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A B S T R A C T   

Two experiments were conducted in the Northern (UK) and Southern (Brazil) hemispheres to determine the 
effect of season (month of conception) on the development of supplementary CL (SCL) and the relationship with 
pregnancy loss. In experiment 1, 199 pregnancies were followed between Day 14 and term, to determine the 
number of SCL and pregnancy viability (Northern Hemisphere). From the 199 pregnancies, 178 were obtained 
from inseminations during the breeding season (March–September), while the rest, 21 pregnancies resulted from 
conceptions in the non-breeding season (October to February). Pregnancies conceived in the breeding season 
were more likely (P < 0.01) to have at least 1 SCL (75.8 %, 135/178) than pregnancies from the non-breeding 
season (33 %, 7/21). However, the pregnancy loss between Days 35 and 120 of pregnancy in mares with no SCL 
was similar (3.5 %, 2/57; P >0.1) than from mares with SCL (1.4 %, 2/142). In Experiment 2 (Southern 
Hemisphere), three groups of recipients were used based on their ovarian activity at the time of embryo transfer: 
Anestrus (n = 8), transitional (n = 7) and cyclic (n = 7) recipient mares. While all transitional and cyclic mares 
developed at least 1 SCL, only 50 % of anestrous recipients (4/8) developed SCL by 120 of gestation. In 
conclusion, the development of SCL in pregnant mares is influenced by the time of season of conception, 
therefore it appears to be regulated by the photoperiod and the endogenous seasonal variation in gonadotropin 
concentrations. Mares with no SCL were not at increased risk of pregnancy loss.   

1. Introduction 

All mammals, including equids [1,2], need a source of progestagen 
throughout pregnancy to maintain the pregnancy state. In the mare this 
is initially provided by the primary corpus luteum (CL) or CL verum, 
which originates from the ovulatory follicle in the oestrous cycle in 
which conception occurred. Following ovulation, the CL develops from 
residual granulosa and thecal cells and begins to secrete progesterone 
[2]. Luteinizing hormone (LH) of pituitary origin plays the major role in 
ensuring that the CL develops and functions normally, aided by the 
action of other hormones in many species [2]. Beyond the time of 
maternal recognition of pregnancy, which occurs around Day 12 after 
ovulation and prevents the cyclic release of prostaglandin F2a (PGF2a) 
to prevent luteolysis, the primary CL continues to produce progesterone 

[3,4], which is termed the first luteal response to pregnancy [1]. From 
about Day 20 of pregnancy, luteal production of progesterone decreases 
gradually until Day 30, reaching levels of around 4 ng/mL [5]. 

Following the invasion of the fetal chorionic girdle cells into the 
endometrium, at around Day 35 to 40 of pregnancy, and the formation 
of equine Chorionic Gonadotropin (eCG)-secreting endometrial cups, 
eCG enters the mare’s bloodstream and there is a luteal resurgence in 
progesterone production by the primary CL due to its luteotropic effect 
[6]. In addition, eCG stimulates oestrogen and androgen production by 
the CL [7,8]. This is termed the second luteal response to pregnancy [1]. 
The third luteal response to pregnancy, which further contributes to 
progesterone levels, occurs as a result of the LH-like action of eCG which 
causes the ovulation or luteinization of follicles in the ovary to form 
supplementary CL (SCL) [9–11]. The selection and growth of these 
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follicles is controlled by endogenous gonadotropins [12]. However, 
there is considerable variation in the degree of follicular growth and, 
therefore, the number of SCL that develop during early pregnancy can 
range from none to as many as 30 [11,13,14]. 

