Trabajo realizado por el equipo de la Biblioteca Digital de la Fundación Universitaria San Pablo-CEU

Me comprometo a utilizar esta copia privada sin finalidad lucrativa, para fines de investigación y docencia, de acuerdo con el art. 37 del T.R.L.P.I. (Texto Refundido de la Ley de Propiedad Intelectual del 12 abril 1996)
Capítulo 2
MODELOS UNIVARIANTES PARA EL ANÁLISIS ECONÓMICO
Antoni Espasa y José Ramón Cancelo

2.0. Introducción

La modelización univariante de fenómenos dinámicos ha pasado de ser prácticamente desconocida por los economistas a finales de los años sesenta, a convertirse en la actualidad en una herramienta imprescindible en el análisis económico aplicado. En estos veinticinco años se ha reconocido y desarrollado el amplio potencial de las representaciones univariantes, y en particular de los modelos ARIMA. La idea central de la modelización univariante es sencilla: si el objetivo es explicar el valor que toma, en un momento de tiempo concreto t, un fenómeno económico que muestra dependencia temporal, un procedimiento factible consiste en recoger información sobre su evolución a lo largo del tiempo, y explotar el patrón de regularidad que muestran los datos.

La principal característica de este enfoque reside en que, para la construcción de un modelo univariante, la única información muestral necesaria es la referida al propio fenómeno a analizar. Esto constituye, a la vez, la gran ventaja y la mayor limitación de este tipo de modelización.

La gran ventaja, porque a menudo sucede que no se dispone de series temporales homogéneas y con la periodicidad deseada de todas las variables relacionadas en un modelo multivariante. En este caso, la modelización univariante, que garantiza resultados consistentes usando un conjunto reducido —en lo que a número de variables se refiere— de información muestral, permite realizar un análisis de los datos observados que está basado en modelos, lo que a su vez aporta garantías de objetividad al realizar un estudio económico aplicado.
La mayor limitación, porque es evidente que cuando se dispone de información sobre otras variables, la modelización univariante será menos eficiente que las alternativas que consideran la interrelación entre variables económicas.

En este capítulo se procederá a presentar los fundamentos de la representación univariante de fenómenos económicos y la forma de interpretar los modelos resultantes. Esto último es un punto del máximo interés para el analista económico, ya que el modelo univariante contiene una información muy valiosa sobre el proceso generador de datos del fenómeno analizado. Como es natural, esta información no es tan amplia como la que resulta de un modelo econométrico, pero convenientemente explotada puede ser de gran utilidad para el analista.

En cambio, no se entrará a discutir otras cuestiones habituales en el tratamiento estadístico de estos modelos, como su especificación, estimación o validación, temas que se tratan con gran claridad, y a distintos niveles de complejidad, en un amplio conjunto de manuales. El objetivo de este capítulo, en consonancia con el del libro en conjunto, no es enseñar al lector a construir modelos, sino presentar sus fundamentos lógicos y, sobre todo, indicar cómo explotar la información que se contiene en ellos.

En el epígrafe segundo se introduce, utilizando el supuesto de estacionariedad, la idea de dependencia temporal en un fenómeno dinámico, y se analiza cómo esta dependencia se puede explotar para extraer un patrón de regularidad y, a partir de éste, un modelo de comportamiento. Esto se hace operativo con los modelos ARMA, para los que se recalca que constituyen una aproximación de una estructura teórica general.

En la sección tercera se relaja la restricción de estacionariedad, que no se cumple en muchos fenómenos económicos, y se sustituye por la restricción de «no estacionariedad homogénea». La extensión del modelo ARMA a este contexto conduce al modelo ARIMA, en el que a la estructura del modelo ARMA se le añaden operadores de diferencias. El objetivo último de estos operadores es transformar una serie originalmente no estacionaria en una serie estacionaria, y a la que por lo tanto se le pueda aplicar la teoría estadística de inferencia en procesos estocásticos estacionarios desarrollada en el epígrafe anterior.

Siguiendo con el proceso de hacer operativa la representación univariante, a continuación se considera el análisis de series con dependencia estacional; para ello se plantea una formulación restrictiva del modelo ARIMA general que requiere un número reducido de parámetros, con el fin de que se pueda aplicar a series económicas que muestran oscilaciones estacionales. En el epígrafe siguiente, que cierra una primera parte del capítulo, se presentan algunos ejemplos de modelos ARIMA correspondientes a distintas series temporales económicas españolas.

Los esquemas anteriores se desarrollan suponiendo que la serie no experimenta ningún tipo de anomalía externa, que provoque una ruptura respecto al patrón de regularidad que se observa en el tiempo. Sin embargo, son raras las series temporales económicas que no sufren el efecto de acontecimientos externos, bajo la forma de cambios de definición, cambios legislativos, actuaciones discrecionales, etc. En ese caso se hace necesario completar el modelo ARIMA con el llamado Análisis de Intervención, del que trata la sección sexta.

Los tres epígrafes siguientes se dedican a la predicción. El acento no se pone tanto en el carácter puramente instrumental de la misma, en el sentido de aproximar los valores futuros de la variable, sino en cómo emplearla para desvelar propiedades estructurales del fenómeno analizado. En particular, la caracterización, a través de la función de predicción, de la teórica situación de equilibrio a largo plazo latente en cada momento del tiempo, merece una atención especial.

El capítulo se cierra con un epígrafe resumen, el décimo, donde se representa de forma esquemática la información que el analista económico debe extraer de un modelo ARIMA, y con una reflexión —epígrafe undécimo— sobre el interés de buscar esquemas generales más allá de los modelos ARIMA para su utilización en el análisis económico aplicado.

El capítulo está orientado hacia un lector que va a ser un usuario de modelos univariantes, en concreto de modelos ARIMA, que otros analistas han construido; por lo tanto se procura evitar toda la complejidad estadística que es necesario considerar cuando lo que se pretende es explicar cómo construir modelos. La idea que subyace en este planteamiento es que un economista puede necesitar utilizar modelos univariantes en su ejercicio profesional; para ello no precisa ser un experto en la elaboración de los mismos, sino simplemente saber cómo interpretarlos.

En consonancia con lo anterior, la dificultad matemático-estadística de este capítulo está concentrada en los puntos que el lector debe dominar si desea convertirse en un usuario informado de modelos univariantes. Estos modelos recogen la dependencia y regularidad que muestran los datos a lo largo del tiempo, y eso se capta con formulaciones polinomiales temporales. En la experiencia de los autores, para que un analista de la coyuntura económica pueda ser un usuario informado de los modelos ARIMA, es ineludible que haya entrado en el estudio de tales formulaciones polinomiales; por tal motivo, esta formulación matemático-estadística se desarrolla con la amplitud necesaria para que el lector la pueda asumir con plenitud.
 Esto no debe desanimar a quien tenga la pretensión de alcanzar el nivel de usuario informado de modelos ARIMA, pues el esfuerzo es imprescindible. En compensación, en la segunda parte del capítulo el lector experimentará que con el instrumental anterior está capacitado para extraer el contenido económico de los modelos ARIMA, y a poder utilizarlos con pleno conocimiento del fundamento y limitaciones que tales modelos poseen.

2.1. Modelos dinámicos: definición y clasificación

En este libro se estudiará el comportamiento de variables temporales, es decir, variables que se observan a lo largo del tiempo. \(Y \) denota la variable \(Y \) correspondiente al momento \(t \). Además, se dispone de una serie temporal de \(T \) observaciones, formada por una observación de cada una de las variables \(Y_1, Y_2, \ldots, Y_T \).

En gran parte de las variables temporales utilizadas en el análisis económico aplicado se detecta un patrón de comportamiento, es decir, en su evolución a lo largo del tiempo se observa una regularidad. Esa regularidad de las series temporales económicas es, en general, estocástica y no determinista; en otras palabras, esa regularidad no admite una formulación funcional determinista, sino que es función de variables aleatorias (estocásticas), por ejemplo, los propios valores pasados de la variable económica en cuestión.

Estimando tal regularidad el analista construye un mecanismo que le permite: 1) explicar los valores observados en términos de un componente regular y una desviación (imprevisible) sobre el mismo; y 2) establecer un procedimiento de prevención de sus valores futuros.

En este marco de referencia el aumento del conocimiento se produce al acotar la incertidumbre sobre las realizaciones de la variable \(Y \). Así, si sobre una realización \(Y \) se tenía inicialmente una incertidumbre que comprendía cualquier valor dentro de un gran rango de valores teóricamente posibles, al disponer de un patrón estocástico de regularidad la incertidumbre se reduce a desviaciones, idealmente pequeñas, sobre el valor que se deriva de dicho esquema de regularidad.

Probablemente, en el mundo real los individuos tienden a ver el comportamiento de una variable económica como desviaciones respecto a patrones subjetivos de regularidad, que cada individuo deter-

\[Y_t = PS_t + a_t. \]

La parte sistemática recoge la regularidad en el comportamiento de la variable \(Y \). Esa parte regular es la parte prediccible con la información que se usa para construir el modelo.

La otra parte, denominada innovación respecto al conjunto de información con el que se construye un modelo, es un componente aleatorio en el que sus valores no tienen ninguna relación o dependencia entre sí. La innovación en \(t \) no está relacionada con las anteriores ni con las posteriores, ni tampoco está relacionada con la parte sistemática del modelo; en ese sentido se dice que innovación y parte sistemática son independientes. Siendo una auténtica innovación, no es posible ningún tipo de descomposición con utilización para fines predictivos: es impredecible, es decir, su predicción siempre es cero. De ahí que a \(a_t \) también se le denomine sorpresa.

En este capítulo se considera que la innovación es aquella parte de la variable que resulta impredecible dado el conjunto de información sobre el que se construye el modelo univariante. En un contexto más amplio que el de los modelos univariantes, una innovación sólo será auténticamente tal si es impredecible dado cualquier conjunto de información existente.

De lo anterior se deduce que las innovaciones son lo único nuevo que se incorpora al fenómeno estudiado en cada momento del tiempo, y recogen toda una serie de factores múltiples que afectan a \(Y \), cuyo efecto no se puede adelantar, al menos en parte, antes de ser observado. Las innovaciones pueden incluir también posibles errores de medida, siempre que éstos no presenten ningún tipo de regularidad.

Tal y como se ha definido, la innovación es una variable temporal fuertemente restringida, pues no existe ninguna función, de cualquier tipo o forma, de las innovaciones para momentos de tiempo distintos a \(t \), que sea útil para aproximar el valor de la innovación en \(t \). Como
tal, la innovación en t es una variable independiente de la innovación correspondiente a cualquier otro momento del tiempo.

En el análisis aplicado es práctica habitual utilizar aproximaciones lineales de los verdaderos procesos generadores de los datos. En ese caso, se suele sustituir la condición de independencia en el tiempo por la de ausencia de correlación lineal: se dice que una variable temporal está incorrelacionada linealmente en el tiempo cuando no existe ninguna función lineal de sus valores para momentos del tiempo distintos a t, que reduzca la incertidumbre sobre el valor que toma en t.

