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Abstract
Purpose of Review Allergic diseases have become a burden in industrialized societies. 
Among children, food allergy (FA) constitutes a major impairment of quality of life. FA 
is partly due to a lack or loss of tolerance to food antigens at the level of the intestinal 
mucosa, where the microbiota plays a crucial role. Early changes in the composition of 
the gut microbiota may influence the development of the immune system and can be 
related to the risk of allergic diseases, including FA. This review will focus on the role of 
sphingolipids and the major bacteria involved in their metabolism, in the development of 
food antigen sensitization and FA.
Recent Findings Numerous studies have identified different patterns of microbial compo-
sition between individuals with and without FA, pointing to an interaction between gut 
microbiota, enterocytes, and immune cells. When this interaction is lost and an imbalance 
in the composition of the intestinal microbiota occurs, the integrity of the epithelial bar-
rier may be altered, leading to intestinal permeability and sensitization to food antigens 
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and the development of FA. Gram-negative bacteria, especially those of the Proteobacteria 
phylum, have been associated with the development of FA. Investigating the interactions 
between the intestinal microbiota and the immune system, their influence on intestinal 
barrier function, and their production of metabolites and signaling molecules may con-
tribute to understanding the pathogenesis of FA.
Summary Sphingolipids, a class of bioactive amphipathic lipids found in cell membranes, 
have emerged as critical regulators of inflammation. In this review, we will attempt to 
summarize the existing knowledge on the role of these molecules and the major bacteria 
involved in their metabolism in the mechanisms underlying sensitization to food antigens 
and the development of FA.

Introduction

The human body contains trillions of microorgan-
isms, consisting of over one thousand species, which 
coexist with human cells. This microbial community is 
known as the microbiota, with most of these microor-
ganisms residing in the gut [1]. They play an essential 
role in maintaining good health. The gut microbiota is 
a complex community primarily composed of bacteria, 
which dynamically interacts with the host and under-
goes changes throughout life due to numerous factors. 
The colonization and future composition of the gut 
microbiota are particularly crucial during infancy, when 
intestine maturation and the first encounter with envi-
ronmental factors occur [2]. However, certain factors 
such as caesarean birth, formula feeding, and antibiotic 
use can disrupt the transmission of microbiota from 
mother to child and further alter its composition, which 
is also influenced by other factors such as diet and the 
presence of siblings and pets at home, among other 
factors [1]. Moreover, differences in the gut microbiota 
have been observed among different ethnic groups, 
which have an impact beyond early-life exposures [3].
The gastrointestinal tract is covered by approximately 
4 ×  1013 microbial cells [4], with the highest concen-
tration of bacteria found in the final part, from the 
appendix to the colon. The gut microbiota interacts 
symbiotically with intestinal epithelial cells, known 
as enterocytes [5]. It plays a crucial role in modulating 
immune responses and maintaining immune tolerance 
in the gut. Dysbiosis, which refers to an imbalance in 
gut microbiota composition and functionality, can con-
tribute to food allergic reactions [6]. Dysbiosis may dis-
rupt the integrity of the epithelial barrier, increasing its 

