̃dQt

Applying Ito’s lemma to lnWt

d lnWt =

Ç
ω′R + r − 1

2
ω′Σω

å
dt+ ω′σdZt + ln(1 + ω′J̃)dQt

For constant r, R, and σ the integral gives

Wt = exp

®
W0 +

Ç
ω′R + r − 1

2
ω′Σω

å
t+ ω′σZt + Yt

´

Where W0 is the initial wealth and Yt =
∑Qt
i=1 ln(1 + ω′J̃i). The conditional expec-

tation becomes

Et[u(WT )] =
Et[W

1−γ
T ]

1− γ

=
1

1− γEt
ñ
exp

®
(1− γ)

Ç
W0 +

Ç
ω′R + r − 1

2
ω′Σω

å
T + ω′σZT + YT

å´ô

= exp

®
(1− γ)

Ç
ω′R + r − 1

2
ω′Σω

å
τ

´
Et
î
e(1−γ)ω′σZτ+(1−γ)Yτ

ó
u(Wt)

= exp

®
(1− γ)(ω′R + r)τ − 1

2
γ(1− γ)ω′Σωτ

+λτ
∫

RN
(e(1−γ) ln(1+ω′z) − 1)dΨ(z)

™
u(Wt)
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The last step comes from the Lévy-Kintchine theorem. The integral on the right

hand side is an expectation, i.e.

∫

RN
((1 + ω′z)(1−γ) − 1)dΨ(z) = E

î
(1 + ω′J̃)(1−γ) − 1

ó

Therefore

Et[u(WT )] = exp

®Ç
(1− γ)(ω′R + r)− 1

2
γ(1− γ)ω′Σω

+λE
î
(1 + ω′J̃)(1−γ)

ó
− λ
ä
τ
©
u(Wt)

A.1. Central moments using the derivatives of the cumulant function with

respect to variables j and i. The characteristic function is given by

Φt(τ, ζ,Xt) = exp

Çñ
iζ ′α− 1

2
ζ ′Σζ + λ

Ç
exp

Ç
iζη − 1

2
ζ ′ΣJζ

å
− 1

åô
τ + iζXt

å

Setting τ = 1, we can write

Φt(ζ,X) = Φt(τ = 1, ζ,Xt) = eiζ
′(α+Xt)− 1

2
ζ′Σζ+λ(eC−1),

where C = ζ ′β − 1
2
ζ ′ΣJζ and β = iη. We define the cumulant generating function

as follows,

Ψt(ζ,Xt) = ln(Φt(ζ,Xt)) = iζ ′(α +Xt)−
1

2
ζ ′Σζ + λ(eC − 1)

Its derivatives are given by,

∂ζjΨt(ζ,Xt) = i(αj +Xjt)− Σjζ + λeC(βj − ΣJ
j ζ)

∂ζjζiΨt(ζ,Xt) = −σji + λeC
¶
(βj − ΣJ

j ζ)(βi − ΣJ
i ζ)− νjνi

©

∂ζjζ2i Ψt(ζ,Xt) = λeC
¶
(βj − ΣJ

j ζ)
Ä
(βi − ΣJ

i ζ)2 − ν2
i

ä
− 2νjνi(βi − ΣJ

i ζ)
©

∂ζjζ3i Ψt(ζ,Xt) = λeC
¶
(βj − ΣJ

j ζ)(βi − ΣJ
i ζ)
Ä
(βi − ΣJ

i ζ)2 − 3ν3
i

ä
− 3νjνi

Ä
(βi − ΣJ

i ζ)2 − ν2
i

ä©
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The cumulants can be found with the aid of

κL = i−L
∂LΨt(ζ)

∂ζ l11 , ∂ζ
l2
2 , . . . , ∂ζ

lN
N

and L =
N∑

j=1

lj

Then,

κ1 = i−1∂ζjΨt(ζ,Xt)
∣∣∣
ζ=0

= αj + ληj +Xjt

κ2 = −∂ζjζiΨt(ζ,Xt)
∣∣∣
ζ=0

= σji + λ(ηjηi + νjνi)

κ3 = −i−1∂ζjζ2i Ψt(ζ,Xt)
∣∣∣
ζ=0

= λ
Ä
2νjνiηi + ηj(η

2
i + ν2

i )
ä

κ4 = ∂ζjζ3i Ψt(ζ,Xt)
∣∣∣
ζ=0

= λ
Ä
ηjηi(η

2
i + 3ν2

i ) + 3νjνi(η
2
i + ν2

i )
ä

= λ
Ä
ηjη

3
i + 3ηjηiν

2
i + 3νjνiη

2
i + 3νjν

3
i

ä

In these expressions κ1 is the first non-central moment, and κ2 is the covariance

between the returns of assets j and i. The standardized central moments are given

by the expressions,

coskewnessji =
κ3

σjσ2
i

=
λ (2νjνiηi + ηj(η

2
i + ν2

i ))

σjσ2
i

excess kurtosisjj =
κ4

σ4
j

=
λ
Ä
η4
j + 6η2

j ν
2
j + 3ν4

j

ä

σ4
j

A.2. Central moments using the derivatives of the characteristic function

with respect to variables j and i. 10

The characteristic function is given by

Φt(τ, ζ,Xt) = exp

Çñ
iζ ′α− 1

2
ζ ′Σζ + λ

Ç
exp

Ç
iζη − 1

2
ζ ′ΣJζ

å
− 1

åô
τ + iζXt

å

Setting τ = 1, we can write

Φt(ζ,X) = Φt(τ = 1, ζ,Xt) = eiζ
′(α+Xt)− 1

2
ζ′Σζ+λ(eC−1),

10This is the method suggested by Das and Uppal (2004).
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where C = ζ ′β − 1
2
ζ ′ΣJζ and β = iη. It should be noted that Φt(0, Xt) = 1 and

eC
∣∣∣
ζ=0

= 1. The first non-central moment is given by

m̄1 =
1

i
∂ζΦt(ζ,Xt)

∣∣∣∣
ζ=0

Therefore,

E[Xt] =
1

i
∂ζΦt

∣∣∣∣
ζ=0

=
1

i
Φt∂ζ

Ç
iζ ′(α +Xt)−

1

2
ζ ′Σζ + λ(eC − 1)

å∣∣∣∣∣
ζ=0

=
1

i
Φt∂ζ

Ç
i(α +Xt)−

1

2
Σζ + λeC(β − ΣJζ)

å∣∣∣∣∣
ζ=0

= α + λη +Xt

On the other hand, the L−central moment is given by the following expression:

mL = i−L
∂LΦt(τ, ζ,Xt − E[Xt])

∂ζ l11 , ∂ζ
l2
2 , . . . , ∂ζ

lN
N

and L =
N∑

j=1

lj

The modified characteristic function takes the following form:

Ψt(ζ) = eiζ
′(α+Xt)− 1

2
ζ′Σζ+λ(eC−1)e−iζ

′E[Xt]

= eiζ
′(α+Xt)− 1

2
ζ′Σζ+λ(eC−1)e−iζ

′(α+λη+Xt)

= e−ζ
′λβ− 1

2
ζ′Σζ+λ(eC−1)

In what follows we will use the following derivatives:

Fk = ∂ζk

Ö

−ζ ′λβ − 1

2
ζ ′Σζ + λ (eC − 1)︸ ︷︷ ︸

M

è

= −βk − Σkζ + λ∂ζkM

Hkl = ∂ζlFk = ∂ζl(−βk − Σkζ + λ∂ζkM) = −σkl + λ∂ζkζlM

∂ζkC = ∂ζk

Ç
ζ ′β − 1

2
ζ ′ΣJζ

å
= βk − ΣJ

kζ

The partial derivatives of the characteristic function Ψt(ζ) with respect to variable

ζj and ζi are,

∂ζjΨt(ζ) = ΨtFj
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∂ζjζiΨt(ζ) = ∂ζj(ΨtFj) = Ψt {FjFi +Hji}

∂ζjζ2i Ψt(ζ) = ∂ζj {Ψt {FjFi +Hji}} = Ψt {Fi(FjFi +Hji) +HjiFi + FjHii + ∂ζiHji}

∂ζjζ3i Ψt(ζ) = ∂ζjΨt {Fi(FjFi +Hji) +HjiFi + FjHii + ∂ζiHji}

= Ψt

¶
F 2
i (FjFi +Hji) +HjiF

2
i + FjFiHii + Fi∂ζiHji +Hii(FjFi +Hji)

Fi(HjiFi + FjHii + ∂ζiHji) + ∂ζiHjiFi + 2HjiHii + Fj∂ζiHii + ∂ζ2iHji

©

Taking into account that

M = eC − 1

N = eC

∂ζjM = N(βj − ΣJ
j ζ)

∂ζjζiM = N
¶
(βj − ΣJ

j ζ)(βi − ΣJ
i ζ)− νjνi

©

∂ζjζ2iM = N
¶
(βj − ΣJ

j ζ)
Ä
(βi − ΣJ

i ζ)2 − ν2
i

ä
− 2νjνi(βi − ΣJ

i ζ)
©

∂ζjζ3iM = N
¶
(βj − ΣJ

j ζ)(βi − ΣJ
i ζ)
Ä
(βi − ΣJ

i ζ)2 − 3ν2
i

ä
− 3νjνi

Ä
(βi − ΣJ

i ζ)2 − ν2
i

ä©

And,

∂ζiHji = λ∂ζjζ2iM

∂ζ2iHji = λ∂ζjζ3iM

Evaluating the following expressions at ζ = 0,

Fk|ζ=0 = M |ζ=0 = 0; N |ζ=0 = 1

∂ζjM
∣∣∣
ζ=0

= iηj

∂ζjζiM
∣∣∣
ζ=0

= −(ηjηi + νjνi)

∂ζjζ2iM
∣∣∣
ζ=0

= −i
Ä
2νjνiηi + ηj(η

2
i + ν2

i )
ä

∂ζjζ3iM
∣∣∣
ζ=0

= ηjηi(η
2
i + ν2

i ) + 2νjνiη
2
i + νjνi(η

2
i + ν2

i ) + 2ν2
i ηjηi + 2νjν

3
i
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= ηjη
3
i + 3ηjηiν

2
i + 3νjνiη

2
i + 3νjν

3
i

It implies that,

Hji|ζ=0 = −σji − λ(ηjηi + νjνi)

∂ζiHji|ζ=0 = −iλ
Ä
2νjνiηi + ηj(η

2
i + ν2

i )
ä

∂ζ2iHji

∣∣∣
ζ=0

= λ
Ä
ηjη

3
i + 3ηjηiν

2
i + 3νjνiη

2
i + 3νjν

3
i

ä

Therefore, the standardized central moments for assets j and i are given by,

Covarianceji = i−2∂ζjζiΨt(ζ)
∣∣∣
ζ=0

= − Hji|ζ=0 = σji + λ(ηjηi + νjνi)

Coskewnessji =
−i−1∂ζjζ2i Ψt(ζ)

∣∣∣
ζ=0

σjσ2
i

=
−i−1∂ζiHji|ζ=0

σjσ2
i

=
λ(2νjνiηi + ηj(η

2
i + ν2

i ))

σjσ2
i

Excess kurtosisjj =
∂ζ4j Ψt(ζ)

∣∣∣
ζ=0

σ4
j

− 3 =
3H2

jj + ∂ζ2iHji

∣∣∣
ζ=0

σ4
j

− 3 =
λ(η4

j + 6η2
j ν

2
j + 3ν4

j )

σ4
j

where the last step comes from the fact that H2
jj is the square of the variance.

A.3. Central moments using the derivatives of the cumulant function in

vector form. The characteristic function is given by

Φt(τ, ζ,Xt) = exp

Çñ
iζ ′α− 1

2
ζ ′Σζ + λ

Ç
exp

Ç
iζη − 1

2
ζ ′ΣJζ

å
− 1

åô
τ + iζXt

å

Setting τ = 1, we can write

Φt(ζ,X) = Φt(τ = 1, ζ,Xt) = eiζ
′(α+Xt)− 1

2
ζ′Σζ+λ(eC−1),

where C = ζ ′β− 1
2
ζ ′ΣJζ and β = iη. Once again, we define the cumulant generating

function as follows,

Ψt(ζ,Xt) = ln(Φt(ζ,Xt)) = iζ ′(α +Xt)−
1

2
ζ ′Σζ + λ(eC − 1)
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Its derivatives are as follows,

∂ζΨt(ζ,Xt) = i(α +Xt)− Σζ + λeC(β − ΣJζ) = F

∂ζζ′Ψt(ζ,Xt) = ∂ζ(∂ζ′Ψt(ζ,Xt))

= ∂ζ

Ç
∂ζ′

Ç
ζ ′i(α +Xt)−

1

2
ζ ′Σζ + λ(eC − 1)

åå

= ∂ζF
′ = −Σ + λeC(GG′ − ΣJ) = H

where, for convenience, we define G = (β − ΣJζ). The third and fourth moments

are calculated as,

m3 = E[(X − m̄1)(X − m̄1)′ ⊗ (X − m̄1)′]

m4 = E[(X − m̄1)(X − m̄1)′ ⊗ (X − m̄1)′ ⊗ (X − m̄1)′]

where ⊗ is the Kronecker product.

As long as we will use only the terms that accounts for the combination of two

different variables, we are interested in elements that are the results of taking partial

derivatives twice. The first derivative will be with respect to ζj, and the other with

respect to ζi. For that purpose, we find first the expressions for the derivative with

respect to the vector ζ and then with respect to one variable alone, say ζk, and

finally construct the moments. To that end, we use the single entry vector defined

as

Γk1 =




0

...

(1)k
...

0




, Γ1k = (0 . . . , (1)k . . . 0)

Some properties of the single entry vector are,

Γ1ka = a′Γk

(Γ1ka)a = a(a′Γk) = (aa′)Γk
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(Γ1ka)a′ = Γ1k(aa′)

These vectors are useful when dealing with partial derivatives:

∂ζkζ = Γk

∂ζkζ
′ = Γ1k

∂ζkζζ
′ = 2ζ ′Γk = 2Γ1kζ

∂ζkAζ = AΓk

∂ζkζ
′A = Γ1kA

∂ζkζ
′Aζ = Γ1k(A+ A′)ζ

∂ζkAB = (∂ζkA)B + A∂ζkB

The following calculations will be used in the derivation,

∂ζkG = −ΣJΓk

∂ζkG
′ = −Γ1kΣJ

∂ζkGG
′ = −(ΣJΓkG′ +GΓ1kΣJ)

∂ζkζkGG
′ = 2ΣJΓkΓ1kΣJ

∂ζkλe
C = λeCΓ1kG

∂ζkλe
CG = λeC(GG′)Γk

∂ζkλe
CG′ = λeCΓ1k(GG′)

Also,

H = −Σ + λeC(GG′ − ΣJ)

H|ζ=0 = −Σ− λ(ηη′ + ΣJ)

∂ζkH = λeC
Ä
Γ1kG(GG′ − ΣJ)− ΣJΓkG′ −GΓ1kΣJ

ä

∂ζkH|ζ=0 = −iλ
Ä
Γ1kη(ηη′ + ΣJ) + ΣJΓkη′ + ηΓ1kΣJ

ä
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∂ζkζkH = λeC
Ä
(Γ1kGΓ1kG− Γ1kΣJΓk)(GG′ − ΣJ)− 2Γ1kG(ΣJΓkG′ +GΓ1kΣJ)

+2ΣJΓkΓ1kΣJ
ä

∂ζkζkH|ζ=0 = λ
Ä
(Γ1kηΓ1kη + Γ1kΣJΓk)(ηη′ + ΣJ)− 2Γ1kη(ΣJΓkη′ + ηΓ1kΣJ)

+2ΣJΓkΓ1kΣJ
ä

Then, the third and fourth derivatives are

∂ζkζζ′Ψt = ∂ζkH = λeC
Ä
Γ1kG(GG′ − ΣJ)− ΣJΓkG′ −GΓ1kΣJ

ä

∂ζkζkζζ′Ψt = ∂ζk(∂ζkζζ′Ψt) = ∂ζkζkH

= λeC
Ä
(Γ1kGΓ1kG− Γ1kΣJΓk)(GG′ − ΣJ)− 2Γ1kG(ΣJΓkG′ +GΓ1kΣJ)

+2ΣJΓkΓ1kΣJ
ä

The cumulants are

κ1 = i−1∂ζΨt(ζ,Xt)
∣∣∣
ζ=0

= α + λη +Xt

κ2 = −∂ζζ′Ψt(ζ,Xt)|ζ=0 = Σ + λ(ηη′ + ΣJ)

κ3 = −i−1∂ζkζζ′Ψt(ζ,Xt)
∣∣∣
ζ=0

= λ
Ä
Γ1kη(ηη′ + ΣJ) + ΣJΓkη′ + ηΓ1kΣJ

ä

κ4 = ∂ζ2
k
ζζ′Ψt(ζ,Xt)

∣∣∣
ζ=0

= λ
Ä
(Γ1kηΓ1kη + Γ1kΣJΓk)(ηη′ + ΣJ) + 2Γ1kη(ΣJΓkη′ + ηΓ1kΣJ) + 2ΣJΓkΓ1kΣJ

ä

Cumulants κ1 and κ2 account for the mean and covariance. Regarding coskewness

and cokurtosis, we note that in the expressions for κ3 and κ4 there is a N×N matrix

for each value of k. We have to choose column k = i. Then, the column i of the

cumulants matrices is:

κi3 = λ
Ä
Γ1iη(ηη′ + ΣJ) + ΣJΓiη′ + ηΓ1iΣJ

ä
Γi = λ

Ä
ηi(ηiη + (ΣJ)i) + ηi(Σ

J)i + ην2
i

ä

κi4 = λ
Ä
(Γ1iηΓ1iη + Γ1iΣJΓi)(ηη′ + ΣJ) + 2Γ1iη(ΣJΓiη′ + ηΓ1iΣJ) + 2ΣJΓiΓ1iΣJ

ä
Γi

= λ
Ä
(η2
i + ν2

i )(ηiη + (ΣJ)i) + 2ηi(ηi(Σ
J)i + ηΣJ

i ) + 2(ΣJ)iΣJ
i

ä



SYSTEMIC RISK 45

The skewness and kurtosis are standardized using the standard deviation. Therefore,

in the expression above, in order to find any element ji we have to select row j and

column i with k = i. The matrix components for each moment are,

Covarianceji = (κ2)ji = σji + λ(ηjηi + νjνi)

Coskewnessji =
(κ3)ji
σjσ2

i

=
λ
Ä
ηi(ηiη

′ + ΣJ) + ΣJΓiη′ + ηΓ1iΣJ
ä
j

σjσ2
i

=
λ(ηi(ηjηi + νjνi) + νjνiηi + ηjν

2
i )

σjσ2
i

=
λ(2νjνiηi + ηj(η

2
i + ν2

i ))

σjσ2
i

Excess cokurtosisji =
(κ4)ji
σjσ3

i

=
λ
Ä
(η2
i + ν2

i )(ηiη + (ΣJ)i) + 2ηi(ηi(Σ
J)i + ηΣJ

i ) + 2(ΣJ)iΣJ
i

ä
j

σjσ3
i

=
((η2

i + ν2
i )(ηjηi + νjνi) + 2ηi(νjνiηi + ηiνjνi) + 2νjν

3
i )

σjσ3
i

=
λ(ηjη

3
i + 3νjνiη

2
i + 3ηjηiν

2
i + 3νjν

3
i )

σjσ3
i

For j = i.

Excess kurtosisjj =
λ(η4

j + 6η2
j ν

2
j + 3ν4

j )

σ4
j

A.4. Central moments using the derivatives of the characteristic function

in vector form. Given the characteristic function, the L−central moments, and

the modified characteristic function given at the beginning of sub-section (A.2) in

this appendix, the second central moments is

m2 = −∂ζζ′Ψt(ζ,Xt)|ζ=0

The derivative is

−∂ζζ′Ψt = −∂ζ(∂ζ′Ψt)

= −∂ζ
{
∂ζ′e

−ζ′λβ− 1
2
ζ′Σζ+λ(eC−1)

}

= −∂ζ(Ψt(−λβ′ − ζ ′Σ + λeCG))

= −ΨtFF
′ −Ψt(−Σ + λeC(GG′ − ΣJ))
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Recall that for convenience,

F = −λβ − Σζ + λeCG

G = β − ΣJζ

Note that

Ψt|ζ=0 = 1

G|ζ=0 = β

G′|ζ=0 = β′

F |ζ=0 = F ′|ζ=0 = 0

Therefore,

m2 = Σ + λ(ηη′ + ΣJ)

From sub-section (A.3) we know how to calculate the third and fourth moments.

We again employ the single entry vectors also defined in the same sub-section and

its properties. Then, we recall the calculations needed in derivation,

∂ζkG = −ΣJΓk

∂ζkG
′ = −Γ1kΣJ

∂ζkGG
′ = −(ΣJΓkG′ +GΓ1kΣJ)

∂ζkζkGG
′ = 2ΣJΓkΓ1kΣJ

∂ζkλe
C = λeCΓ1kG

∂ζkλe
CG = λeC(GG′)ΓkG

∂ζkλe
CG′ = λeCΓ1k(GG′)

∂ζkF = (−Σ + λeCGG′)Γk

∂ζkζkF = λeC(Γ1kG(GG′)Γk + 2ΣJΓkΓ1kΣJ)

∂ζkΨt = ΨtΓ
1kF
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And,

H = −Σ + λeC(GG′ − ΣJ)

H|ζ=0 = −Σ− λ(ηη′ + ΣJ)

∂ζkH = λeC
Ä
Γ1kG(GG′ − ΣJ)− ΣJΓkG′ −GΓ1kΣJ

ä

∂ζkH|ζ=0 = −iλ
Ä
Γ1kη(ηη′ + ΣJ) + ΣJΓkη′ + ηΓ1kΣJ

ä

∂ζkζkHji = λeC
Ä
(Γ1kGΓ1kG− Γ1kΣJΓk)(GG′ − ΣJ)− 2Γ1kG(ΣJΓkG′ +GΓ1kΣJ) + 2ΣJΓkΓ1kΣJ

ä

∂ζkζkHji|ζ=0 = λ
Ä
(Γ1kηΓ1kη + Γ1kΣJΓk)(ηη′ + ΣJ) + 2Γ1kη(ΣJΓkη′ + ηΓ1kΣJ) + 2ΣJΓkΓ1kΣJ

ä

Then, the third moment is given by

−i−1∂ζkζζ′Ψt

∣∣∣
ζ=0

= −i−1∂ζk∂ζζ′Ψt

∣∣∣
ζ=0

= −i−1∂ζkΨt(FF
′ +H)

∣∣∣
ζ=0

= −i−1Ψt

¶
Γ1kF (FF ′ +H) + ∂ζkFF

′ + F∂ζkF
′ + ∂ζkH

©∣∣∣
ζ=0

= λ
Ä
Γ1kη(ηη′ + ΣJ) + ΣJΓkη′ + ηΓ1kΣJ

ä

This is an N × N matrix for each value of k. In order to find element (m3)ji of

the coskewness matrix, we must select the row j, column i with k = i in the above

expression. Hence,

(m3)ji = λ(ηi(ηη
′ + ΣJ) + ΣJΓiη′ + ηΓ1iΣJ)ji

= λ(ηi(ηjηi + νjνi) + νjνiηi + ηjν
2
i )

= λ(2νjνiηi + ηj(η
2
i + ν2

i ))

And the fourth moment is,

∂ζkζkζζ′Ψt|ζ=0 = ∂ζkΨt

¶
Γ1kF (FF ′ +H) + ∂ζkFF

′ + F∂ζkF
′ + ∂ζkH

©∣∣∣
ζ=0

= Ψt

¶
Γ1kF (Γ1kF (FF ′ +H) + ∂ζkFF

′ + F∂ζkF
′ + ∂ζkH) + Γ1kHΓk(FF ′ +H)

+Γ1kF (∂ζkFF
′ + F∂ζkF

′ + ∂ζkH) + ∂ζkζkFF
′ + 2∂ζkF∂ζkF

′ + F∂ζkζkF
′



48 SYSTEMIC RISK

+∂ζkζkH}|ζ=0

∂ζkζkζζ′Ψt|ζ=0 = Γ1kH
∣∣∣
ζ=0

ΓkH
∣∣∣
ζ=0

+ 2 H|ζ=0 ΓkΓ1kH
∣∣∣
ζ=0

+ ∂ζkζkH|ζ=0

The first two terms account for 3 times the covariance. Then, the excess kurtosis

must be given by

m4 = ∂ζkζkH|ζ=0

= λ
Ä
(Γ1kηΓ1kη + Γ1kΣJΓk)(ηη′ + ΣJ) + 2Γ1kη(ΣJΓkη′ + ηΓ1kΣJ) + 2ΣJΓkΓ1kΣJ

ä

= λ
Ä
(η2
k + ν2

k)(ηη′ + ΣJ) + 2ηk((Σ
J)kη′ + ηΣJ

k ) + 2(ΣJ)kΣJ
k

ä

This is a N × N matrix for each value of k, in order to find element (m4)ji of

the cokurtosis matrix we must select the row j, column i with k = i in the above

expression, hence:

(m4)ji = λ
Ä
(η2
k + ν2

k)(ηη′ + ΣJ) + 2ηk((Σ
J)kη′ + ηΣJ

k ) + 2(ΣJ)kΣJ
k

ä
ji

= λ
Ä
(η2
i + ν2

i )(ηjηi + νjνi) + 2ηi(νjνiηi + ηiνjνi) + 2νjν
3
i

ä

= λ(ηjη
3
i + 3ηjηiν

2
i + 3νjνiη

2
i + 3νjν

3
i )

Therefore, the standardized central moments for assets j and i are given by

covarianceji = σji + λ(ηjηi + νjνi)

coskewnessji =
λ(2ηiνjνi + ηj(η

2
i + ν2

i ))

σjσ2
i

excess kurtosisjj =
λ(η4

j + 6η2
j ν

2
j + 3ν4

j )

σ4
j
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Table 1

Descriptive Statistics for the Fama-French Growth and Value Portfolios

Panel A of this table reports the first four moments of the monthly returns for the growth
and value portfolios constructed by Fama-French using their ten book-to-market sorted
portfolios, where the first portfolio is the growth portfolio, portfolio BE-ME 5 is the
intermediate portfolio, and the last portfolio is the value portfolio. The data for the full
period goes from January 1982 to October 2010, while the sub-periods contain data from
January 1982 to February 1997 and from March 1998 to October 2010. Panel B of the table
gives the correlation coefficients among the monthly returns for the growth, intermediate,
and value portfolios.

