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Allergic asthma: an overview of metabolomic strategies leading to the
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Summary
Allergic asthma is a prominent disease especially during childhood. Indoor allergens, in
general, and particularly house dust mites (HDM) are the most prevalent sensitizers associ-
ated with allergic asthma. Available data show that 65–130 million people are mite-sensi-
tized world-wide and as many as 50% of these are asthmatic. In fact, sensitization to
HDM in the first years of life can produce devastating effects on pulmonary function
leading to asthmatic syndromes that can be fatal. To date, there has been considerable
research into the pathological pathways and structural changes associated with allergic
asthma. However, limitations related to the disease heterogeneity and a lack of knowledge
into its pathophysiology have impeded the generation of valuable data needed to appro-
priately phenotype patients and, subsequently, treat this disease. Here, we report a system-
atic and integral analysis of the disease, from airway remodelling to the immune response
taking place throughout the disease stages. We present an overview of metabolomics, the
management of complex multifactorial diseases through the analysis of all possible
metabolites in a biological sample, obtaining a global interpretation of biological systems.
Special interest is placed on the challenges to obtain biological samples and the method-
ological aspects to acquire relevant information, focusing on the identification of novel
biomarkers associated with specific phenotypes of allergic asthma. We also present an
overview of the metabolites cited in the literature, which have been related to inflamma-
tion and immune response in asthma and other allergy-related diseases.

House dust mite allergic asthma

Asthma is a multifactorial, chronic syndrome, which
varies over time and involves genetic and environmen-
tal interactions. It causes reversible airway obstruction
through spasm, inflammation and hypersecretion associ-
ated with airway hyperresponsiveness (AHR), infiltration
of eosinophils and CD4+ T helper (Th) type 2 cells into
the airway submucosa and airway epithelial remodelling
[1, 2]. The increased prevalence of asthma can be partly
accounted for by profound changes in our environment
[3], characterized by a rise in urban air pollution and
increased indoor allergen exposure, such as animal dan-
der and mites. Indeed, house dust mites (HDM) are the
most prevalent allergens associated with asthma and
rhinitis around the world [2]. Among HDM, Pyroglyphi-
dae mites are mainly represented by Dermatophagoides
pteronyssinus and Dermatophagoides farinae. Several

antigens have been identified with mites of the Der-
matophagoides species. Recently, the perennial indoor
HDM D. pteronyssinus and their 23 associated allergens
of Der p family were summarized using three official
allergen-related websites as the source [4]. The major
mite allergens Der p 1 and Der p 2 have the ability to
induce asthmatic status through different mechanisms.
While Der p 1 is a cysteine protease capable of inducing
tissue damage and inflammation by cleaving tight-junc-
tion (TJ) proteins ZO-1 and occludin, the protease Der p
2 displays an allergenic role by mimicking the function
of MD-2 in the activation of TLR4. Therefore, Der p 2
enhances tissue damage, epithelial remodelling and
asthma progression [5]. In the case of Derp 1, its prote-
olytic cleavage increases epithelial permeability leading
to a higher allergen presentation by dendritic cells (DCs)
[6]. Additionally, Der p 1 can induce innate and adap-
tive immune response by binding specific receptors such
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as protease-activated receptors (PAR) present on the sur-
face of epithelial cells (ECs) or mast cells, among others.
This is shown by the increased amount of PAR on respi-
ratory ECs and mast cells in patients with asthma [7].

Airway remodelling in allergic asthma

The airway epithelium is the first physical barrier an
aeroallergen encounters, and it seems to be key to
understanding genetic and environmental interactions
in asthma. In fact, asthma is considered an epithelial
disease because defects in the epithelial barrier lead to
a higher permeability to environmental factors, such as
inhaled allergens and pollutant particles and, conse-
quently, to airway wall remodelling [8, 9]. During air-
way remodelling structural changes take place from the
epithelium to the adventitia due to repeated cycles of
airway injury and repair. The main structural changes
observed are loss of barrier integrity, goblet cell meta-
plasia (hypersecretion of mucus), airway smooth muscle
hyperplasia and hypertrophy, and subepithelial fibrosis
(abnormal deposition of extracellular matrix compo-
nents, such as collagen) [10–12].

