

Photosynthetic and ultrastructure parameters of maize plants are affected during the phyto-rhizormediation process of degraded metal working fluids

Journal:	International Journal of Phytoremediation
Manuscript ID:	BIJP-2014-0312.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Grijalbo, Lucia; Universidad CEU-San Pablo, Gutierrez-Mañero, Francisco Javier; Universidad CEU-San Pablo, Fernandez-Pascual, Mercedes; Institute of Agricultural Sciences,, Department of Crop Protection, CSIC Lucas, Jose Antonio; Universidad San Pablo CEU,
Keywords:	Phytoremediation, Rhizoremediation, Metal-Working fluids

SCHOLARONE[™] Manuscripts

3		
4 5		
6 7	1	Photosynthetic and ultrastructure parameters of maize plants are affected during
8 9 10	2	the phyto-rhizormediation process of degraded metal working fluids
10 11 12	3	Lucía Grijalbo ¹ , Francisco Javier Gutierrez Mañero ¹ , Mercedes Fernandez-Pascual ² ,
13 14	4	Jose Antonio Lucas ¹ *
15 16	5	1. Departamento de CC. Farmacéuticas y de la Salud, Facultad de Farmacia,
17 18	6	Universidad San Pablo CEU, Urb. Monteprincipe, 28668, Boadilla del Monte,
19 20	7	Madrid, Spain.
21 22	8	2. Institute of Agricultural Sciences, Department of Crop Protection, CSIC,
23 24	9	Serrano, 115-bis, 28006 Madrid, Spain
25 26	10	* Corresponding author: Dr. Jose Antonio Lucas García, Dpto. Departamento de CC.
27	11	Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo CEU, Urb.
20 29 30	12	Monteprincipe, 28668, Boadilla del Monte, Madrid, Spain. Phone
31 32	13	number:+34913724733. Fax number: +34913510496. alucgar@ceu.es.
33 34	14	Running head: Phyto-rhizormediation of metal working fluids
35 36 37	15	
38 39	16	
40 41	17	
42 43 44	18	
45 46	19	
47 48	20	
49 50	21	
51 52 53	22	
54		
55 56	23	Abstract
57 58		1
59		

A phyto-rhizoremediation system using corn and esparto fibre as rooting support to remediate degraded metal working fluids (dMWFs) has been developed in the present study. In order to improve the process, plants were inoculated at the root level with bacteria either individually, and with a consortium of strains. All strains used were able to grow with MWFs. The results show that this system significantly lowers the Chemical Oxygen Demand below legal limits within 5 days. However, results were only improved with the bacterial consortium. Despite the effectiveness of the phyto-rhizoremediation process, plants are damaged at the photosynthetic level according to the photosynthetical parameters measured, as well as at the ultrastructure of the vascular cylinder and the Bundle Sheath Cells. Interestingly, the bacterial inoculation protects against this damage. Therefore, it seems that that the inoculation with bacteria can protect the plants against these harmful effects.

37 Keywords

38 Phyto-rhizoremediation, chlorophyll fluorescence, Metal working fluids, maize.

1. Introduction

The generation, distribution and accidental spills of different organic pollutants (weedkillers, insecticides, acaricides, hydrocarbons) have resulted in environmental deterioration, with a direct or indirect accumulation in soils, water and air. Its accumulation rate is higher than the planet capacity to remove these xenobiotics (Kvesitadze and Gordeziani 2001). In the next decades, billions of dollars will be spent to clean up all sites polluted with polycyclic aromatic hydrocarbons (PAHs) (Rosenberg

47 1993). In the United States alone, restoration of all contaminated sites will cost48 approximately \$1.7 trillion (Kuiper et al., 2003).

The Metal Working Fluids (MWFs) are oils of different nature. They serve for cooling of work pieces and tools, lubricating the process, and flushing away chips, fines, swarf, and residues (Moscoso et al., 2012). **MWF used in this work is a** common product used by companies that use metal pieces that rubbed together, and that in their manufacturing processes have to turning, milling, drilling, grinding, boring, etc. annual worldwide production in 2000, reached 22.4 x 10⁹ litres (Great Britain, 2000), and this amount will have increased year after year.

The exact composition of the oils cannot be determined because substances of 85-95% purity are used (Rabenstein et al., 2009). In addition, it is known that MWFs can contain more than 60 different components, including biocides, foaming inhibitors, emulsifiers, corrosion inhibitors, extreme pressure additives, etc, and the percentages and recipe of each compound are secrets of the MWF manufacturers. When these MWF lose their properties, they are known as degraded MWFs and become a problem for industry.

In the area where this work was made (Madrid, Spain), degraded MWFs handling
is regulated by the regional law 10/1993 on industrial waste discharges into urban
sanitary sewer system. This law details about the physic-chemical characteristics
that degraded MWFs should have to be released into the environment.

Among the many parameters regulated by the law, chemical oxygen demand (COD) and pH values are usually above the maximum permitted values, and therefore must be treated prior to release to the environment. However, the decrease in COD and pH does not necessarily rule out biotoxic effects of the degraded MWFs (Lucas García et al., 2013).

> Plants are exposed to the degraded MWFs released to the environment during all the development stages, from germination to reproduction (Wild et al., 1992). Plants can absorb these compounds by roots, through waxy leaf cuticle or by their uptake through stomata (Wild et al., 2006; Meudec et al., 2006). After absorption, plants can accumulate, translocate and transform these compounds, and during these processes can affect to biochemical and/or physiological mechanisms and negative affect to grow and biomass production (Kummerová et al., 2006).

> Some bacteria of the soil are able to promote plant growth by colonizing the plant root (Kloepper et al., 1989; Dutta and Podile 2010). These free-living soil bacteria are usually referred to as plant growth promoting rhizobacteria (PGPR) or plant health promoting rhizobacteria (PHPR) (Hayat et al., 2010). Some of them, can improve the plant's defensive metabolism, provoking a physiological status of the plant named priming (Conrath 2011). Primed pants can respond faster and/or stronger when subsequently challenged by biotic or abiotic stress, because these plants have activated their defensive responses (Conrath et al., 2006).

> The use of plants in combination with microbes (phyto-rhizoremediation) in remediation processes has the advantage of causing an increase in microbial population numbers and metabolic activity in the rhizosphere. The exudation of phothosyntates by plants roots creates a nutrient rich environment in which microbial activity is stimulated (Kuiper et al., 2003). The type of root exudates is one of the most important factors in successful rhizoremediation (Yoshitomi and Shann 2001). Application of the interaction between plant roots and rhizobacteria for rhizoremediation has been investigated because it is an environmentally friendly and cost effective technology for the

96 remediation of contaminated soils (Gerhardt et al., 2009). The key mechanism for a
97 succesful rhizoremediation is the rhizosphere effect that results in enhanced
98 biodegradation (Gerhardt et al., 2009; Newman and Reynolds, 2004).