Si todas las distribuciones de probabilidad relacionadas con la innovación son gaussianas, es decir, con distribución normal, entonces correlación implica independencia; y la no existencia de una función lineal que reduzca la inciertud sobre a, es condición necesaria y suficiente para que no exista ninguna función, de cualquier tipo o forma, que lo haga. A lo largo de este libro se supondrá que todas las distribuciones de probabilidad que se consideran, implícita o explícitamente, son normales, y se usará la expresión «innovaciones incorrelacionadas en el tiempo» como sinónimo de «innovaciones independientes en el tiempo».

Conocido el valor de la variable en t y su parte sistemática, la innovación se obtiene como la diferencia, o desviación, entre ambas. Así

$$ a_t = \text{innovación}_t = Y_t - PS_t. $$

Puesto que no existe relación entre las innovaciones en distintos momentos del tiempo y dado que todas tienen media cero 2, se usa una medida de dispersión con el fin de caracterizarlas. Una medida adecuada es la varianza, a la que se denotará por σ^2. Este valor da una medida de la dispersión asociada a la innovación, aunque para interpretar el resultado sea preferible la desviación típica, ya que ésta se expresa en las mismas unidades que la variable analizada:

$$ \sigma = +\sqrt{\text{var}(a)} = +\sqrt{\sigma^2}. $$

A una variable temporal que tiene las características que se han especificado para la innovación se le suele denominar ruido blanco. Atendiendo a la definición formal de un proceso ruido blanco, este forzosamente presenta incorrelación en el tiempo, pero no necesariamente independencia, puesto que, en general, tampoco ha de tener obligatoriamente una distribución normal. Sin embargo, en este libro

2 Si la media fuese distinta de cero habría un componente sistemático, que como tal se asignaría a la parte sistemática y no a la innovación.

Modelos univariantes para el análisis económico

siempre se sobreentenderá por ruido blanco un ruido blanco gaussiano, formado por variables aleatorias normales y por lo tanto independientes en el tiempo: ésta es la hipótesis de normalidad. Con ello, un ruido blanco queda totalmente caracterizado una vez conocida su varianza.

A la hora de construir un modelo estadístico para un fenómeno económico, el problema se centra en formular una parte sistemática tal que el elemento residual sea un proceso ruido blanco.

Se pueden distinguir dos grandes tipos de modelos en función de la información que se emplee para construirlos: los modelos univariantes por un lado y los modelos econométricos por otro.

Se tiene un modelo univariante cuando la única información que se emplea es la referente a la propia variable a estudiar, con lo que se está ignorando la información correspondiente a otras variables con quienes pudiera estar relacionada.

Un modelo univariante es el modelo más simple que se puede tener en un contexto dinámico, y obedece al hecho de que, si se está interesado en analizar la variable Y, lo mínimo que se puede hacer es considerar la información histórica referida a esa variable. En este caso, la información disponible será una serie temporal de Y, correspondiente a los momentos del tiempo 1, 2, 3, ..., T.

Dada una serie temporal, el problema que se plantea desde el punto de vista estadístico es obtener un modelo teórico general capaz de explicar las realizaciones de la misma, determinando una expresión de la forma

$$ Y_t = f(Y_{t-1}, Y_{t-2}, ..., a_t) + a_t. $$

Ese modelo teórico exige la explicación de Y en función de, posiblemente, infinitos valores pasados. En la práctica se utilizan datos referidos a muestras finitas, por lo que los modelos que se estiman no pueden tener una dependencia infinita sin restricciones, sino una dependencia en el tiempo acotada con restricciones.

La ventaja del modelo univariante, aparte de su sencillez, es que el modelo teórico óptimo se puede aproximar bastante bien por un modelo de tamaño finito.

Su principal inconveniente es que está formulado con el mínimo de información posible, por lo que cualquier modelo que incluya más información será, si está bien construido, más eficiente. En este contexto se entiende que un modelo es más eficiente que otro si la varianza de su correspondiente innovación es menor. Obviamente la mayor eficiencia tiene un coste, y es el de mayor complejidad teórica del modelo y mayor dificultad práctica de obtener un modelo operativo.

El segundo tipo de modelos está formado por los modelos econo-
métricos: éstos se construyen combinando la información histórica sobre Y con información sobre otras variables con las que Y esté relacionada de acuerdo con algún modelo de Teoría Económica.

En relación al concepto de modelo es conveniente señalar que los modelos disponibles, como instrumentos explicativos de la realidad, suponen siempre una aproximación parcial a esta última; la verdadera parte sistemática de la variable Y normalmente será más rica y compleja de lo que un modelo particular puede indicar. Así, los modelos utilizados para analizar la realidad no se pueden ver como instrumentos que dan una explicación totalmente correcta de la misma, sino como meros esquemas que sirven para aproximarla y que, por tanto, resultan útiles para entenderla. En conclusión, incluso un buen modelo es siempre mejorable; pero eso no implica que no sea un instrumento útil, pues proporciona al que lo posee, como se irá viendo a lo largo del texto, una ventaja comparativa sobre los que lo ignoran.

La formulación de un modelo que trate de modo aceptable la información pasada y presente de una variable económica —modelo univariante— es relativamente fácil y, por tanto, hay una probabilidad relativamente pequeña de que un experto se equivoque y concluya con un modelo que sea una aproximación equivocada de la realidad que intenta explicar. La formulación de un modelo que trate de modo aceptable la información referida a la variable económica de interés y la información correspondiente a las principales variables con las que está relacionada —modelo econométrico— es bastante más compleja. Sin embargo, si se realiza adecuadamente, un modelo econométrico será más eficiente y, por tanto, más útil que un modelo univariante.

Esta mayor eficiencia relativa merece un comentario más detallado. Se ha dicho que todo modelo supone una descomposición del valor de la variable de interés Y, para cada momento del tiempo, en parte sistemática e innovación. Utilizando el superíndice (u) para indicar que la parte sistemática y la innovación proceden de un modelo univariante, se tiene que

$$Y_t = PS_t^{(u)} + d_t^{(u)}.$$

La predicción de Y para el momento t con información hasta $t - 1$ que se realiza con ese modelo (predicción univariante) es $PS_t^{(u)}$, donde esa parte sistemática se calcula usando los valores hasta $t - 1$ de Y; el error de predicción es, por lo tanto, $d_t^{(u)}$. La imprecisión de la predicción vendrá dada por la desviación típica de la innovación $d_t^{(u)}$.

En variables estocásticas la predicción puntual —en este ejemplo $PS_t^{(u)}$— no tiene especial interés si no se especifica una medida de probabilidad alrededor de la misma; por esta razón, la predicción puntual suele venir acompañada del correspondiente intervalo de confianza. La amplitud del intervalo depende de la desviación típica de la innovación univariante ($d_t^{(u)}$), de forma que, en el modelo mencionado, los intervalos confianza para la futura observación son (aproximadamente) iguales a:

$$PS_t^{(u)} ± c d_t^{(u)},$$

donde c es una constante que depende del nivel de confianza con que se quiera construir el intervalo. En el caso de un nivel igual al ochenta por ciento la constante c tomará el valor $1,28$.

Si se construye un modelo econométrico adecuado para la variable Y, las innovaciones del mismo tendrán una dispersión (medida por la desviación típica) más pequeña, o al menos no será mayor, que la dispersión de las innovaciones univariantes. Con un modelo econométrico, y conocidos los valores de las variables explicativas, se obtienen predicciones con un margen de incertidumbre más reducido que con modelos univariantes (siempre que se consigan resolver los problemas derivados de la mayor complejidad y se opere así con un modelo bien construido); en ese sentido el modelo econométrico es más eficiente que el univariante.

Al relacionar distintas variables económicas entre sí, los modelos econométricos tienen otras ventajas sobre los modelos univariantes. En concreto, permiten conocer la forma en que la variable de interés Y responde a los cambios en otras variables que están relacionadas con ella. Estas funciones de respuesta son de interés económico en sí mismas y, muchas veces, la motivación de un estudio econométrico no se basa tanto en la predicción como en la necesidad de disponer de una estimación de ciertos parámetros considerados importantes en el análisis económico. La utilización y el potencial de un modelo econométrico se tratan en el capítulo siguiente.

En la práctica, con un nivel de desagregación temporal elevado (mensual, decenal, semanal, diario, etc.), es mucho más difícil construir un modelo econométrico que un modelo univariante, no sólo por la complejidad en sí, sino porque muchas veces no se dispone de la información temporal necesaria sobre las variables explicativas.

De ahí que en el análisis aplicado sea muy frecuente manejar los dos tipos de modelos para explotar al máximo la información disponible. Por ejemplo, en variables que se observan diaria, semanal o mensualmente es, con frecuencia, aconsejable disponer de un modelo diario, semanal o mensual a nivel univariante, y de un modelo econométrico trimestral o anual.

Hay que señalar también que el proceso de elaboración de un modelo econométrico casi siempre requiere empezar construyendo
modelos univariantes para todas las variables del modelo, la variable a explicar y todas las variables explicativas.

Todo lo anterior indica la conveniencia de disponer, independientemente del objetivo final, de modelos univariantes sobre las variables económicas en que se esté interesado. A estos modelos se dedica el presente capítulo.

La bibliografía sobre modelos univariantes es muy extensa, tanto en cantidad como en grado de detalle con que se abordan los conceptos. La referencia principal es el libro de Box y Jenkins (1976), cuya primera edición de 1970 se puede decir que marca el año cero de la popularización de los modelos que se estudiarán en el resto de los epígrafes de este capítulo.

2.2. Modelos univariantes: su estructura temporal y la aproximación ARMA en universos estacionarios

Se denomina proceso estocástico a una sucesión infinita de variables aleatorias ordenadas

\[\ldots, Y_1, Y_2, \ldots, Y_T, \ldots \]

que, en general, están relacionadas entre sí. Para los objetivos de este libro sólo se considerarán procesos estocásticos en los que la sucesión de variables está ordenada en el tiempo.\(^3\)

\(^3\) El concepto de proceso estocástico es más general: sea \(T = \{ t \} \) un conjunto lineal y \(\Omega = \{ w \} \) un espacio muestral. Sea \(Y \) una función que asocia cada par de valores \((t, w)\) perteneciente al producto cartesiano \(T \times \Omega \) a un número real, \(Y(t, w) \), de forma que para un \(t \) dado \(Y(w) \) es una variable aleatoria. A dicha función \(Y \) se le llama proceso estocástico. Si \(T \) es el conjunto de números enteros y representa el tiempo, entonces se dice que \(Y(t, w) \) es un proceso estocástico temporal en tiempo discreto, que es el caso particular que se estudiará en este libro.