Panel A. Moments of the Monthly Returns

Jan 82-Oct 10 Mar 97-Oct 10 Jan 82-Feb 97

Growth BE-ME 5 Value Growth BE-ME 5 Value Growth BE-ME 5 Value

Mean % 0.493 1.306 1.813 0.537 1.113 1.618 0.454 1.479 1.989
Volatility % 7.681 5.356 6.314 9.053 6.046 7.452 6.217 4.657 5.091
Skewness 0.043 −0.768 −0.006 0.250 −0.438 −0.033 −0.560 −1.298 0.190
Kurtosis 3.508 3.898 4.376 2.478 1.805 2.306 4.071 8.037 8.716

Panel B. Correlation Coefficients

Jan 82-Oct 10 Mar 97-Oct 10 Jan 82-Feb 97

Growth BE-ME 5 Value Growth BE-ME 5 Value Growth BE-ME 5 Value

Growth 1.000 0.892 0.819 1.000 0.868 0.802 1.000 0.938 0.855
BE-ME 5 1.000 0.890 1.000 0.899 1.000 0.879
Value 1.000 1.000 1.000



50 SYSTEMIC RISK

Table 2

Parameter Estimates for the Returns Processes with Jumps

Panel A of this table reports estimates of the parameter for the jump-diffusion portfolio
returns obtained by minimizing the square of the difference between the theoretical mo-
ment conditions and the moments implied by the data. ηj , for j = 1, 2, 3, refers to the
mean of the jump size for the growth, intermediate, and value portfolios respectively. νj ,
for j = 1, 2, 3, is the volatility of the jump size for the growth, intermediate, and value
portfolios respectively. These estimates are given in percentage terms. Avg gives the aver-
age magnitude of the average and volatility jump sizes across portfolios, λ represents the
frequency of the jumps, and Year (s) is the number of years necessary to observe a jump
according to the jump-diffusion process. Panel B contains the reconstructed moments that
are obtained by substituting the parameter estimates in the theoretical model, and the
sample moments.

Panel A. Parameter Estimates for the Jump Process

Period η1 η2 η3 Avg ν1 ν2 ν3 Avg λ Year (s)

Jan 82-Oct 10 −0.035 −3.479−0.409 −1.307 12.804 8.519 11.117 10.814 0.152 0.55

Mar 97-Oct 10 0.768 −1.218−0.208 −0.243 8.761 5.292 7.091 7.048 0.938 0.09

Jan 82-Feb 97 −7.112−10.088 0.529 −5.559 14.506 10.859 15.891 13.752 0.031 2.72

Panel B. Comparison between Higher Order Sample Moments of Returns and the Jumps
Process Theoretical Higher Order Moments

Jan 82-Oct 10 Mar 97-Oct 10 Jan 82-Feb 97

Growth BE-ME 5 Value Growth BE-ME 5 Value Growth BE-ME 5 Value

Sample Skewness 0.043 −0.768 −0.006 0.250 −0.438 −0.033 −0.560 −1.298 0.190
Model Skewness −0.006 −0.787 −0.091 0.226 −0.438 −0.093 −0.616 −1.390 0.091
Sample Kurtosis 3.508 3.898 4.376 2.478 1.805 2.306 4.071 8.037 8.716
Model Kurtosis 3.498 3.894 4.359 2.512 1.817 2.287 4.066 8.045 8.674
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Table 3

Portfolio Weights

Panel A of this table gives the portfolio weights for an investor who selects investments in three
equity portfolios (growth, intermediate, value) and the riskless asset to maximize expected power
utility of terminal wealth with constant relative risk aversion. The investor optimizes expected
utility ignoring systemic jumps and assumes a pure diffusion process for portfolio returns. γ is
the relative risk aversion coefficient, G, 5, and V indicate the growth, intermediate portfolio, and
value portfolios respectively. Risky is the total weight given to all three equity portfolios. Panel B
reports the optimal weights when the investor recognized systemic jumps, and Panel C contains the
differences between the optimal weights for pure diffusion and the weights for the jump-diffusion
process.

Panel A. Diffusion Weights

γ G 5 V Riskless Risky

1 −9.27 7.39 6.95 −4.07 5.07

2 −4.64 3.69 3.48 −1.54 2.54

3 −3.09 2.46 2.32 −0.69 1.69

4 −2.32 1.85 1.74 −0.27 1.27

5 −1.85 1.48 1.39 −0.01 1.01

6 −1.55 1.23 1.16 0.15 0.85

7 −1.32 1.06 0.99 0.28 0.72

8 −1.16 0.92 0.87 0.37 0.63

9 −1.03 0.82 0.77 0.44 0.56

10 −0.93 0.74 0.70 0.49 0.51

Jan 82-Oct 10

γ G 5 V Riskless Risky

1 −3.96 1.83 4.55 −1.42 2.42

2 −1.98 0.91 2.28 −0.21 1.21

3 −1.32 0.61 1.52 0.19 0.81

4 −0.99 0.46 1.14 0.39 0.61

5 −0.79 0.37 0.91 0.52 0.48

6 −0.66 0.30 0.76 0.60 0.40

7 −0.57 0.26 0.65 0.65 0.35

8 −0.49 0.23 0.57 0.70 0.30

9 −0.44 0.20 0.51 0.73 0.27

10 −0.40 0.18 0.46 0.76 0.24

Mar 97-Oct 10

γ G 5 V Riskless Risky

1−30.03 28.68 14.02 −11.68 12.68

2−15.01 14.34 7.01 −5.34 6.34

3−10.01 9.56 4.67 −3.23 4.23

4 −7.51 7.17 3.51 −2.17 3.17

5 −6.01 5.74 2.80 −1.54 2.54

6 −5.00 4.78 2.34 −1.11 2.11

7 −4.29 4.10 2.00 −0.81 1.81

8 −3.75 3.59 1.75 −0.58 1.58

9 −3.34 3.19 1.56 −0.41 1.41

10 −3.00 2.87 1.40 −0.27 1.27

Jan 82-Feb 97

Panel B. Jump-diffusion (Systemic) Weights

γ G 5 V Riskless Risky

1 −8.88 5.87 7.17 −3.16 4.16

2 −4.49 3.14 3.56 −1.21 2.21

3 −3.01 2.14 2.36 −0.50 1.50

4 −2.26 1.62 1.77 −0.13 1.13

5 −1.81 1.31 1.42 0.09 0.91

6 −1.51 1.09 1.18 0.24 0.76

7 −1.29 0.94 1.01 0.35 0.65

8 −1.13 0.82 0.88 0.43 0.57

9 −1.01 0.73 0.79 0.49 0.51

10 −0.91 0.66 0.71 0.54 0.46

Jan 82-Oct 10

γ G 5 V Riskless Risky

1 −3.93 1.66 4.54 −1.26 2.26

2 −1.97 0.85 2.27 −0.15 1.15

3 −1.31 0.57 1.51 0.23 0.77

4 −0.99 0.43 1.14 0.42 0.58

5 −0.79 0.35 0.91 0.53 0.47

6 −0.66 0.29 0.76 0.61 0.39

7 −0.56 0.25 0.65 0.67 0.33

8 −0.49 0.22 0.57 0.71 0.29

9 −0.44 0.19 0.50 0.74 0.26

10 −0.39 0.17 0.45 0.77 0.23

Mar 97-Oct 10

γ G 5 V Riskless Risky

1−26.70 17.44 18.50 −8.24 9.24

2−13.74 10.09 8.60 −3.94 4.94

3 −9.26 7.06 5.58 −2.38 3.38

4 −6.98 5.43 4.13 −1.57 2.57

5 −5.60 4.41 3.28 −1.08 2.08

6 −4.68 3.71 2.71 −0.74 1.74

7 −4.02 3.20 2.32 −0.50 1.50

8 −3.52 2.81 2.02 −0.32 1.32

9 −3.13 2.51 1.79 −0.17 1.17

10 −2.82 2.27 1.61 −0.06 1.06

Jan 82-Feb 97

Panel C. Diffusion - Jump Weight Differences

γ G 5 V Riskless Risky

1 −0.394 1.518 −0.216 −0.908 0.908

2 −0.143 0.551 −0.078 −0.330 0.330

3 −0.084 0.323 −0.046 −0.193 0.193

4 −0.059 0.226 −0.032 −0.135 0.135

5 −0.045 0.173 −0.024 −0.103 0.103

6 −0.036 0.139 −0.020 −0.083 0.083

7 −0.030 0.117 −0.017 −0.070 0.070

8 −0.026 0.101 −0.014 −0.060 0.060

9 −0.023 0.088 −0.012 −0.053 0.053

10 −0.020 0.078 −0.011 −0.047 0.047

Jan 82-Oct 10

γ G 5 V Riskless Risky

1 −0.021 0.167 0.015 −0.161 0.161

2 −0.008 0.062 0.006 −0.060 0.060

3 −0.005 0.037 0.003 −0.035 0.035

4 −0.003 0.026 0.002 −0.025 0.025

5 −0.002 0.020 0.002 −0.019 0.019

6 −0.002 0.016 0.001 −0.016 0.016

7 −0.002 0.013 0.001 −0.013 0.013

8 −0.001 0.012 0.001 −0.011 0.011

9 −0.001 0.010 0.001 −0.010 0.010

10 −0.001 0.009 0.001 −0.009 0.009

Mar 97-Oct 10

γ G 5 V Riskless Risky

1 −3.327 11.241 −4.478 −3.437 3.437

2 −1.275 4.255 −1.585 −1.394 1.394

3 −0.752 2.497 −0.905 −0.840 0.840

4 −0.526 1.743 −0.622 −0.594 0.594

5 −0.402 1.331 −0.471 −0.458 0.458

6 −0.325 1.074 −0.377 −0.371 0.371

7 −0.272 0.899 −0.315 −0.312 0.312

8 −0.234 0.773 −0.269 −0.269 0.269

9 −0.205 0.677 −0.235 −0.236 0.236

10 −0.183 0.602 −0.209 −0.211 0.211

Jan 82-Feb 97
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Table 4

Composition of the Risky Portfolios

Panel A of this table contains the composition of the risky portfolios for alternative levels
of relative risk aversion, which is obtained by dividing the weight for each portfolio by the
total amount invested in risky portfolios. It assumes the jump-diffusion process. Panel
B contains the same results assuming the pure diffusion process. It should be noted that
the weights do not depend on the level of relative risk aversion when the simple diffusion
process is employed in the estimation.

Panel A. Jump-diffusion (Systemic) Weights

γ Growth BE-ME 5 Value Spread

1 −1.73887 0.73449 2.00438 3.74324

2 −1.71023 0.73976 1.97047 3.68070

3 −1.70098 0.74148 1.95950 3.66048

4 −1.69639 0.74241 1.95398 3.65037

5 −1.69365 0.74290 1.95075 3.64440

6 −1.69186 0.74311 1.94875 3.64061

7 −1.69055 0.74349 1.94706 3.63761

8 −1.68959 0.74359 1.94600 3.63559

9 −1.68886 0.74384 1.94502 3.63387

10 −1.68822 0.74396 1.94427 3.63249

Mar 97-Oct 10

γ Growth BE-ME 5 Value Spread

1 −2.89047 1.88793 2.00254 4.89302

2 −2.77956 2.04046 1.73909 4.51865

3 −2.73519 2.08690 1.64829 4.38348

4 −2.71186 2.10849 1.60337 4.31523

5 −2.69756 2.12084 1.57672 4.27428

6 −2.68791 2.12879 1.55912 4.24703

7 −2.68097 2.13433 1.54664 4.22761

8 −2.67574 2.13840 1.53734 4.21308

9 −2.67166 2.14153 1.53013 4.20179

10 −2.66839 2.14399 1.52439 4.19278

Jan 82-Feb 97

Panel B. Diffusion Weights

Growth BE-ME 5 Value Spread

−1.63194 0.75446 1.87748 3.50942

Mar 97-Oct 10

Growth BE-ME 5 Value Spread

−2.36914 2.26287 1.10627 3.47541

Jan 82-Feb 97
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Table 5

Certainty Equivalent Cost of Ignoring Systemic Jumps

This table reports the certainty equivalent costs (CEQ) of ignoring systemic jumps cal-
culated as the additional wealth per $1, 000 of investment needed to raise the expected
utility of terminal wealth under the suboptimal portfolio strategy to that under the op-
timal investment strategy. The table contains the CEQ for investment horizons of 1 to 5
years, and for levels of relative risk aversion (γ) from 2 to 10.

One Two Three Four Five

γ year years years years years

2 0.40 0.79 1.19 1.59 1.99

3 0.19 0.38 0.58 0.77 0.96

4 0.12 0.24 0.36 0.49 0.61

5 0.09 0.17 0.26 0.35 0.44

6 0.07 0.14 0.20 0.27 0.34

7 0.06 0.11 0.17 0.22 0.28

8 0.05 0.09 0.14 0.19 0.23

9 0.04 0.08 0.12 0.16 0.20

10 0.04 0.07 0.11 0.14 0.18

Jan 82-Oct 10

One Two Three Four Five

γ year years years years years

2 0.01 0.03 0.04 0.06 0.07

3 0.01 0.01 0.02 0.03 0.04

4 0.00 0.01 0.01 0.02 0.02

5 0.00 0.01 0.01 0.01 0.02

6 0.00 0.01 0.01 0.01 0.01

7 0.00 0.00 0.01 0.01 0.01

8 0.00 0.00 0.01 0.01 0.01

9 0.00 0.00 0.00 0.01 0.01

10 0.00 0.00 0.00 0.01 0.01

Mar 97-Oct 10

One Two Three Four Five

γ year years years years years

2 48.40 99.14 152.34 208.12 266.59

3 11.50 23.12 34.88 46.78 58.81

4 6.01 12.06 18.14 24.26 30.42

5 3.94 7.90 11.88 15.87 19.88

6 2.89 5.80 8.71 11.62 14.55

7 2.27 4.54 6.82 9.10 11.39

8 1.86 3.72 5.58 7.45 9.32

9 1.57 3.14 4.71 6.29 7.87

10 1.36 2.71 4.07 5.43 6.80

Jan 82-Feb 97
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Table 6

Jump Diffusion Parameter and Weight Estimates March 1997-October
2010 for the Sample Average Annualized Riskless Rate of 3%

Panel A reports the estimates of the parameters for the jump-diffusion portfolio returns
for an annualized riskless rate of 3%. Panel B contains the reconstructed moments and
the sample moments. Panel C these tables gives the portfolio weights for an investor
who ignoring systemic jumps, the optimal weights when the investor recognized systemic
jumps and the certainty equivalent costs (CEQ) of ignoring systemic jumps calculated
as the additional wealth per $1,000 of investment needed to raise the expected utility
of terminal wealth under the suboptimal portfolio strategy to that under the optimal
investment strategy.

Panel A. Parameter Estimates for the Jump Process

Parameter η1 η2 η3 Avg ν1 ν2 ν3 Avg λ Year (s)

Value 0.707 −1.033−0.211 −0.179 8.161 4.953 6.618 6.577 1.231 0.07

Panel B. Comparison between Higher Order Sample Moments of Returns and the Jumps
Process Theoretical Higher Order Moments

Growth BE-ME 5 Value

Sample Skewness 0.250 −0.438 −0.033
Model Skewness 0.235 −0.429 −0.082
Sample Kurtosis 2.478 1.805 2.306
Model Kurtosis 2.476 1.808 2.301

Panel C. Diffusion Weights, Jump-diffusion Weights and Certainty Equivalent Costs
(CEQ)

γ G 5 V Riskless Risky

1 −4.45 3.22 4.45 −2.22 3.22

2 −2.23 1.61 2.23 −0.61 1.61

3 −1.48 1.07 1.48 −0.07 1.07

4 −1.11 0.80 1.11 0.20 0.80

5 −0.89 0.64 0.89 0.36 0.64

6 −0.74 0.54 0.74 0.46 0.54

7 −0.64 0.46 0.64 0.54 0.46

8 −0.56 0.40 0.56 0.60 0.40

9 −0.49 0.36 0.49 0.64 0.36

10 −0.45 0.32 0.45 0.68 0.32

Diffusion weights

γ G 5 V Riskless Risky

1 −4.42 2.95 4.42 −1.95 2.95

2 −2.22 1.51 2.21 −0.51 1.51

3 −1.48 1.01 1.48 −0.01 1.01

4 −1.11 0.76 1.11 0.24 0.76

5 −0.89 0.61 0.89 0.39 0.61

6 −0.74 0.51 0.74 0.49 0.51

7 −0.63 0.44 0.63 0.56 0.44

8 −0.55 0.38 0.55 0.62 0.38

9 −0.49 0.34 0.49 0.66 0.34

10 −0.44 0.31 0.44 0.69 0.31

Jump Diffusion Weights

One Two Three Four Five

γ year years years years years

2 0.04 0.08 0.12 0.17 0.21

3 0.02 0.04 0.06 0.09 0.11

4 0.01 0.03 0.04 0.06 0.07

5 0.01 0.02 0.03 0.04 0.05

6 0.01 0.02 0.02 0.03 0.04

7 0.01 0.01 0.02 0.03 0.03

8 0.01 0.01 0.02 0.02 0.03

9 0.00 0.01 0.01 0.02 0.02

10 0.00 0.01 0.01 0.02 0.02

Certainty Equivalent Cost
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Table 7

Descriptive Statistics for the MSCI Growth and Value Portfolios across
Geographic Regions

Panel A of this table reports the first four moments of the monthly returns for the growth
and value portfolios constructed by MSCI across three geographic world regions, Europe,
North America, and the Pacific. The data for the full period goes from January 1982
to September 2010, while the sub-periods contain data from January 1982 to February
1997 and from March 1998 to September 2010. Panel B of the table gives the correlation
coefficients among the monthly returns for the value and growth portfolios across the three
geographic regions.

Panel A. Moments of the Monthly Returns

Value Growth

Europe North
America

Pacific Europe North
America

Pacific

Jan 82 - Sep 10
Mean % 0.719 0.572 0.627 0.660 0.712 0.312
Volatility % 5.430 4.513 5.849 5.042 5.034 6.715
Skewness −0.918 −1.004 −0.002 −0.817 −0.908 −0.139
Kurtosis 2.805 3.570 0.593 2.274 2.921 0.830

Mar 97 - Sep 10
Mean % 0.299 0.204 0.156 0.217 0.320 −0.088
Volatility % 6.204 4.983 5.406 5.418 5.559 6.032
Skewness −0.882 −0.886 −0.039 −0.766 −0.782 −0.629
Kurtosis 2.288 1.805 1.003 1.569 1.006 0.449

Jan 82 - Feb 97
Mean % 1.082 0.926 1.076 1.044 1.099 0.691
Volatility % 4.632 4.031 6.206 4.673 4.487 7.281
Skewness −0.740 −1.084 −0.041 −0.802 −1.010 0.056
Kurtosis 2.373 6.605 0.341 3.158 6.416 0.766

Panel B. Correlation Coefficients

Value Growth

Europe North
America

Pacific Europe North
America

Pacific

Jan 82 - Sep 10
Europe 1.000 0.754 0.608 1.000 0.716 0.581
North America 1.000 0.455 1.000 0.472
Pacific 1.000 1.000

Mar 97 - Sep 10
Europe 1.000 0.858 0.655 1.000 0.814 0.725
North America 1.000 0.631 1.000 0.728
Pacific 1.000 1.000

Jan 82 - Feb 97
Europe 1.000 0.605 0.586 1.000 0.595 0.470
North America 1.000 0.291 1.000 0.249
Pacific 1.000 1.000
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Table 8

Parameter Estimates for the Returns Processes with Jumps

Panel A of this table reports estimates of the parameter for the jump-diffusion portfo-
lio returns obtained by minimizing the square of the difference between the theoretical
moment conditions and the moments implied by the data. For the value and growth
portfolios separately, ηj , for j = 1, 2, 3, refers to the mean of the jump size for Europe,
North America, and the Pacific respectively. νj , for j = 1, 2, 3, is the volatility of the
jump size for Europe, North America, and the Pacific respectively. These estimates are
given in percentage terms. Avg gives the average magnitude of the average and volatility
jump sizes across the three regions, λ represents the frequency of the jumps, and Year
(s) is the number of years necessary to observe a jump according to the jump-diffusion
process. Panel B contains the reconstructed moments that are obtained by substituting
the parameter estimates in the theoretical model, and the sample moments.

Panel A. Parameter Estimates for the Jump Process

Series Period η1 η2 η3 Avg ν1 ν2 ν3 Avg λ Year (s)

Value
Jan 82 - Sep 10 −5.487 −4.269−1.244 −3.667 6.746 6.281 6.097 6.375 0.159 0.52
Mar 97 - Sep 10 −3.810 −3.417−0.661 −2.629 5.984 4.243 4.946 5.058 0.470 0.18
Jan 82 - Feb 97 −9.280 −5.130−2.436 −5.615 4.936 9.139 7.204 7.093 0.050 1.66

Growth
Jan 82 - Sep 10 −5.138 −4.353−1.204 −3.565 5.445 6.448 7.344 6.412 0.183 0.46
Mar 97 - Sep 10 −4.680 −6.250−5.658 −5.529 3.699 1.298 1.852 2.283 0.483 0.17
Jan 82 - Feb 97 −6.803 −4.659 2.983 −2.826 7.181 9.912 9.900 8.997 0.062 1.35

Panel B. Comparison between Higher Order Sample Moments of Returns and the Jumps
Process Theoretical Higher Order Moments

Value Growth

Europe North
America

Pacific Europe North
America

Pacific

Jan 82 - Sep 10
Mean % −0.918 −1.004 −0.002 −0.817 −0.908 −0.139
Volatility % −0.908 −1.008 −0.112 −0.845 −0.896 −0.119
Skewness 2.805 3.570 0.593 2.274 2.921 0.830
Kurtosis 2.804 3.568 0.610 2.271 2.924 0.827

Mar 97 - Sep 10
Mean % −0.882 −0.886 −0.039 −0.766 −0.782 −0.629
Volatility % −0.915 −0.853 −0.145 −0.895 −0.776 −0.527
Skewness 2.288 1.805 1.003 1.569 1.006 0.449
Kurtosis 2.277 1.807 1.023 1.593 0.976 0.628

Jan 82 - Feb 97
Mean % −0.740 −1.084 −0.041 −0.802 −1.010 0.056
Volatility % −0.745 −1.087 −0.083 −0.825 −1.006 0.144
Skewness 2.373 6.605 0.341 3.158 6.416 0.766
Kurtosis 2.372 6.606 0.337 3.157 6.419 0.748
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Table 9

Portfolio Weights

Panel A of this table gives the portfolio weights from March 1997 to September 2010 for an investor
who selects investments in equity portfolios (either value or growth) across three geographic regions
and the riskless asset to maximize expected power utility of terminal wealth with constant relative
risk aversion. The exercise is performed separately for the value and growth portfolios. The
investor optimizes expected utility ignoring systemic jumps and assumes a pure diffusion process
for portfolio returns. γ is the relative risk aversion coefficient. Risky is the total weight given to all
three equity portfolios. Panel B reports the optimal weights when the investor recognized systemic
jumps, and Panel C contains the differences between the optimal weights for pure diffusion and
the weights for the jump-diffusion process.

