Supporting Information

Induced axial chirality in biocatalytic

asymmetric ketone reduction

Rubén Agudo, ${ }^{\dagger, \delta}$ Gheorghe-Doru Roiban, ${ }^{t, \delta}$ and Manfred T. Reetz ${ }^{\dagger, \delta, *}$
${ }^{\dagger}$ Philipps-Universität Marburg, Hans-Meerwein Str., 35032 Marburg, Germany
${ }^{\text {s Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, } 45470}$ Mülheim an der Ruhr, Germany

*E-mail: reetz@mpi-muelheim.mpg.de
Contents
Biology 4
Reagents 4
Screening of commercial ADHs for asymmetric reduction of ketones 1a-f 4
Construction of pRSF-TbSADH* plasmid 4
TbSADH* protein expression and activity tests 5
TbSADH* library creation by QC PCR 6
Prescreening of TbSADH* libraries for active mutants for asymmetric ketones reduction 6
Saturation mutagenesis of position 186 7
Medium scale procedure to prepare alcohol (S)-2a 7
Up-scaling procedure of alcohol (S)-2a 8
Up-scaling procedure of alcohol (R)-2a 8
Small scale reactions using $1 \mathrm{~b}-\mathrm{f}, 3,5 \mathrm{a}-\mathrm{b}$ and acetophenone as substrates 8
Substrate 1a modeling in the active site of TbSADH 9
Table S1. Reduction of model ketones 1 a -f with commercial alcohol dehydrogenases. ${ }^{[\text {al] }[b]}$ 10
Table S2. Reduction of model ketone 1a with TbSADH* mutants obtained by saturation mutagenesis at position $186 .{ }^{[a, b]}$ 12
Table S3. Performance of best TbSADH* mutants specifically evolved for substrate 1a as catalysts in the asymmetric reduction of ketones 3 and 5a-b. ${ }^{[a]}$ 13
Table S4. Primers used for cloning and saturation mutagenesis in the present work 14
Table S5. Reduction of acetophenone with TbSADH* mutants produced in this study 15
Sequence 1. Plasmid pRSF-TbSADH* sequence 16
Figure S1 18
Chemistry 19
General remarks 19
General method for the synthesis of racemic standards 19
Absolute configuration determination 19
Compounds preparation 19
General procedure for carbonylation reactions providing compounds 1d, 1f and 2d-f 19
Preparation of compound 1d 20
Preparation of compound if 20
Preparation of (R)-4-ethylidenecyclohexanol 2 b 20
Preparation of (S)-4-benzylidenecyclohexanol 2c 20
Preparation of (S)-methyl 2-(4-hydroxycyclohexylidene)acetate 2d 21
Preparation of (S)-ethyl 2-(4-hydroxycyclohexylidene)acetate 2 e 21
Preparation of (S)-isopropyl 2-(4-hydroxycyclohexylidene)acetate 2 f 21
Determination of conversion and enantiomeric excess (ee) 24
GC chromatograms 26
(R)-4-(bromomethylene)cyclohexanol (2a) resulting from biocatalytic asymmetric ketone reduction of 1a with TbSADH* 26
(S)-4-(bromomethylene)cyclohexanol (2a) resulting from biocatalytic asymmetric ketone reduction of 1 a with mutant I86A 28
(R)-4-(bromomethylene)cyclohexanol (2a) resulting from biocatalytic asymmetric ketone reduction of 1a with mutant W110T 30
(R)-4-ethylidenecyclohexanol (2b) resulting from biocatalytic asymmetric ketone reduction of 1b with mutant A85V 32
(S)-4-ethylidenecyclohexanol (2b) resulting from biocatalytic asymmetric ketone reduction of 1 b with mutant I86E 34
(R)-methyl 2-(4-hydroxycyclohexylidene)acetate (2d) resulting from biocatalytic asymmetric ketone reduction of 1 d with mutant W110T 36
(R)-ethyl-2-(4-hydroxycyclohexylidene)acetate (2e) resulting from biocatalytic asymmetric ketone reduction of 1 e with mutant W 110 T 38
(R)-isopropyl 2-(4-hydroxycyclohexylidene)acetate (2f) resulting from biocatalytic asymmetric ketone reduction of 1 f with mutant W110T 40
Racemic 3-benzylidenecyclobutanol rac-(4) prepared chemically 42
Enantiomeric pure 3-benzylidenecyclobutanol 4 resulting from biocatalytic asymmetric ketone reduction of 3 with mutant W110T 43
Racemic 5-ethylidenecyclooctanol rac-(6b) prepared chemically 44
High enantiomeric excess 5-ethylidenecyclooctanol rac-(6b) resulting from biocatalytic asymmetric ketone reduction of 5b with mutant W110T 45
HPLC Chromatograms 46
(S)-4-benzylidenecyclohexanol 2c resulting from biocatalytic asymmetric ketone reduction of 1c with enzyme A1 from X-Zyme kit (entry 1 from Table S1) 46
(R)-4-benzylidenecyclohexanol 2 c resulting from biocatalytic asymmetric ketone reduction of 1c with mutant W110M 47
(S)-4-benzylidenecyclohexanol 2c chemically prepared from (S)-4-(bromo- methylidene)cyclohexanol 2a 48