Supplementary CL can form in two different ways: from ovulatory 
follicles (secondary CL) or from luteinization of anovulatory follicles 
(accessory CL) [1,15,16]. Supplementary CL are first observed in the 
pregnant mare from Day 39 to 45 of pregnancy [16]. All corpora lutea: 
primary, secondary, and accessory CL, regress on average at Day 180 of 
gestation (range of 140 to 210 days of gestation) [17]. However, from 
Day 140 of pregnancy, the ovaries are not necessary for pregnancy 
maintenance in the mare, as interruption of luteal production of pro
gesterone by ovariectomy does not result in abortion [18]. In reality the 
timing of placental progesterone production occurs prior to Day 140 
since earlier ovariectomy of pregnant mares at Day 70 of gestation 
resulted in the abortion of only 43 % of treated mares (6/14) [18]. 
Furthermore, in a study involving pregnancies obtained from anestrous 
recipient mares supplemented with altrenogest, the interruption of 
treatment at Day 120 of gestation did not cause abortion in any mare 
regardless of the absence of SCL [16]. Therefore, the fetal-placenta unit 
must start producing sufficient progestagens to maintain pregnancy 
sometime between Day 70 and 120 of gestation. Hence, the critical 
period in which eCG and the presence of SCL are believed to play a 
relevant role in the maintenance of pregnancy, by contributing to the 
progesterone output of the primary CL, is between 35 and 120 days of 
pregnancy. In fact, it has been suggested that mule pregnancies (mares 
inseminated with donkey semen) are at increased risk of pregnancy loss 
compared to horse pregnancies due to a decreased rate of SCL formation 
[19] hypothesized to occur due to the lower concentrations of eCG and 
progesterone typically seen in such pregnancies [20–23]. 

Mares are long-day seasonal breeders, with the physiological 
ovulatory season ranging from April to October (Northern Hemisphere) 
[24]. Photoperiod is believed to be the major factor influencing sea
sonality, with increasing daylength inhibiting the pulsatile release of 
melatonin from the pineal gland. This in turn stimulates the release of 
follicle stimulating hormone (FSH) and LH from the pituitary gland to 
initiate seasonal cyclicity [24]. However, some mares may cycle and 
conceive throughout the year, including during the non-breeding season 
[25]. Since FSH and LH levels, secretion pattern, and, hence, ovarian 
follicular activity are influenced by month and season [26–28], the 
development and number of SCL in pregnant mares might also be sea
sonal dependent, as suggested by Allen [29] and Cuervo-Arango and 
coworkers [15]. However, the former study was undertaken before the 
use of ultrasound to visualize the ovaries, and the latter one in mares 
which were aborted between 60 and 65 days of pregnancy. 

The objectives of this study were threefold. Firstly, to compare the 
incidence of SCL in mares becoming pregnant during the breeding and 
non-breeding season. Secondly to determine the incidence of pregnancy 
loss in mares which failed to develop SCL between the period of 35 and 
120 days of pregnancy, and, thirdly, to determine the incidence and 
timing of SCL formation in recipient mares with differing ovarian and 
reproductive status at the time of embryo transfer. It was hypothesized 
that (1) more mares becoming pregnant during the breeding season 
would develop SCL than those impregnated during the non-breeding 
season; (2) the incidence of pregnancy loss would be higher in mares 
with an absence of SCL; and (3) anoestrous recipient mares receiving an 
embryo would be less likely, and would take longer to, develop SCL than 
cyclic recipients. 

2. Materials and methods 

The data from Experiment 1 was obtained from mares examined for 
routine pregnancy diagnosis (Day 15, Days 35–40, and Days 100–120) 
and whose owner JN, co-author of the manuscript, gave informed con
sent to use the data from the mares. Experiment 2 was a controlled study 
and was approved by the Ethics Committee on Animal Use of the School 

of Veterinary Medicine and Animal Science, Universidade Estadual 
Paulista (CEUA-115/2009). 

2.1. Experimental design 

This study was carried out in two locations (UK and Brazil), using 
two sets of data, and therefore it is separated into two Experiments. In 
Experiment 1, performed in the UK, retrospective data was analysed 
from mares carrying their own pregnancy. In Experiment 2, data were 
collected from an embryo transfer centre in Brazil from pregnant 
recipient mares at differing reproductive status at the time of embryo 
transfer. In both Experiments, the ovaries of the pregnant mares were 
examined thoroughly by ultrasonography, in two periods of pregnancy, 
to determine the number of corpora lutea. The first period examined was 
prior to the development of the endometrial cups and secretion of eCG 
into the maternal circulation. Hence, mares were examined at ovulation, 
at Day 15 of pregnancy and again between 30 and 35 days of pregnancy. 
Therefore, the number of primary CL could be determined. The second 
period in which mares were examined was between 100 and 120 days of 
pregnancy, coinciding with the decline and disappearance of eCG from 
the mare’s blood. The total number of CL at this time point was recorded 
so that the percentage of pregnancies with the development of one or 
more SCL during the time of eCG secretion could be calculated. Evidence 
shows that the primary CL and any other CL(s) that develop before Day 
35 are visible up to Day 180 of pregnancy [17]. Hence, it was assumed 
that a mare with no visible SCL by Day 120 of pregnancy, had failed to 
develop any SCL by the end of Period 2. 