permeability and leading to food antigen sensitization 
and the development of food allergy (FA). Numerous 
studies have identified distinct microbial composition 
patterns between individuals with and without FA [7–9]. 
Infants with IgE-mediated FA have been observed to 
exhibit dysbiosis and delays in microbial maturation, 
suggesting that microbial composition may modify the 
risk of IgE-mediated FA through innate and adaptive 
immunity [10]. Moreover, gut microbiota from healthy 
infants has been shown to protect germ-free mice from 
anaphylactic reactions due to cow’s milk allergy [11].
Identifying the specific bacterial species involved in FA 
and understanding their functional activities can pro-
vide valuable insights into the mechanisms underly-
ing food allergen sensitization and progression of the 
disease. Gram-negative bacteria have been traditionally 
linked to FA, being Bacteroidetes phylum less preva-
lent and Proteobacteria phylum more abundant in FA 
patients [12••, 13]. Investigating the intricate interac-
tions between the microbiota and the immune system, 
their influence on intestinal barrier function, and their 
production of metabolites and signaling molecules can 
contribute to understanding the pathogenesis of the 
disease, identifying diagnostic biomarkers, and devel-
oping targeted intervention strategies. However, most 
of the current research on the early human gut micro-
biome is based on cross-sectional data. More longi-
tudinal studies exploring changes in the composition 
of the gut microbiota throughout childhood and their 
relationship to food sensitivity are needed.
On the other hand, there is a lack of biomarkers 
related to FA that can facilitate diagnosis or predict 
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the progression of the condition. In this regard, lipids, 
which are essential nutrients for living organisms, 
have been found to play a critical role as regulators of 
inflammation and have emerged as clinically relevant 
mediators in the pathophysiology of allergic diseases 
[14]. Lipids participate in various cellular mechanisms, 
including cell structure formation, energy storage, and 
cellular signaling. Among the diverse types of lipids, 
sphingolipids (SLs) and the enzymes involved in their 
metabolism have been recently proposed to play a role 
in the development of allergic diseases [15, 16].
De novo synthetized SLs are major plasma mem-
brane components of mammalian cells and are con-
sidered potent bioactive agents involved in diverse 
biological functions, such as migration, apoptosis, 

and proliferation. The main SLs found in the human 
metabolism, in order of increasing complexity, 
include sphingosines (Sph), ceramides (Cer), and 
sphingomyelins (Sm). SLs are also derived from 
dietary sources such as meat, egg, or milk [17, 18], 
and several bacterial species from the gut microbiota 
(e.g. genus Bacteroides and Prevotella), and others such 
as Sphingomonas, which seem to be involved in their 
biosynthesis and metabolism [18, 19].
In this review, we pay attention to the biochemistry of 
SLs, the main bacteria implicated in their metabolism, 
and their role in the onset and progression of FA, giv-
ing the clue for identifying new biomarkers that allow 
for the prediction and early diagnosis of this pathology, 
as well as future intervention strategies.

Bacterial structure variations in gut microbiome and their 
implications in food allergy development

The composition of bacterial membranes, including the arrangement of their 
lipid components, is important when considering the complex landscape of 
FA. Bacteria belonging to different phyla and families exhibit diverse mor-
phological and structural characteristics, dictated by their classification as 
Gram-negative or Gram-positive organisms (Fig. 1). The primary constitu-
ents of bacterial membranes are phospholipids, which are organized in a 
lipid bilayer, forming the fundamental framework of the bacterial membrane. 
In the case of Gram-negative bacteria, additional lipid components such as 
lipopolysaccharides (LPS) are incorporated into their membranes. These 
lipids play important roles in the structural integrity and protection of bac-
teria, as well as in interaction with the environment [20]. In addition, some 
bacteria possess a flagellum that can influence bacterial virulence. The bacte-
rial flagellum is involved in bacterial locomotion, but it also assists them in 
colonizing specific tissues or evading the host’s immune system. The presence 
or absence of the flagellum, and its structure and function, can vary among 
different bacterial species and even within the same bacterial species [21, 22].

Gram-negative bacteria have been linked to FA, with certain phyla and fami-
lies standing out. FA has been related with a higher presence of Proteobacteria 
and a lower abundance of Bacteroidetes phyla [12••, 13]. In fact, a decrease in 
the Prevotellaceae family (phylum Bacteroidetes) has been widely described in 
allergic patients with IgE-dependent FA [23, 24••]. On the other hand, Martin 
et al. [25] observed in IgE-independent FA, such as food protein–induced aller-
gic proctocolitis (FPIAP), that the composition and richness of the microbiome 
were similar in infants with FPIAP and controls. However, a higher abundance 
of Enterobacteriaceae family (phylum Proteobacteria) was observed during 

