

Effects of d-cloprostenol dose and corpus luteum age on ovulation, luteal function and morphology in non-lactating dairy cows with early corpora lutea

Journal:	Journal of Dairy Science
Manuscript ID:	JDS-11-5284
Article Type:	Research
Date Submitted by the Author:	21-Dec-2011
Complete List of Authors:	Valldecabres Torres, Xavier; Universidad CEU Cardenal Herrera, Producción y Salud Animal García Roselló, Empar; Universidad CEU Cardenal Herrera, Medicina y Cirugía Animal García muñoz, Ángel; Universidad CEU Cardenal Herrera, Producción y Salud Animal CUERVO-ARANGO LECINA, JUAN; Universidad CEU Cardenal Herrera, Medicina y Cirugía Animal
Key Words:	Endocrinology, Reproduction

- 1 Effects of d-cloprostenol dose and corpus luteum age on
- 2 ovulation, luteal function and morphology in non-lactating dairy
- 3 cows with early corpora lutea
- 4
- 5 X. Valldecabres-Torres,* E. García-Roselló,† A. García-Muñoz,* J.
- 6 Cuervo-Arango \dagger^1
- 7 *Departamento de Producción y Sanidad Animal and
- 8 †Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad CEU Cardenal
 9 Herrera, 46113 Moncada, Spain
- 10
- 11

ABSTRACT

Luteolysis is a key event in cattle reproduction. A standard dose of exogenous PGF2 α 12 (PGF) will induce full luteolysis in the majority of cows with a matured corpus luteum 13 14 (CL). However, this will not in cows with a CL < 5 days old. To date it is not known whether a larger dose will have a more potent luteolytic effect in cows during early 15 diestrus. The objective of this study was to characterize the effect of two doses of d-16 17 cloprostenol (150 and 300 μ g) on the progesterone concentration, luteal diameter and 18 ovulation rate in non-lactating dairy cattle 96 to 132 h post-ovulation. Twenty nonlactating dairy cows were included in the study. Each cow received two treatments of 19 20 d-cloprostenol in two consecutive cycles: a standard dose of 150 µg and a double dose 21 of 300 μ g. The cows were allocated randomly to one of four groups (five cows in each 22 group) according to the age of the CL at the time of treatment: 96, 108, 120 and 132 h. 23 The exact time of ovulation was known within 12 h, because of twice a day ultrasound 24 examination. CL diameter and progesterone concentration were measured before 25 treatment (day 0) and 2 and 4 d after treatment. Within each CL age group, the effect

¹ Corresponding author: juan.cuervo@uch.ceu.es

of d-cloprostenol dose on luteolysis was determined. More cows treated with double dose tended to have full luteolysis compared with the standard dose (8/10 vs. 4/10, respectively; P = 0.07). This effect was only apparent in cows with CLs of 120 and 132 h but not in earlier CLs. The interval from treatment to ovulation was shorter (3.3 ± 0.1 days) in cows treated with double dose than in cows treated with standard dose ($4.5 \pm$ 0.4 days) (P < 0.05).

- 32
- 33

INTRODUCTION

34 The corpus luteum (CL) of cattle is refractory to a single treatment of exogenous native $PGF_{2\alpha}$ (25 mg of dinoprost, manufacturer's recommended dose) within the first four 35 36 days of the estrous cycle (estrus = day 0) (Beal et al., 1980). Even one day later (Day 5 of the estrous cycle), a similar dose of $PGF_{2\alpha}$ (PGF) failed to cause full luteolysis in 37 treated heifers and cows (Rowson et al., 1972; Henricks et al., 1974). As a result, most 38 39 PGF-based protocols of ovulation and estrous synchronization in cattle allow at least a 40 period of 5.5 days between the previous ovulation and the administration of PGF (Ovsynch protocol, Pursley et al., 1995) so that the presence of a responsive CL is 41 42 assured in cows allocated to this type of protocols. However, there is still a percentage 43 of cows (depending on the study 5 to 20%) that fails to undergo full luteolysis following 44 the PGF treatment of the ovsynch protocol (Moreira et al., 2000; Gümen et al., 2003; 45 Brusveen et al., 2009).