Supplementary CL were defined as the development of a newly 
formed CL as a result of either ovulation of a pre-ovulatory follicle 
(secondary CL) or luteinization of an anovulatory follicle (accesosory 
CL). However, no attempt to distinguish between the two was made, 
only to calculate the difference in the total number of luteal structures 
between Period 1 and 2 of pregnancy. Mares with the same number of CL 
in Periods 1 and 2 were classified in the group of absence of SCL for
mation, while mares with one or more extra CL in Period 2 compared 
with Period 1 were classified in the group of mares with the presence of 
SCL formation. 

In Experiment 1, the pregnancy status (pregnant or not pregnant) at 
the end of Period 2 was determined for mares with or without SCL by 
transrectal utrasonography. The incidence of pregnancy loss at the end 
of Period 2 was calculated and compared between groups. In Experiment 
2 the pregnancy loss was not taken into account for data analysis as the 
recipient mares were maintained with altrenogest to maintain preg
nancy in the non-cycling recipient mares. 

2.2. Animals and ultrasound examinations 

2.2.1. Experiment 1 
Retrospective breeding records of 45 mares and 199 pregnancies 

during 10 breeding seasons were analysed. The number of pregnancies 
from each individual mare ranged from 2 to 6. Mares aged 3 to 18 years 
old, of a variety of breeds but mostly riding horse type, were resident at 
an equine fertility clinic in the UK (52◦ 37’ N). All mares were kept in 
paddocks on a diet based on grass hay, concentrate, trace mineral salt, 
and water ad libitum. The majority of pregnancies were conceived 
during the physiological breeding season months of March to September 
(n = 178 pregnancies). The rest of the pregnancies (n = 21) were from 
mares conceiving during the non-breeding season (October to 
February). The decision to inseminate mares at different times of the 
year was based on mare ownerśpreference. 

Once in oestrus and inseminated, mares were checked for ovulation, 
with all examinations undertaken using transrectal ultrasonography. 
The day of ovulation was considered as Day 0 of pregnancy, and the 
development of the primary CL was confirmed the following day. In 
mares with double or triple ovulations, the development of multiple CL 
was noted within 2 days of the first ovulation and confirmed at the time 
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of the first pregnancy diagnosis at Day 12 to 16 post-ovulation. Preg
nancies were confirmed at Days 30 to 35, and the ovaries were examined 
thoroughly to determine the total number of CL present at Period 1. 
These CL consisted of the primary CL and other CL from twin or dioes
trous ovulations, assumed to have occurred as a result of the action of 
endogenous LH, and not from eCG, which is not present in the peripheral 
circulation until after Day 35 to 40 of pregnancy [11]. Pregnant mares 
were examined again at least once between Day 100 and 120 of preg
nancy, to confirm the viability of pregnancy and examine the ovaries to 
determine the number of CL. New CL found at this period of pregnancy 
(Period 2) were termed as supplementary CL (SCL). 

For each pregnancy the following data were recorded; mare ID, the 
month of ovulation (Day 0, beginning of pregnancy), presence or 
absence of SCL, and pregnancy status at Day 120 (pregnant or not 
pregnant). 