Panel A. Diffusion Weights

γ Europe North
America

Pacific Riskless Risky

1 1.56 −2.08 −1.14 2.66 −1.66
2 0.78 −1.04 −0.57 1.83 −0.83
3 0.52 −0.69 −0.38 1.55 −0.55
4 0.39 −0.52 −0.29 1.41 −0.41
5 0.31 −0.42 −0.23 1.33 −0.33
6 0.26 −0.35 −0.19 1.28 −0.28
7 0.22 −0.30 −0.16 1.24 −0.24
8 0.19 −0.26 −0.14 1.21 −0.21
9 0.17 −0.23 −0.13 1.18 −0.18
10 0.16 −0.21 −0.11 1.17 −0.17

Value

γ Europe North
America

Pacific Riskless Risky

1 −0.31 1.66 −2.53 2.18 −1.18
2 −0.15 0.83 −1.26 1.59 −0.59
3 −0.10 0.55 −0.84 1.39 −0.39
4 −0.08 0.41 −0.63 1.29 −0.29
5 −0.06 0.33 −0.51 1.24 −0.24
6 −0.05 0.28 −0.42 1.20 −0.20
7 −0.04 0.24 −0.36 1.17 −0.17
8 −0.04 0.21 −0.32 1.15 −0.15
9 −0.03 0.18 −0.28 1.13 −0.13
10 −0.03 0.17 −0.25 1.12 −0.12

Growth

Panel B. Jump-diffusion (Systemic) Weights

γ Europe North
America

Pacific Riskless Risky

1 1.54 −2.10 −1.14 2.69 −1.69
2 0.77 −1.05 −0.57 1.84 −0.84
3 0.52 −0.70 −0.38 1.56 −0.56
4 0.39 −0.52 −0.28 1.42 −0.42
5 0.31 −0.42 −0.23 1.34 −0.34
6 0.26 −0.35 −0.19 1.28 −0.28
7 0.22 −0.30 −0.16 1.24 −0.24
8 0.19 −0.26 −0.14 1.21 −0.21
9 0.17 −0.23 −0.13 1.19 −0.19
10 0.16 −0.21 −0.11 1.17 −0.17

Value

γ Europe North
America

Pacific Riskless Risky

1 −0.35 1.65 −2.53 2.24 −1.24
2 −0.17 0.83 −1.27 1.61 −0.61
3 −0.11 0.55 −0.84 1.41 −0.41
4 −0.08 0.41 −0.63 1.30 −0.30
5 −0.07 0.33 −0.51 1.24 −0.24
6 −0.06 0.28 −0.42 1.20 −0.20
7 −0.05 0.24 −0.36 1.17 −0.17
8 −0.04 0.21 −0.32 1.15 −0.15
9 −0.04 0.18 −0.28 1.13 −0.13
10 −0.03 0.17 −0.25 1.12 −0.12

Growth

Panel C. Diffusion Jump Weight Differences

γ Europe North
America

Pacific Riskless Risky

1 0.018 0.021 −0.007 −0.032 0.032
2 0.007 0.008 −0.003 −0.012 0.012
3 0.004 0.005 −0.002 −0.007 0.007
4 0.003 0.003 −0.001 −0.005 0.005
5 0.002 0.002 −0.001 −0.004 0.004
6 0.002 0.002 −0.001 −0.003 0.003
7 0.001 0.002 −0.001 −0.003 0.003
8 0.001 0.001 −0.000 −0.002 0.002
9 0.001 0.001 −0.000 −0.002 0.002
10 0.001 0.001 −0.000 −0.002 0.002

Value

γ Europe North
America

Pacific Riskless Risky

1 0.043 0.010 0.007 −0.061 0.061
2 0.016 0.004 0.003 −0.023 0.023
3 0.010 0.002 0.002 −0.014 0.014
4 0.007 0.002 0.001 −0.010 0.010
5 0.005 0.001 0.001 −0.007 0.007
6 0.004 0.001 0.001 −0.006 0.006
7 0.004 0.001 0.001 −0.005 0.005
8 0.003 0.001 0.000 −0.004 0.004
9 0.003 0.001 0.000 −0.004 0.004
10 0.002 0.001 0.000 −0.003 0.003

Growth
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Table 10

Certainty Equivalent Cost of Ignoring Systemic Jumps

This table reports the certainty equivalent costs (CEQ) of ignoring systemic jumps cal-
culated as the additional wealth per $1,000 of investment needed to raise the expected
utility of terminal wealth under the suboptimal portfolio strategy to that under the op-
timal investment strategy. The table contains the CEQ for investment horizons of 1 to
5 years, and for levels of relative risk aversion (γ) from 2 to 10. The sample period goes
from March 1997 to September 2010.

One Two Three Four Five

γ year years years years years

2 0.000 0.001 0.001 0.002 0.002

3 0.000 0.000 0.001 0.001 0.001

4 0.000 0.000 0.000 0.001 0.001

5 0.000 0.000 0.000 0.000 0.001

6 0.000 0.000 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000 0.000

8 0.000 0.000 0.000 0.000 0.000

9 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000

Value

One Two Three Four Five

γ year years years years years

2 0.001 0.003 0.004 0.005 0.007

3 0.001 0.001 0.002 0.003 0.004

4 0.000 0.001 0.001 0.002 0.002

5 0.000 0.001 0.001 0.001 0.002

6 0.000 0.001 0.001 0.001 0.001

7 0.000 0.000 0.001 0.001 0.001

8 0.000 0.000 0.001 0.001 0.001

9 0.000 0.000 0.000 0.001 0.001

10 0.000 0.000 0.000 0.001 0.001

Growth



SYSTEMIC RISK 59

Figure 1

Density Functions and QQ Plots

This figure shows the density functions of the Fama-French growth, intermediate,
and value portfolios and the QQ plots to assess the appropriateness of non-normal
distributions.

Panel A. March 1997-October 2010

Panel B. January 1982-February 1997
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Figure 2

Portfolio Weights and Relative Risk Aversion

This figure shows the portfolio weights for the growth, intermediate and value Fama-
French portfolios for alternative levels of relative risk aversion. Panel A contains the
weights for the pure-diffusion process, while Panel B gives the weights for the jump-
diffusion process. The first figure of each panel corresponds to the last sample period
from March 1997 to October 2010, and the second figure of each panel corresponds
to the first sample period from January 1982 to February 1997.

Panel A. Pure-diffusion Process

Panel B. Jump-diffusion Process
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Figure 3

Certainty Equivalent Cost of Ignoring Systemic Jumps

This figure shows the certainty equivalent costs (CEQ) of ignoring systemic jumps
calculated as the additional wealth per $1, 000 of investment needed to raised the
expected utility of terminal wealth under the suboptimal portfolio strategy to that
under the optimal investment strategy. The figure contains the CEQ for investment
horizons of 1 to 5 years, and for levels of relative risk aversion (γ) from 2 to 10.
The first figure corresponds to the last sample period from March 1997 to October
2010, and the second figure of each panel corresponds to the first sample period
from January 1982 to February 1997.





A MARTINGALE APPROACH FOR PORTFOLIO ALLOCATION
WITH STOCHASTIC VOLATILITY AND JUMPS

Abstract. A market model composed of a risky asset and a riskless bond is

considered. The risky security satisfies a stochastic differential equation which in-

cludes a jump component with lognormal amplitude change. Volatility is assumed

stochastic and following a mean reverting process. The investor objective is to

maximize the expected utility on terminal wealth, to this end, the optimal allo-

cation rule is derived through the use of martingale and duality techniques. The

weights on assets are found along with the expressions for market price of risk,

market price of volatility risk and the market price for jump risk. The results are

applied to market data, therefore, the conditional characteristic function associ-

ated with the market model is calculated and the first four cumulants are derived.

Then, the exact expressions for the mean, standard deviation, skewness and ex-

cess kurtosis are obtained. Finally, the model parameters are estimated by means

of a distance minimization using a discretization of the empirical characteristic

function.

1. Introduction

One of the main concerns of investors, and a current topic of research in math-

ematical finance, is how to decide where to allocate their funds among the many

available choices in the market. When facing such a decision, an investor should

take into account all the relevant sources of risk. The studies on market return

data have shown that the probability distribution of the returns changes over time,

and in particular the volatility reveals itself to be stochastic. Besides modeling the

price as a diffusion process, it is also desirable to include the impact of sudden, and

sometimes, high shocks to price levels that have been observed in the market.

The importance of jump events and stochastic volatility in modeling the return

series has been studied by Bates (1996). Authors such as Andersen, Benzoni, and

JEL classification: C13, C14, G10, G11, G12
Key words: Asset Allocation, Market Price of Risk, Incomplete Markets, Duality Methods, Sto-
chastic Volatility, Jump Diffusion, Empirical Characteristic Function.
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Lund (2002) have reported the statistical importance of these factors in the context

of the U.S. market returns. González, Novales, and Rubio (2011) show the relevance

of jumps in European returns, characterizing the French, German and Spanish equity

indexes. Estimation and comparison of different specifications has given similar

results, see for example Bakshi, Cao, and Chen (1997), Chacko and Viceira (2003),

Chernov, Gallant, Ghysels, and Tauchen (2003), and Eraker, Johannes, and Polson

(2003). All these models aim to explain a number of statistical facts observed in

the return series such as, among others, high negative skewness and high kurtosis

(leptokurtic behavior). These factors are of importance given their influence on the

investor’s decisions at the moment of buying risky assets, so much so that portfolios

including these two features are less loaded with risky securities.

The aforementioned stylized facts have had an important influence on the litera-

ture on portfolio allocation. In this sense, Das and Uppal (2004) consider a model for

a market with a riskless security and multiple risky assets including systemic jumps.

Chacko and Viceira (2005) solve the optimal consumption problem by assuming sto-

chastic volatility but, for mathematical convenience, they specify a mean reverting

precision process1. This leads to an optimal portfolio rule depending linearly on

the precision. In this line, Liu, Longstaff, and Pan (2003) address the problem of

optimal allocation in the presence of stochastic volatility and in that of event risk

in stock prices and volatility. They assume that the risk premium is proportional to

the instantaneous volatility, thus the portfolio weight does not depend on volatility.

In this paper we solve the optimal allocation problem for an investor who takes

into account the occurrence of unexpected and potentially high events and whose

investment set changes due to stochastic volatility. We propose a market model made

up of two securities: a riskless asset and a risky asset. The riskless asset, which can

be regarded as a bank account or a riskless bond, grows at a constant interest rate.

The risky asset satisfies a stochastic differential equation bearing a diffusion term,

a Brownian motion, and a jump term, a Poisson process. On the occurrence of

1The precision is the inverse of volatility.
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an unexpected event, the asset price changes by a lognormally distributed amount.

The stochastic volatility follows a mean reverting square root process, where the

diffusion innovations are correlated with asset innovations, i.e., changes in volatility

are correlated with changes in asset returns. The goal of the investor is to maximize

the expected utility of terminal wealth, and as a result, the optimal allocation rule

is obtained along with explicit expressions for market price of risk, market price

of volatility risk and market price of jump risk. Moreover, the terminal wealth is

found.

The studies mentioned above use a dynamic programming approach in solving

the allocation problem. By contrast, and in order to deal with the market incom-

pleteness caused by the discontinuities in asset returns and stochastic volatility, we

approach the problem using martingale and duality techniques. These methods have

long been used to resolve portfolio optimization problems. Jeanblanc and Pontier

(1990) consider the consumption - investment problem for prices evolving stochasti-

cally and with jump components. They solve the portfolio problem for three assets

and establish a Black - Scholes formula for option pricing. Karatzas, Lehoczky,

Shreve, and Xu (1991) solve the problem of maximizing expected utility on terminal

wealth in incomplete markets by introducing fictitious stocks to complete them. He

and Pearson (1991) study the consumption - terminal wealth portfolio problem for

several stocks in an incomplete market and also add a set of state variables on which

the security prices depend. Bardhan and Chao (1996) address the market incom-

pleteness that arises when introducing jumps in the securities. They construct a

financial policy for consumption plans and apply it to give bounds to the fair price

of contingent claims. Bellamy (2001) considers a small investor in an incomplete

market with jumps who maximizes the expected utility on terminal wealth. More

recently Callegaro and Vargiolu (2009) analyze a pure jump incomplete market, and

Buraschi, Porchia, and Trojani (2010) develop a multivariate portfolio problem in

an incomplete market with stochastic volatility.
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As an application of the mathematical relations found, we calculate the weights of

a portfolio composed by a risky asset and a riskless bond. Three indexes are used as

risky securities, the Standard and Poor’s Composite Index (S&P500 hereafter), the

lowest Book to Market (Growth stocks) portfolio and the largest Book to Market

(Value stocks) portfolio series constructed by Fama and French (French (2012)).

Additionally, the allocation for a pure diffusion model is calculated for comparison

purposes. According to the results, an investor who recognizes the occurrence of

unexpected large events and, moreover, regards volatility as stochastic, will invests

less in the risky asset. For the particular set of chosen series we find that the

allocation in Value series is higher than in the other two series. In addition, the

weights for this portfolio are less sensitive to interest rate shifts. On the other hand,

the allocation in the S&P500 index is the lowest and exhibits the highest sensitivity.

Estimation of the model parameters is an important point to deal with in itself.

The common procedure used for model estimation is the method of maximum like-

lihood, given that it is consistent, that the estimates of the distribution parameters

are asymptotic normal, and it is efficient asymptotically. However, it has no optimal

properties for finite samples (see Pfanzagl and Hambker (1994)), its implementation

can be troublesome because it is sensitive to initial conditions, and for some spe-

cific problems the probability density function is not available or is very complex to

estimate. Moreover, the estimator can be unbounded.

An alternative to this procedure derives from the use of the characteristic function

(CF hereafter), which is basically the Fourier transform of the density function. The

CF has properties that make it appealing for parameter estimation as it is always

bounded and can be found for real valued random variables even though there is no

density function. Additionally, the mathematical expressions are often simpler than

those of the associated density functions. This technique has been the subject of

research by several authors. Paulson, Holcomb, and Leitch (1975) investigate how to

estimate the density parameters for stable laws, while Heathcote (1977) generalizes

the results obtained previously by Paulson et al., Feuerverger and Mureika (1977),
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Feuerverger and McDunnough (1981), and Feuerverger (1990) investigate and ex-

tend the properties of the empirical characteristic function (ECF) so as to solve

problems in statistical inference. Later on, Singleton (2001) uses the conditional

characteristic function (CCF) to construct an asymptotically efficient estimator and

devise a procedure to make it feasible to implement. Chacko and Viceira (2003)

propose using a discretization of the ECF in the generalized method of moments

(GMM) to estimate the model parameters. They use the unconditional character-

istic function (UCF) to calibrate processes with latent variables, thus avoiding bias

estimation but losing efficiency. Carrasco and Florens (2002) propose a continuum

of moment conditions of the ECF as a way to construct an asymptotically efficient

estimator.

The approach in this paper is to minimize a distance measure between the theo-

retical characteristic function and the ECF. In order to achieve it, a discrete set of

points is selected, say N , leading to the moment conditions, and the distance in the

space RN is minimized. By contrast to the works of Singleton (2001) and Chacko

and Viceira (2003), we impose the restriction that the first four sampling moments

must match the theoretical moments. Further improvements in the optimum are

looked for by using Garch estimates of the long run variance.

The paper proceeds as follows. Section 2 establishes the set up for the market

model and renders the wealth dynamics. In Section 3 we determine the set of

equivalent martingale measures and restate the budget restriction. In Section 4 the

problem of maximization the expected utility on terminal wealth is posed along with

the dual problem, also the optimal martingale measure and portfolio allocation are

characterized. The solution to the portfolio problem is presented in Section 5, along

with explicit expressions for the market price of risk, market price of volatility risk

and market price of jump risk. The model parameters estimation is performed in

Section 6. To this end, the one step GMM is used with the characteristic function

associated to the market model. In Section 7 the numerical results are presented,

and finally the conclusions are drawn in Section 8.
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2. Market Model

The market model is made up of a risky asset, denoted by S = St, and a riskless

asset B = Bt. The securities are traded in the market with a time horizon T . The

riskless asset may be regarded as a money market account or a riskless bond that

have a positive constant rate of return r. Its dynamics is given by

(2.1) dB = rBdt, B(0) = 1

On the other hand, the risky security is a semimartingale in a complete filtered space

(Ω,F , (Ft)0≤t≤T ,P) with dynamics

dS = S−(µdt+
√
V dW1 + φdN)

where µ is a bounded Ft−predictable process, the drift, W1 is a Ft−Brownian

motion, and V is a stochastic volatility process. The jump arrivals are modelled

through the Ft−Poisson process N = Nt with intensity λt. The asset’s percentage

change, φ(J) = eJ − 1, depends on the IID normally distributed random variable

J , whose cumulative distribution function ψ(z) has mean µJ and variance ν2. J

is assumed to be independent of the Poisson process and the Brownian motion. In

particular λt has the form λt(dz) = λψ(dz) where λ, the intensity, is a positive

constant and ψ(dz) is a probability measure. Note that

φ(J)dNt =
∫

R
φ(z)N(dt, dz)

If we denote by M = Mt the compensated Ft−martingale, associated with Nt, i.e.,

M(dt, dz) = N(dt, dz)− λψ(dz), we have (see Øksendal and Sulem (2005))

∫

R
φ(t, z)M(dt, dz) =

∫

R
φ(t, z)(N(dt, dz)− λψ(dz)dt)

= φ(J)dNt − λdt
∫

R
φ(t, z)ψ(dz) = φdNt − φ̄λdt

The right-hand side integral in the last equation can be recognised as the expected

value taken w.r.t. the random variable J , and is denoted as φ̄ = Ez[φ(t, z)]. Hence
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the risky asset dynamics becomes

(2.2) dS = S−

Å
(µ+ φ̄λ)dt+

√
V dW1 +

∫

R
φ(t, z)M(dt, dz)

ã

For the stochastic volatility we follow Heston (1993) root square mean reverting

volatility model

(2.3) dV = κ(ϑ− V )dt+ σ
√
V (ρdW1 + ρ̄dW2)

where κ is the constant mean reversion recovery rate, ϑ is the constant long run

volatility, σ is the constant variation coefficient of the volatility, andW2 is a Ft−Brownian

motion independent from W1. In this context the R−Brownian motions W1 and

ρW1 + ρ̄W2, where ρ̄ =
√

1− ρ2, are correlated and its coefficient of correlation is ρ.

The probability space is supposed to satisfy the condition of saturatedness. The

filtration is right continuous and generated by the R2−Brownian motion W =

(W1,W2)′ and the Ft−Poisson process, that is Ft = FWt ∨ FNt . The Brownian

motion and the compensated process are independent (see Revuz and Yor (1991)).

Let the Ft−predictable, and S−integrable process π = πt be the number of units

of the risky asset, and $ = $t the number of units of the riskless asset held by

the investor. These variables form a pair Π = (π,$) called the portfolio. In a self-

financing strategy the portfolio changes are not due to funds’ inflows or outflows,

instead, they are the result of gains or losses realized in the market. Formally we

express this as a pair (X0,Π) such that the wealth process X = Xt evolves as

dXt = πtdSt +$tdBt. Following the standard convention we denote as (Π · S)t the

stochastic integration

(Π · S)t
.
=
∫ t

0
ΠudSu

where St = (St, Bt). This relation allows us to write wealth dynamics in terms of

the asset price dynamics as Xt = X0 + (Π · S)t. In what follows we consider only

admissible strategies, meaning that for X0 ≥ 0 we have Xt ≥ 0 P−a.s., for t ∈ [0, T ].
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Instead of using the variables π and $ to formulate the portfolio problem, we

introduce the portfolio weight α = αt. It is the proportion of wealth invested in the

risky asset, thus, πtSt = αtXt and $tBt = (1−αt)Xt. As a result, the self-financing

condition becomes

(2.4) dX = [α(µ− r + φ̄λ) + r]Xdt+ α
√
V XdW1 + αX

∫

R
φ(t, z)M(dt, dz)

which is referred to as the budget constraint. Starting with the bond process (2.1),

the discount process is found to be dβ = −rβdt. Applying Ito’s lemma to X̄t = βtXt

we arrive at the discounted wealth process

(2.5) dX̄ = α(µ− r + φ̄λ)X̄dt+ α
√
V X̄dW1 + αX̄

∫

R
φ(t, z)M(dt, dz)

Applying Ito’s lemma again to S̄t = βtSt we get

(2.6) dS̄ = (µ− r + φ̄λ)S̄dt+
√
V S̄dW1 + S̄

∫

R
φ(t, z)M(dt, dz)

which is the discounted asset price process.

3. Equivalent Martingale Measures

A probability measure Q equivalent to P is an equivalent martingale measure

(EMM hereafter) if the discounted asset process S̄ is a martingale under this mea-

sure. In what follows, we consider probability measures Q such that the Radon -

Nikodym derivative, ξt(θ, ϕ) = d(Qθ,ϕ
∣∣∣
Ft

)/ d(P|Ft), is given by2

(3.1) ξt(θ, ϕ)
.
= exp

®∫ t

0

Ç∫
R
λ(ln(ϕ(s, z)) + 1− ϕ(s, z))ψ(dz)− |θ|

2

2

å
ds

−
∫ t

0
θ′dWs +

∫ t

0

∫

R
ln(ϕ(s, z))M(ds, dz)

´

where θ = (θ1, θ2)′. Here θ1, θ2, and ϕ are Ft−predictable processes that account for

the market price of risk. The first is related to the asset’s Brownian component, the

second to the stochastic volatility’s Brownian motion and the third to the asset’s

2We assume that E[ξT ] = 1, thus, ξT is a probability measure.
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jump component. In order to preclude arbitrage opportunities it is necessary to

impose an L-integrability condition to θ. The process followed by the risk neutral

density ξ = ξt can be obtained applying Ito’s lemma,

(3.2) dξ = −ξ
Å
θ′dW +

∫

R
(1− ϕ)M(dt, dz)

ã

The market price of risk processes θ and ϕ are chosen such that the process ξS̄ is a

P− martingale, implying the following relationship

(3.3) µ− r − θ1

√
V + λ

∫

R
φ(t, z)ϕ(t, z)ψ(dz) = 0

Let WQ = WQ
t be WQ = (WQ

1 ,W
Q
2 )′, and let us define

(3.4a) WQ .
= W +

∫ t

0
θsds

(3.4b)
∫ t

0

∫

R
MQ(ds, dz)

.
=
∫ t

0

∫

R
N(ds, dz)− λ

∫ t

0

∫

R
ϕ(z)ψ(dz)ds

these processes are a Qθ,ϕ− Brownian motion and a Qθ,ϕ− martingale process re-

spectively. By using them, the discounted wealth process, equation (2.5), can be

written as

X̄t = X0 +
∫ t

0
αs
»
VsX̄sdW

Q
1 (s) +

∫ t

0

∫

R
αsφ(s, z)X̄sM

Q(ds, dz)(3.5)

Since the right hand side is a Qθ,ϕ−local martingale, and given that for admissible

strategies the wealth is nonnegative, then, the discounted wealth is a Qθ,ϕ−supermartingale.