An earlier luteolytic response can be obtained by increasing the frequency of PGF
administration from one (single treatment) to three treatments 12 h apart (Beltman et
al., 2009). In addition, an extra PGF administration 24 h later also increases the

49	percentage of cows with full luteolysis (from 85 to 96%) after the initial PGF treatment
50	of the ovsynch protocol (Brusveen et al., 2009). This phenomenon is relevant to cattle
51	reproduction, since cows with incomplete or partial luteolysis 2 d after PGF treatment
52	have reduced chances of becoming pregnant after fixed time AI in an ovsynch protocol
53	(Souza et al., 2007). Unfortunately, this protocol increases the labor costs resulting
54	from the additional handling of animals required to administer the second PGF
55	treatment.
56	In addition to the age of the CL and the frequency of the luteolytic treatment, the dose
57	of the luteolytic agent appears to be a factor that may influence the degree of
58	luteolysis. Evidence shows that full luteolysis is achieved in more mares in early
59	diestrus following a single treatment of 500 μg of cloprostenol than after a standard
60	dose of 250 μg (Cuervo-Arango and Newcombe, 2011). Similarly, the administration of
61	50 mg of dinoprost to dairy cows 3.5 days post-ovulation induced full luteolysis in 22%
62	of treated cows (Cuervo-Arango et al., 2011), time at which the CL is expected to be
63	refractory to a single standard treatment of PGF (Beal et al., 1980). However, to date
64	no study has compared specifically the dose rate effect of a luteolytic agent on the
65	degree of luteolysis in dairy cattle in early diestrus with different CL ages.
66	The objective of this study was to characterize the effect of two doses of d-
67	cloprostenol (150 and 300 μg) on the progesterone concentration, luteal diameter and
68	ovulation in non-lactating dairy cattle 84 to 132 h post-ovulation. The main hypothesis
69	tested was that the larger dose would induce a greater decrease in progesterone
70	concentration and luteal diameter 2 and 4 d after treatment.

71

72

MATERIAL AND METHODS

73 Animals

74	This trial was conducted from May to June 2011 at the Veterinary School Research
75	Farm of the Universidad CEU Cardenal Herrera in Naquera, Spain (northern
76	hemisphere). All animal procedures were handled in accordance with the Spanish
77	Department of Agriculture Guide for Care and Use of Animals in Research, and they
78	were approved by the Animal Welfare Committee of the Universidad CEU Cardenal
79	Herrera.
80	A total of twenty non-lactating Holstein cows were used in the trial. The cows had
81	been dry for at least two years. The cows' age ranged from four to 10 years (mean age
82	of 6.7 \pm 1.9 years). There were five nulliparous and 15 multiparous cows. At the
83	beginning of the trial all animals were cyclic and had no apparent uterine or ovarian
84	abnormalities confirmed by ultrasonography. The cows were fed alfalfa hay and cereal
85	concentrate ration calculated for a maintenance diet for dry cows. The mean body
86	condition score was 3.5 \pm 0.6 (range 2.5 to 4, scale 1 to 5) and the mean weight was
87	645 \pm 47 kg (range 570 to 680 kg). All the PGF (d-cloprostenol) injections were
88	administered with single-dose syringes in semimembranosus or semitendinosus
89	muscles with 18-gauge 3.5-cm needles.

90

91 Experimental design

- 92 All cows were administered 25 mg dinoprost (Enzaprost; CEVA Salud Animal S.A.
- 93 Barcelona, Spain) 14 days apart. The day beginning after the second dinoprost

94	administration, the cows were scanned by rectal ultrasonography every 12 h for the
95	detection of ovulation with an ultrasound scanner (Sonosite 180 Vet Plus; BCF
96	Ultrasound Australasia, Nunawading, VIC, Australia) equipped with an 8-MHz linear-
97	array transducer. Ovulation was detected as per the disappearance of the previously
98	recorded preovulatory follicle and confirmed by the later development of a corpus
99	luteum. Once a cow had ovulated, she was randomly allocated to one of the four CL
100	age groups: A) 84 to 96 h (n =5); B) 96 to 108 h (n = 5); C) 108 to 120 h (n = 5); and D)
101	120 to 132 h (n = 5). For simplicity the CL age groups are referred to as the oldest
102	possible age (96, 108, 120 and 132 h). The study followed a cross over design: for each
103	CL age group, every cow received two treatments of d-cloprostenol (Dalmazin; Fatro
104	Iberica S.L., Barcelona, Spain) during two consecutive cycles. The treatments consisted
105	of either a standard dose (recommended by the manufacturer) of 150 μg of d-
106	cloprostenol (2 ml of Dalmazin) or a dose of 300 μg of d-cloprostenol (4 ml of
107	Dalmazin; double of the manufacturer's recommended dose) intramuscularly. After
108	each treatment, the cows were scanned every 12 h until an ovulation was detected or
109	until 7 days later, whatever happened first. If the cow had not ovulated within 7 days
110	of treatment, she was administered 25 mg of dinoprost, and scanned for detection of
111	ovulation every 12 h. After the consecutive ovulation, each cow received the
112	remaining treatment dose of d-cloprostenol at the same interval post-ovulation that
113	during the previous cycle and scanned daily for 7 d. Whether a cow received the
114	standard or the double dose in the first or second cycle was chosen randomly.
115	