99 The aim of this work was to develop a phyto-rhizoremediation system able to 100 reduce the chemical oxygen demand (COD) and pH below that required by law for 101 degraded MWFs, and to study the impact of these pollutants on the physiology of 102 maize.

2. Materials and methods

105 2.1. Degraded metal-working fluids (dMWFs)

John Deere Ibérica S. A. kindly provided the degraded MWFs for this study from its headquarters in Getafe (Madrid). dMWF were previously remediated in the company with physicochemical procedures and showed a chemical oxygen demand (COD) and pH values over the regulatory values, according to the regional Law 10/1993.

The main chemical constituents include a formaldehyde-based biocide; alkyl
benzotriazole (metal passivator); C16/C18-fatty alcohol polyglycol ether (corrosion
inhibitor); isopropanolamine (lubrication agent), and 3 iodo 2 propynylbutylearbamate.
Fresh MWFs is typically supplied as a concentrate, which is diluted with water to form
a 2% v/v working fluid prior to use in machining operations.

115 2.2. Strains used

Microorganisms used in the experiments were selected for their capacity to grow in degraded MWFs (data not shown). All microorganisms belong to the Universidad San Pablo CEU collection. The strains used in the experiments were isolated from different sources: i) two strains were isolated from the esparto fibre and ii) consortium

microorganisms from a membrane bioreactor. Strains from esparto: A bacterial strain identified as Enterobacter sp. (denoted as Esp. 1) and a yeast strain identified as Rhodotorula dairenensis (denoted as Esp. 21). These strains were selected from those present in esparto; the *Enterobacter* sp. was the more abundant genus (66.7%) and the yeast was the only microorganism able to grow in agar with degraded MWFs supplied with nutrientsor not (data not shown). The microorganisms for the consortium were selected from a membrane bioreactor (MBR) fed with a 6,000 ppm COD metal working-fluid pretreated solution. Four bacteria formed the consotium: MBR-A11 (Pseudomonas sp); MBR-A12 (Acinetobacter johnsonii); MBR-A16 (Acinetobacter johnsonii) and MBR-A23 (Sphingobium xenophagum). These strains were selected for being the most abundant genera among over 100 colonies in the MBR (data not shown). Taxonic affiliation of these bacteria was performed through the partial sequencing of the gene 16S rRNA, and its later comparison by the BLASTN 2.2.26 (Zhang et al., 2000) algorithm in the GenBank database. The sequences of the esparto bacteria were deposited in the GenBank with the numbers: JF690924 and, AF444501 respectively, and those of the consortium bacteria were deposited in the GenBank with the numbers: JF937328, JF937329, JF937331 and JF937337, respectively. 2.3. Maize plants After surface-sterilized with ethanol (70%) during 30 s, and sodium hypochlorite (5%) Formatted: Not Highlight for 6 min, maize seeds were washed with sterile deionized water for five times. Seeds Formatted: Not Highlight were placed in petri dishes on agar-agar. On 1 L-containers filled with 11.5 g of esparto Formatted: Not Highlight fibre and a metal grille, germinated seeds were deposited. These containers were filled Formatted: Not Highlight with 1 L of tap water supplemented with 1 g of Hoagland (Sigma-Aldrich) mediumSeeds of maize were surface-sterilized with ethanol (70%) during 30 s, followed

1
2
3
4
5
6
7
8
0 0
10
10
11
12
13
14
15
16
17
18
19
20
21
22
23
2/
24
20
20
21
28
29
30
31
32
33
34
35
36
37
38
20
40
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
55
00
ວ/ ເດ
58
59
60

145	by sodium hypochlorite (5%) for 6 min. Then, seeds were rinsed five times with sterile
146	deionized water and then deposited in petri dishes with agar agar. After two days,
147	germinated seeds were transferred to 1 L containers filled with 11.5 g of esparto fibre
148	and a metal grille where seeds were deposited; the device was filled with with 1 L of tap
149	water supplemented with 1 g of Hoagland (Sigma Aldrich) medium. Twelve days after,
150	50% of the pots were inoculated with microorganisms to achieve 10^7 cfu mL ⁻¹ . Three
151	days later, 50% of the containers (3 with microorganisms and 3 without) were filled
152	with degraded MWFs. Each container had 20 seedlings. The experiment consisted of 12
153	containers: three non-inoculated without degraded MWFs (control containers); three
154	inoculated without degraded MWFs; three non-inoculated with degraded MWFs (final
155	COD between 1,678 ppm to 1,821 ppm) and three inoculated with degraded MWFs
156	(final COD between 1,678 ppm to 1,821 ppm). Five days later, COD and pH of the
157	bioremediated degraded MWFs were measured in order to assess the success of the
158	phytoremediation process; physiological determinations were made in maize plants.
159	The assays were made in a controlled environment chamber with a 25/18°C
160	day/night temperature, a PPFD of 600 mmol/(s*m ²) and a 60-70% relative humidity.
161	
1(2	
162	2.4. COD and pH determinations
163	COD and pH were measured following the specifications of the EPA method 410.4 (the
164	determination of chemical oxygen demand by semi-automated colorimetry), and EPA
165	method 150.1 (pH, Electrometric Method) respectively. To COD colorimetric analysis
166	using a Merck Photometer SQ 118 with COD cuvette test kits (range 500-10,000 mg/L)
167	was used. To pH a CRISON micro pH 2100 pHmeter used directly on degraded MWFs
168	was used.

169	COD was determined by colorimetric analysis using a Merck Photometer SQ 118 with
170	COD cuvette test kits (range 500-10,000 mg/L). Analyses were performed according to
171	the manufacturer's instructions. This method follows the specifications of the EPA
172	method 410.4 (the determination of chemical oxygen demand by semi automated
173	colorimetry). pH was measured directly on degraded MWFs with a CRISON micro pH
174	2100 pHmeter, following the EPA method 150.1 (pH, Electrometric Method).
175	
176	
177	2.5. Chlorophyll fluorescence, Hill reaction and chlorophyll analysis determinations
178	To measure the fluorescence emitted by chlorophyll a pulse amplitude modulated
179	(PAM) fluorometer (Hansatech FM2, Hansatech, Inc, UK) was used. One h after leaves
180	were adapted to dark conditions Fo (dark adapted minimum fluorescence) was
181	measured with weak modulated irradiation (1 μ mol m ⁻² s ⁻¹). After a 700 ms saturating
182	flash (9000 µmol m ⁻² s ⁻¹) maximum fluorescence (Fm) was determined. Fv (variable
183	fluorescence) was calculated as the difference between Fm and Fo. With these data,
184	Fv/Fm (maximal PSII quantum yield) was calculated. Chlorophyll fluorescence was
185	measured with a pulse amplitude modulated (PAM) fluorometer (Hansatech FM2,
186	Hansatech, Inc, UK). After dark adaptation of leaves for 1-h, the minimal fluorescence
187	(Fo; dark adapted minimum fluorescence) was measured with weak modulated
188	$\frac{1}{1}$ irradiation (1 µmol m ⁻² s ⁻¹). Maximum fluorescence (Fm) was determined for the dark
189	adapted state by applying a 700 ms saturating flash (9000 μ mol m ⁻² s ⁻¹). The variable
190	fluorescence (Fv) was calculated as the difference between the maximum fluorescence
191	(Fm) and the minimum fluorescence (Fo). The maximum photosynthetic efficiency of
192	photosystem II (maximal PSII quantum yield) was calculated as Fv/Fm.