386



Curr Treat Options Allergy (2023) 10:384–400 

Fig. 1  Cell wall structures of Gram-negative and Gram-positive bacteria and bacterial taxonomy of the most relevant ones 
related to food allergy in the literature.
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symptomatic periods, even preceding symptom onset [25]. In addition, the Enter-
obacteriaceae family, together with the Moraxellaceae (phylum Proteobacteria) 
and Sphingobacteriaceae (phylum Bacteroidetes) families have been observed to 
increase in patients with other inflammatory bowel diseases. Interestingly, recent 
research has shown that not only the gut microbiota, but also the microbiota of 
breast milk can influence the development of FA in infants. It has been shown 
that the composition of the breast milk microbiota of mothers of allergic infants 
differs from that of non-allergic infants. Specifically, the FA group showed a rela-
tively high abundance of the genera Acinetobacter and Pseudomonas and a decrease 
of Akkermansia [24••]. Verrucomicrobiota phylum harbours the Akkermansiaceae 
family, including the genus Akkermansia. Akkermansia muciniphila, a commensal 
bacterium in the human gastrointestinal tract, has been extensively studied for 
its role in intestinal and metabolic health, such as mucin metabolism regulation 
and enhancement of intestinal barrier integrity. Indeed, it has been suggested 
that Akkermansia muciniphila could modulate immune responses and intestinal 
homeostasis and promising results have been even obtained in in vivo models 
of FA using strains of this family as probiotics [24••, 26].

Among Gram-positive bacteria, Actinomycetota and Firmicutes phyla 
encompass several families of interest. In the phylum Actinomycetota, the fam-
ily Bifidobacteriaceae is a prominent group of bacteria, well known for its pres-
ence in the human gut microbiota and its association with intestinal health 
and modulation of the immune response. In this sense, a depletion of some 
Bifidobacterium species – e.g. B. longum, B. breve, and B. infantis – has been identi-
fied in the gut microbiome of allergic children [12••, 27, 28]. As for the phylum 
Firmicutes, alterations of several bacteria belonging to this phylum have been 
related to FA [13]. A lower abundance of the Clostridiaceae family, particularly 
in the genus Clostridium, known for its role in activating TGF-β release, has 
been described during the symptomatic period in IgE-independent FA [25, 29]. 
Clostridium difficile, primarily associated with intestinal infections, has been sug-
gested to have an association with a higher risk of developing allergic diseases 
during early childhood [30]. In addition, increased levels of Faecalibacterium 
prausnitzii and Ruminococcus gnavus have also been associated with a higher risk 
of FA [12••]. Regarding the influence of breast milk microbiota on the develop-
ment of FA, it has been described that a decrease in the relative abundance of 
the genera Bifidobacterium and Clostridium, and butyrate-producing bacteria such 
as Faecalibacterium, Roseburia, and Ruminococcus correlates with an increased risk 
of developing FA [24••, 31, 32]. Finally, Lactobacillaceae family has been exten-
sively studied in the context of FA, with species like Lactobacillus rhamnosus and 
Lactobacillus casei demonstrating beneficial effects in preventing and reducing 
allergic responses. These species also exhibit modulatory effects on the immune 
response and reduce sensitization to food allergens [33–35].

Sphingolipids: structure, metabolism, and roles in bacteria

SLs are a diverse class of amphipathic lipids that are present in cell mem-
branes and play a significant role in cellular signaling [36]. Structurally, SLs 
are composed of a sphingoid base linked to a fatty acid via an amide bond 
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and a usually hydrophilic headgroup at the primary hydroxyl. Based on these 
two functional groups, SLs can be divided into three structural classes of 
increasing complexity: sphingoid base and simple derivatives, Cer, and com-
plex SLs [37, 38]. The first class refers to long-chain amino alcohols, such as 
Sph or sphinganine, that function as precursors to other SLs. Then, after acety-
lation, the composition of the headgroup can range from a simple hydrogen 
in the second class (Cer) to phospholipids (phosphosphingolipids) or sugars 
(glycosphingolipids), among others, in the third class [39] (Fig. 2A).