116 Endpoints analyzed

117	The endpoints analyzed were CL diameter and progesterone concentration just before
118	(Day 0), 2 and 4 d after treatment. And whether the cow ovulated or not
119	spontaneously (no treatment to induce ovulation was used in the study) within 7 d of
120	treatment. If a cystic structure (fluid-filled ovarian structure > 2 cm in diameter) was
121	present 7 d post-treatment, an extra blood sample was taken for progesterone
122	determination and cyst classification: a cow with a luteal cyst had progesterone
123	concentration > 1 ng/mL, whereas < 1 ng/mL with a follicular cyst.
124	For progesterone analysis, a blood sample was taken from the tail vein on each
125	occasion (0, 2 and 4 d after treatment), in 5 mL heparinized tubes. The tubes were
126	immediately centrifuged during 10 min at 2000 x g. Aliquots of plasma were stored at –
127	20 ºC for later assay determination. Concentrations of plasma progesterone were
128	measured in a single assay, using enzyme-immunoassay kits (Demeditec Diagnostics
129	GmbH, Kiel-Wellsee, Germany) with a sensitivity of 0.04 ng/mL and an intra-assay
130	variation coefficient of 5%. A cow was classified as having full luteolysis when the
131	progesterone concentration was below 1 ng/mL 4 d post-treatment.
132	The CL diameter was calculated by the average of two measurements taken at right
133	angles with the electronic calipers when the frozen image of the CL was maximum.

134

135 Statistical analyses

- 136 For each CL age group, a general linear model of variance with a repeated statement to
- 137 account for autocorrelation between sequential observations of same individuals
- 138 (Systat 13; Systat Software Inc., Chicago, IL, USA) was performed. Two models were

139	created, one for progesterone concentration and another for CL diameter. Each model
140	had the same two fixed factors: dose of d-cloprostenol (two levels: standard and
141	double dose) and day relative to treatment (repeated observations: on days 0, 2 and 4
142	after treatment). If an effect of dose (standard vs. double) or an interaction of dose
143	and day were or approached significance, data were examined further by student t-
144	test.
145	In cows with full luteolysis, the intervals from treatment to ovulation of cows receiving
146	the standard dose were compared with those treated with the double dose by
147	unpaired student <i>t</i> -test. Frequency data (number of cows with full luteolysis) were
148	analyzed by Fisher's exact test.
149	A probability of P < 0.05 indicated that a difference was significant and probabilities
150	between P > 0.05 and P < 0.1 indicated that a difference approached significance. Data
151	are presented as mean ± SEM, unless stated otherwise.
152	
153	RESULTS
154	No cow ovulated in the two earliest CL age groups (96 and 108 h). However, one cow
155	treated with double dose of d-cloprostenol had full luteolysis followed by the
156	development of a luteal cyst (Table 1). In these two groups, the dose of d-cloprostenol
157	had no effect on the progesterone concentration (Fig. 1; P > 0.05). However, the
158	double dose of d-cloprostenol tended to induce a greater decrease in the post-
159	treatment CL diameter in cows treated 108 h post-ovulation. In addition, in this group
160	there was a significant effect of dose by day interaction on the CL diameter. This

resulted from a slower increase 2 and 4 d post-treatment in the CL diameter of cowstreated with the double dose (Fig. 1).