193	Immediately, the leaf was continuously irradiated with red-blue actinic beams (80 µmol				
194	$m^{-2} s^{-1}$) and equilibrated for 15 s to record Fs (steady-state fluorescence signal).				
195	Following this, another saturation flash (9000 μ mol m ⁻² s ⁻¹) was applied and then Fm				
196	(maximum fluorescence under light adapted conditions) was determined. Other				
197	fluorescent parameters were calculated as follows: the effective PSII quantum yield				
198	φPSII=(Fm`-Fs)/Fm` (Genty et al., 1989); the photochemical quenching coefficient				
199	aP=(Em'-Es)/(Em'-Eo): the pop-photochemical guenching coefficient NPO=(Em-				
199	$q = (1 \text{ m} - 1 \text{ s})/(1 \text{ m} - 1 \text{ s}), \text{ the non-photoeneninear quenching coefficient for Q = (1 \text{ m} - 1 \text{ s})$				
200	Fm')/Fm' and the electron transport rate $ETR=\phi PSIIx PARx0.5x0.85$. All measurements				
201	were carried out in 10 plants of each container.				
202	In order to measure the Hill reaction and to determine the chlorophyll quantity, 1				
203	g maize leaves were taken from different plants from each container. Leaves were				
204	homogenised with 10 mL phosphate buffer 75 mM pH 6.9. Chloroplast lamellae used in				
205	the Hill reaction were obtained after filtering the macerate through 6 gauze layers. The				
206	Hill reaction was carried out mixing 4.5 ml of dichlorophenolindophenol (DCPIP)		Form	atted: Not	Hiahliaht
200	solution and 0.5 ml of ablorenlasts suspension. This mix was owneed for 3 min to			attad: Nat I	liabliabt
207	solution and 0.5 million children suspension. This mix was exposed for 5 million	`	Form	atted: Not I	ngniight
208	irradiance of 174 µmol m ⁻² s ⁻¹ PAR at 22 °C. Afterwards, absorbance at 600 nm (UV–		Form	atted: Not I	Highlight
209	VIS Spectrophotometer Thermo Electron Corporation (Biomate 5) was measured, and				
210	Hill reaction activity was expressed as the rate of DCPIP reduction by the chloroplast	'	Form	atted: Not I	Highlight
211	suspension during irradiation, and the activity of chloroplasts was evaluated as a rate of	'	Form	atted: Not I	Highlight
212	DCIP photoreduction in µg reduced DCPIP µg ⁻¹ (chl) min ⁻¹ . The measurements were	 ·	Form	atted: Not I	Highlight
213	repeated three times and the data are presented as arithmetic means. These fragments of		Form	atted: Not I	-lighlight Highlight
014		Ň	Form	atted: Not I	Highlight
214	leaves were macerated with 10 mL phosphate buffer 75 mM pH 6.9. This macerate was				
215	filtered through 6 gauze layers, obtaining a liquid containing chloroplast lamellae.				
216	The Hill reaction mixture contained 4.5 ml of dichlorophenolindophenol (DCPIP)_	·	Form	atted: Not I	Highlight
217	solution and 0.5 ml of chloroplasts suspension. This reaction mixture was exposed for 3				

218	min to irradiance of 174 μ mol m ⁻² s ⁻¹ -PAR at 22 °C. Hill reaction activity was measured	
219	spectrophotometrically at 600 nm and expressed as the rate of DCPIP reduction by the	
220	chloroplast suspension during irradiation, using UV VIS Spectrophotometer Thermo	
221	Electron Corporation (Biomate 5) in a cuvette of 1 cm light pass. The activity of	
222	chloroplasts was evaluated as a rate of DCIP photoreduction in µg reduced DCPIP µg ⁻¹	Formatted: Not Highlight
223	(chl) min ⁻¹ . The measurements were repeated three times and the data are presented as	Formatted: Not Highlight
224	arithmetic means.	Formatted: Not Highlight
225	Chlorophyll quantity was measured mixing 1 mL of chloroplast lamellae and 4	
226	mL of acetone (Strain et al., 1971). After centifigate 5 min at 4,000 r.p.m, absorbance of	
227	the supernatant at 649 and 665 nm was measured. Total chlorophyll, chlorophyll a and	
228	chlorophyll be was calculed following the math expressions proposed by Arnon, 1949.	
229	To measure the chlorophyll quantity, 1 mL of chloroplast lamellae and 4 mL	
230	acetone were used (Strain et al., 1971). This mixture was centrifugated 5 min at 4,000	
231	r.p.m. and absorbance of the supernatant was measured at 649 nm and at 665 nm. Total	
232	chlorophyll and chlorophyll a and b contents were calculated as previously described by	
233	(Arnon 1949) and expressed as nmol g- ⁴ -leaf fresh weight.	
234		
235	2.6. Low Temperature Scanning Electron Microscopy (LTSEM)	
236	Leaves and roots were sampled 5 days after MWFs application. The third youngest leaf	
237	was detached from non-inoculated controls and MWFs treated plants seeking same	
238	physiological status to obtain a reliable comparation.	
239	Ultraestructure of fresh leaves and roots were studied by low temperaure	
240	scanning electron microscopy (LTSEM). For this, organs were fixed to a sampler with	Formatted: Not Highlight
241	an adhesive (Gurr®, OCT, BDH), were cryofixed into slush nitrogen (-196 °C), and	
242	vacuum-cryo-transferred to a -180 °C camera to be fractured and then gold coated (de	
	10	

Formatted: Indent: First line: 0.49"

1 2 3		
3 4 5		
5 6 7	243	María et al, 2005). Ultraestructures of leaves and roots were observed with a Zeiss
8	244	Digital Scanning Microscope DSM 960 at low temperature.
9 10	245	Low temperature scanning electron microscopy (LTSEM) was performed on
11 12	246	fresh leaves and roots just detached from the plant. These structures were fixed to a
13 14	247	sampler with an adhesive (Gurr®, OCT, BDH) and were cryofixed into slush nitrogen (-
15 16	248	196 °C), vacuum cryo transferred to a 180 °C camera to be fractured and then gold
17 18	249	coated (de María et al, 2005). The structures were observed at low temperature with a
19 20	250	Zeiss Digital Scanning Microscope DSM 960.
21 22	251	
23 24	252	
25 26	232	2.7. Statistics
27	253	Simple ANOVA analyses were performed to compare data obtained in each experiment.
28 29	254	Significant differences between the analysed variables were considered when $P < 0.05$,
30 31	255	and in these cases, average values were compared by means of LSD statistic (Sokal and
32 33	256	Rholf 1979). For these analyses Statgraphics software was used.
34 35	257	3. Results
36 37	258	3.1 COD and nH determinations
38 39	230	
40 41	259	The reduction in the chemical oxygen demand (COD) from the degraded MWFs
42 43	260	achieved by the phyto-rhizoremediation system developed, ranged between 48.79 % and
43 44	261	64.42 % (Table 1). This was further improved only by inoculation with the consortium.
45 46	262	Similarly, reduction in pH values of the degraded MWFs ranged between 8.58 $\%$ to
47 48	263	11.84 % (Table 2). Only Esp. 1 improved the reduction of pH. In both cases, values
49 50	264	obtained after phyto-rhizoremediation processes were below local legislation limits.
51 52	265	
53 54	266	2.2 Chlorophyll fluorescence Hill regetion and chlorophyll analysis determinations
55 56	200	5.2. Chlorophyu juorescence, 11tti reaction and chlorophyti anatysis determinations
57 58		11
59		