SLs were initially thought to be found only in eukaryotes, where they have 
been widely studied [17, 40]. In the last decade, however, the presence of 
these bioactive lipids has been reported in a small subset of prokaryotic cells, 
mainly in commensal [41••] and pathogenic bacteria [42, 43]. Within the gut 
microbiota, SL production is restricted to the Bacteroidetes phylum, includ-
ing common genera such as Bacteroides, Prevotella, and Porphyromonas [44]. 
Additionally, certain alpha-Proteobacteria (Acetobacter, Sphingomonas), delta-
Proteobacteria (Myxococcus, Bdellovibrio), and other species (Sphingobacterium, 
Pedobacter) have also been shown to synthesize SLs [41••, 43, 45•]. On the 
other hand, bacterial pathogens such as Mycobacteria, Pseudomonas, or Neis-
seria, although unable to produce them, have adapted to recognize and use 
host SLs to promote their survival and replication [42, 43]. Lastly, in addition 
to these two sources, SLs are also found in many foods that are part of our 
daily diet, including dairy products and eggs [46, 47], and as such they can 
be metabolized by the microbiota. In this regard, in a study performed both 
in Bacteroides thetaomicron strain cultures and cecal microbiota from a mouse 
model, Lee et al. demonstrated that several gut microbes can uptake dietary 
SLs [48•]. Interestingly, the authors found that dietary SLs can be assimilated 
and metabolized not only by known SL producers, mainly Bacteroides spp. and 
Prevotella spp., but also by other non-SL producer bacteria such as Bifidobac-
terium or Lactobacillus [48•, 49]. Subsequently, these microbiome-derived SLs 
have been shown to be reabsorbed by human epithelial cells and processed 
through mammalian SL pathways, allowing them to be incorporated into host 
lipid metabolism [44]. Overall, the close relationship between prokaryotic 
cells and SLs raises the question as to why they are important to bacteria.

Although the function of SLs in prokaryotic cells is still not fully under-
stood, they are believed to be essential in bacterial physiology [18] and 
host interactions [45•]. Complex SLs or free Cer constitute up to 50% 
of Bacteroidetes membrane composition [41••, 50]. Furthermore, other 
bacterial strains including Escherichia coli, Treponema denticola, and Porphy-
romonas gingivalis have the capability to synthesize and accumulate SLs in 
their membranes. On the other hand, known SL producers such as Sphin-
gomonas spp. naturally lack the LPS in the outer membrane and replace 
it with SLs [51]. Taken together, this evidence suggest that SLs may play a 
significant role in membrane stability and function. Regarding host interac-
tion, certain bacteria make use of SL components to invade host cells and 
establish infections, potentially influencing adhesion, colonization, and 
virulence. Notably, within the Enterobacteriaceae family, bacteria such as 
Salmonella and Escherichia coli, among others, have been shown to exhibit 
associations with host cell SLs [52, 53]. Additionally, Cer-enriched lipid 
rafts and glycosphingolipids serve as binding and signaling platforms for 
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many intracellular bacterial pathogens and toxins such as choleric toxin 
and botulinic neurotoxin [42, 54].

In terms of metabolism, the biosynthesis of bacterial SLs appears to 
differ from that of eukaryotes. In eukaryotic cells, SL synthesis takes place 
in five stages [55]. The first and rate-limiting stage consists of the conden-
sation of L-serine with palmitoyl coenzyme-A to form 3-ketosphinganine 
and is catalyzed by the enzyme serine palmitoyltransferase (SPT) [56]. 
Then, the three following steps involve 3-ketosphinganine reduction, acyla-
tion, and desaturation to Cer, which can then be modified with different 
headgroups in the final step [40, 55]. On the other hand, while the exact 
metabolic pathways are still under investigation, it is known that SPT is 
also responsible for the first step of bacterial de novo SL synthesis, making 
this reaction the key step in the commitment to SL biosynthesis across all 
organisms studied to date [41••, 44, 57]. Bacterial SPT was first reported 
in Sphingomonas paucimobilis [58] and has since then been described in 
other Sphingomonas [59] and Sphingobacterium [60, 61] bacterial strains, 
Bbdellovibrio stolpii [61], B. fragilis [62], and other Bacteroides or related 
species [18], allowing them all to produce SLs. Although conserved, these 
SPT orthologues are structurally and functionally distinct. While eukaryotic 
SPT functions as a heterodimeric membrane-bound large protein complex 