This implies

(3.6) EQθ,ϕ

[X̄T ] ≤ X0

this is referred to as the static budget constraint. Furthermore, if we apply Ito’s

lemma to the process ξtX t we arrive at

(3.7) dξX = (α
√
V − θ1)ξXdW1 − θ2ξXdW2 +

∫

R
((1 + αφ)ϕ− 1)ξ X M(dt, dz)
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The drift disappears because the Radon-Nikodym ξ has been chosen such that the

asset price is a martingale, and this fact is reflected in P.

4. Utility Maximization

The posed problem starts with an agent endowed with a capital X0. At time

t he invests his wealth, allocating αt percent in the risky asset and 1 − αt in the

riskless bond, and wishes to find out the optimal strategy to reach the maximum

expected utility over terminal wealth. To be precise, if we denote S as the set of

S−integrable, admissible strategies Π, we are interested in a portfolio strategy Π

such that the function F (X0) is maximized

(4.1) F (X0)
.
= sup

Π∈S
E[u(X0 + (Π · S)T )]

Let X be the space of P− a.s. finite non-negative FT−measurable random variables

XT such that XT ≤ X0 + (Π · S)t for an admissible strategy Πt. Then from the

super-replicability principle (see Karoui and Quenez (1995)) the problem (4.1) can

be restated as to find

(4.2) F (X0) = sup
XT∈X

E[u(XT )]

subject to the static budget constraint (3.6), where Q is a probability measure

absolutely continuous w.r.t. P. Once the optimal wealth X̂T is obtained, the optimal

portfolio strategy π̂ can be determined.

4.1. Utility Function. The investor is assumed to have a power utility function

u(x) =
x1−γ

1− γ γ > 0, γ 6= 1, x > 0(4.3)

This function maps to the reals, u : R → R, and complies with the standard

assumptions of being continuous, increasing, differentiable, strictly concave, and

that the marginal utility tends to zero as the wealth tends to infinity

lim
x→∞u

′(x) = 0
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The power utility function belongs to HARA’s (hyperbolic absolute risk aversion)

category. Its risk tolerance is an affine function of the wealth, and it satisfies the

Inada condition, i.e.

(4.4) u′(0) = lim
x→0+

u′(x) =∞

It also exhibits the iso-elasticity property

(4.5) u(kx) = f(k)u(x) + g(k) k > 0

which implies that the optimal allocation weights are the same regardless the level of

wealth. If in addition to the above-mentioned conditions, a utility function satisfies

the following property

AE+∞(u)
.
= lim sup

x→∞

xu′(x)

u(x)
< 1

it is said to have the reasonable asymptotic elasticity property. For the power utility

function we have u′(x) = x−γ, hence the asymptotic elasticity is AE+∞(u) = 1−γ <
1. This property is crucial to be able to find the optimizers for wealth and portfolio

weights3.

4.2. Primal and dual problem. The primal problem consists in finding the opti-

mal terminal wealth X̂T , in (4.2), that maximizes the expected utility for an initial

wealth X0, subject to the static budget constraint (3.6). To achieve this goal the

following lagrangian functional is considered

(4.6) L(XT , η,Q) = E[u(XT )]− η(EQ[X̄T ]−X0)

3See Schachermayer (2003).
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where η > 0 is the lagrangian multiplier. Let us define

Ψ(η,Q) = sup
XT∈X

{L(XT , η,Q)}

= sup
XT∈X

{E[u(XT )]− η(EQ[X̄T ]−X0)}

= sup
XT∈X

®
E

ñ
u(XT )− ηdQ

dP
X̄T

ô´
+ ηX0

(4.7)

The last expression can be recognized as the convex conjugate (Legendre - Fenchel

transform) ũ(x) of the utility function u(x). Recall that ũ(x) is defined as

(4.8) ũ(p) = sup
x
{u(x)− px}, p > 0

The supremum is reached when u′(x̂) = p, that is x̂ = I(p), where I(p) is the inverse

of the utility function derivative I(p)
.
= (u′)−1(p), thus ũ(p) = u(I(p))−pI(p). From

the definition of the convex conjugate, we arrive at the inequality u(x) ≤ ũ(p) + px,

that intuitively suggests us that we should get back to the original function u(x)

minimizing the right hand side with respect to variable p. In fact, if we define the

inverse Legendre - Fenchel transform as

(4.9) ˜̃u(x) = inf
p
{ũ(p) + px}

then u = ˜̃u for a closed proper convex function u. Returning to the lagrangian

functional, equation (4.7), and employing the convex conjugate we get

(4.10) Ψ(η,Q) = E

ñ
ũ

Ç
ηβT

dQ

dP

åô
+ ηX0

This expression allows us to define the dual problem as the minimization of the func-

tional Ψ(η,Q), where the EMM Q runs through the set Q of martingale probability

measures Q absolutely continuous w.r.t P. The relation with the primal problem is

clarified defining the dual value function4 G(η)

(4.11) G(η)
.
= inf

ξT∈D

®
E

ñ
ũ

Ç
ηβT

dQ

dP

åô´

4In what remains of the section we present the optimal solution for the primal and dual problems.
For proofs, refer to Kramkov and Schachermayer (1999).
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where the space Q has been enlarged by defining D as the space of P− a.s. finite

non-negative FT−measurable random variables ξT such that

ξT ≤ lim
n→∞

dQn

dP

where the limit is in the sense of almost sure convergence. That has been made in

order to assure that we can reach the saddle point of the Lagrangian. The minimum

Radon - Nikodym derivative ξT (and hence the EMM Q̂) exists and is unique. Hence,

the dual problem can be restated as

(4.12) inf
η>0,ξT∈D

{Ψ(η,Q)} = inf
η>0
{G(η) + ηX0}

which is the inverse Legendre - Fenchel transform of G(η). The functions F (X0)

and G are conjugated and hence G′(η̂) = −X0, or η̂ = F ′(X0). On the other hand,

the lagrangian (4.6), as a concave function of XT , has a unique maximum given by

(4.13) X̂T = I

Ñ
η̂βT

dQ̂

dP

∣∣∣∣∣∣
FT

é

At the optimum F (X0) = G(η̂) + η̂X0, and therefore the function F (X0) equals

L(X̂T , η̂, Q̂). The point (X̂T , η̂) is a saddle point, and the constraint (3.6) is trans-

formed into an equality.

Summing up, for the market model defined in Section 2, and power utility func-

tion, Section 4.1, the primal problem solution and the dual problem solution are

given. The resulting solutions are equivalent i.e., strong duality holds.

4.3. Optimal Q. First we fix η > 0 in the dual problem (4.12), and therefore we

minimize over the set of EMM. Recall that a specific functional form for the EMM

equation (3.1), that depends on variables {θ, ϕ}, was chosen. Hence the optimization

is carried out over this parameter space rather than over a function space. In what

follows we change the notation accordingly. Note that the underlying dynamics for

the EMM are the stochastic differential equation (3.2) and the stochastic volatility

process (2.3).
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If we regard (ξ̄, V ) as a controlled jump diffusion, and (θ, ϕ) as the control process,

belonging to U , the set of admissible controls, then the dual problem can be restated

as a stochastic control problem to find the dual value function Φ(ξ̄, V, t) and an

optimal control (θ̂, ϕ̂) ∈ U such that

(4.14) F (ξ̄, V, t) = inf
(θ,ϕ)∈U

J (θ,ϕ)(ξ̄, V, t) = inf
(θ,ϕ)∈U

E
[

G
Ä
ξ̄T
ä∣∣∣Ft

]

Here J = J (θ,ϕ)(ξ̄, V, t) is the performance criterion and G is the terminal cost

function. In this setting the value function is found by means of the Hamilton-

Jacobi-Bellman (HJB) for optimal control of jump diffusions (see Øksendal and

Sulem (2005)). The solution, function Φ(ξ̄, V, t), satisfies the following relation

(4.15) inf
(θ,ϕ)∈U

¶
AΦ(ξ̄, V )

©
=
∂Φ(τ)

∂τ

where τ = T − t, also

(4.16) lim
t→T−

Φ(ξ̄t, Vt, t) = G(ξ̄T , VT , T )

If (θ̂(ξ̄t−, Vt−), ϕ̂(ξ̄t−, Vt−)) is the optimal control hence Φ(ξ̄t, Vt, t) = F (ξ̄, V, t). The

generator A associated to the stochastic processes ξ̄, V , is

(4.17) AΦ = −rξ̄ ∂Φ

∂ξ̄
+ κ(ϑ− V )

∂Φ

∂V
+
|θ|2
2
ξ̄2∂

2Φ

∂ξ̄2
+
σ2

2
V
∂2Φ

∂V 2

− %θξ̄ ∂
2Φ

∂ξ̄∂V
+ λ

∫

R

Ç
Φ(ϕ(z)ξ̄)− Φ(ξ̄) + (1− ϕ(z))ξ̄

∂Φ

∂ξ̄

å
ψ(dz)

here |θ|2 = θ2
1 + θ2

2, and % = σ
√
V (ρ, ρ̄). For functions that satisfies the iso-elastic

property (4.5)

inf
(θ,ϕ)∈U

{
E
[
ũ(ηξ̄T (θ, ϕ))

∣∣∣Ft
]}

= inf
(θ,ϕ)∈U

{
E
[
f(η)ũ(ξ̄T (θ, ϕ)) + g(η)

∣∣∣Ft
]}

= inf
(θ,ϕ)∈U

{
E
[
ũ(ξ̄T (θ, ϕ))

∣∣∣Ft
]}(4.18)

that provides us with the terminal cost function G(ξ̄T ) = ũ(ξ̄T ).
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4.4. Portfolio Allocation. Although we have found expressions for the optimum

terminal wealth X̂T and also for the optimum EMM Q̂, the portfolio weight is still

missing. However, taking into account that the process resulting from the product

of the time t ∈ [0, T ] discounted wealth and Q̂ is a martingale, equation (3.7), the

following relation holds

(4.19) βtX̂t
dQ̂

dP

∣∣∣∣∣∣
Ft

= Et


βT X̂T

dQ̂

dP

∣∣∣∣∣∣
FT




or equivalently X̂t = e−r(T−t)EQ̂
[
X̂T

∣∣∣Ft
]
. That means that today’s portfolio value

can be found as the present value of the future portfolio’s expected value in a risk

neutral world. As usual τ = T − t is the time remaining to portfolio maturity.

The expression (4.19) allows us to find the time t wealth dynamics. Its associated

stochastic differential equation should match that of equation (3.7), and then the

portfolio weights can be found comparing terms.

5. Solution for Power Utility

In this section we address the portfolio allocation problem for the power utility

function. First, the dual problem is solved and explicit expressions for the market

price of risk and portfolio weights are given. Then, the lagrange multiplier and the

optimal wealth are found.

5.1. Power Utility. We turn to the explicit calculation of the optimal control,

details of which are given in appendix A. The parameters are obtained from the

optimization in equation (4.15), and as a result we obtain the following expressions

for the market price of risk, the market price of volatility risk and the market price

of jump risk

θ̂1 = −bρσ
√
V + γα̂

√
V , θ̂2 = −bρ̄σ

√
V , and ϕ̂ = (1 + α̂φ)−1/γ
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With these optimal controls the EMM, equation (3.1), is fully determined. Also,

the optimal portfolio rule is retrieved,

(5.1) α̂ =
1

γ

µ− r
V

+
1

γ
bρσ +

1

γ

λ

V
E[φ(1 + α̂φ)−γ]

where b(τ) is given in appendix - equation (A.9). An equivalent expression for the

market price of risk, coming from restriction (3.3), is

(5.2) θ̂1 =
µ− r√
V

+
Ez[φ(z)ϕ̂(z)λ]√

V

Besides that, the market price of volatility risk can be written as

(5.3) θ̂2 =
ρ̄

ρ
(θ̂1 − γα̂

√
V )

On the other hand, the optimal lagrangian multiplier is

(5.4) η̂ =

(
X0β

−γ̃
T

E[ξ̂γ̃T ]

) 1
γ̃−1

and the optimal wealth at time t ∈ [0, T ] is found to be (see appendix - equations

(A.8) and (A.9))

X̂t =
X0Bt

E[ξ̂γ̄T ]
ξ̂γ̄−1
t e(1−γ̄)(a2(τ)+b(τ)V )

The portfolio value at t is the future value of the initial investment, X0Bt, times a

power of the EMM and a stochastic volatility factor.

5.2. Analysis of the Market Price of Risk. The first component on the right-

hand side of the equation (5.2) is the well known Brownian motion market price of

risk (MPR onwards). It measures the expected excess return over the riskfree rate,

the risk premium, of an investment per volatility point. The second term is the jump

contribution. Roughly speaking, it is the expected value of the product of the jump’s

amplitude change 5 times the event’s frequency6. It measures the expected change in

the return per volatility point of an asset attributable to a series of shocks of random

5i.e. the jump component part of dSt/St−.
6ϕ̂(z)λ is the jump intensity in the risk neutral world.
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amplitude. Yet another way to view the second term is grouping φ(z)ϕ̂(z). Hence,

we are in a risky world where the jumps occur with an intensity λ, but the jump’s

amplitude change is amplified by a factor of ϕ̂(z). In both cases ϕ̂(z) is determined

by the investors risk aversion γ and depends on the market jump amplitude φ.

The market price of volatility risk (MPVR), equation (5.3), has two components

that define its behavior. For an investor with near to zero risk aversion the MPVR,

θ̂2, is approximately proportional to the MPR, θ̂1. The coefficient of proportionality

is one when the coefficient of correlation is ρ = 1/
√

2 ≈ 70.7%. On the other hand,

the MPVR vanishes if the innovations in the returns are perfectly correlated with

the instantaneous volatility, i.e. for a coefficient of correlation ρ = ±1. However, in

a market with zero correlation ρ = 0 the portfolio rule becomes

α̂ =
1

γ

θ̂1√
V

In this case the MPVR attains the value of −bσ
√
V . As a result, the second term

of the portfolio rule on the right-hand side of equation (5.1) disappears and the

volatility risk enters via the instantaneous volatility. In that sense, the MPVR

measures to what extent the volatility risk impacts the allocation weight.

6. Model Estimation

To estimate the model we first obtain the expression of the CCF for the market

model return process Yt, and then proceed to estimate its parameters. Once we have

the results the portfolio weights are calculated.

6.1. Model Parameters. In order to estimate the model we use a discretization of

the ECF. The parameters are found in such a way that the Euclidean distance of the

ECF to the characteristic function is minimized. This is equivalent to the one step

GMM with the identity as initial weighting matrix. An application of this procedure

can be found in Chacko and Viceira (2003). They perform the optimization with a

discretization along a finite set of integers. By contrast, in our work we restrict the
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GMM in such a way that the first four sampling moments must match the theoretical

moments.

The CF is unique in the sense that if there is another CF associated to the same

probability function, both are equal. The CCF is the Fourier transform of the

conditional density function. Its argument ζ belongs to the continuous dual (the

frequency space) and is mapped into the complex plane. The CF can be found

although the inverse transform, i.e. the density function, does not necessarily exist.

For exponential affine stochastic processes that satisfy some regularity conditions

the CCF have a specific exponential form (see Duffie, Pan, and Singleton (2000)).

Once we have found the CCF, the CF for the return process Y can be obtained.

By definition of CF we know that E[exp(iζYn) − Φ(ζ,Θ)] = 0, where Φ(ζ,Θ) is

the CF, and Θ is the set of parameters that defines it. Hence, for h(Y, ζ,Θ) =

exp(iζY )−Φ(ζ,Θ), we can construct a finite set of moment conditions, by evaluating

h(Y, ζ,Θ) at a specified set of discrete frequencies ζ1, . . . , ζk, as E[h(Y, ζ,Θ)] = 0.

Let us define

g(Yn,Θ) =




Re(h(Yn, ζ1,Θ))

...

Re(h(Yn, ζk,Θ))

Im(h(Yn, ζ1,Θ))

...

Im(h(Yn, ζk,Θ))




where Re(·) is the real part function and Im(·) is the imaginary part function. This

forms a 2k set of moment conditions. The sampling counterpart is

G(Y,Θ) =
1

N

N∑

n=1

g(Yn,Θ)

where N is the data size. Thus, the one step GMM estimator is

min
Θ

G(Y,Θ)′G(Y,Θ)
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To implement the procedure we use the first four theoretical moments of the process.

For a process xt, these can be retrieved by means of the formula

(6.1) Et [(xt+τ − E[xt])
n] =

1

in
dn

dζn
Φ(ζ, τ,Θ, xt − E[xt])

∣∣∣∣∣
ζ=0

The cumulant function would ease the calculation. Expressions for the mean, stan-

dard deviation, skewness and excess kurtosis of the return process are derived in

appendix B.

6.2. Conditional Characteristic Function. The CCF for the process Yt is de-

fined as

(6.2) Φ(ζ, τ,Θ, Yt) = Et
î
eiζYt+τ

ó

where ζ is the argument of the CCF and Θ the set of parameters that determines it.

Commonly, the derivation of the CCF is made using the Feynman−Kac Theorem.

This asserts that the CCF, equation (6.2), is the solution to the associated partial

differential−difference equation (PDDE) that results from the process’ infinitesimal

generator. As in section 4.3, it is tantamount to view this as a stochastic control

problem, with the solution Φ satisfying equation (4.14). However, in the present

case the underlying dynamics are those from the market model, Section 2, i.e.,

dS = S−(µdt+
√
V dW1 + φdN)

dV = κ(ϑ− V )dt+ %dW

It is convenient, both theoretically and numerically, to transform the asset price

stochastic differential equation (SDE) by applying the logarithm function to S, and

thus defining the variable Y = Yt
.
= lnS. Using Ito’s lemma, the dynamics of Y is

found to be

(6.3) dY = d lnS =

Ç
µ− V

2

å
dt+

√
V dW1 + JdN
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The resulting CCF depends on the stochastic volatility V , an unobservable variable.

To be able to estimate the parameters, it is common to remove the dependence on

V calculating the expected value (see Chacko and Viceira (2003)). The expectation

w.r.t. the volatility V involves the knowledge of the probability density function of

V or equivalently of its UCF. These functions are found in the next subsection.

6.2.1. Volatility Unconditional Characteristic Function. Consider the stochastic dif-

ferential equation:

dV = κ(ϑ− V )dt+ σ
√
V dW2

its characteristic function ΦV (ζ, τ,ΘV , V ), with vector of parameters ΘV , solves the

following partial differential equation (PDE)

ΦV
τ = κ(ϑ− V )ΦV

V +
σ2

2
V ΦV

V 2

with boundary condition ΦV (ζ, 0,ΘV , V ) = eiζV . This PDE satisfies the conditions

in Duffie, Pan, and Singleton (2000), thus the solution is of the exponential affine

form ΦV (ζ, τ,ΘV , V ) = ea(ζ,τ)V+b(ζ,τ), the parameter space being ΘV = {a, b}. The

boundary condition implies that a(ζ, 0) = iζ and b(ζ, 0) = 0. Inserting the partials

of the function into the PDE, and separating variables we end up with the following

two ordinary differential equations (ODE’s)

aτ = −κa+
σ2

2
a2

bτ = κυa

Both equations have solution, see appendix - equation (C.1) for a(ζ, τ) and appendix

- equation (B.1) for b(ζ, τ),

a(ζ, τ) =
2κiζe−κτ

2κ− iζσ2(1− e−κτ )

b(ζ, τ) =
2κϑ

σ2
ln

Ç
2κ

2κ− iζσ2(1− e−κτ )

å
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Hence the CCF for the volatility is

ΦV (ζ, τ,ΘV , V ) = exp{a(ζ, τ)V + b(ζ, τ)}

= exp

®
2κiζe−κτ

2κ− iζσ2(1− e−κτ )V +
2κϑ

σ2
ln

Ç
2κ

2κ− iζσ2(1− e−κτ )

å´

From this expression, the UCF is found as the limiting function of the CCF ΦV

when τ goes to infinity ΦV (ζ,ΘV ) = lim
τ→∞ΦV (ζ, τ,ΘV , V ),

ΦV (ζ,ΘV ) = lim
τ→∞ exp

®
2κiζe−κτ

2κ− iζσ2(1− e−κτ )V +
2κϑ

σ2
ln

Ç
2κ

2κ− iζσ2(1− e−κτ )

å´

Therefore

(6.4) ΦV (ζ,ΘV ) = exp

®
2κϑ

σ2
ln

Ç
2κ

2κ− iζσ2

å´

The associated probability density function is the gamma distribution

(6.5) ψV (v) =
2κ
σ2

2κϑ
σ2 v

2κϑ
σ2 −1e−

2κv
σ2

Γ
Ä

2κϑ
σ2

ä

where Γ(·) is the gamma function.

6.2.2. Market Model CCF. From the return dynamics, equation (6.3), the market

model becomes

dY =

Ç
µ− V

2

å
dt+

√
V dW1 + JdN

dV = κ(ϑ− V )dt+ %dW

The associated CCF Φt, satisfies the partial differential-difference equation

(6.6) Φτ =

Ç
µ− V

2

å
ΦY + κ(ϑ− V )ΦV

+
V

2
(ΦY Y + σ2ΦV V + 2ρσΦV Y ) + λE[Φ(Y + J)− Φ(Y )]

Again, this partial differential equation satisfies the conditions in Duffie, Pan, and

Singleton (2000), hence the solution is of the exponential affine form Φ(ζ, τ,Θ, Y ) =
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exp{c(ζ, τ)Y + a(ζ, τ)V + b(ζ, τ)}, with boundary condition Φ(ζ, 0,Θ, Y ) = eiζY ,

implying c(ζ, 0) = iζ, a(ζ, 0) = 0 and b(ζ, 0) = 0. The computation of the CCF is

carried out in appendix B. And the solution, appendix - equation (B.2), is

(6.7) Φ(ζ, τ,Θ, lnS) =

exp

®
iζ lnS + iζµτ +

2κϑ

σ2
ln

Ç
2κ(r2 − r1)

(2κ− a(ζ, τ)σ2)(r2er1τ − r1er2τ )

å

+λτ exp

Ç
iζµJ −

υ2

2
ζ2

å
− λτ

´

where

a(ζ, τ) = − 2

σ2

r1r2e
r1τ − r1r2e

r2τ

r2er1τ − r1er2τ

r1,2 =
1

2

(
iρσζ − κ±

»
(iρσζ − κ)2 − iσ2ζ(iζ − 1)

)

The CF for the continuously compounded returns, rt+τ = ln(St+τ/St), is easily

obtained from the market model CCF as follows

Φ(ζ, τ,Θ, r) = Et[e
iζrt+τ ]

= Et[e
iζ ln(St+τ )−iζ lnSt ]

= Et[e
iζ ln(St+τ )]Et[e

−iζ lnSt ]

= Et[e
iζ ln(St+τ )]e−iζ lnSt

= Φ(ζ, τ,Θ, lnS)e−iζ lnSt

(6.8)

In view of equation (6.7), the CCF for the continuously compounded returns neither

depends on past values of r = rt nor on past volatility, hence it is the return’s CF.

7. Numerical Results

As mentioned in Section 6.1, we use the one step restricted GMM methodology

on the ECF to estimate the model’s parameters for the data series. The dataset

comprises the prices from January 1982 to October 20107 of the Standard and Poor’s

7We chose this period of time to make a comparison with previous studies, see Penagos and Rubio
(2011).
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Composite Index, and two series of the ten portfolios formed on book to market from

Kenneth French’s web page (see French (2012)). The first series, low book to market,

is referred to as Growth, and the second series, high book to market, is referred to as

Value. The timeframe spanned by the data includes the crash of October 1987, the

Gulf War I in August 1990, the Mexican crisis in December 1994, the Asian crisis of

July 1997, the Russian crisis of August 1998, and the bursting of the dot.com bubble.

The riskless rate of interest is the simple average of the three month Treasury Bill

rates for the same period as above, and its value is 4.7% in annualized terms.

7.1. Model Estimation. Table 1 reports the descriptive statistics for the input

data, parameters are given in daily basis, in percentage form. From the data we

observe that the Value mean is 0.14%, twice the Growth mean of 0.07% and al-

most five times the S&P500 mean which is 0.03%. However, the volatility is higher

for Growth series than for Value series, in agreement with the well known value

premium. The S&P500 volatility is similar to that of Growth series.