60

URL: http://mc.manuscriptcentral.com/bijp Email: Jason.White@po.state.ct.us

Tables 3, 4 and 5 show values of the main chlorophyll fluorescence parameters, Hill reaction and chlorophyll analyses in inoculated and non-inoculated plants with and without degraded MWFs.

Data from the experiment in which the Esp. 1 was used appears in Table 3. Fo, Φ PSII and Hill reaction values decreased significantly in plants treated with degraded MWFs with regard to the control (without degraded MWFs and non-inoculated). Total chrophyll significantly increased. Plants treated with degraded MWFs and incoculated had the same behaviour described above, except that Φ PSII did not significantly decreased. In addition, Chlorophyll a/b ratio significantly increased, and total chlorophyll decreased.

277 Data from the experiment in which the Esp. 21 was used appears in Table 4. In 278 this case, Fo and ΦPSII values significantly decreased in plants treated with degraded 279 MWFs with regard to the control (without degraded MWFs and non-inoculated). In 280 plants treated with degraded MWFs and incoculated all chlorophy fluorescences 281 parameters measured except Fv/Fm significantly decreased with regard to control 282 (without degraded MWFs and inoculated). Chlorophyll a/b ratio value significantly 283 increased and total chlorophyll decreased.

Data from the experiment in which the consortium was used appears in Table 5. Data from the experiment in which the consortium was used appears in Table 5. Deposition of the control values significantly decreased in plants treated with degraded MWFs with regard to the control (without degraded MWFs and non-inoculated). In addition, Chlorophyll a/b ratio and total chrorophyl values increased. In plants treated with degraded MWFs and incoculated all chlorophy fluorescences parameters measured except Fv/Fm significantly decreased with regard to control (without degraded MWFs and inoculated). Total chlorophyll value significantly decreased.

LTSEM micrographs show the ultrastructure of the vascular cylinder and the Bundle Sheath Cells (BSC; Puertas Mejías et al, 2010) of maize cells after cryofracture. In control plants (figure 1A) vigorous chloroplasts were observed. However, degraded MWFs changed the leaf structure less vacuoles were observed and boundaries were not as sharp (Figure 1B). Apparently, chloroplast number is reduced in the MWFs treatments (figure 1B) with respect of the number observed in the tap water treatments (figure 1A) and these organelles seem to be crushed between tonoplast and cell wall (figure 1B). Micrographs of plants treated with degraded MWFs and inoculated with bacteria or consortium do not reveal differences with plants growing on degraded MWFs but non-inoculated (data not shown). POL

4. Discussion

Phytoremediation of organic compounds has been widely reported (Susarla et al., 2002; Arthur et al., 2005; Vangronsveld et al., 2009; Batty and Dolan 2013). Most studies have focused on chlorinated solvents, explosives and petroleum hydrocarbons. However, in recent years, researchers have started to address the potential of phytoremediation to treat other organic pollutants including polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) or MWFs (Ferro et al., 1994; Nwoko 2010; Ndimele 2010; Batty and Dolan 2013; Lucas García et al., 2013).

The phyto-rhizoremediation system developed in this research was composed by maize, esparto fibre and different microorganisms. Root exudation by the plant is crucial in the rhizoremediation process, since it provides nutrients to soil and stimulates

> microbial activity. Root exudation contributes to xenobiotic degradation because by addition of organic compounds, microbial metabolic necessities are supplied (Kim et al., 2002; Gerhardson 2002; Hadacek 2002; Barrutia et al., 2011) or by release of enzymes that complement the microbial cathabolic ways (Pilon-Smits 2004; Wenzel 2008). The microorganisms used were isolated from different systems, and were checked for its capacity to grow in degraded MWFs (data not shown). The bioaugmentation improved the biodegradative capacities from the polluted sites by the introduction of individual microorganisms or consortium with the deserable cathalytic capacities (Mrozik and Piotrowska-Seget 2010). Within the phytoremediation field, rhizoremediation has been suggested as the primary mechanism responsible for hydrocarbon degradation in soil (Yateem et al., 2007; Barrutia et al., 2011).

The process designed in this work was performed to reduce in a short period of time the COD and pH values below the maximum indicated by the local law. The results of this study indicate the effectiveness of this procedure, because these parameters were significantly reduced (Table 1 and 2), consistent with the reported effects of corn as a plant that has already demonstrated its ability to remediate different types of organic and inorganic contaminants (Ogbo et al., 2010; Hong et al., 2010; Han et al., 2011). In addition, we have demonstrated this procedure in a previuos work with other bacteria (Lucas García et al., 2013).

The pollutants degradation could be attributed to the plant, the microorganisms or the plant-microorganisms interaction. However, the pollutants could be adsorbed to the esparto fibre as reported for many organic pollutants, such as the oil derivatives, which are hydrofobic and tend to adsorb to soil (Martin and Gallego, 2003).

In our work, the consortium was the only one able to reduce COD over the noninoculated treatments (Table 1) suggesting that the mixed inoculum could be better for

phyto-rhizoremediation treatments of degraded MWFs. The bioaugmentation with pure
inoculums in diffent habitats (polluted water, underground water, soil or clay) is usually
less effective than the use of consortia, as it is very difficult for a single microorganism
to perform a complete mineralization (Bouchez et al., 2000; Arthur et al., 2005; Mrozik
and Piotrowska-Seget 2010), although the opposite has also been reported (Moscoso et
al., 2012).

This work is mainly focused on the study of the damage produced by MWFs on plant fitness, especially on photosynthesis. Photosynthesis is one of the metabolic process more investigated, since it is a central route in plants responsible for synthesis of carbon scaffoldings for growth and metabolism (Kummerová et al., 2008).

The fluorescence emission from dark-adapted leaves (Fo) decreased in all degraded MWFs treatments, being the lowest decreases detected in Esp. 1 and Esp. 21 inoculated treatments (Tables 3 and 4). Increased Fo values are considered as indicator of damaged photosynthetic systems (Bradbury and Baker 1986; Osmond 1994; Baker 2008); unexpectedly, pollutants from degraded MWFs decreased this parameter.