2.2.2. Experiment 2 
Data from this experiment was used to determine the effect of month 

and reproductive status (anoestrus, transitional, cyclic) on the devel
opment of SCL in recipient mares. The experiment was performed in a 
commercial breeding farm in Brazil (19◦ 58’ S). Twenty-two crossbred 
pregnant recipient mares, ranging in age from 4 to 15 years and 
weighing between 300 and 450 kg were used. All animals were main
tained in paddocks with free access to water and fed a diet based on hay, 
concentrate, and trace mineral salt. Pregnant recipient mares were 
selected based on their reproductive status at the time of embryo 
transfer and classified into three groups: cyclic (n = 7), spring transi
tional (n = 7) and anoestrous recipients (n = 8). Mares were examined 
by transrectal ultrasonography to evaluate ovarian activity, uterine 
oedema and tone so their reproductive status could be charcterised prior 
to the experiment. Following examintion of their reproductive tracts 
mares were categorized into anoestrus (absence of a CL and follicles <
20 mm; n = 8), transitional (absence of a CL and follicles > 20 mm in 
diameter; n = 7), or cyclic (presence of a CL; n = 7). All mares were 
monitored for at least 21 days to confirm their reproductive status before 
the beginning of the study. 

Anoestrous and transitional recipient mares were treated with a 
single dose of oestradiol benzoate (2.5 mg/kg, i.v.; Estrogin®, Farmavet, 
São Paulo, SP, Brazil) between the first and third day after donor 
ovulation. The day after oestradiol treatment, recipients were examined 
by ultrasound to evaluate the presence of uterine oedema. Once oedema 
was confirmed, non-cyclic mares were supplemented daily with 33 mg 
of altrenogest according to the manufacturer’s recommendation (0.044 
mg/kg p.o.; Progestal®, 2.2 mg/mL altrenogest, ProSer, Buenos Aires, 
Argentina), until embryo transfer and pregnancy diagnosis on Day 15 
(with respect to the embryo age; i.e. 15 days after detection of ovulation 
in the donor). Recipient mares that were confirmed pregnant were 
maintained on altrenogest until 120 days of pregnancy. 

Donor mares from which the embryos were obtained were managed 
in the following manner. After detection of a 35 mm follicle and uterine 
edema, ovulation was induced in donor mares with 2500 IU of hCG 
(Vetecor®, Hertape Calier, Juatuba, MG, Brazil). Insemination with 
fresh or cooled semen from stallions of known fertility was undertaken 
24 h after hCG administration. Uterine flushes were performed eight 
days post ovulation by a non-surgical procedure using 4L of Ringer 
Lactate solution (Sanobiol®, Pouso Alegre, MG, Brazil). After identifi
cation, embryos were washed and maintained in a holding medium 
(TQC Holding Plus® Nutricell, Campinas, SP, Brazil) and immediately 
transferred to recipient mares. Embryo transfers were performed be
tween Day 4 and 6 after beginning of altrenogest treatment for non- 
cyclic recipient mares, and between Day 4 and 6 after ovulation for 
cyclic mares. Embryo transfers were performed between July and 
January in the Southern Hemisphere. 

The day of pregnancy was calculated from the day of the donoŕs 
ovulation. All pregnant recipients were examined between Day 30 to 35 
of pregnancy and again at Day 120 of pregnancy, to determine the 

number of CL and SCL, respectively, as in Experiment 1. Furthermore, in 
order to determine the timing of the first development of a SCL, re
cipients were examined every 5 days between Day 35 and Day 120. For 
each pregnant recipient, the following data were recorded: month of 
embryo transfer, reproductive status at the time of embryo transfer, 
presence or absence of SCL by Day 120 of pregnancy, and Day of 
pregnancy in which the first SCL developed. 

2.3. Statistical analyses 

For each Experiment, data were computed in a statistical software 
programme (Systat 13, California, USA) to create a binary logistic 
regression with the presence/absence of SCL by Day 120 of pregnancy as 
the dependent variable, and month of beginning of pregnancy and 
season (non-breeding [October – February, Northern hemipshere; 
April–August, Southern hemipshere] vs. breeding season [March
–September, Northern hemipshere; September–March, Southern hemi
pshere]), and for Experiment 2 reproductive status at embryo transfer, 
as independent variables. The Kruskal–Wallis non-parametric test was 
used to test the difference in the median Day of pregnancy at which the 
first SCL developed amongst reproductive status of recipient mares 
(anoestrus, transitional and cyclic) in Experiment 2. In Experiment 1, the 
incidence of pregnancy loss in mares with or without SCL was compared 
by Fisheŕs exact test. Non-parametric data were presented as median and 
interquartile range (IQR). 