Skewness and excess kurtosis are higher, in absolute terms, for Value series and

lower for S&P500 series, skewness being negative. This reflects a distribution with

heavier tails for Value portfolios with a higher tendency of having large negative

returns. All series are leptokurtic with values well above 3, that of a normal distri-

bution. The largest excess kurtosis is for the Value’s which doubles the S&P500’s

excess kurtosis and is well above the Growth’s excess kurtosis. These findings are

suggested in figure 1. The graphics for density distributions exhibit high peaks,

which is an indication of high kurtosis, and the non straight QQ plot is a symptom

of skewness.

For comparison purposes, the graphics of the ECF against the normal distribution

CF are plotted in figure 2. In each case the parameters used in the normal distri-

bution are the mean and standard deviation of the data series under study. On the

left-hand side the absolute value of the characteristic functions is plotted and in the

right-hand side the phase diagram is shown. Although the modulo appears to be

similar in all the three cases, the phase seems to be closer to the normal distribution
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phase for the Value series. On the contrary, the S&P500 displays a more irregular

behavior.

Initially, an unconstrained optimization is performed using wide intervals for the

parameter’s values. Afterwards, the procedure is repeated but the long term variance

is constrained to fit the values obtained in a Garch modeling of the series. The results

of the latter are in Table 2, as shown, the variance is larger for Growth series than

for Value series, with S&P500’s variance in the middle but closer to the former, in

agreement with descriptive statistics.

The parameters’ estimates8 are reported in Table 3, they are the result of applying

the one step restricted GMM methodology to the data (refer to section 6.1). The re-

sults show that for the unconstrained case the Growth series’ return is approximately

half of Value series’ return. The magnitude of the volatility σ is approximately half

the value of the associated long run variance ϑ. Also note that the volatility σ for

Growth series is twice the value of the other series volatility. The parameter σ is

thought to explain the kurtosis, however, the pattern is broken for Value series,

which has the highest kurtosis with the smallest σ. The same behavior is followed

by the long run variance ϑ, by the jump volatility ν and by the mean reversion κ.

The persistence of the series is larger for Value series9 suggesting that a shock to

the volatility fades away more slowly for Value investors than for Growth ones.

The jump amplitude is commonly used to explain the skewness. Table 3 reports

a negative jump mean for all the series implying negative skewness. For the un-

constrained estimates the Value series jump mean is larger in magnitude than the

Growth jump mean, the S&P500 jump mean being the lowest. A similar pattern

is found in the skewness where the Value series is the most left skewed. On the

other hand, the jump mean becomes more positive as long as the jump frequency

increases, thus jumps often happen for S&P500 at a rate of one per week. This oc-

curs once each 20 days for Growth series, and less frequently, once each 1.3 months,

8We have set τ = 1, hence the resulting parameters have the same frequency of the input data.
9Higher values of κ implies lower persistence.
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for Value. Notice that regarding the jump mean magnitude, i.e., its absolute value,

smaller shocks happen more frequently that larger shocks.

In Panel A of Table 4 the theoretical values of the first four moments are reported.

These are the result of the restrictions imposed on the GMM estimator. As we can

see, they are quite accurate, indicating that the model parameter’s estimates adjust

very well to the data on first moments restrictions. Panel B reports the unconditional

moments of the return series split into the jump part and the stochastic volatility

part. It is clear that skewness and kurtosis depend almost exclusively on the jump

contribution. The skewness is mainly due to jump mean, which also determines

the sign, and to Poisson intensity. The kurtosis strongly depend on jump volatility,

which is bigger than jump mean, and on the Poisson intensity as well (see appendix

- equation (B.3)). On the other hand, the theoretical mean is composed by the

diffusion mean µ compensated by the volatility stochastic mean, term ϑ/2, plus the

jump mean λµJ (see appendix - equation (B.3)). However, the dominant term is

the diffusion mean, that is because the long term variance is comparatively low in

magnitude. And in addition, the jump impact in the overall mean is low because

the jump mean is reduced by the jump intensity. The variance is made up of a jump

component and a stochastic volatility component in the same order of magnitude.

However, the jump term is more important for the S&P500 series. The volatility

seems to depend on model volatility parameters: jump volatility, long term volatility

and volatility of stochastic volatility, and also on mean reversion κ.

In Panel C of Table 4 we make use of appendix - equation (B.3) to disentangle

the jump component of the series’ variance. Taking a closer look we notice that the

jump contribution is the product of the Poisson intensity λ and the term (µ2
J + υ2).

The latter is similar for Growth and Value series, because jump volatility υ also is

similar for both series and jump mean µJ is much lower than υ. However, the jump

contribution to the variance of the Value series is less than a half the contribution to

the variance of Growth series, approximately 45.39%. This number is explained by
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the ratio of the jump intensity of Value series over Growth series of approximately

49.34%.

On the other hand, the stochastic volatility contribution to variance was separated

into the product of two factors, the first is the long run volatility ϑ and the second

is an expression which is function of the volatility σ, mean reversion κ and the

correlation ρ (see appendix - equation (B.3)). The last expression has a magnitude

of about 1, this is because κ is much larger than the volatility σ, and only one term

of the expression is not neglectable, therefore the whole expression is approximately

equal to the long run variance ϑ. The ratio of the unconstrained long run variance

between Growth and Value is roughly 1.97, which is approximately the same ratio

encountered between the stochastic volatility contribution of Growth series over

Value series (see Panel B of Table 4). In conclusion the variance of the Growth

series is larger than the variance of the Value series mainly since the lower frequency

of occurrence of unexpected large events in Value series lessens its impact on its

own variance and also because the largest long term volatility of the Growth series

compared with that of Value series.

For the for the constrained estimates we have that the Growth series’ return is

approximately half of Value series’ return. The long run volatility is similar, as ex-

pected, to the series’ standard deviation. Their values are 0.980%, 1.10% and 0.70%

for the S&P500, Growth and Value respectively. The constrained series estimates

follow a similar behavior than those of the unconstraint series for the parameters

related with the diffusion part of the asset dynamics, and for the stochastic volatility

parameters, except for the persistence which is lower for the Value series compared

to Growth’s persistence. The parameters related with the jump part also exhibit

a quite different pattern. The jump mean and Poisson intensity are the lowest for

S&P500 and largest for Value. However, the skewness is the lowest for Value series.

Recall that the function errors, Table 3, are the highest for constrained estimates.

This poor adjustment points to a less reliable parameter’s estimates.
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7.2. Portfolio Parameters Estimates. We assume that a risk averse investor

wishes to allocate certain proportion α of money in the risky asset and the remaining

1− α in the riskless bond. His goal is to obtain the best result, maximum expected

utility wealth, according to the changing investment opportunities, i.e., stochastic

volatility in the presence of unexpected large events. In what follows, the optimal

portfolio is calculated for each of the series S&P500, Growth and Value. That is

conducted for the unconstrained and constrained case with constant risk aversion

coefficients ranging from 2 to 10. Additionally, a sensitivity analysis is carried out

to asses the impact of the interest riskless rate.

Equation (5.1) shows that instantaneous volatility is a key component for the

portfolio weight, therefore two approaches are carried out in order to estimate its

value: first, the average instantaneous volatility is calculated from an approximation

of the stochastic processes driving the asset prices and stochastic volatility (see

Chesney and Elliot (1995)), and second, taking into account that parameters are

found as the result of an optimization process for a 28 year series, the long run

volatility parameter from the stochastic volatility model, equation (2.3), is used as

a proxy.

For comparison purposes, we calculate the portfolio allocation for an investor who

does not recognize neither jumps events nor stochastic volatility behavior. These

results are reported in Table 5. The main feature of the allocation is that the weights

diminish as risk aversion increases. The participation in Value series is larger than in

Growth series, being the lower for S&P500 series. Note also that while an investor’s

participation in the S&P500 is a fraction of his wealth, this investor is willing to

borrow at the market interest rate to invest in Growth and Value portfolios.

Table 6 shows the proportions of the total wealth invested in the risky asset when

investor acknowledge jumps and stochastic volatility. The results are obtained using

the instantaneous volatility estimates for the three series. Comparing these results

with those of Table 5, we notice that the allocation is higher for investors that dis-

regard the presence of jumps and stochastic volatility. Motivated by the work of
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Merton (1969), we calculate a myopic demand as the risk premium divided by the

instantaneous volatility times the risk aversion. Then, we define the intertemporal

hedging demand as the difference between the total portfolio weight and the myopic

contribution. As expected, the participation in the risky asset decreases with an

increasing risk aversion for both the myopic and the intertemporal hedging compo-

nents. Figure 3 illustrates the behavior of the myopic demand of the risky portfolio

weight against the intertemporal hedging demand (IHD from now onwards). The

change in the invested proportion on the myopic component is of 80% for a risk

aversion ranging from 2 to 10. Although it is lower, in absolute terms, for S&P500,

and larger for Value.

Recall that an investor allocates part of his wealth in risky assets looking for to

perform better at the end of the period. This proportion is chosen accordingly to

the single period optimal value, the myopic component. However, in a multiperiod

environment, intertemporal hedging demands arise when returns are correlated with

changing investment opportunities and when there is a nonzero frequency of jump

occurrences. Investors wish to hedge themselves from changing investment oppor-

tunities deviating their initial myopic portfolio. In the present setting, for a risk

averse investor with γ > 1, the asset trend is to do worse, mainly because the nega-

tive jump amplitude mean µJ , which, as stated in the previous section, accounts for

the negative skewness of the model. Therefore, the myopic component is reduced

by a negative IHD.

The ratio of the IHD over the myopic demand is plotted in figure 4. As expec-

tations of asset’s performance worsen, investors hedge against adverse changes in

investment opportunities. A negative IHD is equivalent to holding a short position

on the asset and as a result the myopic participation is reduced. It is remarkable

that this ratio is fairly constant for the S&P500 series, with a value of 61.42%, but

in general it lessens, in magnitude, as γ increases, due to a faster reduction in the

IHD component compared to the myopic one. Indeed, the change in the proportion

invested in the IHD from a risk aversion of 2 to 10 is about 80.00% for S&P500,



STOCHASTIC VOLATILITY AND JUMPS 91

80.04% for Growth, and 80.70% for Value, which explains the aforementioned be-

havior. In the long run, the IHD diminishes in a proportion similar to the myopic

component, i.e. with 1/γ, the difference in the three series is an anomaly in the IHD

at the few first values of risk aversion that disappears at a fast pace for Value series.

Hence each series tend to a constant ratio, suggesting an asymptotic risk premium

associated to stochastic volatility and jumps. In addition, the IHD - myopic ratio

also suggest that S&P500 series performs the worst and Value the better.

An approximate analysis of sensitivities is conducted (the results are compiled

in Table 7), with the riskless rate as the perturbed variable, for a reduced set of

risk aversion coefficients. In all cases the allocation on the risky asset lessens for an

increasingly riskless rate of return. Investors favor holding the riskless asset more

than the risky one for higher rates. S&P500 portfolios are the most sensitive to

changes in interest rates and Value portfolios the least. Indeed, one percentage

point change in interest rates represents approximately 10% change in portfolio

for S&P500 and Growth, and 20% for Value. However, compared with the total

share, it is a small part of the allocation, about 3%, whereas for the S&P500 the

difference is about 10% of the total share. The absolute deviations are lesser for

risk aversion 6 and 10 but the sensitivity increases with interest rates. When facing

rates increments, investors give up relatively larger proportions of the risky asset as

they become more conservative. This is particularly true for S&P500 portfolios.

For portfolios calculated with the long run variance, Tables 8 and 9, the behavior

is similar to that described previously. It should be mentioned that as volatilities

are smaller compared to those of instantaneous estimates the proportion invested in

the risky asset becomes larger, but sensitivities maintain around similar values.

Table 10 is constructed in order to gauge the accuracy of the common belief that

investors should allocate 60% of their wealth in risky assets. This is yet another

way to stress the idea that S&P500 portfolios are less appealing than Growth and

Value portfolios, being the latter the preferable investment. Indeed, in order to hold

only 60% of Value portfolio the agent’s risk aversion must be as high as 21.36 for
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Value in contrast with 1.05 of a S&P500 portfolio investment. Recall that risky

asset allocation diminishes as risk aversion increases.

8. Conclusions

In this paper, the allocation problem of an investor maximizing the expected

utility on terminal wealth was solved by relying on martingale and duality methods.

The market model takes into account the occurrence of unexpected large events in

a market with a changing opportunity investment set, i.e. stochastic volatility. As

a result, the expression for the portfolio allocation rule is found. Furthermore, the

market price of risk, the market price of volatility risk and the market price of jump

risk are retrieved. The portfolio weight for the risky asset is inversely proportional to

risk aversion and reduces to the standard myopic rule when the correlation between

the asset prices and volatility is zero, and the frequency of extreme event vanishes.

The market price of risk was found to be composed by the Brownian market price of

risk plus a jump contribution. The market price of volatility risk is approximately

proportional to the market price of risk for a very low risk adverse investor. If the

innovations in the returns are perfectly correlated with the instantaneous volatility

the market price of volatility risk is zero.

The model was tested with three market series, the Standard and Poor’s Compos-

ite (S&P500), the low Book to Market portfolio (Growth series) and the high Book

to Market portfolio (Value series) of Fama and French. The numerical results show

that skewness and excess kurtosis depend almost exclusively on the jump contribu-

tion. The skewness is mainly due to jump mean, which also determines the sign,

and to Poisson intensity. The kurtosis strongly depends on jump volatility and also

on the Poisson intensity. The theoretical mean is dominated by the diffusion mean µ

which is compensated by a half of the long run variance ϑ/2. It also includes a Pois-

son term, however, its contribution is minimal. The variance is made up of a jump

component and a stochastic volatility component in the same order of magnitude,

however, the jump term is more important for the S&P500 series. The volatility
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depends on model volatility parameters: jump volatility, long term volatility and

volatility of stochastic volatility, and also on the mean reversion κ. A closer look

at Growth and Value series reveals that the largest variance of Growth series, com-

pared with that of Value series, is mainly due to the low frequency of occurrence of

unexpected large events in Value series, that lessens its impact in its own variance,

and also because of the larger long term volatility of the Growth series.

The parameter estimates are used to calculate the portfolio allocation. The

weights are found to be low compared with those of a standard diffusion model.

This is because the investor perceives more risk coming from jumps and stochastic

volatility. We calculate a myopic demand as the ratio of the risk premium over the

instantaneous volatility times the risk aversion, it proves to be greater than the total

portfolio weight. The discrepancy could be explained if we define the intertemporal

hedging demand as the difference between the total portfolio weight and the my-

opic contribution. Given that the expectations of asset performance worsen, the

intertemporal hedging demand is negative thus reducing the participation of the

myopic component. This is mainly due to the negative jump mean. The ratio IHD

- myopic demand is calculated, it is fairly constant for S&P500 and decreases for

Growth and Value. They seems to converge, suggesting an asymptotic risk premium

associated to stochastic volatility and jumps.

Finally, a portfolio composed of a 60% on risky assets was established as a bench-

mark to compare investments in the three series. The results suggest that investors

would prefer investing in Value portfolios. A sensitivity analysis reveals that S&P500

allocation is the most sensitive to interest rate changes.

There are at least two topics for future research. Firstly, the analysis of the impact

on the moments by varying the parameters of the market model was performed in

numerical fashion in this instance, however, a sensitivity analysis is necessary to

draw general conclusions. Secondly, the term in the portfolio rule involving the jump

component can be further exploited to determine both its impact in the allocation
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and its role in the market price of jump risk. It would also enhance the numerical

calculations.
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Appendix A. Solution to HJB

The HJB equation (4.15) conveys a partial differential-difference equation (PDDE)

for the value function and an optimization problem w.r.t. the set of variables {θ, ϕ}.
The PDDE comes from the generator equation (4.17), when evaluated at the opti-

mum point {θ̂, ϕ̂} it takes the following form

∂Φ

∂τ
= −r Ûξ ∂Φ

∂ Ûξ
+ κ(ϑ− V )

∂Φ

∂V
+
|θ̂|2
2
Ûξ2∂

2Φ

∂ Ûξ2
+
σ2

2
V
∂2Φ

∂V 2

− %θ Ûξ ∂
2Φ

∂ Ûξ∂V
+ λEz

[
Φ(ϕ̂(z)Ûξ)− Φ(Ûξ) + (1− ϕ̂(z))Ûξ ∂Φ

∂ Ûξ

]

where Ûξ is the optimum of ξ̄ and ξ̂ is the optimum of ξ respectively. From equations

(4.18) and (4.16), the boundary condition reads

(A.1) lim
t→T−

Φ(Ûξt, Vt, t) = ũ(ÛξT )

and the infimum is calculated from

inf
(θ,ϕ)∈U

® |θ|2
2
ξ̄2∂

2Φ

∂ξ̄2
− %θξ̄ ∂

2Φ

∂ξ̄∂V
+ λEz

ñ
Φ(ϕ(z)ξ̄)− Φ(ξ̄) + (1− ϕ(z))ξ̄

∂Φ

∂ξ̄

ô´

Subject to restriction (3.3),

µ− r − θ1

√
V + λEz[φ(z)ϕ(z)] = 0

This assures that S is a Ft−martingale. The HJB differential equation is solved by

the method of variation of parameters and variable separation. In order to find a

candidate we first calculate the Legendre-Fenchel transform (LFT), equation (4.8)

of the modified power utility

u(x) =
x1−γ

1− γH(V, τ)

For this function I(p) = (pH−1)−1/γ, hence the LFT is

ũ(p) = −p
γ̄

γ̄
H1/γ γ̄ =

γ − 1

γ
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Notice that γ̄ − 1 = −1/γ, and

ũ(kp) = −(kp)γ̄

γ̄
= kγ̄ũ(p)

With f(k) = kγ̄ > 0 for k > 0, and g(k) = 0, therefore ũ(p) is also iso-elastic.

Motivated by the LFT, we guess that the dual value function has the form

(A.2) Φ(ξ̄, V, τ) = − ξ̄
γ̄

γ̄
e(1−γ̄)(a(τ)+b(τ)V )

Notice that Φ(ξ̄, V, τ) < 0 for ξ̄ > 0. Its partials are

∂Φ

∂ξ̄
=
γ̄

ξ̄
Φ

∂Φ

∂V
= (1− γ̄)bΦ

∂Φ

∂τ
= (1− γ̄) (aτ + bτV ) Φ

∂2Φ

∂ξ̄2
=
γ̄(γ̄ − 1)

ξ̄2
Φ

∂2Φ

∂V 2
= (1− γ̄)2b2Φ

∂Φ

∂ξ̄∂V
=
γ̄(1− γ̄)

ξ̄
bΦ

Inserting into the HJB

(A.3) (1− γ̄)(aτ + bτV )Φ

= inf
(θ,ϕ)∈U

®
−γ̄r + (1− γ̄)bκ(ϑ− V )Φ +

γ̄(γ̄ − 1)

2
|θ|2Φ

+(1− γ̄)
σ2

2
b2V Φ− γ̄(1− γ̄)b%θΦ + λEz[ϕγ̄(z)− 1 + γ̄(1− ϕ(z))]Φ

´

First we obtain the control process and then the result is inserted into the PDDE

and it is subsequently solved.

A.1. Optimal θ, ϕ. The optimization problem for θ, ϕ is

(A.4) sup
(θ,ϕ)∈U

®
γ̄(γ̄ − 1)

2
|θ|2 + γ̄(γ̄ − 1)b%θ + λEz [ϕγ̄ − γ̄ϕ]

´

To find the optimum we construct the lagrangian

(A.5) L(θ, ϕ, χ) =
γ̄(γ̄ − 1)

2
|θ|2 + γ̄(γ̄ − 1)b%θ

+ λEz[ϕγ̄(z)− γ̄ϕ(z)]− χ(µ− r − θ1

√
V + λEz[ϕ(z)φ(z)])
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where χ is the lagrangian multiplier. To find the set of optimal values we match to

zero the lagrangian partials w.r.t. each variable. After reordering we arrive at the

following expressions

θ̂1 = −bρσ
√
V − χ̂

γ̄(γ̄ − 1)

√
V

θ̂2 = −bρ̄σ
√
V

E[ϕ̂γ̄−1] = 1 +
χ̂

γ̄
φ̄

0 = µ− r − θ̂1

√
V + λE[ϕ̂φ]

(A.6)

The variable χ̂ is still missing. To reach to an explicit expression we use equation

(5.4), (4.19), and relation (4.13), hence

(A.7) X̂t = X0Bt
EQ̂
t [ξ̂γ̄−1

T ]

E[ξ̂γ̄T ]

from this and the dual value function, equation (A.2), evaluated at the optimum we

get the optimal wealth at time t ∈ [0, T ] as

(A.8) ξ̂(t)X̂(ξ̂, V, t) =
X0Bt

E[β γ̄T ξ̂
γ̄
T ]
β γ̄t ξ̂

γ̄(t)e(1−γ̄)(a(τ)+b(τ)V )

Applying Ito’s lemma we obtain

dξ̂X̂ =

Ç
A
ξ̂X̂
− ∂

∂τ

å
(ξ̂X̂)− ξ̂(ξ̂X̂)

ξ̂
θ̂′dWt

+ (ξ̂X̂)V %dWt +
∫

R
((ξ̂X̂)(ϕ̂(z)ξ̂ )− (ξ̂X̂)(ξ̂ ))M(dt, dz)

where A
ξ̂X̂

is the infinitesimal generator for ξ̂X̂, thus

dξ̂tX̂t = −(γ̄θ̂′ + (γ̄ − 1)b%)ξ̂tX̂tdWt +
∫

R
(ϕ̂γ̄(z)− 1)ξ̂t−X̂t−M(dt, dz)

because ξ̂tX̂t is a martingale. Comparing terms with equation (3.7) we found

θ̂1 = −bρσ
√
V − α̂

γ̄ − 1

√
V

θ̂2 = −bρ̄σ
√
V
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ϕ̂ = (1 + α̂φ)
1

γ̄−1

In order to match these expressions with those of (A.6) we require that α̂ = χ̂/γ̄.

We also found

α̂ =
1

γ

µ− r
V

+
1

γ
bρσ +

1

γ

λ

V
E[φ(1 + α̂φ)−γ]

which is the expression for the optimal portfolio weight.

A.2. Solution of the PDDE. At the optimal point (θ̂, ϕ̂) the partial differential-

difference equation (A.3) becomes

aτ + bτV =
γ̄

γ̄ − 1
r + bκ(ϑ− V )− γ̄

2
|θ̂|2

+ b2(1− γ̄)
σ2

2
V − bγ̄%θ̂ +

λ

1− γ̄ E
z[ϕ̂γ̄(z)− 1 + γ̄(1− ϕ̂(z))]

From equations (A.1) and (A.2) the boundary conditions are a(0) = 0 and b(0) = 0.

Notice that

%θ̂ = −bσ2V − ρσV α̂

(γ̄ − 1)

|θ̂|2 = b2σ2V + 2bρσV
α̂

γ̄ − 1
+ V

α̂2

(γ̄ − 1)2

Inserting the solutions into the PDDE, we end up with a system of two ordinary

differential equations of the Ricatti type

bτ = b2σ
2

2
+ b

Ç
2ρσ

γ̄α̂

1− γ̄ − κ
å
− γ̄α̂2

2(γ̄ − 1)2

aτ =
γ̄

γ̄ − 1
r + bκϑ+

λ

1− γ̄ E[ϕ̂γ̄ − 1 + γ̄(1− ϕ̂)]

The solutions (see equations (C.4) and (C.5)) are

a(τ) =
γ̄

γ̄ − 1
rτ + a2(τ)

a2(τ) =
2κϑ

σ2
ln

Ç
r2 − r1

r2er1τ − r1er2τ

å
+

λτ

(1− γ̄)
E[ϕ̂γ̄ − 1 + γ̄(1− ϕ̂)]

b(τ) = − 2

σ2

r1r2e
r1τ − r1r2e

r2τ

r2er1τ − r1er2τ

(A.9)
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where

(A.10) r1,2 =
1

2

(
2(γ − 1)ρσα̂− κ±

»
(2(γ − 1)ρσα̂− κ)2 + γ(γ − 1)σ2α̂2

)

Appendix B. Estimation

This appendix is devoted to the construction of the conditional characteristic

function from the ODE’s that arises in the estimation procedure.