163	In the two oldest CL groups (120 and 132 h), the double dose of d-cloprostenol tended
164	(P = 0.07) to induce full luteolysis in more cows (8/10) than the standard dose (4/10)
165	(Table 1). Two cows with full luteolysis from the double dose groups did not ovulate
166	but developed cystic ovaries (Table 1). Overall, four and six cows ovulated after
167	treatment with the standard and double dose of d-cloprostenol, respectively (P $>$
168	0.05). In these ovulating cows, the interval from treatment to ovulation was shorter (P
169	< 0.05) in those treated with double dose (3.3 \pm 0.1 days) than in cows administered
170	the standard dose (4.5 \pm 0.4 days).
171	For the CL age group of 120 h, the double dose of d-cloprostenol tended to induce a
172	greater decrease in the post-treatment progesterone concentration and CL diameter
173	(Fig. 1; P < 0.1). There was an effect (P < 0.05) of dose by day interaction on the CL
174	diameter. For the oldest CL group (132 h), the double dose induced a greater decrease
175	in the post-treatment progesterone concentration (P < 0.05) and CL diameter (P < 0.1 ;
176	Fig. 1).

For cows treated with double doses of d-cloprostenol, the difference in progesterone concentration between 0 and 2 d post-treatment and with a CL of 120 and 132 h old (1.8 ± 0.59 and 1.7 ± 0.47 ng/mL, respectively) was greater (P < 0.05) than that of cows with CLs of 108 and 96 h old (-0.39 ± 0.7 and -0.31 ± 0.1 ng/mL, respectively) (Table 2).

In cows with a CL of 132 h old, the progesterone concentration continued to decrease
between 2 and 4 d after a treatment with double dose, but not in cows treated with

184	the standard dose (mean difference in progesterone concentration between 2 and 4 d
185	post-treatment of 0.2 \pm 0.1 and –0.6 \pm 0.4 ng/mL for double and standard dose groups
186	respectively; P = 0.09, Table 2).

187

188

DISCUSSION

189 The main hypothesis tested that a larger dose of PGF would induce a greater decrease 190 in progesterone concentration and luteal diameter 2 and 4 d after treatment can be 191 accepted only partially. The larger dose (300 μ g) of d-cloprostenol was superior to the 192 standard dose (150 µg) in terms of reducing progesterone concentration within four 193 days of treatment, only in cows with a CL aged between 108 and 132 h (4.5 and 5.5 194 days) but not earlier. A 12 h gap in the CL age was sufficient to influence whether the 195 dose of d-cloprostenol had an effect on the percentage of cows with full luteolysis. 196 Therefore, the main strength of this study was that the cows were scanned for 197 detection of ovulation every 12 h. This allowed having groups of cows with relatively 198 homogenous CL ages (between 0 and 12 h difference). This, in part overcame the expected individual variation within groups resultant from their relatively small sample 199 200 size. 201 It appears that the effect of dose on progesterone concentration becomes more 202 apparent as the CL gets older: the double dose had no effect in cows with a CL aged 203 between 96 and 108 h, this became a tendency in 120 h and finally had a significant 204 effect when the CL was 132 h old. This finding may have clinical implications since the

- 205 cows enrolled in an ovsynch protocol have a CL aged between 132 and 144 h at the
- time of the PGF treatment (Pursley et al., 1995). In this line, a large field study with

207	lactating dairy cows involving ovsynch-based synchronization programs with different
208	doses of a luteolytic agent should be carried out. Then it would be possible to elucidate
209	whether increasing the dose of PGF is beneficial to achieve full luteolysis in a greater
210	proportion of cows and so improve pregnancy rates (Souza et al., 2007; Martins et al.,
211	2011).
212	The CL's natural resistance to exogenous induced-luteolysis during early diestrus has
213	been widely studied in ruminants (Tsai and Wiltbank, 1997; Tsai and Wiltbank, 1998;
214	Skarzynski and Okuda, 1999; Mamluk et al., 1999; Silva et al., 2000; Sayre et al., 2000;
215	Levy et al., 2000), and yet it is not completely understood. Possible explanations are
216	reduced availability of endothelin-1 (Levy et al., 2000) and increased availability of
217	prostaglandin dehydrogenase (Silva et al., 2000) in early CLs compared with mature
218	CLs. Endothelin-1 is a proteinaceous vasoconstrictor and steroidogenic cell modulator
219	produced by endothelial cells in response to PGF that alters progesterone production
220	in cattle (Girsh et al., 1996), whereas prostaglandin dehydrogenase (PGDH)
221	metabolizes PGF to its inactive form, 15-keto- $PGF_{2\alpha}$ in ewes (Silva et al., 2000). It is
222	possible that providing a higher dose of exogenous PGF would override to some extent
223	the anti-luteolytic effect resultant from the increased availability of PGDH and reduced
224	concentration of ET-1 in the early CL.
225	The results of a similar study in mares (Cuervo-Arango and Newcombe, 2011), also
226	showed a significant effect of d,I-cloprostenol dose on the percentage of mares with
227	full luteolysis when it was administered at different stages of early diestrus. The
228	difference became more apparent as the mares' CL became older. In the latter study,

three doses of d,l-cloprostenol were attempted: 250 (standard), 500 and 750 $\,\mu\text{g}.$ The