The respiratory epithelium is a pseudostratified struc-
ture composed mainly of columnar ciliated ECs, inter-
mixed with mucus-secreting goblet cells, and a pool of
basal cells responsible for epithelial regeneration. The
functionality of the epithelial barrier is maintained by
the formation of TJs and adhering junctions at the api-
cal end of ECs. In the case of HDM sensitization, pro-
teases disrupt epithelial integrity where Der p 1 breaks
epithelial TJs, resulting in increased permeability that
allows allergens to reach submucosal tissue and activate
antigen-presenting cells (APCs) and innate immune
cells (Fig. 1a). In this process proteases can also induce
bronchial smooth muscle contraction and proliferation
[13], and goblet cell metaplasia occurs with the conse-
quent increment in mucus secretion [8, 10, 11, 14]. Air-
way remodelling research is still quite challenging, as
there are no reliable biomarkers intimately associated
with this process.

Immune response during allergic asthma

During allergic asthma, injured ECs produce a set of
cytokines that lead to Th2 immunity. There are four
main pro-Th2 cytokines: thymic stromal lymphopoietin,
granulocyte–macrophage colony-stimulating factor
(GM-CSF) and interleukins 25 and 33 (IL-25 and IL-33)
[1, 15]. These cytokines induce DC-mediated Th2 sig-
nalling and, subsequently, asthma progression. More-
over, during an allergic response to inhaled allergens in
the airways, DCs also play an active role by facilitating
interaction of the allergen with IgE attached to FceRI,
the high-affinity receptor for IgE [16].

Other APCs, such as macrophages, are present in the
lung environment under homoeostatic conditions. They
act as a sentinel for cellular defence against respiratory
pathogens. In fact, in murine models alveolar macro-
phage (AM) depletion leads to a high degree of inflam-
mation and an increased production of IgE [17],
suggesting an association of AMs with progression of
the asthmatic status. Additionally, in patients with
asthma, AMs can stimulate T cells to produce more
pro-inflammatory cytokines, such as IL-5, amplifying
the allergic inflammatory response [18, 19]. The airway
of patients with asthma has been shown to present an
increment in the expression of Th2 cells as well as
overexpression of IL-4, IL-13, IL-6 and IL-9 pro-inflam-
matory cytokines [14] (Fig. 1b). The overexpression of
IL-4 and IL-13 induces B cells to produce IgE, activates
DCs and AMs, and makes goblet cells increase mucal
secretion leading to hyperplasia [20]. IL-13 cytokines
can also down-regulate Th17 cells involved in mainte-
nance of the mucosal barrier and pathogen clearance,
while IL-6 secreted by Th2 cells, can selectively block
Treg-induced immunosuppression by secreting
immune-modulator cytokines such as TGF-b and IL-10
[21].

Another relevant population of Th cells in asthma are
Th9 cells, which are strongly related to asthma initia-
tion and progression. These cells can produce a high
titre of IL-9 cytokine which is involved in different pro-
cesses such as the production of IgE antibodies, in the
increment and stimulation of cell infiltration into the
respiratory tract, and also plays an important role in
collagen deposition and in the survival of innate lym-
phocyte cells 2 (ILC2) [22]. Unlike B and T cells, ILC2
are a group of innate immune cells that belong to the
lymphoid lineage but are devoid of a specific receptor.
Their dysregulation as well as an increase in their num-
ber have been reported to be associated with allergy or
asthma, as activation of these cells contributes to, and
supports, type 2 inflammation, acting synergistically
with Th2 cells [23].

Research in this field unequivocally demonstrates
that allergic asthma is considered a Th2 disease. How-
ever, knowledge into the molecular mechanism of this
multifactorial disease is not as complete as for other
immune diseases with a significant Th2 component, like
diabetes or cancer [24, 25].

Other essential immune cells in the development of
an allergic response and asthma correspond to the eosi-
nophils and mast cells. In fact, eosinophilia is consid-
ered as a histologic feature of asthma and is used as a
marker of severity and progression. Another powerful
marker for asthma detection and classification is eosi-
nophil cationic protein (ECP). This protein is released
following eosinophil degranulation and elevated levels
in patients with asthma have been correlated with
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inflammation [26]. Although eosinophilia and ECP
levels have been used until now as markers of severity
progression in asthma, they are not specific biomarkers
for other phenotypes, such as HDM allergic asthma.
This is because they are not considered to be reliable,
as they do not always classify patients according to
phenotype and do not provide a predictive value for
treatment efficacy [27].

Mast cells are considered as key cells to instate an
allergic response. The number of mast cells and their
degranulation are considerably higher in patients with
asthma compared to healthy patients. Their main

functions in asthma are both secretion of proliferative
mediators contained in the granules such as histamine,
tryptase and PGD2, and to increase the hyperrespon-
siveness of airway smooth muscle layer [28]. Moreover,
they also participate in airway remodelling through the
secretion of mast cell tryptase involved in the growth
of ECs and fibroblasts [29, 30].