Modelos univariantes para el análisis económico

Si se dispone de observaciones para un conjunto finito de estas variables, \(Y_1, Y_2, \ldots, Y_T \), se dice que esta sucesión de observaciones forma una serie temporal. Lo importante de una serie temporal es que constituye una sucesión de observaciones en la que cada observación corresponde a una variable aleatoria distinta, y la ordenación de la sucesión de observaciones es esencial en el análisis de las mismas. Por el contrario, en la teoría estadística del muestreo aleatorio una muestra constituye una sucesión de observaciones de la misma variable aleatoria y, por tanto, su orden es irrelevante.

Por ejemplo, el fenómeno económico del paro en España puede verse como un proceso estocástico en el que el paro en el mes uno, en el mes dos, \ldots, en el mes \(T \), son variables aleatorias de dicho proceso, y el número de parados que se han observado en los meses uno, dos, \ldots, \(T \) forman una serie temporal de las correspondientes variables. Este conjunto de ideas se recogen en el resumen 2.1.

Se dice que una serie temporal viene generada por un proceso estocástico estacionario en sentido amplio si se cumplen las siguientes condiciones, que se denominarán condiciones de estacionariedad definidas sobre los primeros momentos de las variables:

a) Cada observación tiende a oscilar alrededor de una media general que es constante a lo largo del tiempo; es decir, todas las variables del proceso tienen la misma esperanza matemática:

\[E(Y_t) = \mu, \]

cualquiera que sea el valor de \(t \).

b) La dispersión alrededor de esa media constante a lo largo del tiempo también es constante; es decir, todas las variables del proceso tienen la misma varianza:

\[\text{Var}(Y_t) = \sigma^2. \]

c) La correlación lineal entre dos variables que disten \(k \) periodos de tiempo es la misma que la que existe entre cualesquiera otras dos variables que disten también \(k \) periodos entre sí, independientemente del momento concreto del tiempo al que estén referidas:

\[\text{corr}(Y_t, Y_{t+k}) = \text{corr}(Y_{t+k}, Y_{t+k}) = \rho. \]

para cualesquiera valores de \(t, j \) y \(k \).

De esta última condición se desprende que si un fenómeno es estacionario, sus variables pueden estar —y en general lo estarán con la excepción del proceso ruido blanco— relacionadas linearmente entre sí, pero con la restricción de que la relación entre dos variables
Resumen 2.1 MODELOS UNIVARIANTES

Explican el valor que toma un fenómeno económico \(Y \) en el momento \(t \). \(Y_t \), en función exclusiva de la información sobre su propiopasado.

Marco teórico: procesos estocásticos

Es una sucesión infinita

\[
..., Y_1, Y_2, ..., Y_T, ...
\]

de variables aleatorias.

Contexto muestral: serie temporal

Sobre la sucesión (A) de variables aleatorias se dispone de una serie de observaciones —SERIE TEMPORAL— referidas a \(T \) variables del proceso.

Ejemplo:

El fenómeno económico del paro en España puede verse como un proceso estocástico.

El paro en el mes ..., en el mes uno, en el mes dos, ..., en el mes \(T \), en el mes ..., son variables aleatorias de dicho proceso.

El número de parados observados en el mes uno, mes dos, ..., y mes \(T \) constituyen una serie temporal de las correspondientes variables aleatorias.

cualquiera depende sólo de la distancia temporal \(k \) existente entre ambas.

Las correlaciones \(\rho_k \) anteriores corresponden a variables de un mismo proceso y se les denomina autocorrelaciones. Dado que las variables del proceso constituyen una sucesión de infinitos elementos se tiene que el número de autocorrelaciones, \(\rho_1, \rho_2, ..., \) es también infinito, y por ello es conveniente utilizar una expresión que agrupe a todas estas correlaciones. Esto se logra con la función de autocorrelación (FAC), que es la función \(\rho(k) \) cuyos valores son las autocorrelaciones \(\rho_k \). Así pues, la función \(\rho(k) \) recoge toda la dependencia temporal de tipo lineal del proceso \(Y \).

Los valores \(\rho_k \) de la función de autocorrelación corresponden a parámetros teóricos, que en la práctica son desconocidos. A partir de los datos de una serie temporal, se puede estimar un número finito \((K) \) de estas autocorrelaciones; en este libro se representan dichas correlaciones muestrales mediante \(r_k, k = 1, 2, ..., K \). A toda la secuencia \(r_1, r_2, ..., r_K \) se le denomina correlograma, y es la contrapartida muestral de la función de autocorrelación.

Un proceso estacionario en sentido estricto cumple una condición más restrictiva que las anteriores, consistente en que la función de distribución de cualquier conjunto de \(n \) (número finito) variables del proceso se mantenga inalterable al desplazarlas \(j \) períodos de tiempo. Sin embargo, bajo la hipótesis de normalidad mantenida en este volumen, ambos conceptos de estacionariedad coinciden, por lo que a lo largo de todo el capítulo nos referiremos a a), b) y c) como condiciones de estacionariedad.

En el caso de procesos estacionarios con distribución normal, la teoría estadística de procesos estocásticos dice que, bajo condiciones bastante generales, es posible expresar \(Y \) como una combinación lineal de los valores pasados (en teoría infinitos) de \(Y \) más una innovación \(\epsilon_t \). Prescindiendo de la posible constante en esa combinación lineal, se tiene que:

\[
Y_t = \pi_1 Y_{t-1} + \cdots + \pi_k Y_{t-k} + \epsilon_t \quad \text{(2.2.1)}
\]

Parte Sistema = Innovación

Estas condiciones adicionales que se deben cumplir para que un proceso estocástico admita la formulación (2.2.1) son:

1) que el proceso sea no anticipante, y
2) que sea invertible.

La primera condición supone que el presente no viene determinado por el futuro, es decir, en la expresión de \(Y \), no intervienen valores posteriores de \(Y \) o de sus innovaciones; a esto también se le suele denominar hipótesis de recursividad temporal. La segunda condición señala que el presente depende de forma convergente de su propio pasado, lo cual implica que la influencia de una variable anterior, \(Y_{t-k}, \) en \(Y \) va disminuyendo a medida que aumenta la distancia temporal, \(k \), entre dichas variables. Con esta última condición los coeficientes \(\pi_k \) en (2.2.1) están sometidos a una restricción de
convergencia que implica que el valor absoluto de π_k disminuye hacia cero a medida que aumenta k.

Ambas condiciones parecen bastante aceptables para representar el mundo real, y en todo lo que sigue se supondrá que las variables económicas vienen generadas por procesos no anticipantes e invertibles. El conjunto de hipótesis que hemos hecho se recoge en el resumen 2.2.

En el gráfico 2.1, panel A, se representa una serie temporal artificial de 100 observaciones, que es una realización del proceso estocástico

$$Y_t = a_t; \quad a_t \sim Niid(0, 1),$$

es decir, Y_t es, en sí mismo, un ruido blanco normal. En este caso no existe ningún tipo de regularidad (parte sistemática) en la evolución de Y_t, salvo la de oscilar alrededor de un valor constante que es cero.

Comprárese dicha serie con la representada en el panel B del mismo gráfico, que es una realización del proceso

$$Y_t = 0.8 Y_{t-1} + a_t; \quad a_t \sim Niid(0, 1).$$

A diferencia de lo que sucede en el proceso ruido blanco, ahora un valor positivo (negativo) tiende a ir seguido de otro valor positivo (negativo) y, dicho de otra forma, la serie representada en el panel B muestra más valores consecutivos con el mismo signo que la serie del panel A. La regularidad (parte sistemática) que se detecta aquí consiste en que cualquier observación Y_t tiende a oscilar alrededor de un valor que es aproximadamente igual al ochenta por ciento del valor de la observación inmediatamente precedente.

Otros procesos que no son estacionarios también admiten la formulación (2.2.1); pero cuando tal formulación corresponde a las variables de un proceso estacionario, los coeficientes π_j están sometidos a restricciones. Por ejemplo, el modelo

$$Y_t = 1.5 Y_{t-1} + a_t$$

no es estacionario, pues el nivel de la serie tiende a $\pm \infty$ y contradice la condición a) de estacionariedad.

4. Es importante tener presente que la representación convergente respecto al pasado implica la convergencia hacia cero de π_k pero no al revés.

5 La expresión $Niid(0, 1)$ significa que la variable temporal t está formada por variables aleatorias con distribución normal de media cero y varianza uno e independientes entre sí ($Niid$: normales independientes e idénticamente distribuidas).
Modelos univariantes para el análisis económico

Centrando la atención en las condiciones a) y b), se tiene que un proceso estacionario debe cumplir —de forma necesaria pero no suficiente, pues no se está incorporando la condición c)— que sus realizaciones (observaciones) oscilen con varianza (dispersión) constante alrededor de un valor medio constante. Por tanto, un proceso estacionario no puede generar una serie temporal que muestre un crecimiento sistemático, pues en tal caso la media de las variables va aumentando en el tiempo y eso viola la condición a) de estacionariedad.

Toda esta discusión lleva a pensar que los procesos estacionarios no son de validez general para representar el mundo real, pues ciertamente los fenómenos económicos no tienden a oscilar alrededor de un valor fijo e inmutable a lo largo de la historia del proceso. En consecuencia, gran parte de los fenómenos económicos que se observan son no estacionarios o evolutivos. Sin embargo más adelante se verá que transformaciones de dichas observaciones originales pueden considerarse generadas por procesos estacionarios.

Con ello se puede establecer la siguiente estrategia en el estudio de los procesos estocásticos considerados como instrumentos para analizar fenómenos económicos: primero se supondrá que el mundo es estacionario y se desarrollará un marco estadístico válido en este contexto, y luego se verá cómo se pueden transformar las observaciones reales para que cumplan las condiciones de un mundo estacionario.

Volviendo al análisis de las características de los procesos estacionarios, todo modelo univariante, al ser un modelo dinámico, se puede reformular de manera alternativa como se ha planteado en (2.2.1). Sea por ejemplo el modelo

\[Y_t = \phi Y_{t-1} + a_t \]

retrasando el subíndice temporal un período

\[Y_{t-1} = \phi Y_{t-2} + a_{t-1} \]

y sustituyendo se llega a

\[Y_t = a_t + \phi a_{t-1} + \phi^2 Y_{t-2}. \]

Para simplificar la exposición, este valor medio siempre se puede restar de las observaciones originales, que es lo que se ha hecho en (2.2.1), con lo que la serie resultante tendrá media cero.
Si ahora se sustituyen \(Y_{i-2} \) y desfasos posteriores por sus valores de acuerdo con (2.2.2), se obtiene una expresión de la forma

\[
y_i = a_i + \phi a_{i-1} + \phi^2 a_{i-2} + \cdots + \phi^j a_{i-j} + \cdots,
\]

(2.2.3)

en donde entran un número infinito de innovaciones pasadas.