The electronic microscopy images showed most organelles crushed between the tonoplast and the cell wall (Fig. 1) and evidenced a decrease in the chloroplast number due to degraded MWFs, consistent with the sensitivity of chloroplasts to abiotic stress (Alscher et al., 1998). The irreversible inactivation of photosystem II in the thylakoid membrane produced by the organic compounds (Huang et al., 1997; Mallakin et al., 2002) underlies the increase in Fo values generally reported. However, the unexpected decreases detected here seem to be associated to a decrease in the number of chloroplasts, not to a better photosynthetic system. Considering this fact, it seems that inoculation with strains Esp. 1 and Esp. 21 could be protecting plants from the pollutants, especially Esp. 21 that achieves significant differences with respect to noninoculated plants (Table 4) although micrographs do not reveal differences with allother treatments (data not shown).

Hill reaction determination (Tables 3, 4 and 5) revealed a significant reduction on degraded MWFs grown plants, either inoculated or non-inoculated. Photosystem II is inactivated by differents stresses, such as air pollution, high metals or organic compounds (Felipe et al., 1988; Hernandez-Terrones et al, 2003; Kumerova et al 2008) The damage is first localyzed in D1 protein, where electron transfer between the first donor (Tyr Z) and the second acceptor plastoquinone (Qb) takes place (Barber and Andersson 1992). The chlorophyll a/b ratio (Tables 3, 4 and 5) increases when plants are grown in degraded MWFs consistent with the reported increase of this ratio upon stressful situations (Garcia-Plazaola et al., 2008). Chlorophyll a/b ratio is inversely proportional to the antenna size (Boardman, 1977).

5. Conclusion

The phyto-rhizoremediation system developed (maize – esparto) was able to reduce the COD below the limits stablished regional Law 10/1993. Only the inoculation with the consortium further improved this reduction. Degraded MWFs strongly affects plant physiology, lowering chloroplast number, probably associated to damage in the differents acceptors from the electronic transport chain. Inoculation with microbial strains, particulary the consortium, prevent damage of some of the physiological parameters measured. Therefore, it seems that that the inoculation with bacteria can protect the plants against harmful effects of degraded MWF.

388 Acknowledge

1
2
3
4
5
0
6
7
8
0
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
21
22
23
24
25
20
26
27
28
20
29
30
31
32
22
33
34
35
36
27
31
38
39
40
 /1
41
42
43
44
45
40
46
47
48
10
+3 50
50
51
52
52
55
54
55
56
57
57
58
59

This work was funded by Comunidad de Madrid grants S-0505/AMB/0321 and S-2009/AMB/1511 (Microambiente-CM), by the Spanish Ministry of Science and Innovation [grant CGL2010-15675, sub-programme BOS; grant FPU (Personal University Formation)] and by John Deere S.A Company. Gaiker Foundation (Vizcaya – España) is aknowldeged for the use of the MBR.

- 394
- 395 References

396 Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta
397 vulgaris. Plant Physiol 24: 1–15.

398 Arthur E, Rice P, Rice P, Anderson T, Baladi S, Henderson K, Coats J. 2005.
399 Phytoremediation—An Overview. Crit Rev Plant Sci 24: 109–122.

400 Baker NR. 2008. Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annu
401 Rev Plant Biol 59: 89–113.

402 Barber J, Andersson B. 1992. Too much of a good thing: light can be bad for

403 photosynthesis. Trends Biochem Sci 17: 61–66.

404 Barrutia O, Garbisu C, Epelde L, Sampedro MC, Goicolea MA, Becerril JM. 2011.

405 Plant tolerance to diesel minimizes its impact on soil microbial characteristics during

406 rhizoremediation of diesel-contaminated soils. Sci Total Environ 409: 4087-4093.

407 Batty LC, Dolan C. 2013. The Potential Use of Phytoremediation for Sites With Mixed

408 Organic and Inorganic Contamination. Crit Rev Environ Sci Technol 43: 217–259.

409 Bouchez T, Patureau D, Dabert P, Juretschko S, Doré J, Delgenès P, Moletta R, Wagner

410 M. 2000. Ecological study of a bioaugmentation failure. Environ Microbiol 2: 179–190.

411 Bradbury M, Baker NR. 1986. The kinetics of photoinhibition of the photosynthetic

412 apparatus in pea chloroplasts. Plant Cell Environ 9: 289–297.

413 Conrath U. 2011. Molecular aspects of defence priming. Trends Plant Sci 16: 524–531.

414	Conrath U, Beckers GJM, Flors V, García-Agustín P, Jakab G, Mauch F, Newman MA,
415	Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D,
416	Zimmerli L, Mauch-Mani B. 2006. Priming: Getting Ready for Battle. MPMI 19: 1062-
417	1071.
418	Dutta S, Podile AR. 2010. Plant Growth Promoting Rhizobacteria (PGPR): the bugs to
419	debug the root zone. Crit Rev Microbiol 36: 232–244.
420	Felipe MR, Golvano MP, Lucas MM, Lang P, Pozuelo JM. 1988. Differential effects of
421	isoproturon on the photosynthetic apparatus and yield of two varieties of wheat and L.
422	rigidum. Weed Res 28: 85–92.
423	Ferro AMA, Sims RCR, Bugbee BB. 1994. Hycrest crested wheatgrass accelerates the
424	degradation of pentachlorophenol in soil. J Environ Qual 23: 272–279.
425	Garcia-Plazaola JI, Esteban R, Hormaetxe K, Becerril JM. 2008. Seasonal reversibility
426	of acclimation to irradiance in leaves of common box (Buxus sempervirens L.) in a
427	deciduous forest. Flora 203: 254–260.
428	Genty B, Briantais JM, Baker NR. 1989. The relationship between the quantum yield of
429	photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA -
430	General Subjects 990: 87–92.
431	Gerhardson B. 2002. Biological substitutes for pesticides. Trends Biotechnol 20: 338-
432	343.
433	Gerhardt KE, Huang XD, Glick BR, Greenberg BM. 2009. Phytoremediation and
434	rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:
435	20–30.
436	Bio-Wise. 2000. A guide to biological treatment for metalworking fluids disposal.
437	Oxon: DTI.
438	Hadacek F. 2002. Secondary Metabolites as Plant Traits: Current Assessment and
	18