Biology

Reagents

E. coli strain BL21-Gold(DE3) was obtained from Stratagene. Restriction enzyme Dpnl, Taq DNA ligase and 100 mM stock solutions of dATP, dTTP, dGTP and dCTP were purchased from New England Biolabs. T5 exonuclease was provided by Epicenter. NADP ${ }^{+}$was obtained from Calbiochem. Glucose dehydrogenase 105 was purchased from Codexis. Alcohol dehydrogenases were purchased from X-Zyme (Johnson Matthey Catalysts) or kindly gifted from evocatal (Düsseldorf/Germany). KOD hot start polymerase, dNTPs for PCR, MgSO_{4} and DNA vector pRSFDuet-1 were obtained from Novagen. Phusion Polymerase was provided by Finnzymes. Oligonucleotides were purchased from Invitrogen in standard, desalted form and used without further purification (Table S4). DNAse I, and lysozyme were obtained from AppliChem. LB medium, in a form of premixed powder, and kanamycin were obtained from Roth. IPTG and PEG-4000 were obtained from Fermentas. TB medium contained yeast extract ($24 \mathrm{~g} / \mathrm{L}$), peptone ($12 \mathrm{~g} / \mathrm{L}$), glycerol ($4 \mathrm{~mL} / \mathrm{L}$), $\mathrm{KH}_{2} \mathrm{PO}_{4}(0.017 \mathrm{M})$ and $\mathrm{K}_{2} \mathrm{HPO}_{4}(0.072 \mathrm{M})$.

Screening of commercial ADHs for asymmetric reduction of ketones 1a-f

Alcohol dehydrogenases (ADHs) from two different commercial kits ("Alcohol Dehydrogenase Kit" from Johnson Matthey Catalysts and "Alcohol Dehydrogenases Screening Kit" from evocatal) were screened for asymmetrical reduction of compounds 1a-f. Reactions were carried out in 1.5 mL tubes. Briefly, $5-15 \mathrm{mg}$ of each lyophilized ADH were dissolved in $500 \mu \mathrm{~L}$ reaction mixture containing Glucose (100 mM), cofactor NAD ${ }^{+}$or NADP ${ }^{+}(1 \mathrm{mM})$, specified by the supplier depending on the ADH, Glucose Dehydrogenase (GDH 105, Codexis; 0.04 Units), ketone (5 mM) dissolved in acetonitrile and phosphate buffer ($\mathrm{pH} 7.0,100 \mathrm{mM}$). Reaction was carried out at $30^{\circ} \mathrm{C}$ for 16 h in thermomixer with shaking (700 r.p.m.). After incubation time, the reaction media was extracted with ethyl acetate (500 $\mu \mathrm{L}$) and organic layer submitted to GC analysis.