En este ejemplo (2.2.2) y (2.2.3) son representaciones igualmente válidas del mismo fenómeno. Esto se puede generalizar para cualquier tipo de modelo, y la formulación general correspondiente a (2.2.1) será:

\[
y_i = a_i + \psi_1 a_{i-1} + \psi_2 a_{i-2} + \cdots + \psi_j a_{i-j} + \cdots,
\]

(2.2.4)

también con un número infinito de innovaciones pasadas. Es decir, si cualquier valor de \(Y \) depende del propio pasado de \(Y \) más una innovación contemporánea, aplicando de forma recursiva este principio a los valores pasados de \(Y \) que entran en la determinación de \(Y \), se concluye que existe otra forma alternativa, igualmente válida, de explicar \(Y \) como una suma ponderada de todas las innovaciones, presente y pasadas.

De hecho, el planteamiento formal de la teoría de procesos estocásticos estacionarios procede a la inversa de (2.2.4) a (2.2.1), pues la expresión (2.2.4) está relacionada con el teorema de descomposición de Wold. Este teorema (Wold, 1938) es el punto de partida de la modelización univariante de procesos estocásticos estacionarios, pero su estudio en detalle requiere un grado de formalización matemática que excede con mucho al que se pretende utilizar en este libro.

Al igual que sucedía con la formulación (2.2.1), procesos no estacionarios también admiten una expresión en términos de (2.2.4), pero la estacionariedad impone una restricción a los coeficientes \(\psi_j \). Esta restricción, o condición de estacionariedad, es:

\[
\sum_{j=0}^{\infty} \psi_j^2 < \infty.
\]

(2.2.5)

Cuando (2.2.5) se cumple se dice que el presente depende de forma convergente de las innovaciones pasadas, y tal condición implica que los coeficientes \(\psi_j \) tienden a cero a medida que \(j \) tiende a infinito. Como interpretación intuitiva de esta propiedad, se puede decir que el modelo (2.2.4) es tal que cuanto más lejano está en el tiempo el momento \(t-j \), menor es el peso de su innovación en el valor de la variable \(Y_t \).

5 Un tratamiento completo se encuentra en los capítulos 7 y 8 de Cox y Miller (1965).
de entrada (input) \(a_i \), que se somete a un conjunto de operaciones (un proceso de filtrado), resumidas en el polinomio temporal (filtro) \(\psi_x(L) \), se obtiene la serie resultante (output) \(Y_t \). Los resultados referidos a estas dos formulaciones de modelos estacionarios se recogen en el resumen 2.3.

Resumen 2.3
MODELOS TEÓRICOS PARA FENOMENOS ESTACIONARIOS

Los procesos estocásticos en los que se cumplen las cuatro propiedades señaladas en el resumen 2.2 se pueden formular de dos formas alternativas, igualmente válidas, que son las siguientes:

Modelo autorregresivo infinito

\[
Y_t = \pi_1 Y_{t-1} + \pi_2 Y_{t-2} + \cdots + \pi_i Y_{t-i} + \cdots + a_t
\]

\[
\pi_x(L) Y_t = a_t
\]

(2.2.1)

En (2.2.1) los parámetros \(\pi_i \) forman una sucesión convergente a cero (hipótesis de invertibilidad) y además están sometidos a las restricciones de estacionariedad.

Modelo de medias móviles infinitas
(descomposición de Wold)

\[
Y_t = a_t + \psi_1 a_{t-1} + \psi_2 a_{t-2} + \cdots
\]

\[
Y_t = \psi_x(L) a_t
\]

(2.2.4)

Condición de estacionariedad

\[
\sum_{j=1}^{\infty} \psi_j^2 < \infty
\]

En ambas formulaciones, \(a_1, a_2, \ldots, a_T, \ldots \) es un proceso de variables aleatorias independientes e idénticamente distribuidas, normales, de media cero y varianza \(\sigma^2 \).

Modelos univariantes para el análisis económico

Aquí surge el problema que se acaba de apuntar: si se dispone de \(T \) observaciones no se puede emplear una estructura matemática que tenga infinitos términos; es preciso simplificarla, empleando una formulación que requiera un número finito de parámetros. De acuerdo con la teoría de polinomios, y bajo condiciones muy generales, se puede aproximar un polinomio de orden infinito por un cociente de polinomios finitos,

\[
\pi_x(L) \approx \frac{\phi_p(L)}{\theta_q(L)} = \frac{1 - \phi_1 L - \phi_2 L^2 - \cdots - \phi_p L^p}{1 - \theta_1 L - \theta_2 L^2 - \cdots - \theta_q L^q}.
\]

(2.2.6)

donde \(p \) y \(q \) hacen referencia al orden finito de cada polinomio.

Desde otro punto de vista, la expresión (2.2.6) nos dice que todo cociente de polinomios de ordenes \(p \) y \(q \) finitos se desarrolla en un polinomio de orden infinito. Sin embargo los coeficientes de este desarrollo están sometidos a restricciones, ya que estos infinitos coeficientes son función de un número finito de parámetros, concretamente de los \(p + q \) coeficientes de los polinomios originales.

Para ilustrar este punto sea el cociente de polinomios más simple, \(1/(1 - \theta_1 L) \); si se procede a su desarrollo realizando la correspondiente división polinomial, el resultado que se obtiene es:

\[
\frac{1}{1 - \theta_1 L} = 1 + \theta_1 L + \theta_1^2 L^2 + \theta_1^3 L^3 + \theta_1^4 L^4 + \cdots
\]

en donde se observa que los infinitos coeficientes del desarrollo polinomial están fuertemente restringidos, ya que cumplen la condición de que el coeficiente \(j \) en ese desarrollo tome el valor \(\theta_j \). Se tiene pues que con un único parámetro inicial, \(\theta_1 \), el cociente de polinomios implica un polinomio de orden infinito pero fuertemente restringido.

Considérese ahora un cociente algo más complejo, como por ejemplo

\[
\phi_2(L)/\theta_1(L) = \frac{1 - \phi_1 L - \phi_2 L^2}{1 - \theta_1 L}.
\]

El desarrollo polinomial de dicho cociente es:

\[
\phi_2(L)/\theta_1(L) = 1 + (\theta_1 - \phi_1) L + [\theta_1 (\theta_1 - \phi_1) - \phi_2] L^2 + \theta_1^2 [\theta_1 (\theta_1 - \phi_1) - \phi_2] L^3 + \cdots + \theta_1^{j-2} [\theta_1 (\theta_1 - \phi_1) - \phi_2] L^j + \cdots
\]
En él se observa que a partir de \(j = 2 \) el coeficiente de \(L^j \) viene dado por la expresión \(\theta_j^{-1} \phi_j \theta_1(L) \). Se comprueba así que el cociente \(\phi_2(L) / \theta_1(L) \) tiene un desarrollo infinito muy restringido, pero más flexible que en el caso del ejemplo anterior, \(1 / \theta_1(L) \), ya que ahora el término general no empieza hasta la potencia de orden dos y además es función de tres parámetros \((\phi_1, \phi_2, \theta_1) \).

Pues bien, ampliando los órdenes de los polinomios del numerador y del denominador se consiguen desarrollos cada vez más flexibles, es decir, desarrollos en los que el término general no empieza hasta la potencia \(p - q + 1 \) y que son función de \(p + q \) parámetros.

Los ejemplos anteriores pretenden aclarar una idea central en el proceso de modelización univariante: bajo condiciones bastante generales, un polinomio de orden infinito se puede aproximar mediante un cociente de polinomios finitos hasta un grado de aproximación dado, con sólo fijar los órdenes finitos \(p \) y \(q \) en valores suficientemente altos.

A lo largo de este texto se supondrá que la dependencia temporal en el mundo económico es tal que el polinomio \(\pi_\infty(L) \) admite siempre, de forma exacta, la formulación racional (2.2.6). En este caso, y como por otra parte el polinomio \(\psi_\infty(L) \) no es más que la inversa del polinomio \(\pi_\infty(L) \), se cumple también que

\[
\frac{1}{\pi_\infty(L)} = \psi_\infty(L) = \frac{\theta_j(L)}{\phi_j(L)}.
\]

Con ello el modelo univariante que estamos considerando admite tres formulaciones alternativas, que bajo los supuestos establecidos son todas ellas igualmente válidas. Tales formulaciones, por el orden que se han presentado, son:

a) La recogida en (2.2.1), en la que el valor presente de la variable se representa en función de su propio pasado más una innovación contemporánea.

b) La correspondiente a la ecuación (2.2.4), en la que la variable en el momento \(t \) se representa como una función de todas las innovaciones presente y pasadas.

c) La expresión con polinomios finitos

\[
\phi_j(L) Y_t = \theta_j(L) a_t,
\]

que se denomina modelo ARMA \((p, q)\) —AutoRegressive Moving Average, Autorregresivo y de Medias Móviles.

Modelos univariantes para el análisis económico

De la ecuación (2.2.7) se desprende que

\[
Y_t = \phi_1 Y_{t-1} + \cdots + \phi_p Y_{t-p} - \theta_1 a_{t-1} - \cdots - \theta_q a_{t-q} + a_t,
\]

donde se puede apreciar el motivo de denominar a \(\phi_j(L) \) polinomio autorregresivo, pues su contribución al modelo ARMA es una especie de autorregresión (regresión de una variable sobre sí misma desfasada); \(\theta_j(L) \) representa la parte de medias móviles, pues si se atiende a los coeficientes \(a_t, a_{t-1}, \ldots, a_{t-q} \) se tiene una especie de media móvil (media de componentes distribuidos en el tiempo) de \(q + 1 \) innovaciones.\(^6\)

Observese que para que el proceso sea estacionario (2.2.4) ha de cumplir la restricción (2.2.5), lo que implica restricciones en los coeficientes de las formulaciones (2.2.1) y (2.2.7).

Por el mismo razonamiento, (2.2.1), con las correspondientes restricciones en sus parámetros, es la representación puramente autorregresiva, o \(AR(\infty) \), de un proceso estocástico estacionario; y (2.2.4) es la representación puramente de medias móviles, o \(MA(\infty) \).

Cuando el modelo es conocido cualquiera de las tres formulaciones mencionadas es útil, y depende de la actitud del analista el utilizar una u otra; de hecho, dada cualquiera de las tres expresiones se obtienen fácilmente las otras dos. Puesto que (2.2.8) tiene una representación finita, es la formulación mayormente preferida. Sin embargo, las otras dos representaciones tienen una interpretación intuitiva más clara, sobre todo (2.2.1), en la que la variable se expresa en términos de su propio pasado.

Cuando el modelo es desconocido y hay que especificarlo y estimarlo a partir de una serie temporal de la variable en cuestión, ya no es igualmente operativo para el analista utilizar una formulación u otra, pues solamente (2.2.7) es operativa. Ahora bien, una vez especificado y estimado el modelo, éste puede tratarse como si fuese conocido y en consecuencia se puede presentar y utilizar en cualquiera de sus tres formulaciones.