1 2		
3 4		
5 6	439	Future Perspectives. Crit Rev Plant Sci 21: 273–322.
7 8	440	Han M, Li G, Sang N, Dong Y. 2011. Investigating the bio-toxicity of coking
9 10	441	wastewater using Zea mays L. assay. Ecotoxicol Environ Saf 74: 1050–1056.
11 12	442	Hayat R, Ali S, Amara U, Khalid R, Ahmed I. 2010. Soil beneficial bacteria and their
13 14	443	role in plant growth promotion: a review. Ann Microbiol 60: 579–598.
15 16	444	Hernandez-Terrones MG, Aguilar MI, King-Diaz B, Lotina-Hennsen B. 2003.
17 18 19	445	Inhibition of photosystem II in spinach chloroplasts by trachyloban-19-oic acid. Pestic
19 20	446	Biochem Physiol 77: 6–6.
21 22	447	Hong SH, Ryu H, Kim J, Cho KS. 2010. Rhizoremediation of diesel-contaminated soil
23 24 25 26 27 28 29 30	448	using the plant growth-promoting rhizobacterium Gordonia sp. S2RP-17. Biodegrad 22:
	449	593–601.
	450	Huang XD, McConkey BJ, Babu TS, Greenberg BM. 1997. Mechanisms of
	451	photoinduced toxicity of photomodified anthracene to plants: Inhibition of
31 32	452	photosynthesis in the aquatic higher plant Lemna gibba (duckweed). Environ. Toxicol
33 34	453	Chem 16: 1707–1715.
34 35 36 37 38	454	Kim D, Park MJ, Koh SC, So JS, Kim E. 2002. Three separate pathways for the initial
	455	oxidation of limonene, biphenyl, and phenol by Rhodococcus sp. strain T104. J
39 40	456	Microbiol 40: 86–89.
41 42	457	Kloepper JW, Lifshitz R, Zablotowicz RM. 1989. Free-living bacterial inocula for
43 44	458	enhancing crop productivity. Trends Biotechnol 7: 39–44.
45 46	459	Kuiper II, Lagendijk ELE, Bloemberg GVG, Lugtenberg B. 2003. Rhizoremediation: a
47 48	460	beneficial plant-microbe interaction. MPMI 17: 6-15.
49 50	461	Kummerová M, Krulová J, Zezulka S, Tríska J. 2006. Evaluation of fluoranthene
51 52	462	phytotoxicity in pea plants by Hill reaction and chlorophyll fluorescence. Chemosphere
53 54	463	65: 489–496.
55 56		
57 58		19

464 Kummerová M, Vánová L, Krulová J, Zezulka S. 2008. The use of physiological
465 characteristics for comparison of organic compounds phytotoxicity. Chemosphere 71:
466 2050–2059.

467 Kvesitadze G, Gordeziani M. 2001. Some aspects of the enzymatic basis of468 phytoremediation. J Biol Phys Chem 1: 49-57.

Lucas García JA, Grijalbo L, Ramos B, Fernández-Piñas F, Rodea-Palomares I,
Gutierrez-Mañero FJ. 2013. Combined phytoremediation of metal-working fluids with
maize plants inoculated with different microorganisms and toxicity assessment of the
phytoremediated waste. Chemosphere 90: 2654–2661.

473 Mallakin AA, Babu TST, Dixon DGD, Greenberg BMB. 2002. Sites of toxicity of
474 specific photooxidation products of anthracene to higher plants: inhibition of
475 photosynthetic activity and electron transport in *Lemna gibba* L. G-3 (duckweed).
476 Environ Toxicol 17: 462–471.

477 Martín JS, Gallego JR. 2003. Biorremediación. Fundamentos y aspectos
478 microbiológicos, Industria y Minería 351: 12-16.

479 Meudec AA, Dussauze JJ, Deslandes EE, Poupart NN. 2006. Evidence for
480 bioaccumulation of PAHs within internal shoot tissues by a halophytic plant artificially
481 exposed to petroleum-polluted sediments. Chemosphere 65: 8–8.

482 Moscoso F, Deive FJ, Villar P, Pena R, Herrero L, Longo MA, Sanromán MA. 2012.

483 Assessment of a process to degrade metal working fluids using Pseudomonas stutzeri

484 CECT 930 and indigenous microbial consortia. Chemosphere 86: 420–426.

485 Mrozik A, Piotrowska-Seget Z. 2010. Bioaugmentation as a strategy for cleaning up of

486 soils contaminated with aromatic compounds. Microbiol Res 165: 13–13.

487 Ndimele PEP. 2010. A review on the phytoremediation of petroleum hydrocarbon. Pak
488 J Biol Sci 13: 715–722.

2 3 1		
- 5 6	400	
0 7	489	Newman LA, Reynolds CM. 2004. Phytodegradation of organic compounds. Curr Opin
8 9	490	Biotechnol 15: 225–230.
10 11	491	Nwoko CO. 2010. Trends in phytoremediation of toxic elemental and organic
12 13	492	pollutants. Afr J Biotechnol 9: 6010–6016.
14	493	Ogbo EM, Tabuanu A, Ubebe R. 2010. Phytotoxicity assay of diesel fuel-spiked
15 16	494	substrates remediated with Pleurotus tuberregium using Zea mays. Int J Appl Res Nat
17 18	495	Prod 3: 12–16.
19 20	496	Osmond, C.B. 1994. What is photoinhibition? Some insights from comparisons of shade
21 22	497	and sun plants. In: Baker NR, & Bowyer JR editors. Photoinhibition of Photosynthesis,
23 24	498	from Molecular Mechanisms to the Eield. Oxford: Bios Scientific Publishers, p 1-24.
25 26	499	Pilon-Smits E. 2004. Phytoremediation. Annu Rev Plant Biol 56: 15–39.
27 28	500	Rabenstein A, Koch T, Remesch M, Brinksmeier E, Kuever J. 2009. Microbial
29 30	501	degradation of water miscible metal working fluids. Int. Biodeter Biodegrad 63: 1023-
31 32	502	1029.
33 34	503	Rosenberg E. 1993. Exploiting microbial growth on hydrocarbons ? new markets.
35 36	504	Trends Biotechnol 11: 419–424.
37 38	505	Sokal, R. 1979. Biometria. Barcelona: H. Blume.
39 40	506	Strain HH, Cope BT, Svec WA. 1971. Analytical procedures for the isolation,
41 42	507	identification, estimation, and investigation of the chlorophylls. Methods Enzymol 23:
43 44	508	452–476.
45 46	509	Susarla S, Medina V, McCutcheon S. 2002. Phytoremediation: an ecological solution to
47 48	510	organic chemical contamination. Ecol Eng 18: 647–658.
49 50	511	Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T,
50 51 52	512	Vassilev A, Meers E, Nehnevajova E, Lelie D, Mench M. 2009. Phytoremediation of
53 54	513	contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:
55 56		
50 57		21
58		

Wenzel WW. 2008. Rhizosphere processes and management in plant-assisted

Wild EE, Dent JJ, Thomas GOG, Jones KCK. 2006. Visualizing the air-to-leaf transfer

and within-leaf movement and distribution of phenanthrene: further studies utilizing

Wild SR, Jones KC, Johnston AE. 1992. The polynuclear aromatic hydrocarbon (PAH)

content of herbage from a long-term grassland experiment. Atmos Environ Part A 26:

Yateem A, Al-Sharrah T, Bin-Haji A. 2007. Investigation of Microbes in the

Rhizosphere of Selected Grasses for Rhizoremediation of Hydrocarbon-Contaminated

Yoshitomi K, Shann J. 2001. Corn (Zea mays L.) root exudates and their impact on

Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A Greedy Algorithm for Aligning

22

URL: http://mc.manuscriptcentral.com/bijp Email: Jason.White@po.state.ct.us

bioremediation (phytoremediation) of soils. Plant Soil 321: 385-408.

two-photon excitation microscopy. Environ Sci Technol 40: 907-916.