Clinical biomarkers associated with allergic asthma

As discussed previously, asthma is influenced by a mul-
titude of factors, although the increasing prevalence of

Fig. 1. Effect of HDM allergen Der p 1 and fecal pellet on airway epithelium. (a) Der p 1 protease activity disrupts epithelium integrity, increases

permeability and activates pro Th2 cytokines released. Lipopolysaccharide recognition from fecal pellet contributes to EC activation and Th2

immunity. (b) Stimulation of ECs by activation of immune cells also leads to Th2 immunity. LPS, lipopolysaccharide; ECs, epithelial cells; TSLP,

thymic stromal lymphopoietin; GM-CSF, granulocyte–macrophage colony-stimulating factor; DC, dendritic cell.
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asthma and atopic diseases over the last few decades is
difficult to explain. Lifestyle factors, environmental
exposures and/or interactions between genes and the
environment probably play a causal role. Several candi-
date genes have been associated with asthma outcome
and development. This is the case of glutathione
S-transferases (GSTs), a supergene family implicated in
detoxification of reactive oxygen species that appear to
be related to asthma susceptibility [31]. Apparently,
some mutations of GSTs may be related to asthma onset
and AHR, however, contradictory data was found
depending on the study group [32, 33]. In fact, Piacen-
tini et al. [32] did not find an association between
GSTT, GSTM and GSTP (glutathion S-transferases) gene
polymorphisms and the development of asthma in an
adult Italian population. While Wang et al. [34] found a
correlation between indoor incense burning and GSTs
polymorphism in children with asthma, Sohn et al. [34]
described a different behaviour of GSTs gene polymor-
phisms using murine models. Another candidate is
ADAM 33, a gene encoding for a disintegrin and met-
alloprotease glycoprotein in charge of cell-to-cell and
cell-to-matrix interaction, which had a higher expres-
sion in ECs from patients with asthma than in controls
[35].

Furthermore, epigenetic modifications have recently
been considered to be important factors in the devel-
opment of asthma [36, 37]. During the prenatal period,
while the development of the airway and immune sys-
tem, maternal exposure to tobacco smoke, traffic-
related pollutants, viral infection or dust mites have
been shown to increase the risk of asthma in offspring
[38–41]. The second critical period for asthma onset is
throughout early childhood, especially in the first year
of life (during alveolar expansion and rebalancing of
the immune responses), where severe viral infections
in the inferior respiratory tract or the exposure to air-
borne environmental irritants, HDM allergens and ther-
apeutics (e.g. acetaminophen) have been shown to
elevate childhood asthma risk [42–44]. Another marker
currently used in medical daily practice to identify
severe phenotypes is the fraction of exhaled nitric
oxide (NO). However, this does not enable the genera-
tion of reliable phenotypes either as it produces con-
tradictory results in predicting eosinophilic airway
inflammation [28, 45, 46]. More recently, periostin, a
protein observed in adults and children with asthma
[47, 48], has been considered a novel biomarker for
allergic inflammation progression.

Altogether, the research work performed in the field of
allergic inflammation reveals an urgent need to continue
looking for early and reliable biomarkers to classify
patients and predict therapeutic responses or, in other
words, that will define specific phenotypes for allergic
asthma. Furthermore, these clinically relevant biomarkers

open up new possibilities for novel interventions and the
development of preventative therapeutic tools.

Metabolomic approaches to defining allergic phenotypes

In recent decades, metabolomics has emerged as a new
tool to manage complex diseases such as allergy-related
conditions, where up to now these specific phenotypes
have not been fully characterized and the metabolic
changes involved are still largely unknown. Metabolo-
mics works by measuring all possible metabolites in a
biological sample, and uses different strategies to pur-
sue this objective. In this sense, working approaches are
mainly divided mainly into two strategies: targeted and
untargeted metabolomics, each with their own inherent
advantages and disadvantages. Independently of the
metabolomic approach followed, a reliable outcome will
depend on the experimental design and its characteris-
tics. In this context, the type of approach, sample size
and type, and analytical platform are described and
discussed below.