En resumen, un modelo ARMA no es más que una formulación operativa del proceso generator de datos de un fenómeno estacionario. Bajo la hipótesis de normalidad e invertibilidad, este proceso siempre se puede representar a partir de una función lineal de los infinitos retardos de la variable más una innovación. Con la aproxi-

\(^6\) En sentido estricto para que fuese una verdadera media móvil la suma de coeficientes tendría que ser uno. Es importante no confundir la interpretación de la expresión media móvil en un modelo univariante con la que se verá en los capítulos cuatro y cinco.
mación ARMA se intenta evitar el problema de la utilización de infinitos parámetros para representar el efecto del pasado sobre el presente; para ello, se combinan un número finito de desfasos de la variable a estudiar (parte autorregresiva —AR— del modelo), con un número finito de desfasos de la innovación (parte de medias móviles, MA). En general esto implica añadir restricciones en la posible dependencia de una variable respecto a su propio pasado, ya que con un número finito de desfasos se tiene menos flexibilidad para modelizar el comportamiento de la serie. No obstante, la aproximación ARMA \((p, q)\) con valores pequeños para \(p\) y \(q\) suele ser adecuada en la mayor parte de los casos. Los principales resultados sobre modelos ARMA se recogen en el resumen 2.4.

Resumen 2.4

MODELOS OPERATIVOS PARA FENÓMENOS ESTACIONARIOS: MODELO ARMA \((p, q)\)

Aproximando el polinomio \(\psi_\infty(L)\) de la forma:

\[
\psi_\infty(L) = [\pi_\infty(L)]^{-1} \approx \frac{\theta_q(L)}{\phi_p(L)}
\]

se obtiene

\[
\phi_p(L) Y_t = \theta_q(L) a_t,
\]

(2.2.7)

De (2.2.7), operando

\[
Y_t = \frac{\theta_q(L)}{\phi_p(L)} a_t = \psi_\infty(L) a_t
\]

(2.2.4 bis)

Alternativamente

\[
\frac{\phi_p(L)}{\theta_q(L)} Y_t = \pi_\infty(L) a_t
\]

(2.2.1 bis)

donde, además de las restricciones del modelo (2.2.1) se cumple exactamente la restricción (B).

Conclusión: el modelo ARMA \((p, q)\) tiene tres formulaciones alternativas igualmente válidas: (2.2.7), (2.2.4 bis) y (2.2.1 bis).

2.3. Formulación de modelos univariantes para universos no estacionarios

Para abordar el análisis de fenómenos no estacionarios conviene empezar recalcando que, en contextos no estacionarios absolutamente generales, la formulación de un modelo teórico que explique la generación de los datos en función del pasado es muy compleja, y no hay posibilidad de obtener aproximaciones operativas que tengan validez general. Sin embargo, si se analizan los fenómenos económicos se ve que si bien es cierto que las variables en sí son no estacionarias, en la mayor parte de los casos sus crecimientos (velocidad), o los crecimientos de los crecimientos (aceleración) son, al menos aproximadamente, estacionarios.

En consecuencia, en la inmensa mayoría de los fenómenos económicos su característica de no estacionariedad no es de cualquier tipo, sino que tales fenómenos presentan una no estacionariedad específica, que se denomina no estacionariedad homogénea. Por tal se entiende aquella no estacionariedad que desaparece al considerar incrementos o incrementos de los incrementos con lo que no es explosiva, entendiendo por tal que a partir de una situación inicial las observaciones siguientes no tienden rápidamente a infinito.

Con ello, las series temporales que son realizaciones de procesos no estacionarios homogéneos muestran una evolución en su nivel, ya que sus crecimientos no tienen media cero y la condición a) de estacionariedad no se cumple. Sin embargo, por tramos, y haciendo abstracción del cambio de nivel existente, la serie muestra unas oscilaciones similares.

A los procesos que presentan una no estacionariedad homogénea también se les conoce, por razones que quedarán claras más adelante, como procesos integrados.

Todo proceso integrado es un proceso no estacionario, pero no todo proceso no estacionario es integrado: el hecho de ser integrado restringe la naturaleza de no estacionariedad que puede presentar un proceso estocástico, y tal restricción no tiene porque verificarse siempre.

Se entiende por orden de un proceso integrado el número de incrementos que se han de tomar para que el proceso sea estacionario. Por ejemplo: si \(Y_t\) no satisface las condiciones de estacionariedad pero su incremento (velocidad) sí, se dice que es un proceso integrado de orden uno, o de forma resumida que es \(I(1)\); en cambio, un proceso es \(I(2)\) cuando ni los valores que se observan directamente ni sus incrementos son estacionarios, pero sí lo son los incrementos de sus incrementos (es decir, la aceleración de los datos originales); y así
sucesivamente. Como es obvio, un proceso \(I(0) \) es un proceso estacionario.

Para facilitar la notación matemática a usar en este epígrafe, considérese un nuevo operador lineal, el operador incremento o diferencia (\(\Delta \)), definido como \(\Delta = 1 - L \): así

\[
\Delta Y_t = Y_t - Y_{t-1},
\]

representa la primera diferencia o el incremento experimentado en \(t \) respecto al valor de \(t - 1 \): es la velocidad de la variable. A su vez

\[
\Delta^2 Y_t = \Delta \Delta Y_t = \Delta Y_t - \Delta Y_{t-1} = (Y_t - Y_{t-1}) - (Y_{t-1} - Y_{t-2}) = Y_t - 2Y_{t-1} + Y_{t-2},
\]

es el incremento del incremento, o aceleración, de la variable en \(t \).

En general, en un mundo no estacionario de forma homogénea resulta que \(\Delta^d Y_t \) es estacionario\(^9\), donde \(d \) es la práctica toma los valores 1 ó 2. Haciendo \(\Delta^d Y_t = W_t \), se tiene que \(W_t \) es estacionaria y, por tanto, susceptible de representación mediante el modelo ARMA visto en la sección anterior. Así, operando

\[
\Phi_p(L)(1-L)^d Y_t = \theta_q(L) a_t,
\]

expresión que se conoce como modelo ARIMA \((p, d, q) \) —AutoRegressive Integrated Moving Average: autorregresivo e integrado de medias móviles.

Para ver el porqué del término «integrado» supóngase que \(d \) es uno, con lo que se tiene (1-L) \(Y_t = W_t \), de aquí

\[
Y_t = \frac{1}{1-L} W_t = (1 + L + L^2 + \cdots) W_t,
\]

es decir, \(Y_t \) no es más que la suma (integración) de todos los valores pasados de \(W_t \); en otras palabras, si \(W_t \) sigue un proceso estacionario ARMA \((p, q) \) y \(\Delta Y_t = W_t \), entonces \(Y_t \) viene generado por un proceso no estacionario ARIMA \((p, d, q) \).

\(^9\) A lo largo de este libro siempre se supondrá que \(d \) es un número natural. No obstante en el análisis de series temporales se han estudiado modelos más generales: un ejemplo son los modelos con diferencias fraccionales (Granger y Joyeux 1980, Hosking 1981), en los que \(d \) es un número racional.
cuando se trate de procesos no estacionarios. No obstante, en el resto del libro no se hará esta distinción notacional entre procesos estacionarios y no estacionarios, ya que supone complicar innecesariamente los símbolos empleados, una vez que las analogías y diferencias entre ambos procesos han quedado claras.

Las expresiones (2.3.1), o su versión desarrollada (2.3.2), y (2.3.3) son equivalentes, y en cada momento se empleará la que más convenga. La expresión (2.3.3) no es operativa, pues tiene infinitos desases, pero puede servir para entender el comportamiento dinámico del fenómeno económico correspondiente, al indicar la expresión dinámica con la que Y depende de sus propios valores pasados. En todo caso, conviene recordar que el modelo (2.3.3) proviene de una formulación en polinomios finitos, que surgen de combinar desases de la variable observada con desases de las innovaciones.

En la práctica la expresión (2.3.1) es la que primero se conoce, pues es la única en la que se puede basar el proceso de modelización a partir de una serie temporal. Sin embargo, desde el punto de vista teórico cabe plantearse el proceder al revés, desde (2.3.3) hacia (2.3.1). Por ejemplo, si una vez construido el modelo ARIMA se ha facilitado su formulación AR(∞),

\[\hat{Y}_t = a_t, \]

siendo por ejemplo

\[\hat{Y}_t = 1 - 0.800L - 0.520L^2 - 0.068L^3 - 0.199L^4 + 0.213L^5 + 0.092L^6 - 0.023L^7 - 0.067L^8 - 0.049L^9 - 0.010L^{10} + 0.015L^{11} + 0.019L^{12} - 0.009L^{13} + \cdots, \]

pero no se ha proporcionado su formulación en términos de (2.3.1), el analista puede llegar a determinar su formulación racional, que en este caso concreto es

\[\hat{Y}_t = \frac{\hat{\phi}_2(L)}{\hat{\theta}_3(L)} = \frac{1 - 1.7L + 0.7L^2}{1 - 0.9L + 0.5L^2}. \]

Además, puesto que \(\hat{\phi}_2(L) \) se puede factorizar como

\[\hat{\phi}_2(L) = \phi_1(L) \cdot \Delta = (1 - 0.7L)(1 - L), \]

el modelo anterior es equivalente a

\[(1 - 0.7L)(1 - L) Y_t = (1 - 0.9L + 0.5L^2) a_t, \]

Modelos univariantes para el análisis económico

es decir,

\[(1 - 0.7L) \Delta Y_t = (1 - 0.9L + 0.5L^2) a_t, \]

lo que en definitiva indica que la variable original \(Y_t \) sigue un modelo ARIMA (1, 1, 2) y sus primeras diferencias, \(\Delta Y_t = Y_t - Y_{t-1} = \omega_t \), un modelo ARMA (1, 2).

En general, tal y como se puede comprobar este ejemplo, la determinación de \(\hat{\phi}_1(L) \) y \(\hat{\theta}_1(L) \) a partir de \(\hat{Y}_t(L) \) no es sencilla. El valor de \(d \) es fácil de obtener, ya que si \(d \) es distinto de cero necesariamente \(\Sigma \hat{\phi}_i = 1 \). Una vez calculado \(d \), los órdenes \((p, q) \) se obtienen, en general, por tanteo, empezando por el par de valores más simple —(1, 0)— y aumentando los valores de \(p \) y \(q \) hasta llegar a reproducir exactamente los coeficientes de \(\hat{Y}_t(L) \).

Por otra parte, esto permite insistir una vez más en el hecho de que cuando se opera con un modelo ARIMA formulado en términos de \(\hat{\phi}_p(L) \) y \(\hat{\theta}_q(L) \), se ha de ser consciente de que realmente se está explicando el presente de la variable en función de sus infinitos valores pasados debidamente ponderados.