B.1. Conditional Characteristic function. Consider the ODE’s

bτ = κϑa(ζ, τ)

b = κϑ
∫
a(ζ, τ)dτ + C

= 2κ2ϑiζ
∫

e−κτdτ

2κ− iζσ2(1− e−κτ ) + C

= 2κ2ϑiζ
∫

dτ

(2κ− iζσ2)eκτ + iζσ2
+ C

The integral, see Gradshteyn and Ryzhik (2007), is

∫
dτ

(2κ− iζσ2)eκτ + iζσ2
=

1

κiζσ2
ln

Ç
eκτ

(2κ− iζσ2)eκτ + iζσ2

å

Therefore

b(ζ, τ) =
2κϑ

σ2
ln

Ç
eκτ

(2κ− iζσ2)eκτ + iζσ2

å
+ C

applying the boundary condition b(ζ, 0) = 0, then C = (2κϑ/σ2) ln 2κ, and

(B.1) b(ζ, τ) =
2

σ2
κϑ ln

Ç
2κ

2κ− iζσ2(1− e−κτ )

å

On the other hand, to solve the differential equation (6.6), we insert the partials of

the CCF solution Φ(ζ, τ,Θ, Y ) = exp{c(ζ, τ)Y +a(ζ, τ)V + b(ζ, τ)} into the PDDE.

As a result we obtain

cτY + aτV + bτ =

Ç
µ− V

2

å
c+ κ(ϑ− V )a
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+
V

2
(c2 + σ2a2 + 2ρσac) + λE[ecJ − 1]

separating variables

cτ = 0

aτ =
c2

2
− c

2
+ (ρσc− κ)a+

σ2

2
a2

bτ = µc+ κϑa+ λE[ecJ − 1]

From the first ODE c(ζ, τ) is a constant on τ . Applying the boundary condition we

have c(ζ) = iζ. The second ODE it a Riccati type whose solution, equation (C.4),

is

a(ζ, τ) = − 2

σ2

r1r2e
r1τ − r1r2e

r2τ

r2er1τ − r1er2τ

with

r1,2 =
1

2

(
iρσζ − κ±

»
(iρσζ − κ)2 − iσ2ζ(iζ − 1)

)

For the second ODE we have

ḃ = µc+ κϑa+ λE[ecJ − 1]

b = µcτ + λE[ecJ − 1]τ + κϑ
∫
a(ζ, τ)dτ + C

From (C.5), and applying boundary condition

b = µcτ + λE[ecJ − 1]τ +
2κϑ

σ2
ln

Ç
r2 − r1

r2er1τ − r1er2τ

å

The expected value is calculated over an exponential function which in turn depends

on the normal random variable J ∼ N(µJ , ν
2). This expression is the characteristic

function of a normal random variable

E[ecJ ] = exp

Ç
iζµJ −

υ2

2
ζ2

å
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Summing up, the CCF for the market model is:

Φ(ζ, τ,Θ, lnS, V ) = exp{c(ζ, τ) lnS + a(ζ, τ)V + b(ζ, τ)}

= exp

®
iζ lnS + iζµτ − 2

σ2

r1r2e
r1τ − r1r2e

r2τ

r2er1τ − r1er2τ
V

+
2κϑ

σ2
ln

Ç
r2 − r1

r2er1τ − r1er2τ

å
+ λ exp

Ç
iζµJ −

υ2

2
ζ2

å
τ − λτ

´

To deal with the unobservable volatility parameter we take the expected value of

the market model CCF w.r.t V , Φ(ζ, τ,Θ, lnS) = EV [Φ(ζ, τ,Θ, lnS, V )]. This can

be made using the unconditional probability density function, equation (6.5). Al-

ternatively, if we realize that the expected value of the exponentiated volatility is

its characteristic function, that has previously been calculated in equation (6.4), we

simply need to insert it into the previous equation,

Φ(ζ, τ,Θ, lnS) = exp

®
iζ lnS + iζµτ +

2κϑ

σ2
ln

Ç
2κ

2κ− a(ζ, τ)σ2

å

+
2κϑ

σ2
ln

Ç
r2 − r1

r2er1τ − r1er2τ

å
+ λ exp

Ç
iζµJ −

υ2

2
ζ2

å
τ − λτ

´

Rearranging terms we end up with

(B.2) Φ(ζ, τ,Θ, lnS) =

exp

®
iζ lnS + iζµτ +

2κϑ

σ2
ln

Ç
2κ(r2 − r1)

(2κ− a(ζ, τ)σ2)(r2er1τ − r1er2τ )

å

+λτ exp

Ç
iζµJ −

υ2

2
ζ2

å
− λτ

´

B.2. Moments. The return’s unconditional moments are recovered with the aid of

the cumulants, that is, the derivatives of the cumulant function ln Φ, being Φ the

return’s CF, equation (6.8),

ln Φ(ζ, τ,Θ, r) =

iζµτ +
2κϑ

σ2
ln

Ç
2κ(r2 − r1)

(2κ− a(ζ, τ)σ2)(r2er1τ − r1er2τ )

å
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+ λτ exp

Ç
iζµJ −

υ2

2
ζ2

å
− λτ

Notice that

(2κ− a(ζ, τ)σ2)(r2e
r1τ − r1e

r2τ ) = 2[κr2e
r1τ − κr1e

r2τ + r1r2e
r1τ − r1r2e

r2τ ]

= 2[r2e
r1τ (κ+ r1)− r1e

r2τ (κ+ r2)]

If we call A(ζ) = er1τ (κ+ r1)− r1e
r2τ (κ+ r2) and B(ζ) = r2 − r1 the expression

f(ζ) = ln

Ç
2κ(r2 − r1)

(2κ− a(ζ, τ)σ2)(r2er1τ − r1er2τ )

å

can be written as

f(ζ) = ln

Ç
κB(ζ)

A(ζ)

å

= ln(κ) + ln(B(ζ))− ln(A(ζ))

The first derivative is

f (1)(ζ) =
B(1)(ζ)

B(ζ)
− A(1)(ζ)

A(ζ)

The higher order derivatives are found making use of the Leibniz theorem

f (n)(ζ) =
n−1∑

i=0

Ö
n− 1

i

è
î
B(i+1)(B−1)(n−1−i) − A(i+1)(A−1)(n−1−i)ó , n > 1

Recall that cumulants are defined as

Kn =
1

in
d

dζ
ln Φ(ζ)

∣∣∣∣∣
ζ=0
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Therefore the first four cumulants are given by

K1 =

ñ
µ− ϑ

2
+ λµJ

ô
τ

K2 = (µ2
J + υ2)λτ +

ϑ

4κ3
((σ2 − 4κρσ + 4κ2)κτ − (σ2 − 4κρσ)(1− e−κτ ))

− ϑ

4κ
(σ2 − 4κρσ)(1− e−κτ )

K3 = (3µJυ
2 + µ3

J)λτ − 3σϑ

8κ5
(σ − 2κρ)[(σ2 − 4κρσ + 4κ2)κτ − 2(σ2 − 4κρσ + 2κ2)

+ ((σ2 − 4κρσ)κτ + 2(σ2 − 4κρσ + 2κ2))e−κτ ]

K4 = (3υ4 + 6µ2
Jυ

2 + µ4
J)λτ

+
3σ2ϑ

32κ7
{[(4κ2 − 4ρκσ + σ2)2 + 4σ(4κρ− σ)(2κρ− σ)2e−κτ ]κ2τ 2

− [4(4κ2 − 4ρκσ + σ2)(4κ2ρ2 − 2κ2 − 4κρσ + σ2) + 2Ae−κτ ]κτ

− [B + 2Ce−κτ ]}

(B.3)

where

A = 64κ4ρ2 − 128κ3ρ3σ − 80κ3ρσ + 176κ2ρ2σ2 + 20κ2σ2 − 72κρσ3 + 9σ4

B = 32κ4 + 26σ4 + 384κ4ρ2 + 64κ4ρ4 − 208κρσ3 + 16κ2σ2(33ρ2 + 7)− 448κ3ρσ(ρ2 + 1)

C = 128κ4ρ2 + 16κ4 − 160κ3ρ3σ − 160κ3ρσ + 216κ2ρ2σ2 + 40κ2σ2 − 88κρσ3 + 11σ4

The moments can be retrieved from the cumulants in the usual form, namely

Mean = K1

Standard Deviation =
»
K2

Skewness =
K3

K
3/2
2

Excess Kurtosis =
K4

K2
2

(B.4)
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Appendix C. Some Results in Ordinary Differential Equations

Explicit calculations for ODE’s that arise in the paper are carried out here. Re-

lated results are also included (refer to Gradshteyn and Ryzhik (2007) for details).

C.1. Bernoulli ODE. Consider the differential equation

y′ = ay + by2

where the function y depends on the independent variable x and a and b are con-

stants. Using the variable change w = 1/y, with derivative w′ = −y′/y2 the differ-

ential equation becomes

w′ = −aw − b

The integrating factor is

M(x) = exp
Å∫

adx
ã

= eax

Multiplying both sides and integrating

∫
(w′eax + aeaxw)dx = −b

∫
eaxdx

then

eaxw =
∫

(weax)′dx = −b
∫
eaxdx = − b

a
eax + C

hence

y =
a

−b+ aCe−ax

applying boundary condition y(x0) = y0 we get

y0 =
a

−b+ aCe−ax0

and after some algebra

C =
a+ by0

ay0

eax0
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Therefore the solution is

(C.1) y =
ay0e

a(x−x0)

a+ by0(1− ea(x−x0))

For an ODE with non constant coefficients

y′ = a(x)y + b(x)y2

(C.2) y(x) = exp
ß
−
∫
a(x)dx

™ ï
C −

∫
b(x) exp

ß∫
a(x)dx

™
dx
ò

for a constant of integration C.

C.2. Riccati ODE. The following ODE

aτ = q0 + q1a+ q2a
2

is of Riccati type. To solve it we first consider the self-adjoint ODE

uτ2 −Ruτ + Su = 0

where R = q1 and S = q0q2. The solution to this equation is of type u(τ) = erτ

with derivatives uτ (τ) = rerτ and uττ (τ) = r2erτ . Inserting these expressions into

the ODE, it is transformed into the algebraic equation r2 − Rr + S = 0. Its roots

are given by

(C.3) r1,2 =
R±
√
R2 − 4S

2

the general solution is u(τ) = c1e
r1τ + c2e

r2τ with derivative uτ (τ) = c1r1e
r1τ +

c2r2e
r2τ , then a solution to the Riccati ODE is:

a(τ) = − uτ
q0u

= − 2

σ2

c1r1e
r1τ + c2r2e

r2τ

c1er1τ + c2er2τ

Applying the boundary condition a(0) = 0

0 = − 2

σ2

c1r1 + c2r2

c1 + c2
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then c1r1 + c2r2 = 0, so c1 = r2 and c2 = −r1, hence

(C.4) a(τ) = − 2

σ2

r1r2e
r1τ − r1r2e

r2τ

r2er1τ − r1er2τ

C.3. Ricatti’s solution Integral. We need the integral of the equation (C.4), that

is

I(τ) =
∫
a(τ)dτ

If we let r2 − r1 = −
√
R2 − 4S = Λ, we first calculate the integral

∫
er1τ − er2τ

r2er1τ − r1er2τ
dτ =

∫
er1τdτ

r2er1τ − r1er2τ
−
∫

er2τdτ

r2er1τ − r1er2τ

=
∫

dτ

r2 − r1eΛτ
−
∫

dτ

r2e−Λτ − r1

=
1

r2Λ
ln

Ç
eΛτ

r2 − r1eΛτ

å
− 1

r1Λ
ln

Ç
e−Λτ

r2e−Λτ − r1

å

=
1

r2Λ

ñ
ln

Ç
er2τ
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The integral in the second line can be found in Gradshteyn and Ryzhik (2007),

therefore
∫
a(τ)dτ =

2

σ2
ln

Ç
1

r2er1τ − r1er2τ

å
+ C

Applying the boundary condition I(0) = 0

0 =
2

σ2
ln

Ç
1

r2 − r1

å
+ C

C =
2

σ2
ln(r2 − r1)

then

(C.5) I(τ) =
2

σ2
ln

Ç
r2 − r1

r2er1τ − r1er2τ

å
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Table 1

Descriptive Statistics

This table reports the descriptive statistics of the daily returns for the Standard and Poor’s
Composite Index series along with the Growth and Value portfolios constructed by Fama
and French from their ten Book-to-Market portfolios. The data comprises the returns
from January 1982 to October 2010. The statistics are given in daily basis and percentage
format, except for the skewness and excess kurtosis.

Statistic S&P500 Growth Value

Min -9.47 -9.7 -7.71
Mean 0.0294 0.0677 0.1382

Median 0.0369 0.0900 0.1297
Max 10.25 8.89 7.41

Volatility 0.9925 1.0364 0.7213
Skewness -0.1451 -0.2351 -0.4616

Excess Kurtosis 9.64 10.23 18.22
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Table 2

Garch Estimates

This table reports the results of a Garch(1,1) estimates: ht = α0 +α1r
2
t−1 +β1ht−1 for the

Standard and Poors 500 series along with the Growth and Value portfolios constructed
by Fama and French from their ten Book-to-Market portfolios. The data comprises the
returns from January 1982 to October 2010, the long term variance is reported at the
bottom of the table.

Parameter S&P500 Growth Value

α0 0.000065 0.000142 0.000054

α1 5.237735 12.248057 10.195925

β1 94.114545 86.619471 88.698658

α0
1−α1−β1

0.009980 0.012579 0.004885
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Table 3

Parameter Estimates for the Return and Stochastic Volatility Processes

This table reports the estimates of the parameters for the stochastic volatility - jump
diffusion log-returns model for the S&P500, Growth and Value series.

d lnS =

Å
µ− V

2

ã
dt+

√
V dW1 + JdN

dV = κ(ϑ− V )dt+ %dW

where W = (W1,W2)′ is a R2 standard Brownian motion, % = σ
√
V (ρ, ρ̄) is the correlation

vector, N is a Poisson Process and J ∼ Normal(µJ , ν
2) is the percentage change condi-

tioned on the occurrence of a jump. The parameters are given in daily basis in percentage
form.

Series µ σ κ ϑ ρ µJ ν λ ε

S&P500 Unc 0.0408 0.0017 1.49 0.0035 -0.8561 -0.0745 2.2173 0.1287 3.77e-14
Cons 0.0380 0.0028 1.88 0.0096 -0.3683 -3.5644 14.6230 0.0001 3.53e-07

Growth Unc 0.0808 0.0031 1.58 0.0062 -0.4254 -0.1931 2.9450 0.0519 2.46e-15
Cons 0.0741 0.0110 0.64 0.0121 -0.6787 -2.7246 12.3100 0.0002 1.02e-06

Value Unc 0.1470 0.0016 0.61 0.0032 -0.4976 -0.2829 2.8166 0.0256 2.28e-15
Cons 0.1418 0.0024 0.97 0.0049 -0.4978 -1.8930 6.9413 0.0006 4.49e-12
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Table 4

Contribution to Moments

This table reports the theoretical moments, appendix - equation (B.4), breaking down
into jump and stochastic volatility contributions. Panel A of the table reports the theo-
retical moments: mean, standard deviation, skewness and excess kurtosis, calculated for
the unconstrained parameters in the instantaneous volatility case. The function error is
also given. Panel B reports the theoretical moments separated into jump and stochastic
volatility (SV) components, the diffusion contribution to the mean is included in the jump
part. Panel C disentangles the two main jump components of the variance.

Panel A. Theoretical Moments

Series Mean Volatility Skewness Kurtosis ε

S&P500 0.0294 0.9925 -0.1451 9.64 9.72e-10
Growth 0.0677 1.0364 -0.2351 10.23 6.39e-08
Value 0.1382 0.7213 -0.4616 18.22 4.52e-08

Panel B. Contribution of Jump and SV to the Theoretical Moments

Series
Mean Variance Skewness Kurtosis

Jump SV Jump SV Jump SV Jump SV

S&P500 3.12e-04 -1.76e-05 6.33e-05 3.52e-05 -0.1446 -5.19e-04 9.63 -1.29e-05
Growth 7.08e-04 -3.11e-05 4.52e-05 6.22e-05 -0.2344 -6.99e-04 10.23 -6.88e-06
Value 1.40e-03 -1.58e-05 2.05e-05 3.15e-05 -0.4608 -8.14e-04 18.21 -2.12e-04

Panel C. Disentangled Variance’s Jump Component

Series λ Factor

Growth 0.0519 8.7e-04
Value 0.0256 8.0e-04
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Table 5

Portfolio Results for a Diffusion Model

The table reports the portfolio weights for an investor who is not taking into account the
possible occurrence of jumps and considers a constant volatility, which is the Merton’s
portfolio problem. Weights are calculated for the S&P500, the Fama and French’s Growth
portfolio, and the Fama and French’s Value portfolio. The interest rate is 4.7% annualized,
and the risk aversion coefficient ranges from 2 to 10.

γ S&P500 Growth Value

2 0.5464 2.2824 11.4846
3 0.3643 1.5216 7.6564
4 0.2732 1.1412 5.7423
5 0.2186 0.9130 4.5938
6 0.1821 0.7608 3.8282
7 0.1561 0.6521 3.2813
8 0.1366 0.5706 2.8711
9 0.1214 0.5072 2.5521

10 0.1093 0.4565 2.2969
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Table 6

Portfolio Results Using Instantaneous Volatility Estimates

Panel A of this table reports the portfolio weights for an investor who invests in the
Standard and Poors 500, and a riskless asset with an annualized return rate of 4.7%. The
investor maximizes the power expected utility of terminal wealth with constant relative
risk aversion which varies from 2 to 10. He is taking into account occurrences of unexpected
jumps and assumes that volatility is stochastic. The column labeled α1 corresponds to the
weight associated with the unconstrained SVJ parameter estimates, αmyo1 is the associated
portfolio myopic component and ε1 is the function error, the parameters subscripted with 2
are for the constrained SVJ estimates. Volatility is chosen to be the average instantaneous
volatility estimate which is 0.013529024 (in percentage) for the S&P500. Panel B reports
the results of the Fama and French’s Growth portfolio with volatility 0.014328558, and
Panel C does the same for Fama and French’s Value portfolio, the volatility is 0.00722463.

Panel A. Standard and Poors Portfolio Estimates

γ α1 α2 αmyp1 αmyp2 ε1 ε2

2 0.31523 0.69824 0.81714 0.71395 7.52e-09 3.01e-09
3 0.21016 0.46559 0.54476 0.47597 1.78e-09 6.46e-09
4 0.15762 0.34920 0.40857 0.35698 1.03e-09 1.19e-08
5 0.12609 0.27936 0.32686 0.28558 2.70e-09 2.26e-08
6 0.10508 0.23287 0.27238 0.23798 3.81e-09 2.70e-08
7 0.09007 0.19960 0.23347 0.20399 4.60e-09 2.21e-08
8 0.07881 0.17465 0.20428 0.17849 5.18e-09 1.85e-08
9 0.07005 0.15524 0.18159 0.15866 5.64e-09 1.57e-08

10 0.06305 0.13972 0.16343 0.14279 6.01e-09 1.34e-08

Panel B. Fama and French Growth Portfolio Estimates

γ α1 α2 αmyp1 αmyp2 ε1 ε2

2 1.37844 1.85516 2.16935 1.93478 4.10e-09 1.85e-09
3 0.91946 1.23905 1.44623 1.28985 1.15e-08 1.13e-08
4 0.68976 0.93008 1.08467 0.96739 5.37e-09 1.45e-08
5 0.55188 0.74440 0.86774 0.77391 9.07e-09 1.42e-08
6 0.45995 0.62050 0.72312 0.64493 3.23e-09 4.76e-09
7 0.39429 0.53195 0.61981 0.55279 3.05e-08 5.67e-09
8 0.34501 0.46554 0.54234 0.48369 3.65e-09 1.30e-08
9 0.30667 0.41381 0.48208 0.42995 1.71e-08 4.83e-08

10 0.27601 0.37250 0.43387 0.38696 3.36e-08 2.06e-09

Panel C. Fama and French Value Portfolio Estimates

γ α1 α2 αmyp1 αmyp2 ε1 ε2

2 6.30781 7.17544 8.88137 8.52080 1.71e-09 1.38e-09
3 4.23240 4.99744 5.92091 5.68053 9.98e-09 9.21e-09
4 3.18359 3.80336 4.44068 4.26040 5.85e-09 4.85e-09
5 2.55107 3.06462 3.55255 3.40832 1.73e-08 1.35e-09
6 2.12818 2.56468 2.96046 2.84027 1.60e-08 1.47e-08
7 1.82554 2.20447 2.53753 2.43451 5.68e-09 8.69e-09
8 1.59826 1.93275 2.22034 2.13020 1.33e-08 3.64e-09
9 1.42126 1.72056 1.97364 1.89351 4.79e-09 9.33e-09

10 1.27953 1.55028 1.77627 1.70416 3.08e-08 1.37e-08
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Table 7

Portfolio Sensitivities for Instantaneous Volatilities

This table reports the portfolio weights and function errors calculated with the average
instantaneous volatility for riskless rates of return of 3%, 4%, 5% and 6%, and for relative
risk aversion coefficients 2, 6 and 10 respectively. Panel A reports the results for the
Standard and Poors 500 series, its instantaneous volatility is 0.013529024, Panel B if for
Fama and French Growth portfolio which has instantaneous volatility of 0.014328558 and
Panel C is for Fama and French Value portfolio with instantaneous volatility of 0.00722463.
Myopic weights are also given.