Metabolomic approach

Targeted metabolomics is the measurement of defined
groups of chemically characterized and biochemically
annotated metabolites and is closer to classical hypoth-
esis-based analysis. This approach is essential when a
previous knowledge of outstanding metabolites for the
disease exists. Meanwhile, untargeted metabolomics is
the comprehensive analysis of all the measurable mole-
cules in a sample including chemical unknowns, which
may reflect the physiological state of each individual in
the study. Due to its comprehensive nature, untargeted
metabolomics must be coupled with advanced chemo-
metric techniques, such as multivariate analysis, to
reduce the extensive data sets generated into a smaller
set of manageable signals. This methodology is highly
informative in a discovery phase, working without a
prior hypothesis. Untargeted analysis will lead to the
identification of novel biomarkers. These can be useful
to define patient phenotype, to obtain an accurate diag-
nosis, to evaluate disease progression or as targets for
new pharmacological treatments.

Sample size and type

Selection of the patients is of paramount importance
in multifactorial diseases; in this sense, for example,
Chang et al. [49] employed patients with very homo-
geneous respiratory characteristics compared to con-
trols chosen over respiratory evaluations only. These
inclusion criteria enabled the authors to obtain a good
modelling of the groups and feasible results after
applying non-target analysis. However, for population
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studies the number of patients per group is critical,
recommending over 100 samples per group. Herein,
Ried et al. [50] targeted more than 100 metabolites in
2925 patients consisting of 147 patients with asthma
and 2778 controls. Although the groups were unbal-
anced, decreasing the value of the statistics, they were
able to find some significant differences in asthma in
relation with phospholipids. In this quest, for a reliable
study, the selection of patients inside the groups must
be as homogeneous as possible: same number per
group, sex- and age-matched, same body mass index,
closest medical illness chart and, if possible, avoid
confounder factors such as medications or influential
habits, for example smoking or alcoholism.

Sample selection and its manipulation before analysis
will define the type of metabolites observed in the
study. In the case of respiratory conditions, the diffi-
culty to obtain lung tissue unless working with animal
models seems to be a limiting factor. As lung biopsies
and bronchoalveolar lavage fluid (BALF) are considered
as invasive procedures in humans, a close approxima-
tion is the analysis of sputum samples, which is still
not recommended by some authors [51, 52]. An alterna-
tive option is exhaled breath (EB) condensate, which is
a non-invasive sample that has been used in the study
of asthma. However, while EB is a relevant sample in
respiratory affections because it shows the characteristic
compounds from lung metabolism, its greatest handicap
is the difficulty to obtain a reliable interpretation and
correlation of these metabolites with the disease. In
resume, easily extracted samples comprise plasma and
urine, which are the two most common biofluids
employed in metabolomics, as they are considered to be
obtained non-invasively in humans. While plasma rep-
resents a global view of the physiological status at the
time that the sample is collected, urine represents the
end products of metabolism. Therefore, for exploratory
studies that are aimed at obtaining a close molecular
mechanism of a respiratory disease the use of BALF,
lung biopsy, or sputum can be justified. However, when
looking for biomarkers with diagnostic or prognostic
potential, plasma and urine are the most convenient
biofluids.

Analytical platform

Sample treatment will depend on the kind of com-
pounds of interest and the analytical technique to be
employed. Analytical techniques are preferably based
on mass spectrometry (MS), usually combined with a
separation technique [liquid and gas chromatography
(LC, GC) or capillary electrophoresis (CE)] and nuclear
magnetic resonance spectroscopy (NMR). Of all the
coupled MS techniques, LC-MS has been widely
applied and different kinds of samples have been

analysed in independent studies such as serum, BALF
and lung tissue [53] or EB condensate [54]. From both
studies, different classes of compounds have been
observed, such as lipids, fatty acids, prostaglandins
and purine cycle intermediates. In the case of GC-MS,
this technique is suitable for analysing volatile com-
pounds or those chemically volatile after derivatization
(e.g. by trimethylsilylation). As expected, GC-MS has
been applied to volatile samples such as EB where
sample treatment is almost none, although it is also
used for urine, BALF and blood samples [55, 56]. The
most common types of compounds detected by GC-MS
are amino acids, sugars, organic acids and TCA inter-
mediates. Finally, NMR spectroscopy is a non-selective
technique considered to be practically universal which
requires little or no sample preparation, is unbiased,
rapid, robust and quantitative, making it highly suit-
able for non-target analysis. The principal disadvan-
tage of NMR is its lower sensitivity compared to MS
techniques. Regarding NMR-based metabolomics, this
has been used to analyse serum, urine and EB conden-
sate from patients with asthma in different projects
[57–59].