230	double dose induced a greater percentage of mares with full luteolysis than did the
231	standard dose but it was similar to that induced with 750 $\mu\text{g}.$ This effect was only
232	significant in mares with CLs aged 96 to 104 h but not earlier. Therefore, it seems that
233	there is also a threshold upon which an increase in PGF dosage does not result in an
234	equivalent luteolytic effect.
235	The CL morphology seemed to be affected by the dose of PGF to a greater extent and
236	at an earlier stage than its functionality. The diameter of the CL and its ability to secret
237	progesterone do not always correlate well (Herzog et al., 2010). In a recent study
238	(Cuervo-Arango et al., 2011), the CL diameter was reduced to a greater extent and for
239	longer than the progesterone concentration in cows with PGF-induced partial
240	luteolysis compared with non-treated cows.
241	The reason why the interval between treatment and ovulation in cows treated with
242	double dose was shorter than that of cows treated with the standard dose is unknown.
243	A possible explanation might be that the greater reduction in progesterone
244	concentration resultant from the larger dose, allowed a more rapid increase in LH with
245	the subsequent advance in follicular maturation and ovulation. The negative effect
246	that progesterone exerts on LH has been shown (Hannan et al., 2010). This theory on
247	the increased LH concentration might also account for the greater occurrence of
248	ovarian cystic degeneration in cows treated with a large dose of PGF at early stages of
249	diestrus. This association between high dose of PGF and ovarian cyst development has
250	been observed providusly (Cueryo Arange et al. 2011) and should not be left
	been observed previously (cdervo-Arango et al., 2011) and should not be left

252

253	CONCLUSIONS
254	Treatment with double dose of d-cloprostenol (300 μ g) induced a greater proportion
255	of full luteolysis in cows with a CL aged 120 to 132 h than the standard dose (150 μg).
256	This effect was not apparent in cows with earlier CLs. The CL diameter tended to be
257	smaller in cows treated with double than standard dose whet hay had a CL of 108 to
258	132 h old. A difference of as little as 12 h in the CL age was sufficient to influence the
259	effect of d-cloprostenol dose on the CL morphology and functionality. Cows treated
260	with double dose of d-cloprostenol ovulated a day earlier than ovulating cows treated
261	with the standard dose.
262	
263	ACKNOWLEDGMENTS
264	This study was founded by the Universidad CEU Cardenal Herrera (Project ref. PRCEU-
265	UCH04/11). This article is intended to be part of the PhD thesis dissertation of Xavier
266	Valldecabres Torres. The authors thank the members of INIA (Reproduction
267	Department, Madrid) for technical assistance with determination of progesterone
268	concentration.
269	
270	DEFEDENCES
270	REFERENCES
271	Beal, W.E., R.A. Milvae, and W. Hansel. 1980. Oestrous cycle length and plasma
272	progesterone concentrations following administration of prostaglandin F-2 $lpha$
273	early in the bovine oestrous cycle. J. Reprod. Fertil. 59:393–396.