14C-pyrene mineralization. Soil Biol Biochem 33: 1769–1776.

2	
3 4	
5 6	514
7 8	515
9	515
10 11	516
12 13	517
14 15	518
16	519
18	520
19 20	521
21 22	522
23 24	523
25 26	524
27 28	525
29 30	526
31 32	527
33 34	528
35 36	529
37 38	530
39 40	531
41 42	532
43	533
44 45	534
46 47	535
48 49	536
50 51	537
52 53	538
54 55	539
56 57	
57 58	
59 60	

765–794.

1299-1307.

Soils. J Soil Contam 16: 269-280.

DNA Sequences. J Comput Biol 7: 203–214.

540			
541			
542			
543			
544			
577			
545			
546			
547			
548			
549			
550	Table 1. Chemical oxy	ygen demand (COD)	parameter values in the bioremediated
550 551	Table 1. Chemical oxy systems, with and with	ygen demand (COD) out inoculation. Differe	parameter values in the bioremediated
550 551 552	Table 1 . Chemical oxy systems, with and withe $(n \le 0.05)$. The percentage	ygen demand (COD) out inoculation. Differe	parameter values in the bioremediated ent letters indicate significant differences
550 551 552	Table 1. Chemical oxy systems, with and with (p<0,05). The percentage	ygen demand (COD) out inoculation. Differe e of reduction appears	parameter values in the bioremediated ent letters indicate significant differences in brackets.
550 551 552	Table 1 . Chemical oxy systems, with and wither (p<0,05). The percentage	ygen demand (COD) out inoculation. Differe e of reduction appears Initial COD	parameter values in the bioremediated ent letters indicate significant differences in brackets. Final COD
550 551 552	Table 1. Chemical oxy systems, with and without (p<0,05). The percentage	ygen demand (COD) out inoculation. Differe e of reduction appears Initial COD 1779 a	parameter values in the bioremediated ent letters indicate significant differences in brackets. Final COD 632.89±22.81 b (64.42 %)
550 551 552	Table 1. Chemical oxy systems, with and wither (p<0,05). The percentage	ygen demand (COD) out inoculation. Differe e of reduction appears Initial COD 1779 a 1779 a	parameter values in the bioremediated ent letters indicate significant differences in brackets. Final COD 632.89±22.81 b (64.42 %) 683.78±28.18 b (61.56 %)
550 551 552	Table 1. Chemical oxysystems, with and without(p<0,05). The percentage	ygen demand (COD) out inoculation. Differe e of reduction appears Initial COD 1779 a 1779 a 1800 a	parameter values in the bioremediated ent letters indicate significant differences in brackets. Final COD 632.89±22.81 b (64.42 %) 683.78±28.18 b (61.56 %) 902±40.01 b (49.88 %)
550 551 552	Table 1. Chemical oxysystems, with and without(p<0,05). The percentage	ygen demand (COD) out inoculation. Differe e of reduction appears Initial COD 1779 a 1779 a 1800 a 1800 a	parameter values in the bioremediated ent letters indicate significant differences in brackets. Final COD $632.89\pm22.81 \text{ b} (64.42 \%)$ $683.78\pm28.18 \text{ b} (61.56 \%)$ $902\pm40.01 \text{ b} (49.88 \%)$ $921.67\pm15.97 \text{ b} (48.79 \%)$
550 551 552	Table 1. Chemical oxysystems, with and wither(p<0,05). The percentage	ygen demand (COD) out inoculation. Differe e of reduction appears Initial COD 1779 a 1779 a 1800 a 1800 a 1800 a 1740 a	parameter values in the bioremediated ent letters indicate significant differences in brackets. Final COD $632.89\pm22.81 \text{ b} (64.42 \%)$ $683.78\pm28.18 \text{ b} (61.56 \%)$ $902\pm40.01 \text{ b} (49.88 \%)$ $921.67\pm15.97 \text{ b} (48.79 \%)$ $836.33\pm46.54 \text{ b} (51.93 \%)$
550 551 552	Table 1. Chemical oxysystems, with and without(p<0,05). The percentage	ygen demand (COD) out inoculation. Differe e of reduction appears Initial COD 1779 a 1779 a 1800 a 1800 a 1740 a 1740 a	parameter values in the bioremediated ent letters indicate significant differences in brackets. Final COD $632.89\pm22.81 b (64.42 \%)$ $683.78\pm28.18 b (61.56 \%)$ $902\pm40.01 b (49.88 \%)$ $921.67\pm15.97 b (48.79 \%)$ $836.33\pm46.54 b (51.93 \%)$ $754.67\pm40.29 b (56.62 \%)$
550 551 552 553	Table 1. Chemical oxy systems, with and without (p<0,05). The percentage	ygen demand (COD) out inoculation. Differe e of reduction appears Initial COD 1779 a 1779 a 1800 a 1800 a 1740 a 1740 a	parameter values in the bioremediated ent letters indicate significant differences in brackets. Final COD $632.89\pm22.81 b (64.42 \%)$ $683.78\pm28.18 b (61.56 \%)$ $902\pm40.01 b (49.88 \%)$ $921.67\pm15.97 b (48.79 \%)$ $836.33\pm46.54 b (51.93 \%)$ $754.67\pm40.29 b (56.62 \%)$
550 551 552 553 554	Table 1. Chemical oxy systems, with and without (p<0,05). The percentage	ygen demand (COD) out inoculation. Differe e of reduction appears Initial COD 1779 a 1779 a 1800 a 1800 a 1740 a 1740 a	parameter values in the bioremediated ent letters indicate significant differences in brackets. Final COD $632.89\pm22.81 b (64.42 \%)$ $683.78\pm28.18 b (61.56 \%)$ $902\pm40.01 b (49.88 \%)$ $921.67\pm15.97 b (48.79 \%)$ $836.33\pm46.54 b (51.93 \%)$ $754.67\pm40.29 b (56.62 \%)$
550 551 552 553 554	Table 1. Chemical oxy systems, with and without (p<0,05). The percentage	ygen demand (COD) out inoculation. Differe e of reduction appears Initial COD 1779 a 1779 a 1800 a 1800 a 1740 a 1740 a	parameter values in the bioremediated ent letters indicate significant differences in brackets. Final COD $632.89\pm22.81 b (64.42 \%)$ $683.78\pm28.18 b (61.56 \%)$ $902\pm40.01 b (49.88 \%)$ $921.67\pm15.97 b (48.79 \%)$ $836.33\pm46.54 b (51.93 \%)$ $754.67\pm40.29 b (56.62 \%)$
550 551 552 553 554 555	Table 1. Chemical oxy systems, with and without (p<0,05). The percentage	ygen demand (COD) out inoculation. Differe e of reduction appears Initial COD 1779 a 1779 a 1800 a 1800 a 1740 a 1740 a	parameter values in the bioremediated ent letters indicate significant differences in brackets. Final COD $632.89\pm22.81 b (64.42 \%)$ $683.78\pm28.18 b (61.56 \%)$ $902\pm40.01 b (49.88 \%)$ $921.67\pm15.97 b (48.79 \%)$ $836.33\pm46.54 b (51.93 \%)$ $754.67\pm40.29 b (56.62 \%)$
550 551 552 553 554 555	Table 1. Chemical oxy systems, with and without (p<0,05). The percentage	ygen demand (COD) out inoculation. Differe e of reduction appears Initial COD 1779 a 1779 a 1800 a 1800 a 1740 a 1740 a 23	parameter values in the bioremediated ent letters indicate significant differences in brackets. Final COD $632.89\pm22.81 b (64.42 \%)$ $683.78\pm28.18 b (61.56 \%)$ $902\pm40.01 b (49.88 \%)$ $921.67\pm15.97 b (48.79 \%)$ $836.33\pm46.54 b (51.93 \%)$ $754.67\pm40.29 b (56.62 \%)$