For respiratory diseases, there has also been an
increase in studies and applications that use the elec-
tronic nose. This is an instrument developed to recog-
nize all possible volatile components from the breath.
This apparatus has been successfully applied in the
study of asthma and chronic obstructive pulmonary dis-
ease (COPD), showing promising results in the discrimi-
nation of groups [56, 60–62]. However, challenges still
encountered with this technique including standardiza-
tion of the breath sample collection, validation of
metabolites and, probably, its main bottleneck, the lack
of identification of most significant metabolites [63].

The application of each analytical platform character-
ized by the analytical conditions partially captures sec-
tion the metabolome and, therefore, does not give a
complete picture of the disease. On other hand, despite
the significant advances in analytical technologies, bio-
marker discovery remains a challenge partly because of
the overwhelming task of data treatment. The key lies
in the ability to distinguish genuine biological variation
from analytical and random interferences, although
there are now advanced computer tools to tackle this
problem. Once the potential biomarkers have been
selected there is the arduous task of making the best
interpretation of the new findings. This is either based
on the bibliographic background or, whenever possible,
by projecting the metabolites into known biochemical
pathways to create a new biological hypothesis pending
verification. This is even harder in multifactorial dis-
eases due to different confounder factors such as medi-
cations, age, gender, patients’ habits (e.g. smoking),
sample size and secondary diseases.

© 2017 John Wiley & Sons Ltd, Clinical & Experimental Allergy, 47 : 442–456

446 A. Villase~nor et al



Metabolomic applications in asthma and allergy-related
conditions

An extensive literature search was performed to look
for metabolomic applications related to asthma and
allergy-related conditions. The outcome was divided
into reviews and research articles, the latter grouped as
(i) allergic and (ii) non-allergic/mixed asthma, (iii) food
allergy and (iv) anaphylaxis caused in the oral tract
(Fig. 2a). In general, the outcome of metabolomics in
this field is immature due to the heterogeneity of clini-
cal phenotypes and the complexity of each condition
[64–67]. Tentative biomarkers are insufficient to
describe the complete underlying processes and the
number of published research works is still low [28, 51,
52, 68]. Hence, a proper validation in a large popula-
tion and in longitudinal studies is still required. How-
ever, reviews of airway diseases remark that although
current diagnosis of respiratory diseases performed by
clinicians is based on low specific parameters such as
medical history, symptoms and clinical blood test,
metabolomics is starting to obtain promising findings
in the earlier diagnosis, management and understanding
of these types of diseases [69–71]. This is even more
important in paediatrics where respiratory conditions
are the first cause of morbidity and mortality [72].
Regarding to the methodological conditions, pie charts
showing the types of biofluids and analytical tech-
niques used in the research articles have been included
(Fig. 2b,c). Results showed that blood is the most used
biofluid even for respiratory conditions, compared to
urine, whereas all high throughput analytical tech-
niques were used throughout equally.

Non-allergic/mixed asthma

A resume of all the findings published to date on
this topic is presented in Table 1. Basically, most
studies were carried out in adults (Table 1a), there are
two insightful publications into asthma differentiating
from COPD (Table 1b) and two studies in children
(Table 1c). Concerning adults with asthma, significant
advances in metabolic changes linked to the immune
response have been reported. In patients with asthma,
Jung et al. [73] found decreased levels of arginine in
serum, authors correlated this change with the argi-
nine methylation pathway, which is a key process in
asthma involved in the regulation of cytokine overex-
pression. In another study, increased concentrations of
some polyunsaturated phospholipids were found to be
strongly correlated with asthma risk alleles in a pop-
ulation study which included 147 patients with
asthma [50]. Interestingly, in a study with Chinese
patients presenting mild persistent asthma, a decre-
ment in inosine level was associated with inflamma-
tion and hypoxia [49]. Another study reported
increased levels of nicotinamide, adenosine
monophosphate and arachidonic acid in plasma as
biomarkers of asthmatic inflammation [74]. Besides,
authors specifically suggested taurine as a marker of
swelling induced by the disease. In another study,
Sinha et al. [58] found decreased concentrations of
ammonium ion in EB samples, the authors explained
this decrement as a reduction in glutaminase activity,
an enzyme suppressed by inflammatory cytokines. In
two other studies by Loureiro et al. [75, 76] on
asthma exacerbation and chronic asthma, authors

Fig. 2. Percentage pie charts based on publications of (a) asthma and allergy-related conditions, (b) type of samples, (c) analytical techniques and

(d) allergy-related diseases. Key: the searching keywords were as follows: ‘metabolomics and, asthma, allergy or inflammation’ in NCBI PubMed.
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found increased levels of alkanes and aldehydes in
both studies, and associated these changes with a
higher level of oxidative stress in the worse states of
asthma. Furthermore, urocanic acid, a compound from
histidine catabolism, was proposed as a potential bio-
marker of the disease as authors found lower levels
in adults with asthma [57]. Interestingly, urocanic
acid was also found to be significantly reduced in
urine of children with allergic asthma [77]. In paedi-
atric studies with non-allergic asthmatic children an
increased level of 2-octenal, a volatile compound,
was described to stimulate IL-1 expression [55],
whereas in a recent study, sphingolipid metabolism
was reported to be altered as an outcome of airway
inflammation [78].