274	Beltman, M.E., J.F. Roche, P. Lonergan, N. Forde, and M.A. Crowe. 2009. Evaluation of
275	models to induce low progesterone during the early luteal phase in cattle.
276	Theriogenology 72:986–992.
277	Brusveen, D. J., A. H. Souza, and M. C. Wiltbank. 2009. Effects of additional
278	prostaglandin F2alpha and estradiol-17beta during Ovsynch in lactating dairy
279	cows. J. Dairy Sci. 92:1412–1422.
280	Cuervo-Arango, J., and J.R. Newcombe. 2011. Relationship between dose of
281	cloprostenol and age of corpus luteum on the luteolytic response of early
282	dioestrous mares: a field study. Reprod. Domest. Anim. doi: 10.1111/j.1439-
283	0531.2011.01940.x.
284	Cuervo-Arango, J., E. García-Roselló, A. García-Muñoz, X. Valldecabres-Torres, P.
285	Martínez-Ros, and A. González- Bulnes. 2011. The effect of a single high dose of
286	PGF2alpha administered to dairy cattle 3.5 days after ovulation on luteal
287	function, morphology and follicular dynamics. Theriogenology 76:1736–1746.
288	Girsh, E., W. Wang, R. Mamluk, F. Arditi, A. Friedman, and R.A. Milvae. 1996.
289	Regulation of the endothelin-1 expression in the bovine corpus luteum: elevation
290	by prostaglandin F2a. Endocrinol. 137:5191–5196.
291	Gümen, A., J. N. Guenther, and M. C. Wiltbank. 2003. Follicular size and response to
292	Ovsynch versus detection of estrus in anovular and ovular lactating dairy cows. J.
293	Dairy Sci. 86:3184–3194.
294	Hannan, M.A., M.J. Fuenzalida, M.A. Siddiqui, M. Shamsuddin, M.A. Beg, and O.J.
295	Ginther. 2010. Diurnal variation in LH and temporal relationships between

- 296 oscillations in LH and progesterone during the luteal phase in heifers.
- 297 Theriogenology 74:1491–1498.
- Henricks, D.M., J.T. Long, J.R. Hill, and J.F. Dickey. 1974. The effect of prostaglandin F2
- alpha during various stages of the oestrous cycle of beef heifers. J. Reprod. Fertil.
- 300 41:113–120.
- 301 Herzog, K., M. Brockhan-Lüdemann, M. Kaske, N. Beindorff, V. Paul, H. Niemann, and
- 302 H. Bollwein. 2010. Luteal blood flow is a more appropriate indicator for luteal
- 303 function during the bovine estrous cycle than luteal size. Theriogenology
- 304 73:691–697.
- Levy, N., S. Kobayashi, Z. Roth, D. Wolfenson, and A. Miyamoto. 2000. Administration
- 306 of prostaglandin F2a during the early bovine luteal phase does not alter the
- 307 expression of ET-1 and its Type A receptor: a possible cause for corpus luteum
- 308 refractoriness. Biol. Reprod. 63:377–382.
- 309 Mamluk, R., N. Levy, B. Rueda, J.S. Davis, and R. Meidan. 1999. Characterization and
- 310 regulation of type A endothelin receptor gene expression in bovine luteal cell
- 311 types. Endocrinol. 140:2110–2116.
- 312 Martins, J.P., R.K. Policelli, L.M. Neuder, W. Raphael, and J.R. Pursley. 2011. Effects of
- cloprostenol sodium at final prostaglandin F2α of Ovsynch on complete luteolysis
- and pregnancy per artificial insemination in lactating dairy cows. J. Dairy Sci.
- 315 94:2815–2824.

316	Moreira, F., C. A. Risco, M. F. Pires, J. D. Ambrose, M. Drost, and W. W. Thatcher. 2000.
317	Use of bovine somatotropin in lactating dairy cows receiving timed artificial
318	insemination. J. Dairy Sci. 83:1237–1247.
319	Pursley, J.R., M.O. Mee, and M.C Wiltbank. 1995. Synchronization of ovulation in dairy
320	cows using PGF2alpha and GnRH. Theriogenology 44:915–923.
321	Rowson, L.E., R. Tervit, and A. Brand. 1972. The use of prostaglandins for
322	synchronization of oestrus in cattle. J. Reprod. Fertil. 29:145.
323	Sayre, B.L., R. Taft, E.K. Inskeep, and J. Killefer. 2000. Increased Expression of Insulin-
324	Like Growth Factor Binding Protein-1 During Induced Regression of Bovine
325	Corpora Lutea. Biol. Reprod. 63:21–29.
326	Silva, P. J., J. L. Juengel, M. K. Rollyson, and G. D. Niswender. 2000. Prostaglandin
327	metabolism in the ovine corpus luteum: catabolism of prostaglandin F(2alpha)
328	(PGF(2alpha)) coincides with resistance of the corpus luteum to PGF(2alpha). Biol
329	Reprod. 63:1229–1236.
330	Skarzynski, D.J., and K., Okuda. 1999. Sensitivity of bovine corpora lutea to
331	prostaglandin F2a is dependent on progesterone, oxytocin and prostaglandins.
332	Biol. Reprod. 60:1292–1298.
333	Souza, A. H., A. Gümen, E. P. Silva, A. P. Cunha, J. N. Guenther, C. M. Peto, D. Z.
334	Caraviello, and M. C. Wiltbank. 2007. Supplementation with estradiol-17beta
335	before the last gonadotropin-releasing hormone injection of the Ovsynch
336	protocol in lactating dairy cows. J. Dairy Sci. 90:4623–4634.