Panel A. Standard and Poors Portfolio Weights with Instantaneous Volatility

γ r(%) α1 α2 αmyp1 αmyp2 ε1 ε2

2 3 0.48486 0.94415 1.06646 0.96327 2.13e-10 6.51e-09
6 3 0.16164 0.31490 0.35549 0.32109 4.31e-09 1.03e-08

10 3 0.09699 0.18894 0.21329 0.19265 9.90e-09 3.88e-08
2 4 0.38512 0.79950 0.91980 0.81661 1.57e-08 7.39e-09
6 4 0.12841 0.26665 0.30660 0.27220 3.70e-08 5.39e-09

10 4 0.07704 0.16004 0.18396 0.16332 3.36e-08 5.41e-08
2 5 0.28529 0.65477 0.77314 0.66996 7.85e-09 4.96e-09
6 5 0.09512 0.21835 0.25771 0.22332 2.62e-08 8.87e-09

10 5 0.05707 0.13105 0.15463 0.13399 2.44e-08 4.90e-08
2 6 0.18541 0.50993 0.62649 0.52330 6.14e-09 1.03e-09
6 6 0.06180 0.17004 0.20883 0.17443 9.79e-09 2.02e-08

10 6 0.03711 0.10203 0.12530 0.10466 5.38e-08 1.37e-08

Panel B. Fama and French Growth Portfolio Weights with Instantaneous Volatility

γ r(%) α1 α2 αmyp1 αmyp2 ε1 ε2

2 3 1.55580 2.07914 2.40475 2.17018 4.53e-09 1.20e-08
6 3 0.51923 0.69608 0.80158 0.72339 5.55e-09 1.71e-09

10 3 0.31162 0.41795 0.48095 0.43404 5.32e-09 3.73e-08
2 4 1.45149 1.94754 2.26628 2.03171 4.77e-09 7.53e-09
6 4 0.48436 0.65162 0.75543 0.67724 1.27e-08 2.11e-08

10 4 0.29065 0.39122 0.45326 0.40634 5.89e-08 1.26e-09
2 5 1.34710 1.81548 2.12780 1.89324 1.34e-09 2.74e-09
6 5 0.44949 0.60711 0.70927 0.63108 1.35e-08 2.17e-08

10 5 0.26976 0.36446 0.42556 0.37865 4.22e-08 1.40e-08
2 6 1.24263 1.68300 1.98933 1.75476 5.09e-09 8.45e-09
6 6 0.41461 0.56252 0.66311 0.58492 3.71e-08 3.99e-08

10 6 0.24877 0.33769 0.39787 0.35095 4.16e-08 3.14e-09

Panel C. Fama and French Value Portfolio Weights with Instantaneous Volatility

γ r(%) α1 α2 αmyp1 αmyp2 ε1 ε2

2 3 6.64002 7.44180 9.34825 8.98767 3.10e-09 5.90e-09
6 3 2.24298 2.69274 3.11608 2.99589 7.58e-10 1.80e-08

10 3 1.34886 1.62934 1.86965 1.79753 3.05e-08 3.43e-08
2 4 6.44491 7.28787 9.07361 8.71304 4.70e-09 6.39e-09
6 4 2.17551 2.61768 3.02454 2.90435 8.97e-09 4.55e-09

10 4 1.30812 1.58301 1.81472 1.74261 1.38e-10 3.39e-08
2 5 6.24887 7.12610 8.79898 8.43841 8.21e-09 3.89e-09
6 5 2.10792 2.54187 2.93299 2.81280 6.47e-09 1.21e-08

10 5 1.26735 1.53620 1.75980 1.68768 3.13e-08 1.06e-09
2 6 6.05196 6.95657 8.52435 8.16377 7.09e-09 7.60e-09
6 6 2.04012 2.46532 2.84145 2.72126 3.48e-09 1.40e-08

10 6 1.22639 1.48908 1.70487 1.63275 3.48e-08 2.01e-09
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Table 8

Portfolio Results Using Long Term Volatility Estimates

Panel A of this table reports the portfolio weights for an investor who invests in the
Standard and Poors 500, and a riskless asset with an annualized return rate of 4.7%.
Volatility is chosen to be the long run estimate in the unconstraint and constraint cases,
those are 0.0035182 and 0.0095963 respectively (in percentage). Panel B reports the results
of the Fama and French’s Growth portfolio with volatilities 0.0062229 and 0.012057, and
Panel C does the same for Fama and French’s Value portfolio, the volatilities are 0.0031513
and 0.004884 respectively

Panel A. Standard and Poors Portfolio Estimates

γ α1 α2 αmyp1 αmyp2 ε1 ε2

2 0.63472 0.97885 3.14226 1.00654 2.90e-09 4.47e-09
3 0.42330 0.65291 2.09484 0.67103 1.40e-08 9.52e-09
4 0.31747 0.48975 1.57113 0.50327 7.72e-10 5.40e-09
5 0.25398 0.39186 1.25690 0.40262 7.03e-09 1.81e-09
6 0.21170 0.32655 1.04742 0.33551 1.73e-08 1.79e-08
7 0.18146 0.27998 0.89779 0.28758 1.37e-08 2.77e-08
8 0.15877 0.24499 0.78557 0.25164 1.10e-08 1.93e-08
9 0.14113 0.21777 0.69828 0.22368 8.87e-09 1.29e-08

10 0.12702 0.19599 0.62845 0.20131 7.19e-09 7.77e-09

Panel B. Fama and French Growth Portfolio Estimates

γ α1 α2 αmyp1 αmyp2 ε1 ε2

2 2.39599 2.18410 4.99503 2.29930 6.38e-09 1.15e-08
3 1.60066 1.46075 3.33002 1.53286 1.93e-09 4.28e-10
4 1.20170 1.09700 2.49752 1.14965 9.92e-09 1.41e-08
5 0.96190 0.87823 1.99801 0.91972 3.58e-09 1.96e-08
6 0.80190 0.73226 1.66501 0.76643 1.76e-08 2.42e-08
7 0.68751 0.62782 1.42715 0.65694 5.51e-09 2.34e-09
8 0.60171 0.54949 1.24876 0.57482 2.92e-08 1.87e-08
9 0.53494 0.48852 1.11001 0.51095 3.42e-08 2.03e-08

10 0.48145 0.43975 0.99901 0.45986 2.88e-08 4.28e-08

Panel C. Fama and French Value Portfolio Estimates

γ α1 α2 αmyp1 αmyp2 ε1 ε2

2 10.17925 15.46256 20.36131 12.60434 1.93e-09 4.77e-04
3 6.97065 6.30971 13.57421 8.40289 1.18e-09 1.63e-08
4 5.29217 4.94855 10.18066 6.30217 4.73e-09 2.95e-09
5 4.26322 4.04893 8.14452 5.04174 9.51e-09 6.37e-09
6 3.56858 3.41941 6.78710 4.20145 2.62e-09 1.32e-08
7 3.06831 2.95679 5.81752 3.60124 7.79e-09 2.66e-09
8 2.69096 2.60324 5.09033 3.15109 2.60e-09 5.28e-09
9 2.39618 2.32468 4.52474 2.80096 3.04e-09 1.28e-08

10 2.15957 2.09962 4.07226 2.52087 3.59e-09 1.16e-09
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Table 9

Portfolio Sensitivities for Long Term Volatility

The following panels reports the sensitivity analysis for the portfolio weights, the riskless
rate is varied from 3 percent (annualized) to 6 percent for the selected group of relative
risk aversion coefficients, 2, 6 and 10. Panel A reports the results and the function errors
for Standard and Poors 500 series, Panel B for Fama and French Growth portfolio and
Panel C for Fama and French Value portfolio. Myopic weights are also given.

Panel A. Standard and Poors Portfolio Sensitivity to Rate of Return

γ r(%) α1 α2 αmyp1 αmyp2 ε1 ε2

2 3 0.97552 1.32230 4.10099 1.35804 9.42e-10 3.34e-09
6 3 0.32546 0.44145 1.36700 0.45268 2.30e-08 1.30e-08

10 3 0.19532 0.26491 0.82020 0.27161 4.38e-08 3.95e-08
2 4 0.77516 1.12046 3.53703 1.15128 9.30e-11 3.97e-09
6 4 0.25854 0.37389 1.17901 0.38376 7.79e-09 1.67e-08

10 4 0.15513 0.22437 0.70741 0.23026 8.18e-09 2.68e-08
2 5 0.57451 0.91810 2.97307 0.94452 2.61e-10 6.36e-09
6 5 0.19157 0.30632 0.99102 0.31484 3.55e-09 2.50e-08

10 5 0.11494 0.18379 0.59461 0.18890 1.17e-08 1.57e-09
2 6 0.37362 0.71528 2.40911 0.73776 3.45e-09 2.02e-09
6 6 0.12454 0.23855 0.80304 0.24592 1.29e-08 4.81e-09

10 6 0.07472 0.14317 0.48182 0.14755 1.60e-08 1.71e-08

Panel B. Fama and French Growth Portfolio Sensitivity to Rate of Return

γ r(%) α1 α2 αmyp1 αmyp2 ε1 ε2

2 3 2.69965 2.44451 5.53707 2.57905 4.33e-09 3.83e-09
6 3 0.90426 0.82092 1.84569 0.85968 1.15e-09 2.48e-08

10 3 0.54304 0.49309 1.10741 0.51581 1.16e-08 1.77e-08
2 4 2.52124 2.29173 5.21822 2.41449 1.28e-09 3.86e-09
6 4 0.84407 0.76881 1.73941 0.80483 4.00e-09 4.23e-10

10 4 0.50685 0.46174 1.04364 0.48290 5.89e-09 2.62e-08
2 5 2.34214 2.13792 4.89938 2.24993 9.26e-09 4.10e-09
6 5 0.78375 0.71653 1.63313 0.74998 1.36e-08 5.49e-09

10 5 0.47059 0.43027 0.97988 0.44999 5.96e-09 7.39e-09
2 6 2.16253 1.98319 4.58054 2.08536 4.45e-09 4.31e-09
6 6 0.72334 0.66413 1.52685 0.69512 9.88e-10 4.09e-09

10 6 0.43425 0.39876 0.91611 0.41707 3.27e-08 1.59e-09

Panel C. Fama and French Value Portfolio Sensitivity to Rate of Return

γ r(%) α1 α2 αmyp1 αmyp2 ε1 ε2

2 3 10.62826 15.46258 21.43167 13.29497 9.66e-10 4.10e-04
6 3 3.74295 3.55862 7.14389 4.43166 1.25e-08 8.85e-11

10 3 2.26680 2.19163 4.28633 2.65899 2.28e-08 1.19e-08
2 4 10.36581 15.46258 20.80205 12.88872 2.81e-09 4.49e-04
6 4 3.64079 3.47760 6.93402 4.29624 1.50e-08 1.17e-08

10 4 2.20389 2.13791 4.16041 2.57774 2.22e-08 1.38e-09
2 5 10.09859 15.46254 20.17243 12.48247 1.23e-09 4.89e-04
6 5 3.53746 3.39422 6.72414 4.16082 9.62e-09 2.24e-08

10 5 2.14045 2.08302 4.03449 2.49649 1.80e-08 1.38e-08
2 6 9.82652 15.46257 19.54280 12.07622 1.90e-10 5.29e-04
6 6 3.43322 3.30840 6.51427 4.02541 2.90e-09 1.76e-08

10 6 2.07646 2.02705 3.90856 2.41524 1.23e-08 1.20e-08
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Table 10

60% Portfolio

This table reports the implied coefficient of risk aversion of an investor that wishes to allo-
cate 60% of his wealth in the risky asset. Calculations are made for S&P500, Growth and
Value series, for Instantaneous Volatility (IV) and Long Term Volatility (LTV) estimates.

Volatility
S&P500 Growth Value

γ1 γ2 γ1 γ2 γ1 γ2

IV
γ 1.05 2.33 4.60 6.21 21.36 25.99
ε 2.67e-09 1.03e-09 1.13e-09 2.86e-10 1.48e-09 5.83e-10

LTV
γ 2.12 3.26 8.02 7.33 36.31 35.71
ε 9.73e-10 1.49e-09 1.07e-09 1.99e-09 3.74e-10 6.27e-10
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Figure 1

Density Functions and QQ Plots

The figure shows the empirical probability densities for each series contrasted against the
normal densities calculated using the sample mean and volatility. Also the QQ plots are
drawn to asses the divergence from normality.
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Figure 2

Characteristic Functions

This exhibit shows a comparison between the ECF and the normal distribution CF for
each series. In the left-hand side appears the absolute value plotted in the same scale for
the three series. In the right-hand side the phase diagram is shown.
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Figure 3

Portfolio Components

This figure shows the myopic demand and intertemporal hedging demand for the portfolios
formed with the S&P500, Growth and Value series, the abscissa is the coefficient of risk
aversion that ranges from 2 to 10. The exhibit displays the results for instantaneous
volatility (IV) and long term volatility (LTV).
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Figure 4

Portfolio Components

This figure shows the portfolio weight’s ratio of the intertemporal hedging demand to the
myopic demand for the unconstrained model parameters calculated with the instantaneous
volatility (IV). The abscissa is the coefficient of risk aversion that ranges from 2 to 10.





TIME VARYING RELATIVE RISK AVERSION AND FACTOR
PRICING MODELS WITH HABIT PERSISTENCE

Abstract. The consumption based, external habit model of Campbell and Cochrane

is estimated for the period of January 1960 to December 2010. The priced returns

are from the 25 portfolios formed on size and book to market by Fama and French.

Moreover, the estimation is carried out for a six and twelve months lagged versions

of the consumption time series. The curvature coefficient has plausible values in

spite of the high relative risk aversion. The time dependent and countercyclical

relative risk aversion and the stochastic discount factor are rendered. These series

are plotted using as a framework the crisis periods. Two factor pricing models are

derived and estimated, where the risk factors defined are consumption growth and

risk aversion growth. The results of the market price of risk are consistent with

the theory for twelve months lagged consumption.

1. Introduction

In an early study Mehra and Prescott (1985) introduced the equity premium

puzzle. They consider an economy with a representative agent whose preferences

are modeled with a time separable power utility function. They use a variation

of the pure exchange model of Lucas (1978), in which is assumed that the growth

endowment rate follows a Markov process. It turns out that the values for the

subjective discount factor and relative risk aversion that result from calibration are

not in concordance with the observed equity premium and the real interest rate. This

contradiction arises from the restriction imposed by the Euler equation through the

Hansen and Jagannathan (1991) bound, which provides the limits for the returns

that can be priced by a stochastic discount factor (SDF hereafter). Conversely, the

bound characterizes the possible SDF’s that can price a given set of returns.

The market data for the postwar U.S. shows a high equity premium implying

either a high relative risk aversion or a higher consumption growth rate volatility

JEL classification: C22, C23, G10, G12
Key words: Asset pricing, habit persistence in preferences, equity premium puzzle, generalized
method of moments, Fama MacBeth, Ultimate Consumption Risk
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than the actually observed. A high relative risk aversion has not economic sense

by itself given the implications in consumption decisions. Moreover, accepting this

value results in a high level and high volatile risk free rate, which is not consistent

with the empirical evidence, the so called risk free rate puzzle.

Among others proposals, the models based on internal and external habit prefer-

ences have been developed to deal with the equity premium puzzle. The approach is

to let the current utility to depend not only on the present consumption but also on

the past history. In this context, authors as Constantinides (1990) address the prob-

lem defining a subsistence level of consumption as the exponentially weighted sum of

past consumption and then subtracted it from consumption. Likewise, Sundaresan

(1989) use the internal habit approach in defining a consumption standard.

High equity premium can also be explained by using external habit models, based

on aggregated consumption. Some researchers as Abel (1998) explains the equity

premium through the use of a ratio approach. This model has the drawback that

does not accounts for interest rate’s volatility and does not allows changing risk

aversion. On the other hand, Campbell and Cochrane (1999) propose a model

driven by an independent and identically distributed consumption growth and an

external habit. They define a surplus process which is the ratio of consumption in

excess of habit over consumption. The dynamics is defined in such a way that the

risk free interest rate is constant. In this specification, habit depends on aggregate

consumption i.e. an external habit. The model explains the time varying counter

cyclical risk premium which is replicated by a time varying risk aversion. This results

in a relative risk aversion that can be high despite the low curvature parameter for

the power utility function. Moreover, the price-dividend ratio as a function of surplus

inherits the persistence of the latter, and is able of forecasting long horizon returns.

The variation in the expected returns has been reported among others by Fama

and French (1988) who investigate the relation between time varying expected re-

turns and prices. Afterwards, Fama and French (1989) study how expected returns

are related to economic conditions. Additionaly, Campbell and Shiller (1988) show
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that the ratio of real earnings to stock price is a predictor of stock’s returns, and

that the returns are too volatile if considering the news about future dividends.

Campbell (1991) determines that expected stock returns changes in a persistent

way. Moreover, Lettau and Ludvigson (2001) investigate the predictability of stock

returns and excess returns over a Treasury bill rate by means of logarithmic aggre-

gate consumption - wealth ratio.

From the works of Samuelson (1969), Merton (1969) and Merton (1971), is well

known that under constant investment opportunities, and specifically when returns

are IID, the myopic portfolio remains optimal for multi-period settings. Otherwise,

a new term, the inter-temporal hedging demand, comes up modifying investor’s

portfolio composition. In this context the characterization of varying excess return

and relative risk aversion becomes important. Our purpose in this paper is to

estimate the consumption based, external habit model of Campbell and Cochrane

(1999) using a series of consumption data and two lags of six months and twelve

month respectively, in order to asses the model parameters validity according to the

empirical evidence. We aim to set the basis of study for the time varying relative

risk aversion as a useful tool for portfolio allocation.

We first use the iterated GMM methodology to estimate the subjective discount

factor and the curvature parameter. That allows to determine the stochastic dis-

count factor and also derive two linear factor pricing models. These involve con-

sumption growth and risk aversion growth as risk factors. We render the surplus and

risk aversion series and regress the excess return agains the battery of regressors,

i.e., the covariance of excess return with the risk factors. For this we employ the

Fama - MacBeth procedure, obtaining the market price of risk to each risk factor.

The paper is organized as follows. The theoretical framework is introduced in

Section 2. In Section 3 the parameter estimation methodologies are explained. The

results are presented in Section 4. Finally, the conclusions are drawn in Section 5.
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2. Model

2.1. External Habit Model. We assume that agent’s preferences, at time t, are

expressed by a power utility function with curvature parameter γ, that accounts for

the aversion to intertemporal substitution. The investor’s goal is to maximize the

expected utility

(2.1) E

[ ∞∑

t=0

ρt
(Ct −Xt)

1−γ − 1

1− γ

]

where ρ is the subjective discount factor, Ct is consumption, and Xt is the habit

level. Following Cochrane (2005) we define the surplus as:

(2.2) St =
Ct −Xt

Ct

and specify the logarithmic consumption growth as a random walk

(2.3) ∆ct+1 = c̄+ ut+1

where ut+1 ∼ N(0, σ2
c ). Additionally, it is assumed that the logarithmic surplus

follows the dynamics

(2.4) st+1 = (1− φ)s̄+ φst + λ(st)ut+1

where s̄ = ln S̄, and

S̄ = σc

√
γ

1− φ
Finally, a sensitivity factor λt = λ(st) is defined such that

(2.5) λt = λ(st)
.
=





S̄−1
√

1− 2(st − s̄)− 1 st <= smax

0 st > smax

where smax = s̄+ (1− S2
)/2. Note that λ(st) = ∂st/∂ct, and from the definition of

surplus, equation (2.2), we get λ(st) + 1 = S−1
t .

The power utility on consumption - habit level difference, u(Ct −Xt) = u(StCt),

is time non-separable, allowing past time consumption to affect current utility. It
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is also assumed that the agent’s habit level depends on other’s current and past

aggregate consumption, that is, an external habit. In this context Ct does not affects

the future habit level Xt, it is an exogenous state variable. As a consequence, from

equation (2.1), the first order condition for optimal consumption reads

Et

[
ρ

(
St+1

St

Ct+1

Ct

)−γ
Rit+1

]
= 1(2.6)

where Rit+1 is the gross return of asset i at time t + 1. The first term inside the

expectation is the growth in marginal utility, i.e., the stochastic discount factor

(SDF). It is defined between dates t and t+ 1, and is denoted as Mt+1 = Mt,t+1,

Mt+1 = ρ
u′(St+1Ct+1)

u′(StCt)

= ρ

(
St+1

St

Ct+1

Ct

)−γ
= ρm−γt+1

(2.7)

where the prime denotes the derivative with respect to Ct, and

mt+1 =
St+1

St

Ct+1

Ct

Using equation (2.6) we found the expected returns to be given by

(2.8) Et[Rit+1] =
1

Et[Mt+1]
− covt(Mt+1, Rt+1)

Et[Mt+1]

For the excess return Re
t+1 the pricing equation reads Et

[
Mt+1R

e
t+1

]
= 0, and there-

fore

(2.9) Et[R
e
it+1] = −covt(Mt+1, R

e
t+1)

Et[Mt+1]

The term Rs
ft = 1/Et[Mt+1] is defined as the shadow price of the riskless rate or zero

beta rate from time t to t+ 1. The shadow riskfree rate assumes the role of market

risk free rate if a riskfree asset is no traded in the market. As such, the agents are

indifferent to borrowing or lending at that rate. However, in equilibrium if a market

riskfree rate is available and is higher than the shadow riskfree rate, an agent would

invest more in the riskfree asset thus reducing its consumption.
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2.2. Linear Factor Models. From equation (2.6), and taking into account that

the process Ct and St are lognormal1, the following expression for the expected

return is obtained2

Et[rit+1] = − ln ρ+ γc̄− γ(1− φ)(st − s̄)

− γ2

2
(λ(st) + 1)2σ2

c −
σ2
it

2
+ γ(λ(st) + 1)covt(rit+1,∆ct+1)

Subtracting the associated equation for the risk free rate we get

Et[rit+1]− rft+1 = −σ
2
it

2
+ γ(λ(st) + 1)covt(rit+1,∆ct+1)

which can be written as

(2.10) Et[r
e
it+1] +

σ2
it

2
= γtσcit

where reit+1 is the excess return of the ith asset over the risk free rate, and σcit
.
=

covt(rit+1,∆ct+1). Note that the term σ2
it/2 is the adjustment to the Jensen’s in-

equality. Also, γt = γ/St = γ(λ(st)+1) is the relative risk aversion. Equation (2.10)

can be restated as:

Et[r
e
it+1] +

σ2
it

2
= γ

σcit
St

Et[R
e
it+1] ≈ γ

σcit
St

(2.11)

Hence, if an asset return covaries positively with consumption growth it delivers

low payoffs when consumption is low. This asset does not smooth consumption over

time; thus, it is riskier and therefore demands a higher return. In this specification

the excess return moves counter cyclically with the surplus. This is because in con-

tractions the surplus is low, due to a low consumption, implying a high relative risk

aversion and vice versa. In case of a realization of a low surplus (low consumption

relative to habit) a higher return is demanded.

1We also assume that asset returns and consumption are jointly lognormal
2Lowercase indicates that the logarithm has been taken to the variable.
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Yet another specification of the previous factor model can be found if we use the

definition of relative risk aversion, which for convenience we rename as RAt = γt =

γ/St. If we insert that into the stochastic discount factor, equation (2.7), we arrive

to

Mt+1 = ρ

(
Ct+1

Ct

RAt
RAt+1

)−γ

To get an expression for the expected excess return we first expand the stochastic

discount factor in Taylor series and maintain the first two terms, obtaining

Mt+1 = exp (ln ρ− γ∆ct+1 + γ∆rat+1)

≈ 1 + ln ρ− γ∆ct+1 + γ∆rat+1

where rat is the logarithm of RAt. Inserting this into equation (2.9) we get

(2.12) Et[R
e
t+1] = λcovt(∆ct+1, R

e
t+1)− λcovt(∆rat+1, R

e
t+1)

Likewise to equation (2.11), for some positive constant λ, an asset with high positive

correlation with consumption growth is considered risky and demands a higher excess

return. Regarding the second term, recall that in recessions the consumption growth

is low and the risk aversion growth is high. Thus, fixing the consumption growth,

if the excess return covaries negatively with risk aversion growth, the asset delivers

low payoffs when risk aversion is high and a higher return is demanded. To the best

of our knowledge, this specification of the model has not been tested before.

3. Model Estimation

We estimate the model through the use of the stochastic discount factor. To

this end, we apply the GMM where the moment conditions are drawn from Euler

equation (2.6). Once we have the parameter estimates, we run a cross sectional

estimation using the Fama and MacBeth’s (1973) methodology on equation (2.11),

equation (2.12), and on two auxiliary regression equations.



132 HABIT PERSISTENCE

3.1. Generalized Method of Moments (GMM). The fundamental pricing equa-

tion (2.6) can be restated as Et[Mt+1Rit+1 − 1] = 0 for all assets i ∈ {1, . . . , N},
which includes the risk free rate series. This vector of N conditional expectations

can be recognized as a set of moment conditions. The N−dimensional vector of

non linear functions f depends on consumption and surplus, and it is defined on the

vector of true parameters θ0 = (ρ0, γ0)′. Each coordinate component of f is given

by

(3.1) fi(Ct, St; θ0) = ρ0

(
St+1

St

Ct+1

Ct

)−γ0
Rit+1 − 1

Moment conditions are noted g(θ0) = Et[f(Ct, St; θ0)]. As the number of conditions,

N , is greater than the number of parameters the system is over identified and we

apply the GMM estimator.3 We look for a vector of parameters θ that minimizes

the distance of the sample moment conditions gT to the zero vector. To overcome

scaling effects we use a N ×N symmetric and positive definite matrix that weights

the moment conditions according to some criteria. As such, we have implicitly define

a metric, and our goal is to find an optimal parameter vector θ that minimizes the

quadratic form QT (θ) = g′T (θ)WTgT (θ). In this setting the GMM estimator is

θ̂GMM(WT ) = arg min
θ
{g′T (θ)WTgT (θ)}

If we assume that ET [f(Ct, St; Θ)] → E[f(Ct, St; θ)] for T → ∞ hence, under

some regularity conditions, the GMM estimator is consistent, that is, θ̂GMM → θ0

as T → ∞. Further on, assuming that
√
TgT (θ0) → N(0, S), where S is the

asymptotic variance, therefore the asymptotic distribution of the GMM estima-

tor is given by
√
T (θ̂GMM − θ0) → N(0, S), and the asymptotic variance is V =

(D′WD)−1D′WSWD(D′WD)−1, where

D = E

[
∂f(Ct, St; θ)

∂Θ′

]

3We use Hansen’s notation ET = 1/T
∑T

t=1, see Hansen (1982)
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The sample counterpart reads

(3.2) DT =
∂gT (θ)

∂θ′
= ET

[
∂f(Ct, St; θ)

∂θ′

]

Selecting the weighting matrix to be WT = S−1
T we obtain the efficient GMM esti-

mator whose asymptotic matrix is V̂ = (D′TWTDT )−1. As estimator of S we use the

heteroskedasticity and autocorrelation consistent (HAC) variance estimator

ST (θ) = ΓT (0) +
T−1∑

i=0

ωi(ΓT (i, θ) + Γ′T (i, θ))

where

ΓT (i, θ) =
1

T

T∑

t=i+1

f(Ct, St; θ)f
′(Ct−i, St−i; , θ)

with the Bartlett kernel

ωi
.
= k

(
i

B

)
=





1− i
B

for i
B
> 0

0 for i
B
≤ 0

which is known as the Newey − West estimator. To find the optimal parameter

vector θ we use the iterated GMM estimator, it has the advantage that the estimates

are invariant to the selected initial matrix.