Allergy-related diseases

Regarding research into allergy using metabolomics,
the outcome of 11 studies revealed the huge amount
of work that remains to be done in this vast field
(Fig. 2d and Table 2). In allergic asthma, this disease
has been studied in animal and human models. In ani-
mals, an ovalbumin (OVA)-sensitized mice model
showed alterations in the amino acid, energy and lipid
metabolic pathways using BALF samples [79]. Whereas
when Yu et al. [80] analysed plasma of the same mice
model, authors found significant changes in dode-
canoic and myristic acids, phytosphingosine, sphinga-
nine, inosine and taurocholic acid, suggesting these
molecules could be involved in the inflammatory
response. Another study proposed that a lower level of
tyrosine in the urine of guinea-pigs was the result of
increased eosinophil and/or neutrophil activity [81].
For HDM allergic asthma, new insights are appearing,
herein Ho et al. [53] used a commercial HDM extract
to provoke sensitization in mice. Through this
approach, pulmonary alterations were observed over
the metabolism of lipids and sterols. Along with these
changes a significant loss of carbohydrates and the
increment in choline in the lung were linked with
airway inflammation [51].

In the case of allergic asthma in children, one study
suggested retinoic acid as a metabolite related to airway
remodelling and inflammation, as it appeared to be ele-
vated in the more severe patients. Likewise, deoxyade-
nosine, a metabolite of adenosine, was correlated with
several pro-inflammatory effects [52]. Additionally,
Mattarucchi et al. [77] proposed reduced amounts of
urocanic acid, methylimidazole acetic acid and Ile-Pro
fragment resembling metabolite as modulating mole-
cules of the immune system in asthma with a role in
inflammation. Also, an increased level of 1-methylhis-
tamine in the urine of children with asthma was associ-
ated with inflammation [82].

In adults with allergic asthma, a study comparing
patients with either a short allergic response (early
responders; ERs) or those with a prolonged allergic
response (dual responders; DRs), showed a lower level
of cortisol in ER patients, assigning it an immunosup-
pressive and anti-inflammatory role in allergy length
response [83, 84]. Interestingly, after an allergic chal-
lenge a decrease in docosahexaenoic acid (DHA) was
observed in the ER group suggesting the potential of
DHA to make the allergic inflammation disappear.

In other types of allergies, a study of anaphylaxis pro-
duced by OVA-sensitized guinea-pigs was reported [85].
As expected, high levels of IgE in serum were found in
the sensitized model compared to controls, and altered
levels of glucose, lipid and inositol phosphate, which
were related to the energy pathway and signal transduc-
tion. Finally, in food allergy, Kong et al. [86] showed the
promising capacities of metabolomics, finding uric acid
to be a strong potential biomarker in the accurate predic-
tion of peanut allergy in children. The authors started
from a mice model where different metabolites related to
purine metabolism were observed and, later, authors
validated their measured uric acid in children’s urine.

Future directions

To date, there are no available biomarkers to make a
full characterization of allergic asthma phenotypes,
which at this moment are poorly characterized within
diagnostic criteria in the clinical setting. We are con-
vinced that the search for these biomarkers will
improve current treatments of patients by allowing a
more precise and personalized medicine. Initial find-
ings have produced promising results in different sub-
types of allergy, based mainly on good stratification
criteria of the individuals in the studies. However,
there is still more work pending in this field. Results
found in animals should be correlated in humans and
more research must be carried out in human models.
Furthermore, there is a need to cover other subtypes
of allergy and characterize their phenotypes and speci-
fic altered biochemistry using metabolic fingerprinting
approach through multiplatform analysis (NMR, LC-
MS, GC-MS and CE-MS). We expect that in the near
future a combination of different markers, including
those obtained through metabolomics studies, will give
clinicians the opportunity to monitor allergic condi-
tions and predict whether a patient will respond to a
specific treatment.
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