3. Results 

3.1. Experiment 1 

The overall percentage of pregnancies with no SCL development was 
28.6 % (57/199). The month of year in which the mare conceived did 
not influence (P > 0.1) the likelihood of developing a SCL, but it was 
affected by season (P = 0.0001; OR = 6.279). Mares conceiving during 
the non-breeding season (October to February) were less likely to 
develop SCL (7/21, 33.3 %) than mares conceiving during the breeding 
season (March to September) (135/178, 75.8 %). The distribution of 
pregnancies per month with no SCL development is shown in Fig. 1. 

The overall pregnancy loss between Day 35 of pregnancy and term 
was 7.5 % (15/199). Three pregnancies from mares with no SCL were 
lost (3/57, 5.2 %), from which, 2 pregnancies failed between Day 35 and 
120 of pregnancy (2/57, 3.5 %), while the remaining mare aborted on 
the 9th month. On the other hand, 12 pregnancies in mares with SCL 
were lost (12/142, 8.4 %), from which, 10 mares aborted after Day 120 
of pregnancy, and the remaining two failed between Day 35 and 120 (2/ 
142, 1.4 %). The incidence of pregnancy loss during the eCG stage (Day 
35 to Day 120 of pregnancy) in mares with no SCL was not different from 
that of mares with SCL (1.4 % vs. 3.5 %, respectively; P > 0.1; Table 1). 

3.2. Experiment 2 

Recipient mares in anoestrus at the time of embryo transfer were less 
likely (P < 0.01; OR = 13.0) to develop SCL by Day 120 of pregnancy (4/ 
8, 50 %) than transitional or cycling recipient mares (14/14, 100 %). 
Furthermore, recipient mares to which embryos were transferred during 
the winter months (July to September, Southern Hemisphere) were less 
likely (P < 0.05; OR = 0.102) to develop SCL (6/10, 60 % of pregnancies 
with at least one SCL) than recipients transferred during the breeding 
season (October to January; 12/12, 100 % of pregnancies with at least 
one SCL). The Day of pregnancy on which the first SCL developed was 
influenced by the reproductive status of the recipient mare at the time of 
embryo transfer (P = 0.006). The median (IQR) day of first formation of 
SCL (and interquartile range) was 67.5 (17.5), 55 (21.2), and 40 (3.75) 
days for anoestrous, transitional, and cyclic recipient mares, respec
tively (Fig. 2). 
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4. Discussion 

The main hypothesis of the study that more mares becoming preg
nant during the breeding season would develop SCL than those 
impregnated during the non-breeding season is substantiated by the 
results of this study. Therefore, it appears that seasonal variation in 
follicular selection and growth, driven by endogenous gonadotrophins 
(LH and FSH), play an essential role on the development of supple
mentary CL. This agrees with the results of Allen [29] who saw that there 
was a marked seasonal effect on ovarian size, follicle numbers and 
ovulation rate during early pregnancy in Pony mares, with the frequency 
of secondary ovulations being higher during the physiological breeding 
season. Likewise, in mares aborting which still had active endometrial 
cups and, hence, eCG in their peripheral circulation, it was noted that 
the month of abortion influenced the likelihood of them having SCL 
[15]. These studies paralleled earlier ones showing the relationship 
between season and the occurrence of ovulations and/or follicular 
development recorded in non-pregnant mares, both in the Northern [30, 
31] and Southern hemispheres [32]. Experiment 1, in the present study, 
used ultrasonography of the ovaries to show a seasonal influence on the 
incidence of supplementary CL (SCL) during early pregnancy in the 
mare. Significantly more SCL were noted in mares which became 

pregnant during the physiological breeding season versus those 
becoming pregnant at other times of the year. Furthermore, Experiment 
2 demonstrated that the status of a mare (anoestrus, transitional or cy
clic) at the time of embryo transfer influenced the timing at which the 
first SCL developed. 

The ability of a mare to produce SCL in early pregnancy depends on 
two major factors. Firstly, she needs follicles of a sufficient size present 
on her ovaries to respond to the luteinising or ovulating effects of pi
tuitary LH or the LH-like component of eCG. Secondly, she needs these 
luteogenic hormones to be present in the peripheral circulation. 