556			
557			
558			
550			
559			
560			
561			
562			
563			
564	Table 2. pH values in the	e bioremediated syste	m, with and without inoculation. Different
565	letters indicate significat	nt differences (p<0,05	5). The percentage of reduction appears in
566	brackets.		
		Initial pH	Final pH
	Without Esp. 1	9.71a	8.65±0.007b (10.91 %)
	Esp. 1	9.71a	8.56±0.06b (11.84 %)
	Without Esp. 21	9.43a	8.54±0.01b (9.43 %)
	Esp. 21	9.43a	8.62±0.008b (8.58 %)
	Without consortium	9.01a	7.99±0.05b (11.32 %)
	Consortium	9.01a	8.03±0.02b (10.87 %)
67			
568			
500			
369			
		24	

 Table 3. Fluorescence emission from dark adapted leaves (Fo), maximum photosynthetic efficiency of photosystem II (Fv/Fm), the effective PSII quantum yield (ϕ PSII), Hill reaction, Chlorophyll a/b and total chlorophyll content in maize samples, without and with inoculation with the strain Esp. 1 (*Enterobacter* sp.), after the phytoremediation process (5 days). Different letters indicate significant differences (p<0.05).

Esp. 1	Fo	Fv/Fm	φPSII	Hill reaction ¹	Chlorophyll a/b	Total Chlorophyll content ²
Control plants (non- treated with dMWF and non –inoculated	162.80±7 a	0.77±0.004 b	0.33±0.01 c	53.59±2.16 a	1.72±0.023 a	1082±30 a
Plants non-treated with dMWF and inoculated	180.30±7 c	0.76±0.006 ab	0.33±0.012 bc	81.70±1.85 b	1.93±0.027 b	1327±55 b
Plants treated with MWF and non- noculated	144.60±5 b	0.76±0.008 b	0.29±0.013 a	28.70±1.35 c	1.83±0.042 ab	1290±22 b
Plants treated with dMWF and inoculated	154.60±3 ab	0.74±0.009 a	0.29±0.014 ab	18.82±1.54 d	2.27±0.054 c	953±18 c

 μ g Der in reduced min μ g er

²nmol * g⁻¹ leave fresh weight

Table 4. Fluorescence emission from dark adapted leaves (Fo), maximum photosynthetic efficiency of photosystem II (Fv/Fm), the effective
PSII quantum yield (\$PSII), Hill reaction, Chlorophyll a/b and total chlorophyll content in maize samples, without and with inoculation with the
strain Esp. 21 (Rhodotorula dairenensis sp.), after the phytoremediation process (5 days). Different letters indicate significant differences
(p<0.05).

(p<0.05).						
Esp. 21	Fo	Fv/Fm	φPSII	Hill reaction ¹	Chlorophyll a/b	Total Chlorophyl content ²
Control plants (non-treated with dMWF and non – inoculated	180±5 c	0.75±0.007 a	0.49±0.02 c	17.30±0.34 b	1.28±0.08 a	962±12 b
Plants non-treated with dMWF and inoculated	182±5 c	0.77±0.006 a	0.43±0.01 b	36.50±3.53 c	2.93±0.16 b	1128±13 c
Plants treated with dMWF and non-inoculated	120±6 a	0.76±0.010 a	0.30±0.02 a	18.70±1.18 b	1.45±0.11 a	940±8 b
Plants treated with dMWF and inoculated	158±6 b	0.74±0.087 a	0.32±0.02 a	13.07±0.58 a	8.31±0.72 c	893±24 a
¹ μg DCPIP reduce ² nmol * g ⁻¹ leave fr	ed * min ⁻¹ * μg · ·esh weight	Clorophyll ⁻¹				75
			26			

consortium (see Ma			and total emotophy	n content in maize samp	nes, without and wit	in mocula
	aterial and Metho	ods), after the phytorem	rediation process (5 d	lays). Different letters in	idicate significant di	fferences
Consortium	Fo	Fv/Fm	φPSII	Hill reaction ¹	Chlorophyll a/b	Total conter
Control plants (non-treated with dMWF and non – inoculated	199±4 b	0.76±0.006 a	0.32±0.01 b	90.05±4 a	2.99±0.01 a	1531±
Plants non-treated with dMWF and inoculated	214±5 c	0.77±0.006 a	0.34±0.01 b	51.92±1.4 b	2.94±0.03 a	1565±
Plants treated with dMWF and non-inoculated	186±6 ab	0.75±0.009 a	0.26±0.01 a	26.87±0.73 c	3.90±0.12 b	1191±
Plants treated with dMWF and inoculated	182±6 a	0.75±0.007 a	0.24±0.01 a	28.91±1.34 c	2.92±0.04 a	1286±
¹ µg DCPIP reduc	ed * min ⁻¹ * μg	Clorophyll ⁻¹				
² nmol * g ⁻¹ leave fi	resh weight					
			27			

Table 5. Fluorescence emission from dark adapted leaves (Fo), maximum photosynthetic efficiency of photosystem II (Fv/Fm), the effective
PSII quantum yield (\phiPSII), Hill reaction, Chlorophyll a/b and total chlorophyll content in maize samples, without and with inoculation with the
consortium (see Material and Methods), after the phytoremediation process (5 days). Different letters indicate significant differences (p<0.05).

URL: http://mc.manuscriptcentral.com/bijp Email: Jason.White@po.state.ct.us

Figure captions

 Figure 1. LTSEM micrographs of leaf mesophyll cells of 20-days old maize plants non-inoculated and grown for 5 days with and without degraded metal working fluids (MWF). Treatments tap water without bacteria (A); non inoculated and growing in dMWFs (B). Bundle sheath cells (BSCs), Chloroplast (C), vascular bundles (VB), Cell wall (CW), Tonoplast (T) and Vacuole (V).