Fig. 2  Overview of the metabolism and main roles of sphingolipids (SLs) in bacteria. A General chemical structure of SLs 
(top) and the major SLs found in SL-producing bacteria classified by their head group (bottom). B Proposed metabolic path-
way of biosynthesis for the previous SLs in Bacteroides and their potential roles within the cellular context (adapted from 
[41••] and [50]).
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that primarily utilizes L-serine as a substrate [63, 64], prokaryotes contain 
mainly homodimeric SPTs that are either water-soluble (S. paucimobilis) 
[65] or associated with the inner cell membrane (Sphingobacterium multi-
vorum, B. stolpii) [61], suggesting that the latter may be more targeted to 
release hydrophobic SLs directly onto the membrane [57, 62].

Beyond SPT, the set of enzymes by which bacterial SLs are synthesized 
is still unknown. However, recent studies by Brown et al. [41••] and Ryan 
et al. [50] have characterized this anabolic pathway in mice models and cell 
cultures, respectively, of four different Bacteroides species, including B. fragilis, 
B. thetaiotaomicron, B. ovatus, and B. vulgatus, using metabolomics. As previ-
ously described, they found that bacterial de novo SL synthesis starts when 
the enzyme SPT uses serine or alanine as a substrate to form 3-ketosphingo-
sine and deoxy-ketosphinganine, which would then lead to more complex 
SLs and deoxy-SLs, respectively. For this purpose, like eukaryotes, both pre-
cursors are reduced (3-keto sphinganine reductase) [66] and acylated (Cer 
synthase) to (deoxy)dihidroceramide ((deoxy)DHCer). DHCers are the cen-
tral element of SL metabolism in bacteria and constitute the backbone from 
which most bacterial SLs are generated by adding different headgroups [41••, 
50]. Notably, unlike mammalian SLs, bacterial SLs can have both odd and 
even numbers of carbons in their backbones and acyl chains [41••, 44, 45•]. 
Besides DHCers, most abundant Bacteroides-derived SLs include ceramide 
phosphoetanolamine (CerPE) [67], ceramide phosphoinositol (CerPI) [68], 
and α-galactosylceramide (α-GalCer) [69] (Fig. 2B), although their relative 
abundance can vary among species because of different biosynthetic path-
ways may be operating or because they are being metabolized [66, 70]. As 
an example, B. fragilis displays lower levels of DHCers— presumably because 
they are being shifted towards α-GalCer synthesis [50], which is necessary for 
stress resistance and prolonged survival trough their interaction with Natural 
Killer T cells [45•].

Association between sphingolipid metabolism in bacteria 
and allergic response

In the intestine, SLs are present in copious quantities. Enterocytes metabolize 
them from food intake into Cer and Sph. Phosphorylated SLs metabolites, 
such as sphingosine-1-phosphate (Sph-1-P) and ceramide 1-phosphate, gen-
erated by sphingosine kinases and ceramide kinases, respectively, showed dif-
ferent functions than those of their precursors [71], being considered signal-
ing molecules playing crucial roles in cellular processes implicated in immune 
cell trafficking and inflammatory responses [72].