- Tsai, S.J., and M.C. Wiltbank. 1997. Prostaglandin F2a induces expression of 337
- 338 prostaglandin G/H synthase-2 in the ovine corpus luteum: a potential positive
- feedback loop during luteolysis. Biol. Reprod. 57:1016–1022. 339
- Tsai, S.J., and M.C. Wiltbank. 1998. Prostaglandin F2 alpha regulates distinct 340
- 341 physiological changes in early and mid-cycle bovine corpora lutea. Biol. Reprod.
- 342 58:346-352.

.ges in

CL age (h)	d-CLO dose	% cows P4 < 1 ng/mL		% cows P4 < 0.5 ng/mL		Ovulating cows
		2 d	4 d	2 d	4 d	
06	standard	0.0	0.0	0.0	0.0	0/5
90	double	0.0	0.0	0.0	0.0	0/5
109	standard	0.0	0.0	0.0	0.0	0/5
108	double	20.0	20.0	0.0	20.0	0/5*
120	standard	20.0	20.0	0.0	20.0	1/5
120	double	40.0	60.0	40.0	60.0	2/5 [#]
100	standard	60.0	60.0	40.0	40.0	3/5
132	double	80.0	100.0	60.0	80.0	4/5*

Table 1. Effect of d-cloprostenol dose and age of CL on ovulation and luteolysis

The CL age groups refer to the interval from ovulation to treatment (age of CL). 2 d and 4 d: blood samples were taken two and four days after treatment. Double and standard doses are 300 and 150 μ g of d-cloprostenol, respectively. An asterisk (*) indicates that a cow developed a luteal cyst with progesterone concentration of > 1 ng/mL seven days after treatment. One cow developed a follicular cyst (#) with progesterone concentration < 1 ng/mL seven days after treatment.

Table 2. Effect of CL age and d-cloprostenol dose on rate of progesterone decrease over time

CL age (h)	d-CLO dose	P4: 0 d – 2 d (ng/mL)	P-value	P4: 2 d – 4 d (ng/mL)	P-value
06	standard	-0.6 ± 0.3	NC	-1.8 ± 0.8	NC
90	double	-0.3 ± 0.1^{a}	INS	-1.9 ± 0.4	INS
	standard	-0.6 ± 0.5		-1.0 ± 1.1	
108	double	-0.4 ± 0.7 ^a	NS	-0.5 ± 1.1	NS
	standard	0.6 ± 0.9		-0.8 ± 0.7	
120	double	1.8 ± 0.6 ^b	NS	-0.2 ± 0.6	NS
422	standard	1.9 ± 0.6	NG	-0.6 ± 0.4	0.00
132	double 1.7 ± 0.	1.7 ± 0.5 ^b	NS	0.2 ± 0.1	0.09

The corpus luteum (CL) groups refer to the age of the CL in hours at the time of treatment with a double (300 μ g) or standard (150 μ g) dose of d-cloprostenol. P4 0 d – 2 d: difference in progesterone concentration between just before and two days after treatment. In this column, different letters (a, b) indicate that the rate of decrease is different (P < 0.05) in cows treated with double dose (effect of CL age). P4: 2 d – 4 d: difference in progesterone concentration between two and 4 days after treatment. Within CL age groups, the rate of progesterone decrease tended (P = 0.09) to be greater in cows with CLs of 132 h treated with double dose.

ScholarOne support: (434) 964 4100

Figure 1. Effect of d-cloprostenol dose on progesterone concentration and corpus luteum (CL) diameter. The CL and progesterone data are arranged in four groups according to the age of the CL at the time of treatment (96, 108, 120 and 132 h). The double and standard doses correspond with 300 and 150 μ g of d-cloprostenol, respectively. Within each CL age group, the probabilities for the effect of group (G: double *vs.* standard dose), day (D: 0, 2 and 4 d after treatment) and group by day interaction (G*D) are shown.