To assess the validity of the model we use the test for overidentifying restrictions

via the J statistic of Hansen. Given that gT (θ0)
a∼ N(0, T−1S), for the optimal

weights WT → S−1 then θ̂GMM → θ0 and

J = Tg′T (θ̂GMM)WTgT (θ̂GMM) = TQT (θ)→ χ2(R−K)

The derivatives of the functions (3.1), needed to find the sample variance, are com-

puted in the appendix.

3.2. Fama MacBeth Methodology (FMM). The general form that we use in

our study is

E[Ri] = λ0 + λ1cov(Ri, f1) + · · ·+ λjcov(Ri, fj) + · · ·+ λkcov(Ri, fk)
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where i runs across the set of asset returns, and k is the number of risk factors. fj

is the risk factor j, and the covariance measures the quantity of risk to which the

asset i is exposed with respect to risk factor j. On the other hand, λj is the market

price of risk associated to risk factor j. The intercept to the expected return axis,

λ0, is interpreted as the riskless rate of return. When a riskless asset is traded in

the market the value of λ0 is restricted to be the riskless rate of return. Otherwise,

λ0 is called the zero-beta rate or shadow rate and have to be estimated.

As a simple modification to this model we subtract the traded riskless rate of

return to each asset’s rate leading to the excess return. For that case λ0, the shadow

rate, is not longer present in the representation, and as a result

E[Re
i ] = λ1b1i + · · ·+ λjbji + · · ·+ λkbki

where bji is the covariance between the excess return of asset i and the risk factor

j, bji = cov(Re
i , fj) for j = 1 . . . k. The variable bji determines the evolution of the

asset’s excess return throughout the business cycle, whose dynamics is described by

the associated risk factor.

We use Fama and MacBeth (1973) methodology to find the standard errors and

tests statistics for the model as well as the pricing errors. To that end we first we

chose a time window of size 1 < T0 < T . Then, for each t = T0 + 1, . . . , T we run a

cross sectional regression to the model4

(3.3) Et,T0 [R
e
it] = λ0t + λ1tb̂1it + · · ·+ λjtb̂jit + · · ·+ λktb̂kit + ait

where ait are the pricing errors. The covariances are estimated as σ̂jit = Et,T0 [(R
e
it−

R
e

it,T0
)(fjt − f jt,T0)], where the rolling averages are given by R

e

it,T0
= Et,T0 [R

e
it] and

f jt,T0 = Et,T0 [fjt]. Later on, the estimate of λj, for j = 0, . . . , k; is calculated with

4We use the operator Es,T0 = 1/T0
∑s−1

t=s−T0
which is a extended version of Hansen’s notation for

an arbitrary time interval [s− T0, s− 1].
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the use of

(3.4) λ̂j =
1

T − T0

T∑

t=T0+1

λ̂jt

And the standard errors are given by

(3.5) σ̂(λ̂j) =

√√√√ 1

(T − T0)2

T∑

t=T0+1

(λ̂jt − λ̂j)2

Recall that the theory suggest that the intercept λ̂0 should be zero.

We estimate two factor pricing equations whose risk factors were identified previ-

ously. From the two alternative models in equations (2.11) and (2.12) we define three

regressors: the logarithmic excess return and consumption growth covariance over

surplus, the covariance between excess returns and consumption growth, and the co-

variance between excess returns and risk aversion growth. Thus the first regression

equation reads

(3.6) Re
it ≈ λ0t + γ1t

σcit
St

+ ait i = 1, . . . , N − 1 for each t

And the second regression equation is

(3.7) Re
it = λ0t + λ1t(σcit − σrait) + ait i = 1, . . . , N − 1 for each t

For comparison purposes we estimate two auxiliary equations, where the expected

excess returns are driven by consumption growth and risk aversion growth respec-

tively,

Re
it = λ0t + λ1tσcit + ait

Re
it = λ0t + λ1tσrait + ait

i = 1, . . . , N − 1 for each t(3.8)

The first one is consumption based and the second focus on recessions.

3.3. Consumption Risk. As suggested at the outset, the differences in expected

returns for the U.S. market are not fully explained merely with the use of con-

sumption growth. So far, we have deal with this issue through the use of a time
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non-separable utility function that gives rise to a time varying relative risk aversion.

The non separability is the result of evaluating the standard power utility function

on the consumption - habit level difference.

We can also address this phenomena by changing the measure of risk by using the

ultimate risk to consumption. That is the covariance of the asset’s returns and the

consumption growth over several periods of the return5. The key insight is the time

delay in the effect of portfolio decisions to consumption.

An important feature of ultimate consumption risk is that the derived stochastic

discount factor exhibits a business cycle behavior. Due to the serial correlation

of the consumption, which is low during recessions, the stochastic discount factor

achieves its maximum values before a crisis.

4. Results

The consumption data are the monthly personal consumption expenditures for

nondurable goods and services for the period of January 1960 through December

2010. The data comes from the Bureau of Economic Analysis.6 We use the 25

portfolios formed on book to market by Fama and French. These information, along

with the risk free rate series, comes from French’s (2012) web page. The price over

dividend is from Shiller’s (2012) home page. In addition to the original consumption

series (c0), and in order to determine the effects of ultimate consumption risk, we

use two lagged versions of it. Those series are a six months lagged one, referred as

to c6, and a twelve months lagged version, referred as to c12.

Table 1 reports the basic descriptive statistics. The average riskfree rate is of

0.43% and the monthly value premium for the period is of 0.33%, while the volatil-

ity growth - value spread is of 3.11%, this difference is somewhat suggested by the

maximum - minimum rates spreads. The descriptive statistics for the logarithmic

consumption growth rate for each series are found with the help of equation (2.3).

The results are presented in Panel A of the Table 2, all coefficients are estimated

5see Parker and Julliard (2005)
6Bureau of Economic Analysis, U.S. Department of Commerce, URL http://www.bea.gov/
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with precision. As expected, the mean of consumption growth increases with lags.

Additionally, the c6’s standard deviation is 2.6 times as much as c0’s standard devi-

ation, and c12’s standard deviation is 4.4 times as much as c0’s standard deviation.

We then expect that the more lagged series explains better the observed equity

premium.

The persistence of the surplus ratio is obtained from the logarithmic price over

dividend series which is modeled as an AR(1) process. The estimated parameters

for the series associated with c0, c6, and c12 are given in Panel B of the Table 2.

The estimates are statistically significant and the three of them match to the third

significant figure with an estimated value of 0.995, this implies that the surplus is

highly persistent.

Afterwards, we estimate the Campbell and Cochrane (1999) model (CC hence-

forth). To this end, we use the initial values7 of ρ and γ to calculate the surplus

ratio equation (2.4). Then, we estimate the CC model and obtain ρ̂ and γ̂. We

start over the process recursively with the estimated values {ρ̂, γ̂} as initial values,

and continue until convergence. The final estimates of {ρ̂, γ̂} are used to obtain the

surplus ratio St, the stochastic discount factor Mt, and the relative risk aversion γt.

Table 3 shows that the estimates of the subjective discount factor, ρ̂, are obtained

with precision, while the estimates of the curvature, γ̂, are obtained with little

precision. In overall the over identifying restrictions test rejects the model at a

significance level of 5% but are not rejected at a significance level of 1%. The

forth column reports the mean square pricing error (MSPE), its value decreases

consistently as long as the lag increases. However, the model estimated using genetic

algorithms for c6 series exhibits the lowest MSPE.

We plot the price over dividend ratio, the surplus ratio, the relative risk aversion,

and the stochastic discount factor for the simulated annealing estimates. To set a

framework we highlight the crisis time periods with red strips. The time varying

7The genetic algorithms technique starts with a set of random values ranging from 0 to 1 for ρ and
between 0 and 100 for γ. While simulated annealing starts with the mean of the inverse riskfree
rate gross return as ρ and 3 for γ
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relative risk aversion for c0 series is plotted in Panel A of Figure 1. This graphic

clearly suggest the changing nature of relative risk aversion. Its value mainly ranges

from 70 to 90, however it exhibits a steep rise that starts right before the 2008 finan-

cial crisis. This step up reach values as high as 110, despite the lower power utility

parameter γ which is of about 19.40 to 21.59.8 The figure shows a countercyclical

behavior, in recessions the relative risk aversion becomes higher, when surplus is low.

The magnitude of γ diminishes as we increase the lag of the ultimate consumption

series, it decreases from a value of 19.40 to a value of 2.6 for GA estimates (similar

behavior is seen for SA estimates).

Figure 2 simultaneously shows the price over dividend and surplus ratio for c0

series. In the habit model the price over dividend, which is low in recessions, is a

linear function of the surplus which is the state variable. This is not the case for

market data, although the patterns are similar. For c0 the two series appear to have

the same local highs, while the trend is opposed after 1990. For c6 series, Figure 3,

the highs and lows are exaggerated and sharp, and the series are situated away to

each other, but after the crossing the two series becomes well correlated until the end

of the last crisis indicated on the graph, where they switch directions again. Figure

4 shows that the surplus of the c12 series is the smoothest of the three, and although

it exhibits a crossing in the 90’s decade, where the series are partially opposed in

direction at the outset, they seems to be more positive correlated.

The stochastic discount factor evolution for c0 series is plotted in Panel B of Figure

2. It appears to be very volatile attaining deep lows and high peaks that ranges

from 0.5 to 2.5. Its volatility is about 25% (GA estimates) and 27% (SA estimates).

It seems to follow a trend with highs at crisis periods but this feature is hidden

because its highly fluctuating character. Panel B of Figure 3 shows the stochastic

discount factor for c6 series, its volatility reduces to 16% for GA estimates and 18%

for SA estimates. The figure shows a business cycle pattern with peaks at the outset

of a crisis period and deep falls at the end of the crisis period. Its excursions are

8Genetic algorithms and simulated annealing estimates respectively, see Table 3.
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less marked, ranging from 0.7 to 2.2. Lastly, Figure 4 shows the stochastic discount

factor for c12, its value ranges from 0.8 to 2.2, and its volatility is approximately

18% for both GA and SA estimates. It is remarkable how its pattern becomes well

defined with respect to that of c6 series, experiencing highs at the start of recessions

and lows at the end, in concordance with theory.

Table 4 shows the results of the cross sectional regression for the model given in

equation (3.6), for the contemporaneous and ultimate consumption risk respectively.

All the coefficients are estimated with precision, including the intercept, λ̂0, which

is positive and equal for both GA and SA estimates. The market price of risk is

similar for GA and SA, despite the difference in c6 series value. As we move from

contemporaneous to ultimate consumption risk, by increasing the series lag, the

price of risk increases from a value of approximately −10% to a positive value of

2.60% (GA estimates), and 2.67% (SA estimates) for c12 series. And, although

the price of risk is estimated with less precision for ultimate consumption risk in

c12 series, the sign becomes consistent with theory. The data suggest that ultimate

consumption risk specification with time varying aversion seems to explain relatively

well the cross section of average returns.

Table 5 reports the results for model in equation (3.7) and the sub models in (3.8),

for the contemporaneous and ultimate consumption risk. As before the estimates of

the intercept are positive and significant for all models. We first discuss the results

from the sub-models in (3.8). Panel A reports the results for the model using

consumption growth as a risk factor. As before all the coefficients are estimated

with precision, however, only the price of risk of c12 has the required sign. Panel

B reports the results for the model using risk aversion growth as a risk factor. The

price is estimated with precision for c0 and c12 series, however, the sign is correct for

c6 series in GA estimates and c12 series in both GA and SA estimates. Regarding

the sub models’ market price, Panel A and B of Table 5, the price of risk for c12

series has a value of 6.65 when using logarithmic consumption growth, and −23.70

for logarithmic risk aversion growth. Hence the excess returns seems to be more
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sensitive to risk aversion. The estimates for the complete model are given in Panel

C. As before the coefficients are estimated with precision for c0 and c12 series but

the sign agrees with the theory only for the latter.

Comparing the two estimated pricing models we notice that the market price is

about 2.6 for logarithmic consumption growth with surplus weighting risk factor, and

about 4.4 for logarithmic consumption growth - logarithmic risk aversion difference

risk factor. On the other hand, Table 4 and Table 5 reports the statistic R̄2, which is

the average of the R2 for the cross section regressions. All of them are very similar,

suggesting that the models explain about 25% of the cross-sectional variation of

returns. However, in all the pricing models we obtained a very high and significant

intercept suggesting the overall rejection of them.

5. Conclusions

The consumption model with external habit of Campbell and Cochrane (1999)

accounts for time varying and countercyclical expected returns, as well as the high

equity premium with a low and steady riskfree rate. This model has the feature

of deliver a counter cyclical varying risk aversion, and allows predictability of asset

returns. In this paper we estimate and test the model throughout the use of GMM

methodology. Afterwards, we test two specifications of pricing models that includes

surplus and risk aversion, under contemporaneous and ultimate consumption risk.

To that purpose, we examine the 25 portfolios formed on size and book to market

by Fama and French.

We first estimate the model using the stochastic discount factor and found the

subjective discount factor and the curvature. The actual parameters are plausible,

and in particular the curvature exhibit low values, in spite of the high relative

risk aversion. The actual magnitude of the curvature parameter lessens and the

stochastic discount factor becomes smoother as the lag of the ultimate consumptions

series increases. The stochastic discount factor exhibits a business cycle, attaining

maxima at the start of recessions and dropping at the end of them. With these
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parameters we calculate the surplus ratio and thus the relative risk aversion. The

linear relationship between the price over dividend and the surplus ratio in the

Campbell and Cochrane model is most closely followed under c12 series. The risk

aversion, on the other hand, proved to be time varying and countercyclical.

Further, we estimate two factor pricing models derived from the habit model

specification. The risk factor for the first model is the contemporaneous and ultimate

consumption risk, and the regressor is its covariance with the lognormal excess return

weighted by the inverse of the surplus. The risk factors for the second model are the

contemporaneous and ultimate consumption risk minus the risk aversion growth.

The sign of the estimated prices of risk are consistent with theory for the twelve

months consumption lagged series. However, the estimated intercept is statistically

significant indicating an overall rejection of the models. The data suggest that

ultimate consumption risk specification with time varying aversion seems to explain

relatively well the cross section of average returns. The excess returns seems to be

more sensitive to risk aversion than to consumption growth.
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Appendix . Derivatives to the Stochastic Discount Factor

In order to implement the test of overidentifiying restrictions we need the deriva-

tives (3.2) of the vector of functions (3.1),

∂f(Ct, St; θ)

∂θ′

To this end, we calculate the derivatives of the SDF Mt+1 = ρm−γt+1, w.r.t. the

parameter vector θ. For the subjective discount factor the resulting expression is

m−γt+1 = Mt+1/ρ. Besides, the derivative of w.r.t. the risk aversion coefficient γ is

∂Mt+1

∂γ
= ρ

∂m−γt+1

∂γ

= ρ
∂e−γ lnmt+1

∂γ

= ρe−γ lnmt+1

(
lnmt+1 + γ

m′t+1

mt+1

)

= Mt+1

(
lnmt+1 + γ

m′t+1

mt+1

)

where the derivative of mt+1 is given by

∂mt+1

∂γ
=
Ct+1

Ct

∂

∂γ

(
St+1

St

)

and

∂

∂γ

(
St+1

St

)
=
∂e∆st+1

∂γ

The derivative of st+1 is s′t+1 = (1−φ)s̄′+φs′t+λ
′
t(∆ct+1−c̄). Recalling the definition

of S̄ and s̄ we have s̄′ = 1/2γ and

∂S̄

∂γ
=

σ√
1− φ

∂
√
γ

∂γ

=
σ√

1− φ
1

2
√
γ

=
S̄

2γ



HABIT PERSISTENCE 145

Also

∂λt
∂γ

=
∂

∂γ

(
1

S̄

)√
1− 2(st − s̄) +

1

S̄

∂

∂γ

√
1− 2(st − s̄)

= −
(
S̄ ′

S̄2

)√
1− 2(st − s̄)−

1

S̄

s′t − s̄′√
1− 2(st − s̄)

= −
(
S̄ ′

S̄

)
(λt + 1)− 1

S̄2

s′t − s̄′
(λt + 1)

From the definition of St, and the previous relation for the derivative of S we get

∂λt
∂γ

= −
(
S̄ ′

S̄

)
(λt + 1)− 1

S̄2

s′t − s̄′
(λt + 1)

= − S

2γ

1

S

1

St
− St

S
2 (s′t − s̄′)

= − γt
2γ2
− St

S
2 (s′t − s̄′)

where we have used the definition of relative risk aversion γt = γ/St.
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Table 1

Descriptive Statistics

This table reports the descriptive statistics for the riskless interest rate, the Value,
and the Growth portfolios of Fama and French. Those are the extreme cases of the
set of 25 constructed portfolios. The statistics are reported in percentage.

Statistic Value Growth Riskless

Minimum −19.13 −34.18 0.00
Mean 0.992 0.659 0.426
Maximum 17.5 39.68 1.35
Standard Deviation 4.98 8.09 0.24
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Table 2

Consumption and P/D Processes Parameter Estimates

Panel A of this table reports the estimates of the random walk process for consume.
Panel B shows the estimates of the AR(1) process for the price over dividend data.
We form the time series pd0, pd6, and pd12 in order to match the consumption series
c0, c6, and c12 time periods respectively. The standard errors are in parenthesis.

Panel A. Consumption process’ parameter estimates

Series c̄ σc

c0
0.001740 0.003501

(0.000141) (0.000079)

c6
0.010505 0.009055

(0.000380) (0.000228)

c12
0.021176 0.015394

(0.000669) (0.000445)

Panel B. Price over dividend process’ parameter estimates

Series Constant φ

pd0
3.669072 0.995657

(0.353533) (0.003022)

pd6
3.638722 0.9954188

(0.342845) (0.003054)

pd12
3.64788 0.995521

(0.350530) (0.003045)
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Table 3

Model Parameter Estimates

This table reports the parameter estimates for the habit model. The results are
given for the contemporaneous consumption data series (c0), and the ultimate con-
sumptions series: the six month lagged series (c6), and the twelve months lagged
version (c12). Columns two and three report the estimates of the subjective discount
factor ρ and the curvature parameter γ, respectively, for the power utility function.
The standard errors are reported in parenthesis below each parameter. Column four
shows the mean square pricing error. The following columns report Hansen’s test
related parameters, the sample size, test statistic J , and p−value.

Panel A. Parameter estimates using the genetic algorithm routine

Series ρ̂ γ̂ MSPE T J p−value

c0
0.960 19.40 6.7146e−02 612 38.46 0.031
(0.01) (20.06)

c6
1.000 3.13 2.4238e−02 606 37.84 0.036
(0.17) (17.00)

c12
0.997 2.62 3.0833e−02 600 37.02 0.044
(0.31) (14.01)

Panel B. Parameter estimates using the simulated annealing routine

Series ρ̂ γ̂ MSPE T J p−value

c0
0.959 21.59 7.6745e−02 612 38.35 0.032
(0.01) (20.89)

c6
1.000 6.00 3.2253e−02 606 36.78 0.046
(0.18) (18.40)

c12
1.000 2.75 3.1069e−02 600 37.01 0.044
(0.31) (14.03)
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Table 4

Linear Factor Model Calibration for Consumption Growth Risk Factor
with Surplus Weighting

This table reports the estimates of the parameters {λ̂0, γ̂1} associated with the linear
model Re

it ≈ λ0t + γ1tσcit/St + ait. Panel A reports the results using the genetic
algorithm routine estimates and Panel B reports the results using the simulated
annealing routine estimates.

Panel A. Parameter estimates using genetic algorithms.

Series λ̂0 γ̂1 R̄2

c0
0.0103 −9.74

25.67
(0.0003) (2.21)

c6
0.0123 −2.05

25.73
(0.0003) (1.39)

c12
0.0109 2.60

27.82
(0.0002) (1.36)

Panel A. Parameter estimates using simulated annealing.

Series λ̂0 γ̂1 R̄2

c0
0.0103 −10.22

25.67
(0.0003) (2.31)

c6
0.0123 −3.17

25.73
(0.0003) (1.94)

c12
0.0109 2.67

27.82
(0.0002) (1.40)
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Table 5

Linear Factor Model Calibration for Consumption Growth and Risk
Aversion Growth Risk Factors

This table reports the estimates of the parameters {λ̂0, λ̂1} associated with the linear
model Re

it = λ0t+λ1t(σcit−σrait) +ait. Each panel reports the results for genetic al-
gorithm (GA) estimates and for simulated annealing (SA) estimates. Panel A shows
the estimates when the regressor is the covariance between the excess return and
logarithmic consumption growth. Panel B is for the covariance between the excess
return and logarithmic risk aversion growth. In Panel C the explicative variable
is the difference between the covariance of the excess return and and logarithmic
consumption growth and the covariance between the risk aversion growth with the
excess return.

Panel A. Parameter estimates using covariance between the excess return and loga-
rithmic consumption growth as explicative variable.

Series λ̂0 λ̂1 R̄2

c0
0.0064 −12.80

25.61
(0.0003) (8.21)

c6
0.0085 −9.37

21.99
(0.0003) (4.66)

c12
0.0073 6.65

24.68
(0.0003) (3.23)

Panel B. Parameter estimates using the covariance between the excess return and
logarithmic risk aversion growth as explicative variable.

GA λ̂0 λ̂1 R̄2

c0
0.0066 6.61

25.07
(0.0003) (3.14)

c6
0.0094 −3.46

24.34
(0.0003) (4.52)

c12
0.0072 −23.70

25.60
(0.0003) (6.56)

SA λ̂0 λ̂1 R̄2

c0
0.0066 6.88

25.07
(0.0003) (3.32)

c6
0.0092 1.16

24.34
(0.0003) (4.93)

c12
0.0072 −23.54

25.60
(0.0003) (6.55)

Panel C. Parameter estimates using as explicative variable the difference between
the covariance of the excess return and logarithmic consumption growth and the
covariance between the risk aversion growth and the excess return.

GA λ̂0 λ̂1 R̄2

c0
0.0066 −4.37

25.21
(0.0003) (2.26)

c6
0.0091 −0.39

23.63
(0.0003) (1.89)

c12
0.0072 4.44

25.70
(0.0003) (1.68)

SA λ̂0 λ̂1 R̄2

c0
0.0066 −4.48

25.21
(0.0003) (2.35)

c6
0.0089 −2.64

23.63
(0.0003) (2.13)

c12
0.0072 4.49

25.70
(0.0003) (1.70)
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Figure 1

Risk Aversion for c0 Series

The figure shows the monthly risk aversion for the simulated annealing estimates of
c0. The crisis periods are highlighted in red.
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Figure 2

Surplus and Price/Dividend and Stochastic Discount Factor for c0 Series

The figures show the monthly surplus and monthly price over dividend and the
stochastic discount factor for the simulated annealing estimates of c0. The crisis
periods are highlighted in red.

Figure A. Surplus and Price/Dividend

Figure B. Stochastic Discount Factor
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Figure 3

Surplus and Price/Dividend and Discount Factor for c6 Series

The figures show the monthly surplus and monthly price over dividend and the
stochastic discount factor for the simulated annealing estimates of c6. The crisis
periods are highlighted in red.

Figure A. Surplus and Price/Dividend

Figure B. Stochastic Discount Factor
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Figure 4

Surplus and Price/Dividend and Discount Factor for c12 Series

The figures show the monthly surplus and monthly price over dividend and the
stochastic discount factor for the simulated annealing estimates of c12. The crisis
periods are highlighted in red.

Figure A. Surplus and Price/Dividend

Figure B. Stochastic Discount Factor
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