Inflammation is an important driver of Cer synthesis. In this regard, Cer 
production increases in response to various inflammatory stimuli, such as 
cytokines, oxidative stress, and bacterial LPS [73]. Inflammatory signaling 
pathways, as the NF-κB pathway, can activate enzymes involved in Cer synthe-
sis, leading to increased Cer levels [74, 75]. Furthermore, Cer themselves can 
trigger inflammatory pathways, which can result in a positive feedback loop 
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that worsens inflammation. Elevated serum Cer have been suggested to be 
correlated with obesity-associated intestinal dysbiosis and impaired glucose 
metabolism in terms of decreased metagenomic richness, decreased abun-
dance of anti-inflammatory bifidobacterial species, and increased metagen-
omic capacity for LPS biosynthesis and flagellar assembly, thus confirming the 
link between Cer and gut-derived inflammation [76•]. Indeed, Kayser et al. 
described that a decreased abundance of 30 metagenomic species was associ-
ated with an increase in serum concentrations of Cer (d18:1), also showing 
a significant association with decreased gene richness. The most abundant 
phylum in the human intestine, Firmicutes, comprised most associations with 
both gene richness and SLs. Additionally, the research notes that Bifidobacte-
rium bifidum and Bifidobacerium adolescentis were negatively associated with 
Cer levels, while Ruminococcus gnavus was positively associated [76•]. In addi-
tion, increased Cer levels following allergen exposure in asthmatic patients 
have been linked to apoptosis, reactive oxygen species production, and neu-
trophil infiltration [77]. Furthermore, bacterial infection can worsen allergic 
inflammation. Although the exact mechanism of this phenomenon remains 
unclear, it has been described that LPS stimulates mast cells to produce pro-
inflammatory (IL-6, TNF-α) and Th2-type (IL-5 and IL-13, IL-10) cytokines. 
It has been reported that administering Cer C8 (d18:1/8:0) reduces IL-5, 
IL-10, and IL-13 production in LPS-stimulated mast cells, while Fumonisin 
B1 (an inhibitor of de novo ceramide synthesis) increases their production. 
Interestingly, Cer C8 (d18:1/8:0) has opposing effects on cytokine production 
in LPS-stimulated macrophages, reducing IL-6 and TNF-alpha [78, 79]. On 
the other hand, Sph-1-P is antagonistic to Cer. Plasma levels of Sph-1-P are 
usually increased helping to maintain vascular endothelial integrity by pro-
moting cell–cell interactions, whereas increased plasma levels of Cer lead to 
endothelial barrier dysfunction [72]. In contrast, FA has also been associated 
with decreased levels of plasma SLs. In a study conducted in peanut-allergic 
infants, a decrease in the genus Bacteroides, the sphingolipid metabolism 
and pyridoxine (vitamin B6) were observed in allergic infants compared to 
non-sensitized infants [80]. Decreased levels of SLs, including Sm and Cer, 
could point to a disruption of the process by which Cer are transformed 
into Sm [81], although it is still unclear how SLs interact with proteins, in 
particular with protein transporters. Interestingly, incubation of peripheral 
blood mononuclear cells with SLs has been shown to result in activation of 
invariant NKT cells, which can detect lipid ligands, thereby increasing Th2 
cytokine production and facilitating IgE-mediated sensitization [81–83].

These contrasting effects of different SLs on endothelial integrity and 
immune response raise questions about the potential interplay between 
these SLs and the SLs produced by the family Sphingobacteriaceae (phylum 
Bacteroidetes) in their cell walls (sphingophospholipids and Cer, besides 
diacylglycerophospholipids), which are structurally similar to LPS. This 
family produces various metabolites, such as ribosomally synthesized and 
post-translationally modified peptides, terpenes, polyketides, non-ribosomal 
peptides, and carotenoids [84]. Furthermore, Sphingobacterium genus contains 
Cer and sphingophospholipids with isoheptadecasphinganine and 2-hydroxy 
or non-hydroxy isopentadecanoic acid. S. faecale is present in human faeces 
[85]. However, S. multivorum and S. spiritivorum are the most frequently found 
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species in clinical samples, primarily in blood and urine [86]. Indeed, it has 
been reported that Cer isolated from S. spiritivorum induced DNA cleavage in 
human myeloid leukaemia cells, indicating apoptosis. Cer with a 2-hydroxy 
fatty acid showed stronger apoptotic activity, suggesting the importance of 
Cer as intracellular messengers [87]. So far, no specific relationship between 
allergy and Sphingobacterium genus has been described, but there is evidence 
of a link between Sphingobacterium bacteria and inflammation and immunity. 
In this regard, Sphingobacterium genus has been positively associated with 
the incidence of clinical mastitis in bovines [88], and with colitis in the gut 
microbiota of mice [89]. In addition, a study in patients with bladder cancer 
showed a dysbiosis of the urinary microbiome with an enrichment of some 
bacterial genera (e.g. Acinetobacter, Anaerococcus, and Sphingobacterium) in the 
cancer group compared to non-cancer group [90]. Furthermore, another study 
in humans with urogenital schistosomiasis identified the genus Sphingobacte-
rium as an immune-stimulatory taxa marker of the infection [91]. The associa-
tion between the genus Sphingobacterium and parasitic infections is of great 
interest as parasitic infections are characterized by an IgE-mediated immune 
response, like most allergic diseases [92]. Finally, it has been reported a sig-
nificant decrease of Lactobacillus salivarius, Anaerobaculum hydrogeniformans, 
S. spiritivorum, and Pseudomonas fluorescens, among others, in the plasma of 
rheumatoid arthritis patients compared with control subjects [93].