Por analogía con lo visto para procesos estacionarios, existe una tercera forma de representar un modelo ARIMA, que siendo equivalente a las otras dos, recalca la dependencia temporal desde una perspectiva diferente. Operando a partir de (2.3.1) se obtiene:

\[Y_t = \frac{\hat{\theta}_q(L)}{\hat{\phi}_p(L)} a_t = \hat{\psi}_q(L) a_t, \]

donde

\[\hat{\psi}_q(L) = 1 + \hat{\psi}_1 L + \hat{\psi}_2 L^2 + \cdots, \]

con lo que

\[Y_t = a_t + \hat{\psi}_1 a_{t-1} + \hat{\psi}_2 a_{t-2} + \cdots \]

(2.3.4)

Con ello el dato observado \(Y_t \) se expresa como un polinomio infinito sobre \(a_t \), es decir, por una función lineal sobre todas las innovaciones, presente y pasadas. Esta formulación de un modelo ARIMA hace hincapié en la determinación del valor observado como una suma ponderada de todas las innovaciones que ha sufrido el sistema hasta hoy, y es el equivalente a (2.2.4) para universos no estacionarios. Siguiendo la convención adoptada con los polinomios autorregresivos, en este epígrafe se usará el signo — para distinguir entre procesos estacionarios y no estacionarios en sus respectivas formulaciones de medias móviles infinitas.
Si a la expresión (2.3.1) se le llama ARIMA \((p, d, q)\), a la (2.3.3) se le conoce como autorregresiva de orden infinito, AR(\(\infty\)), y a (2.3.4) como medias móviles de orden infinito, MA(\(\infty\)).

¿En qué afecta a la expresión (2.3.4) que el fenómeno sea estacionario o no estacionario? Si es estacionario, se puede demostrar, como se viene insistiendo desde la sección anterior, que la secuencia de ponderaciones \(\psi_j\) converge a cero, lo que implica que \(a_{-\infty} \sim 0\) con un \(j\) muy grande en su subíndice temporal, no tiene efectos sobre \(Y_t\). Por lo tanto, una innovación que aparece hoy en el sistema prácticamente se habrá olvidado cuando pase un determinado período de tiempo, y en consecuencia no tiene un efecto permanente en el sistema. En todo fenómeno estacionario las innovaciones se terminan olvidando.

Si el fenómeno no es estacionario se puede comprobar que la secuencia de coeficientes \(\psi_j\) no converge a cero. Por ejemplo sea el modelo no estacionario más sencillo, el llamado sendero aleatorio o paseo aleatorio, que viene dado por

\[
\Delta Y_t = a_t, \quad Y_t = \Delta = a_t = (1 + L + L^2 + \cdots) a_t.
\]

Cuando aparece una innovación \(a_t\) en este sistema, tendrá para siempre. \(Y_{t-j} > 0\), una ponderación finita no nula.

En los modelos que incluyen una diferencia en su parte autorregresiva, la sucesión de coeficientes \(\psi_j\) no converge a cero, sino a una constante: por lejos que esté \(t-j\) del momento actual, \(t\). su correspondiente innovación \(a_{t-j}\) tiene hoy un efecto distinto de cero. Eso quiere decir que una innovación no se olvida nunca: entra en el sistema y persiste ahí para siempre, influyendo en todos los valores que tomará el fenómeno estudiado a partir de ese momento.

Se ha visto que el proceso estacionario ARMA y el proceso no estacionario ARIMA tienen representaciones puramente autorregresivas y puramente de medias móviles, y la diferencia está en que en los procesos estacionarios los coeficientes \(\pi_j\) y los coeficientes \(\psi_j\) están sometidos a la restricción de estacionariedad, y en los otros no. La restricción de estacionariedad se puede expresar fácilmente sobre los coeficientes \(\psi_j\) mediante la condición (2.2.5)

Otra forma de expresar la restricción de estacionariedad es sobre la formulación (2.3.1), y consiste en determinar si \(d\) es distinta o no de cero; en el último caso (2.3.1) se reduce a (2.2.7), y el proceso es estacionario. Para ello se ha de descomponer el polinomio \(\phi(L)\), lo que a su vez requiere introducir previamente ciertos resultados sobre teoría de polinomios.

Modelos univariantes para el análisis económico

Sea el polinomio \(\phi_p(L) = 1 - \phi_1 L - \cdots - \phi_p L^p\), usando la variable auxiliar \(z\), se tiene:

\[
\phi_p(z) = 1 - \phi_1 z - \cdots - \phi_p z^p.
\]

Se llaman raíces de un polinomio a los valores de \(z\) que hacen \(\phi_p(z) = 0\), y se les denotará por \(\mu_1, \mu_2, \cdots, \mu_p\) (un polinomio tiene tantas raíces como su orden; si es de orden \(p\) va a tener \(p\) raíces); a las inversas de las raíces se les denotará por \(g_1, g_2, \cdots, g_p\) (es decir, si \(\mu_i\) es un número real, \(g_i = 1/\mu_i\)).

Si un polinomio está normalizado de tal forma que el coeficiente de \(z^0\) es igual a uno, como es el caso de las formulaciones empleadas en este libro, se demuestra que

\[
\phi_p(z) = (1 - g_1 z)(1 - g_2 z) \cdots (1 - g_p z).
\]

El mundo estacionario se caracteriza porque las inversas de las raíces del polinomio autorregresivo en (2.2.7), si son reales, son todas menores que la unidad en valor absoluto, \(|g_j| < 1, \forall j\), y si son complejas su módulo es menor que uno; dicho de forma más técnica, todas las inversas de las raíces están dentro del círculo unitario. En ese caso, como se verá en ejemplos posteriores, \(\Sigma g_j^2 < \infty\), con lo que el polinomio \(\psi_1(L)\) es convergente y los coeficientes \(\psi_j\) tenderán a cero.

Si se tiene que \(Y_t = 0\)\(\phi\)(L) a t, entonces \(\psi_j(L) = 0\)\(\phi\)(L), que a partir del desfase \(q+1\) tiene coeficientes cero y por lo tanto cumple la condición (2.2.5). En consecuencia, toda expresión finita de medias móviles puras MA(q), es decir, sin parte autorregresiva, será siempre estacionaria, pues pasados \(q\) periodos una innovación se ha olvidado para siempre.

Sea ahora un proceso AR(1) estacionario, con coeficiente \(\phi_1\). Para comprobar que su formulación en términos de medias móviles infinitas (2.2.4) satisface la condición (2.2.5) se despeja \(Y_t\), haciendo la correspondiente división polinomial. En este ejemplo se cumple que la ponderación \(\psi_j\) será igual a \(\phi_1\):

\[
(1 - \phi_1 L) Y_i = a_i = Y_i = \frac{1}{1 - \phi_1 L} a_i = (1 + \phi_1 L + \phi_1^2 L^2 + \cdots) a_i.
\]

y este mundo será estacionario, es decir cumplirá la condición (2.2.5), si y sólo si \(|\phi_1| < 1\). Siempre que esto suceda el modelo está representando un mundo estacionario.

Alternativamente, si, empleando la variable auxiliar \(z\), se hace \(1 - \phi_1 z = 0\), se tiene que la raíz \(\mu_1\) es igual a \(1/\phi_1\), y por lo tanto \(g_1 = 1/\mu_1 = \phi_1\); en este caso \(\phi_1\) es \(g_1\), y la condición para que el mundo
sea estacionario se puede reexpresar exigiendo que g_j, la inversa de la raíz polinomial, sea menor que uno en valor absoluto.

Si el proceso es puramente autorregresivo de un orden finito p cualquiera, y todas sus raíces son reales y distintas\footnote{El argumento que se desarrolla a continuación es igualmente válido si el polinomio tiene raíces repetidas y/o complejas, si bien en estos casos la formulación matemática se complica más.}, entonces

$$Y_t = \left[\phi_p(L)\right]^{-1} a_t = \left(\frac{k_1}{1-g_1 L} + \frac{k_2}{1-g_2 L} + \cdots + \frac{k_p}{1-g_p L}\right) a_t,$$

donde $k_p, j = 1, \ldots, p$, son constantes. En este caso se tienen p cocientes aplicados a la innovación: para que el mundo sea estacionario cada cociente ha de converger, y en consecuencia todas las inversas de las raíces, $g_j, j = 1, \ldots, p$, han de estar dentro del círculo unitario, siendo esta condición otra forma de expresar la restricción de estacionariedad en los procesos puramente autorregresivos.

Sea ahora un proceso mixto

$$Y_t = \left[\phi_p(L)\right]^{-1} \theta_q(L) a_t = \left(\frac{k_1}{1-g_1 L} + \frac{k_2}{1-g_2 L} + \cdots + \frac{k_p}{1-g_p L}\right) a_t - \left(\frac{k_1}{1-g_1 L} + \frac{k_2}{1-g_2 L} + \cdots + \frac{k_p}{1-g_p L}\right) \theta_q a_{t-q},$$

En la expresión anterior se observa que la parte MA no influye en la estacionariedad, pues a partir de $q+1$ la ponderación dada por $\theta_q(L)$ (en solitario sería cero); y todo depende otra vez de las raíces de $\phi_p(L)$. Es decir, la restricción de estacionariedad en los procesos mixtos puede expresarse, al igual que en los procesos autorregresivos puros, en función exclusivamente de las inversas de las raíces, $g_j, j = 1, 2, \ldots, p$, del polinomio autorregresivo del correspondiente modelo.

En resumen, existen diversas formas equivalentes de detectar no estacionariedad:

1. Por los coeficientes ψ_j en la formulación (2.2.4); si cumplen la condición (2.2.5) el proceso es estacionario; en caso contrario no lo es. La condición (2.2.5) implica que $\psi_j \downarrow 0$.

2. Por las raíces de $\phi_p(L)$ en la formulación (2.2.7): si todas las g_j (inversas de las raíces) están dentro del círculo unidad, es decir tienen módulo menor que uno, entonces los coeficientes ψ_j cumplen necesariamente (2.2.5) y el proceso es estacionario. Por contra, si al menos una de las g_j es de módulo igual o mayor que la unidad, se incumple necesariamente la condición (2.2.5), y el proceso no es estacionario.

Los principales resultados de los modelos ARIMA se recogen en el resumen 2.5.

Resumen 2.5

PROCESOS NO ESTACIONARIOS CON EVOLUTIVIDAD HOMOGENEA: PROCESOS ARIMA

En el mundo real Y es no estacionaria pero de forma homogénea, es decir, su transformación

$$\Delta^d Y_t = W_t$$

suele ser estacionaria.