So, what seasonal influences are there on the development of follicles 
within the mares’ ovaries? The mare is a long-day seasonal polyoestrous 
animal, with the transition from reproductive quiescence (anoestrus) to 
cyclic activity during the breeding season driven primarily by seasonal 
changes in the hypothalamic-hypophyseal axis mediated by the actions 
of gonadotrophin-releasing hormone (GnRH) [27,33]. During the winter 
months there is a reduction in both the amount of GnRH in the hypo
thalamus and its secretory rate [33,34]. Mean concentrations of LH [26, 
35–37] and FSH [33] in serum are low close to the winter solstice. 
Although Turner and coworkers [26] showed no seasonal variation in 
plasma FSH concentrations throughout the year when mares were 
sampled every 3 days, the secretory pattern (frequency of pulsatile 
release, determined by every 6 h sampling) has been shown to be 
reduced as the autumn transition into winter anestrus approaches [28], 
which may explain the lack of follicular development and hence SCL 
formation in mares conceiving during the autumn. 

Pituitary FSH is believed to be entirely responsible for production of 
follicles in the ovaries during early pregnancy [11,12,38]. The appear
ance of eCG in maternal blood from around 40 days does not induce 
further follicle growth despite having an FSH-like component, as it binds 
weakly to receptors in equine ovarian tissue [39]. So, in early pregnancy 
each follicular wave is preceded by an increase in FSH secretion from the 
pituitary [40,41]. Once sufficiently mature, the follicles ovulate or 
luteinize in response to pituitary LH and/or the LH-activity of eCG to 
form SCL. 

The first ovulation of the season, as the mare moves from transitional 

Fig. 1. Percentage of mares with no supplementary corpora lutea (SCL) conceiving at different months of the year. Data are from mares that were resident in the 
Northern Hemisphere. The number of pregnancies for each month is shown above each bar. 

Table 1 
Pregnancy loss in mares carrying their own pregnancy with or without the 
development of supplementary corpora lutea (SCL).  

Presence 
of one 
or more 
SCL 

Pregnancy losses 
between Day 35 and 
120 (%) 

Pregnancy losses 
between Day 120 and 
term (%) 

Overall pregnancy 
loss after Day 35 
(%) 

NO (n =
57) 

2 
(3.5) 

1 
(1.8) 

3 
(5.2) 

YES (n =
142) 

2 
(1.4) 

10 
(7.1) 

12 
(8.4) 

No significant difference (P > 0.1) existed in pregnancy loss rate at different 
stages of gestation between those mares with or without a SCL. 
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to cyclic, is usually an indicator that sufficient levels of FSH are present 
to result in repeated FSH waves which stimulate follicular growth to a 
certain “maturity” threshold after which the follicle can respond to LH, 
and this will continue until the autumn transition. It is logical that these 
same FSH waves will stimulate follicular growth in early pregnancy if 
the mare conceives during the physiological breeding season In Exper
iment 1, the presence of SCL in >60 % of mares bred in the Northern 
hemisphere during physiological breeding season (March–September) 
illustrates that follicles were present on the ovaries and FSH waves 
occurred to drive their formation during early pregnancy. Further evi
dence that FSH is the primary factor driving follicular growth and its 
ovulatory competence in anoestrous mares is the fact that daily treat
ment with recombinant eFSH alone in deep anestrous mares resulted in 
the development of several (6.4±0.8) pre-ovulatory sized follicles 
within 7 days of treatment, which ovulated in response to hCG admin
istration in 80 % of treated mares [42]. 

In Experiment 2, in which embryo transfer recipients were either 
anoestrus, transitional or cyclic, the timing of the first SCL formation 
post transfer was related to their reproductive status at the time of 
transfer, with anoestrous and transitional mares taking longer than cy
clic recipients. This difference in the timing of SCL formation may reflect 
the fact that anoestrous and transitional recipients were ‘behind’ in 
terms of entering the spring transition period, hence stimulation of 
ovarian follicular development driven by secretion of FSH was yet to 
occur. Likewise, the transitional mares were faster than the anoestrus, 
but slower than the cyclic ones, in the appearance of their first SCL, as 
they were further along the endocrine pathway to the physiological 
breeding season but not yet through the spring transition like the cyclic 
mares. 