Overall, the metabolism of bacterial SLs and their role in allergic diseases 
remain a yet to be explored field. In this sense, the use of omics sciences 
could be useful to characterize and obtain a more complete picture of the 
implications of SLs in the prokaryotic cellular context [1]. Omics sciences are 
based on the use of high amounts of data and bioinformatic high-throughput 
techniques to study the phenotype of an organism, specific tissues or indi-
vidual cells, and their main disciplines include genomics, epigenomics, tran-
scriptomics, proteomics, and metabolomics [94–96]. These techniques study 
different steps of cell biology. Genomics is focused the study of genes and 
noncoding DNA (genome), which are transcribed into RNA (transcriptome), 
translated into proteins (proteome), and their end products are metabolites 
(metabolome) [94]. A good example of how the use of multidisciplinary 
approaches and multiomic analyses can help us to obtain a more complete 
map of the interaction between metabolites, such as SLs, and different dis-
eases, including allergy, is a recently published study by Cui et al. [97••]. 
This research used animal models of FA to ovalbumin to demonstrate that 
treatment with the prebiotic strain Bifidobacterium longum alleviates the aller-
gic phenotype of these mice by regulating sphingolipid metabolism at the 
transcriptomic, metagenomic, and metabolomic levels. Among these changes, 
it is interesting to note that the treatment induced a decrease in the levels of 
several sphingolipids, as well as the genus Sphingobacterium, with respect to 
the allergic group, confirming that there could indeed exist a link between 
microbial sphingolipid metabolism and the development of allergic diseases 
[97••].
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Conclusions

This review underscores the role of SLs and the major bacteria involved in 
their metabolism in the development of food antigen sensitization and FA.

Gram-negative and Gram-positive bacteria, influenced by phospholipid 
structures and the incorporation of LPS in Gram-negatives, emerge as impor-
tant factors in FA development. Notably, Gram-negative bacteria, especially 
within the Proteobacteria and Bacteroidetes phyla, are closely associated with 
FA, with a decrease of Prevotellaceae family being particularly noteworthy in 
IgE-dependent FA. In IgE-independent FA, the microbiome exhibits similar 
dynamics, with an increased prevalence of the Enterobacteriaceae family during 
symptomatic phases. Furthermore, breast milk microbiota composition influ-
ences infant FA development, with observed variations in mothers of allergic 
infants. Among Gram-positive bacteria, families such as Bifidobacteriaceae and 
Clostridiaceae within the Actinomycetota and Firmicutes phyla, respectively, 
are implicated in FA risk.

Furthermore, bacterial SLs, primarily synthesized by bacteria within 
the Bacteroidetes phylum, assume a pivotal role in immune responses and 
inflammation. The enzyme SPT serves as a linchpin in bacterial SL produc-
tion, connecting prokaryotic and eukaryotic lipid biology. In the context of 
FA, SLs have a dual function: to exacerbate inflammation by increasing their 
levels in response to inflammatory triggers, particularly Cer; and to serve as 
signaling molecules in immune cell mobilization and inflammation. The 
potential interplay between eukaryotic SLs, and the sphingophospholipids 
and Cer found in the cell walls of SL-producing bacteria such as the Sphingo-
bacteriaceae family, presents new research opportunities to understand their 
role in immunological responses. While no direct link between Sphingobac-
terium and allergies exists, its associations with inflammation and immunity 
warrant further exploration. These findings collectively illuminate the intri-
cate relationship between bacterial components and FA, emphasizing the 
need for continued investigation into the microbiota’s impact on allergic 
responses.
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