En tal caso la variable estacionaria que debe aparecer en el modelo ARMA (p, q) es $\Delta^d Y_t$, con lo que se obtiene el modelo ARIMA (p, d, q)

$$\phi_p(L) \Delta^d Y_t = \theta_q(L) a_t$$

(2.3.1)

que también tiene como formulaciones igualmente válidas la representación autorregresiva infinita

$$Y_t = \bar{\alpha}_1 Y_{t-1} + \bar{\alpha}_2 Y_{t-2} + \cdots a_t$$

(2.3.3)

y la de medias móviles infinitas

$$Y_t = a_t + \bar{\psi}_1 a_{t-1} + \bar{\psi}_2 a_{t-2} + \cdots$$

(2.3.4)

Este tipo de NO ESTACIONARIEDAD se refleja en:

a) Los coeficientes del modelo (2.3.4) no cumplen (2.2.5), es decir, no forman una sucesión convergente.

b) El polinomio autorregresivo en (2.3.1)

$$\phi_p(L) \Delta^d = \phi_p(L) \Delta^d$$

tiene raíces en el círculo unitario.
En los procesos ARIMA (2.3.1) vemos que, recordando la propiedad (2.3.5), el polinomio autorregresivo contiene d raíces unitarias, que incumplen la condición de estacionariedad. Este incumplimiento es de un tipo muy especial, por lo que se le ha denominado «no estacionariedad de tipo homogéneo». Procesos con alguna y_i superior a la unidad en valor absoluto son también no estacionarios, pero de tipo explosivo, como en el ejemplo anterior en que $Y_i = 1.5Y_{i+1} + a_i$. Series temporales con comportamiento explosivo no se suelen observar en economía ni en otras muchas ciencias, por lo que los procesos ARIMA de tipo explosivo quedan descartados en este volumen. Un fenómeno económico resulta más o menos evolutivo, de forma homogénea, en función del número de diferencias que se requieran para transformarlo en estacionario; si en

$$
\Phi_p(L) = \phi_p(L) \Delta^d
$$

hay d raíces unitarias, existen d factores del tipo $1 - L$; el mundo es tanto más no estacionario cuanto mayor es d:

- si sólo hay un factor Δ, los coeficientes $\hat{\psi}_j$ convergen a una constante distinta de cero (recuérdese el ejemplo del sendero aleatorio);
- si hay dos raíces unitarias, los coeficientes $\hat{\psi}_j$ seguirán una línea recta, y la secuencia de estos coeficientes tenderá a $\pm \infty$ de forma lineal;
- si $d = 3$, el desarrollo de Δ^d lleva a unos $\hat{\psi}_j$ que tienden a $\pm \infty$ de forma cuadrática, y así sucesivamente para otros valores de d.

De ahí que si los coeficientes $\hat{\psi}_j$ tienden a una constante distinta de cero el mundo no es estacionario, pero es lo «mínimo» no estacionario que puede ser, al tender dichos coeficientes a una constante. Si tiene más de una raíz unitaria en la parte autorregresiva, las innovaciones no sólo tienen un efecto permanente, sino que ese efecto es cada vez mayor a medida que pasa el tiempo.

Habiendo introducido la factorización polinomial es fácil expresar la condición de invertibilidad en un proceso ARIMA. La invertibilidad implica, como se vio anteriormente, que el polinomio $\tilde{\pi}_m(L)$ es convergente; dado que

$$
\tilde{\pi}_m(L) = \frac{\tilde{\phi}_p(L)}{\tilde{\theta}_q(L)},
$$

por un razonamiento similar al empleado para la estacionariedad, un proceso ARMA o ARIMA será invertible si todas las inversas de las raíces del polinomio de medias móviles están dentro del círculo unitario. Esto implica que todo proceso puramente autorregresivo es, por definición, invertible, y en los procesos mixtos ARMA/ARIMA la invertibilidad viene determinada exclusivamente por las características de las raíces del polinomio de medias móviles.

2.4. Procesos estocásticos con dependencia estacional

En cualquier modelo ARIMA hay que determinar primero el orden de diferencias, d, y a continuación los órdenes p y q antes de estimar sus parámetros. El valor de d, tal y como se comentó en el epígrafe anterior, suele ser pequeño, ya que en la mayoría de los casos no es superior a dos. Pero para que el modelo ARIMA sea útil en el análisis económico aplicado es necesario que p y q tomen también valores pequeños, pues en otro caso es difícil especificar el modelo conociendo únicamente una serie temporal relativamente corta de la variable a modelizar.

Sin embargo, considérese el caso en que el fenómeno estacionario (debidamente transformado si fuese necesario) que se estudia contiene dependencia estacional, es decir, el valor de Y en el momento t está fuertemente relacionado con los valores correspondientes al mismo momento estacional de años anteriores. Con fines ilustrativos, supóngase que las observaciones disponibles son mensuales: el periodo estacional, al que se denotará por s, es de doce unidades de tiempo; en ese caso p y q pueden llegar fácilmente a tomar los valores 12, 24 o incluso mayores, pues el dato de un mes del año actual puede estar relacionado con los correspondientes al mismo mes del año precedente y de otros años anteriores. Esto plantea la necesidad de simplificar el modelo en el caso de que exista dependencia estacional.

Denominando $\phi_p^*(L)$ y $\theta_q^*(L)$ a los polinomios del modelo ARIMA (2.3.1) cuando existe dependencia estacional, la simplificación utilizada consiste en exigir que dichos polinomios puedan factorizarse de la siguiente manera:

$$
\phi_p^*(L) = \phi_p(L) \cdot \Phi_p(L^s)
$$

$$
\theta_q^*(L) = \theta_q(L) \cdot \Theta_q(L^s),
$$

donde $p = p_s + sp_2$ y $q = q_s + sq_2$. Se tiene así que cada polinomio de los anteriormente considerados admite una descomposición en dos polinomios, uno sobre L y otro sobre L^s, que en el caso de modelos mensuales será normalmente sobre L y L^{12}.

Con esta factorización, al tiempo que se simplifica la estructura dinámica, se impone que los coeficientes correspondientes a ciertos
retardos no pueden tener un valor cualquiera, sino que han de cumplir ciertas restricciones.

Por ejemplo, en un estudio del paro registrado no agrícola (Espasa, 1978b) se estima el siguiente polinomio autorregresivo en forma multiplicativa:

\[
\phi^*_p(L) = (1 - 0.39L - 0.06L^2 - 0.22L^3)(1 + 0.15L^{12} + 0.25L^{24}),
\]

que desarrollado tiene la expresión

\[
\phi^*_p(L) = (1 - 0.39L - 0.06L^2 - 0.22L^3 + 0.15L^{12} - 0.06L^{13} - 0.01L^{14} - 0.03L^{15} + 0.25L^{24} - 0.10L^{25} - 0.02L^{26} - 0.06L^{27}).
\]

La ventaja de la forma multiplicativa consiste en que capta la dependencia temporal incorporando solamente los principales retardos: los inmediatamente anteriores (1, 2, 3) y los estacionales iniciales (primeros múltiplos de 12: 12 y 24), por lo que incluye un número reducido de parámetros y cumple con el principio de paridad en la parametrización.

El inconveniente radica en que los polinomios resultantes tienen restricciones en sus coeficientes. Así, en la versión desarrollada, los retardos 4 a 11 y 16 a 23 están restringidos a tener coeficiente nulo. Además, otros retardos de importancia secundaria, 13, 14, 15, 25, 26 y 27, también están restringidos, pues no pueden tomar cualquier valor con la única restricción de que cumplan la hipótesis de estacionalidad o de evolutividad homogénea, según sea el caso. En efecto, los valores de los coeficientes de los mencionados retardos se obtienen como el resultado de multiplicar los dos polinomios de la formulación multiplicativa.

De acuerdo con esto, si existe dependencia estacional, en vez del modelo

\[
\phi^*_n(L) \Delta(L) Y_t = \theta^*_n(L) a_t,
\]

en donde \(\Delta(L)\) refleja el polinomio formado por todas las raíces unitarias\(^{11}\) y a los polinomios \(\phi^*_n(L)\) y \(\theta^*_n(L)\) no se les impone a

priori más restricciones que las derivadas de la estacionariedad e invertibilidad, se propone una versión más restrictiva dada por

\[
\phi_n(L) \Phi_n(L') \Delta(L) Y_t = \theta_n(L) \Theta_n(L') a_t,
\]

(2.4.2)

En este último caso la parte autorregresiva estacionaria, \(\phi_n(L) \cdot \Phi_n(L')\), tiene el mismo orden que en el modelo precedente, ya que \(p = p_1 + sp_2\), pero con el tipo de restricciones cero y restricciones producto en sus coeficientes que han sido comentadas anteriormente. Otro tanto ocurre con la parte de medias móviles.

Nótese que hasta ahora el análisis se ha centrado en una estacionalidad que sólo afecta a la transformación estacional de la serie; en ese sentido, se dice que la presencia de los polinomios \(\Phi_n(L')\) y/o \(\Theta_n(L')\) en el modelo ARIMA refleja una estacionalidad (de carácter) estacionalidad.

Supongamos ahora que el proceso contiene dependencia estacional y que se necesita un número, digase \((d + D)\), de diferenciaciones para pasar de la variable \(Y_t\), no estacional, a la variable \(W_t\) estacional. En la mayor parte de los casos ocurrirá que un número \(D\) (generalmente \(D = 1\)) de tales diferenciaciones serán estacionales, es decir, del tipo:

\[
\Delta Y_t = (1 - L^D) Y_t = Y_t - Y_{t - D}.
\]

En procesos mensuales la expresión anterior se transforma en

\[
\Delta_{12} Y_t = (1 - L^{12}) Y_t = Y_t - Y_{t - 12}.
\]

Al operador que se aplica a \(Y_t\), \(1 - L^{12}\), se le llama operador de diferencias anuales, o diferencias estacionales, y proporciona el incremento de hoy sobre el mismo mes del año anterior. Este operador está relacionado con la llamada estacionalidad no estacionalidad.

En resumen, en procesos estacionales es posible la presencia de los dos operadores de diferencias:

1. \(\Delta\): Incremento de este mes sobre el mes inmediatamente anterior, o incrementos mensuales.
2. \(\Delta_{12}\): Incremento de este mes sobre el mismo mes de hace un año, o incrementos anuales.

Es fácil comprobar que

\[
\Delta Y_t = (1 - L^D) Y_t = U_{11}(L) a_t,
\]

(2.4.3)

donde \(U_{11}(L) = (1 + L + L^2 + \cdots + L^{11})\). Es decir, la diferencia estacional \(\Delta_{12}\) es una diferencia regular aplicada a un polinomio suma,
$U_{11}(L)$, que afecta a los últimos doce valores observados en cada momento. Con ello, si denominamos Y_t^* a la transformación resultante de aplicar el polinomio suma,

$$Y_t^* = U_{11}(L) Y_t = (Y_t + Y_{t-1} + \cdots + Y_{t-11}),$$

tenemos que

$$\Delta_{12} Y_t = \Delta U_{11}(L) Y_t = \Delta Y_t^*.$$

Alternativamente, utilizando

$$\bar{Y}_t^* = \frac{Y_t^*}{12},$$

la media aritmética de las doce observaciones que acaban en t, tendríamos que

$$\Delta_{12} Y_t = 12 \Delta \bar{Y}_t^*.$$

Por lo tanto, el incremento anual de Y_t es simplemente doce veces el incremento mensual de una variable Y_t^* construida como la media de las doce últimas observaciones.