Few mares in Experiment 1, as opposed to the majority of those in 
Experiment 2, conceived in the autumn transition period or over winter 
when FSH secretion and, hence, the potential for follicular development, 
differs from that in the spring transition and the physiological breeding 
season. During the autumn transition, although pituitary FSH content 

shows no seasonal variation [26,27,43,44], FSH waves continue for 
some time [28,45,46] albeit with lower amplitude pulses before ceasing 
altogether [45]. Although, in some mares FSH secretion continues 
throughout anoestrus [40,47]. However, despite the presence of FSH 
during this autumnal transition period follicular growth to a stage >25 
mm ceases [40,47]. Hence, mares conceiving to one of the last ovulatory 
cycles prior to the autumn transition are unlikely to have the capacity to 
develop follicles of a size that can respond to the luteinising action of 
either pituitary LH or eCG. This is supported by the findings of both 
Allen [29], Cuervo-Arango et al. [15] and those of Experiment 1 in the 
present study. 

Although there was a significantly lower incidence of SCL in the 
autumn and winter months in the Northern hemisphere mares in 
Experiment 1, some mares, albeit a low percentage, did produce SCL. 
This likely indicates variation in the serum FSH profiles of individual 
mares, as noted earlier [40,47]. Furthermore, any mare becoming 
pregnant in Experiment 1 outside of the physiological breeding season 
must have had an endocrine profile that allowed her to develop, mature 
and ovulate a follicle with a viable oocyte at a time when many mares 
would be transitional or in anoestrus and unable to do so. Hence, it is 
likely that conceiving mares that did produce SCL had a later decline in 
FSH waves, and other endocrine changes that orchestrate the autumn 
transition, compared with those mares which did not produce SCL. 
Indeed, if those animals that produced SCL had not been mated and 
conceived, they would potentially have never entered a period of 
anoestrus over the winter months. It has previously been noted that not 
all mares enter a period of anoestrus, with around 27 % of mares at 
latitudes between 30 and 50o continuing to cycle throughout the year 
[48–50]. This is a percentage which is akin to that of mares in Experi
ment 1 (33 %; 7/21) which produced SCL when conceiving in the 
non-physiological breeding season. 

So, what influence does the season have on the luteogenic hormones 
LH and eCG? There is a marked depletion of pituitary LH during the 
autumnal transition and into winter anoestrus [26,27,43,44]. Follicular 

Fig. 2. Box plot distribution (first quartile, median and third quartile) of Day of pregnancy when the first supplementary corpora lutea (SCL) developed in recipient 
mares that were resident in the Southern Hemisphere with differing reproductive statuses at the time of embryo transfer (ET). Different letters (a,b,c) indicate a 
significant difference (P < 0.05) in the median Day of pregnancy on which the first SCL appeared. The median Day of pregnancy in cyclic recipients at which the first 
SCL appeared was 40 days. 
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activity on the mares’ ovaries during early pregnancy and the produc
tion of LH are influenced by several factors, but predominantly these are 
seasonal. In contrast, eCG will be secreted in all pregnancies in which a 
conceptus is present and develops normally up until the time of invasion 
of the chorionic girdle (approx. 35 days) [51] and secretion of eCG into 
the peripheral circulation (approx. 40 days) [52], with concentrations 
not dependent on the season [29]. Although, a previous study [15] re
ported lower concentrations of eCG in mares in November versus 
January in the Southern hemisphere. One study has also suggested that 
the production of eCG is influenced by altrenogest treatment during 
early pregnancy [53], although the experimental mares varied in 
reproductive status (maiden, lactating or barren), age and parity, all 
factors known to potentially influence eCG production [54]. Unfortu
nately, eCG levels were not assessed in the present experiment to 
determine if the findings of Allen [29] or Cuervo-Arango et al. [15] 
could be confirmed. However, levels of eCG are tremendously variable 
in individual mares [54], yet only relatively low levels are required to 
provide enough stimulus to luteinize and/or ovulate ovarian follicles. 
This is evidenced by mares losing their pregnancies before the demise of 
the endometrial cups in which eCG continues to be secreted into the 
maternal bloodstream. In such mares re-breeding them is often chal
lenging due to the rapid luteinization of any follicles even when low 
levels of eCG are present [15,55,56]. Hence, it is unlikely that in the 
present experiment eCG levels would have influenced the incidence of 
SCL. 

That being said, when horse mares are inseminated with donkey 
semen to produce mule foals eCG levels are significantly lower and the 
secretion period shorter with eCG undetectable by 80 days of gestation 
[11,20,57]. In such pregnancies it has been reported that the occurrence 
of SCL is less and pregnancy loss is higher in comparison with mares 
inseminated with horse semen to produce horse foals, with the hy
pothesis that low eCG levels are, at least in part, responsible [19–21]. A 
further study found that pregnancy loss in mares carrying mule foals was 
affected by the season of conception, with loss rates significantly higher 
in those mares conceiving at the end of the physiological breeding 
season [58]. On the other hand, Carluccio et al. [59] found no difference 
in pregnancy loss rate between mule pregnancies and those reported for 
horse pregnancies. Furthermore, it should be noted that the FSH:LH 
ratio varies between mule and horse eCG in maternal serum (0.64 vs. 
1.45, respectively) [60] making it difficult to extrapolate the findings of 
Boeta and Zarco [19–21] on any influence the levels of eCG might have 
on SCL formation in normal horse x horse pregnancies, such as in this 
study. 

The findings in the aforementioned mule studies [19–21] found a 
higher level of pregnancy loss which the authors potentially attributed 
to a reduction in SCL occasioned by lower eCG and progesterone levels. 
However, in the present study in normal horse x horse pregnancies we 
found no evidence for an increase in pregnancy loss in mares with no 
SCL. In the cyclic mare the lifespan of the CL is only around 14–15 days, 
however if PGF2a is not released from the mare’s endometrium to cause 
its demise, the CL may have an extended lifespan in non-pregnant mares 
[61]. This occurs commonly in non-pregnant mares during the breeding 
season often as a consequence of a later dioestrous ovulation which is 
unresponsive to PGF2a, early embryonic death after Day 12 when the 
maternal recognition of pregnancy signal has already been transmitted, 
reduced synthesis or secretion of PGF2a, or for idiopathic reasons [61, 
62]. In such cases prolonged luteal function may persist for a long time 
[62]. For example, when luteal prolongation was caused experimentally 
by embryo reduction in 11 pony mares after transmission of the MRP 
signal all remained in prolonged dioestrus with 10 of them maintaining 
progesterone levels >1 ng/mL for a mean of 82 ± 13 days (range 64–109 
days), and the eleventh outlier for >223 days before she was adminis
tered PGF2a [63]. Similar periods of luteal prolongation have been re
ported in non-pregnant mares given exogenous oxytocin [64,65], or 
when an intrauterine device has been placed in the uterine lumen 
[66–68]. Hence, even without the support of eCG to boost its 

steroidogenic activity [7,8] the primary CL is capable of remaining 
functional for almost the entire period up until the time the placental 
unit would take over progesterone production between 70 and 120 days 
of pregnancy [18]. However, with the support of eCG the primary CL 
does not regress until between 140 and 210 days of gestation [17]. 
Therefore, it is perfectly possible for the primary CL to provide enough 
support to maintain a pregnancy without the assistance of SCL, espe
cially when the primary CL has extra luteotropic support from eCG. The 
fact that SCL appear not to be essential for pregnancy maintenance, does 
not imply that eCG is not necessary for normal pregnancy development. 
In fact, the donkey-in-horse pregnancy model, which has no detectable 
circulating eCG is seldom carried out to term [69]. 

In conclusion, the incidence of SCL in mares carrying their own 
pregnancies is affected by the time of year when the mare is mated, with 
a lower incidence of SCL when conception occurs in the non- 
physiological breeding season. Recipient mares that are anoestrus or 
transitional can form SCL, but their appearance is delayed and would 
appear dependent on how advanced the seasonal changes towards 
spring cyclicity are in the hypothalamic-hypophyseal axis at the time of 
embryo transfer. There is no evidence from this study that a lack of SCL 
results in a higher incidence of pregnancy loss in the mare. 
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