El papel de esta media de doce meses, provocada por el operador $U_{11}(L)$, es el de eliminar una oscilación estacional homogénea en el nivel de la serie, ya que promedia los valores a lo largo de un ciclo estacional completo. De ahí que Δ_{12} no sea más que un operador Δ ampliado con $U_{11}(L)$, con lo que la diferencia regular no se está aplicando a la variable original, sino a una transformación de la misma $-U_{11}(L) Y_t^*$ —que ha eliminado/suavizado posibles oscilaciones estacionales homogéneas que pudiera presentar el nivel de la serie original.

El polinomio autorregresivo

$$\Delta_{12} = (1 - L^4) = (1 - L)(1 + L + \cdots + L^{s-1}) = (1 - L) U_{4-1}(L)$$

tiene s raíces, todas ellas de módulo unitario y, por tanto, también sus inversas tienen módulo unidad. La raíz del factor $(1 - L)$ es unitaria positiva, y las $s-1$ raíces de $U_{s-1}(L)$ se componen de $(s-2)/2$ pares de complejas conjugadas y una raíz real negativa si s es par. En consecuencia, basta la presencia del factor $U_{s-1}(L)$ para que el modelo sea no estacionario, pues su parte autorregresiva tiene raíces unitarias, y de ahí la denominación de estacionalidad no estacionaria a la que se ha hecho mención anteriormente.

12 De hecho basta con la presencia de la raíz real negativa, o de cualquiera de los pares de raíces complejas conjugadas, para que el proceso no sea estacionario. Sin embargo, parece que la mayoría de las variables económicas se comportan de modo tal que muy raramente requieren solamente parte de las raíces de $U_{s-1}(L)$.

Modelos univariantes para el análisis económico

Esta no estacionariedad se refleja necesariamente en los coeficientes ψ_j. En efecto, sea el modelo

$$U_{s-1}(L) Y_t = a_t$$
y, para simplificar, supóngase que s es dos. En tal caso,

$$(1 + L) Y_t = a_t$$

El gráfico 2.2 representa una serie temporal artificial generada a partir de este modelo. Operando

$$Y_t = \frac{1}{1 + L} a_t = (1 - L + L^2 - L^3 + L^4 - \cdots) a_t$$

(2.4.4)

de donde se desprende que la sucesión de coeficientes ψ_j es oscilante (con periodo igual a dos unidades de tiempo, $s = 2$) con valores de más y menos uno; y por tanto los coeficientes ψ_j no cumplen la condición (2.2.5) de estacionariedad.

Gráfico 2.2. Realizaciones del proceso.

$$(1 + L) Y_t = a_t ; \quad a_t \sim N(0, 1)$$

![Graph](attachment:image.png)
Sin embargo, esta no estacionariedad es distinta a la del proceso sendero aleatorio, que recordemos venia dado por

\[Y_t = \frac{1}{1-L} a_t = (1 + L + L^2 + L^3 + L^4 + \cdots) a_t \]

En (2.4.4) los coeficientes \(\psi_j \) no convergen a cero, pero la media de cada \(s(2) \) coeficientes consecutivos es cero: el nivel medio de los coeficientes puede tomarse como nulo, pero con oscilaciones estacionales unitarias que, por tanto, no se anulan nunca.

Lo anterior sirve también para ilustrar el hecho de que las raíces unitarias de \((1 - L^s) \) la positiva está relacionada con el nivel, no estacional, de la serie, y las otras \((s - 1) \) raíces con las oscilaciones estacionales de dicho nivel.

Desarrollando esta idea para el ejemplo (2.4.4) el nivel medio de la serie \((1 + L) Y_t \) se anula, pues no existe ninguna raíz positiva unitaria en la parte autorregresiva del modelo. Pero la variable original \(Y_t \) no es estacionaria, pues la oscilación estacional no se anula nunca, ya que viene generada por un factor autorregresivo, \((1 + L) \), en el que la raíz \(\mu = -1 \) es de módulo unitario: la media de las observaciones correspondientes a una estación del año (por ejemplo, observaciones pares) es de igual magnitud pero de signo contrario a la media de las observaciones correspondientes a la otra estación anual (observaciones impares). En consecuencia, la media de \(Y_t \) no es constante —condición a) de estacionariedad— sino que depende de la estación del año a la que dicha observación corresponda.

La relación entre los distintos modelos ARMA y ARIMA se recoge en el resumen 2.6.

2.5. Algunos ejemplos de modelos ARIMA para series económicas españolas

1. Para la serie decenal del tipo de interés en el mercado interbancario en operaciones a un día \((r_t) \) se ha estimado el siguiente modelo:

\[\Delta r_t = (1 - 0.32L) a_t \]

\[\sigma_a = 0.0220 \]

Los ejemplos que siguen se han simplificado para evitar entrar en cuestiones que no serán estudiadas hasta el sexto epígrafe.

Modelos univariantes para el análisis económico

73

Resumen 2.6

MODELOS ARMA Y ARIMA Y DEPENDENCIA DE TIPO ESTACIONAL

Modelo ARIMA estacional general

\[\phi_p(L) \Delta(L) Y_t = \theta_q(L) a_t \]

(2.4.1)

En él \(\Delta(L) \) es un polinomio de raíces unitarias tal que

\[\Delta(L) = \Delta^q U_{s-1}(L) \]

donde \(U_{s-1}(L) \) recoge la evolutividad cíclica (estacional) del nivel de \(Y_t \) y \(\Delta^q \) recoge la evolutividad no cíclica o tendencial.

Modelo ARIMA estacional multiplicativo

El modelo (2.4.1) se puede simplificar factorizando los polinomios \(\phi_p(L) \) y \(\theta_q(L) \). Así se obtiene el modelo multiplicativo

\[\phi_p(L) \Phi_p(L^s) \Delta(L) Y_t = \theta_q(L) \Theta_q(L^s) a_t \]

(2.4.2)

en el que \(p = r_1 + sp_2 \) y \(q = q_1 + sq_2 \).

Modelo ARIMA sin dependencia estacional

El caso en que \(s \) no se considera es el llamado modelo ARIMA sin dependencia estacional. Para un proceso ARIMA (1,0,1), se obtiene el modelo ARIMA (2,0,1):

\[\phi_p(L) \Delta Y_t = \theta_q(L) a_t \]

(2.3.1)

Modelo ARMA

Si el proceso es estacionario, \(\Delta(L) \) es la unidad en (2.4.1) y se obtiene el modelo ARMA \((p, q) \):

\[\phi_p(L) Y_t = \theta_q(L) a_t \]

(2.2.7)
En este caso $\Delta_{36} = 1 - L^{36}$ sería la diferenciación anual, ya que la serie es decenal y existen 36 decenas en un año\(^{14}\). Como en el modelo anterior no aparece el factor Δ_{10}, sino solamente Δ, la serie no contiene dependencia ciclica no estacionaria de carácter anual. La desviación típica de la innovación es de algo más de dos puntos porcentuales (la serie expresa los tipos de interés en tanto por uno): su valor tan elevado indica la gran volatilidad de esta variable.

El gráfico 2.3 recoge los principales rasgos de este tipo de interés. Nótese que los paneles B y C, donde se representan respectivamente la transformación estacionaria y las innovaciones finales del modelo, están en la misma escala, lo que permite apreciar el efecto de la modelización de la dependencia dinámica de carácter estacionario. En este caso el efecto es muy limitado, ya que el modelo es muy simple.

2. Para la serie decenal del tipo de interés en el mercado interbancario en operaciones a un mes (R_t) se ha estimado el modelo:

$$\Delta R_t = (1 + 0.44L)(1 - 0.35L^4) \sigma$$

$$\sigma = 0.008.$$

Tal y como se esperaría a priori, este tipo de interés presenta las mismas características no estacionarias que los tipos a un día: en ambos casos el polinomio autorregresivo tiene una única raíz unitaria (una diferencia -regular), es decir, los dos tipos de interés son no estacionarios, pero sus correspondientes incrementos son estacionarios. Se trata pues de dos series integradas de orden uno, I(1).

Sin embargo, los dos modelos ARIMA anteriores sí que recogen diferencias en el comportamiento de ambas series. Así, se observa que la errática de los tipos a un mes (0,88 puntos porcentuales) es muy inferior a la de los tipos a un día, como también era de esperar, y presenta algo más de estructura, es decir, dependencia temporal en el componente ARMA estacionario. En efecto, la transformación estacionaria, o lo que es lo mismo, los incrementos decenales en los tipos de interés en las operaciones a un mes,

$$\Delta R_t = W_t$$

\(^{14}\) En la práctica del control monetario que realiza el Banco de España se definen tres decenas por mes: la primera comprende los días uno a diez, la segunda los días once a veinte y la tercera los días veintiuno a final de mes. Esta última, pues, es de duración variable. Con ello el año tiene exactamente treinta y seis decenas. Los primeros modelos ARIMA decenales para variables monetarias españolas se encuentran en Espasa y Pérez (1979).
Modelos univariantes para el análisis económico siguen el modelo ARMA estacionario

\[W_t = (1 - 0.44L)(1 - 0.35L^4)a_t, \]

mientras que la correspondiente transformación estacionaria de las operaciones a un día

\[\Delta R_t = W_t, \]

sigue el modelo

\[w_t = (1 - 0.32L)a_t. \]

3. Para la serie mensual del índice de precios al consumo de alimentos elaborados, IPCAE, (gráfico 2.5), se ha estimado el siguiente modelo:

\[
(1 - 0.2L^{12} - 0.2L^{24})(1 - L)^2 \ln \text{IPCAE}_t = (1 - 0.75L)a_t, \\
\sigma_a = 0.0022(0.22\%).
\]

Lo primero que llama la atención es el uso de los logaritmos: si se dice que el índice de precios ha subido 14 unidades en el mes de marzo, se está dando una información de poco interés; en cambio si se dice que el índice ha experimentado un aumento del 0.7% la información es mucho mayor. Esto se debe a que en muchas variables económicas los incrementos tienden a ser proporcionales a sus correspondientes niveles, y en tales casos es preferible trabajar con incrementos relativos, es decir, ponderados por el nivel registrado en el momento anterior, ya que los incrementos absolutos son cada vez mayores por el simple hecho de que la serie crezca.

Dado que siempre que los incrementos sean relativamente pequeños se cumple la aproximación

\[
\frac{Y_t - Y_{t-1}}{Y_{t-1}} \approx \Delta \ln Y_t,
\]

es conveniente formular el modelo en logaritmos en aquellos casos en que el estudio debe hacerse considerando las variaciones en términos relativos.

En cuanto al modelo ARIMA propiamente dicho, y a juzgar por el número de diferencias —dos— que se han empleado para lograr que la serie fuese estacionaria, se deduce que la transformación loga-