Construction of pRSF-TbSADH* plasmid

To express TbSADH protein, adhB gene from Thermoanaerobacter ethanolicus (that encodes for TeSADH protein) was subcloned into pRSFDuet-1 vector. The backbone of PRSFDuet-1 plasmid was amplified by PCR using primers pRSF-Ncol (ggt ata tct cct tat taa agt taa aca aaa tta ttt cta cag g) and pRSF-Avrl (taa cct agg ctg ctg cca ccg ctg agc aat aac) as previously described. ${ }^{[1]}$ TeSADH gene was amplified from template pADHB1M1-kan ${ }^{[2]}$ (plasmid harboring the adhB gene from T. ethanolicus E39 used previously in our laboratory ${ }^{[3]}$) by PCR using primers pRSF-TbSADH* -Fw (ttt tgt tta act tta ata agg aga tat acc atg aaa ggt ttt gca atg ctc agt atc gg) and pRSF-TbSADH*-rv (gtt att gct cag cgg tgg cag cag cct agg tta gca taa aaa tgg act aag tcc cc). The oligonucleotides contained at 5^{\prime} end a complementary sequence to vector pRSFDuet-1 (complementary regions are underlined). PCR conditions contained $5 \mu \mathrm{~L}$ of 10 X KOD hot star polymerase buffer, $5 \mu \mathrm{~L}$ dNTPs (2 mM each), $1.25 \mu \mathrm{~L}$ of the appropriate forward and reverse primers (100 ng each), $2 \mu \mathrm{~L} \mathrm{MgSO}$ (25 mM), $1 \mu \mathrm{~L}$ template DNA (50 ng) and $0.5 \mu \mathrm{~L}$ of KOD polymerase in a final volume of $50 \mu \mathrm{~L}$. Products from both PCRs were digested with Dpnl at $37^{\circ} \mathrm{C}$ for 3 h for removing of template DNA, and purified with a QIAquick PCR purification spin column (Qiagen). The two purified DNA fragments were ligated by in vitro isothermal assembly. ${ }^{[4]}$ Briefly, $2.5 \mu \mathrm{~L}$ of purified TeSADH insert (125 ng) and $2.5 \mu \mathrm{~L}$ of purified backbone vector (125 ng) were mixed with $15 \mu \mathrm{~L}$ of assembly master mixture prepared as previously described ${ }^{1}$ and incubated $50^{\circ} \mathrm{C}$ for $1 \mathrm{~h} .3 \mu \mathrm{~L}$ of the reaction was used to transform electro into E. coli BL-21 Gold (DE3) electro competent cells. Plasmid from 5 transformants selected on LB agar plates containing kan (50 $\mu \mathrm{L} / \mathrm{mL}$) was isolated and sequenced for confirming the TeSADH gene sequence (1064 nucleotides from ATG methionine initiation codon to final ATT stop codon). The sequence of the 5 plasmids

[^0]revealed that they contained 1 silence mutation (nucleotide position C141G) and 4 missense mutations (nucleotide positions T272C, C557A, C938G and A974G that encode for Trp91Arg, Ala186Asp, Pro313Arg and Glu325Arg amino acid changes, respectively) regarding original TeSADH sequence. ${ }^{[5]}$ However, recent sequencing results indicate that the original sequence of T. ethanolicus $39 E$ has indeed C, G and G nucleotides in 272,938 and 974 positions, respectively, ${ }^{[6]}$ sharing exactly the same sequence as ADH from Thermoanaerobacter brokii. ${ }^{[6]]}$ Therefore, for the current work we have used TbSADH protein with A186D substitution, referred as TbSADH*.
In order to clarify if A186D substitution affects the activity of the enzyme using our substrates, we compared the activity of the two enzymes: TbSADH Wt (after reversion of mutation C557A; kindly provided by Dr. Zhi-Gang Zhang) and TbSADH* using compound 1a as substrate. We performed the same experiment using TbSADH W110A and TbSADH* W110A enzymes. The results show no differences neither in activity, stereospecificty, or thermostability between TbSADH and TbSADH* backgrounds. Furthermore, since this mutation also appeared in the original sequence of plasmid pADHB1M1-kan we store in our laboratory, we did not perform any additional mutagenesis experiment for reverting this residue, therefore we used TbSADH* as template for subsequent library creation.
The plasmid created was termed pRSF-TbSADH* (Sequence 1).

TbSADH* protein expression and activity tests

Plasmid pRSF-TbSADH* was transformed in both E. coli BL-21 Gold (DE3) and BOU730 (a bioengineered E. coli strain that express GDH upon IPTG induction from Bacillus megaterium ${ }^{[1]}$ electro competent cells. One single transformant of each was inoculated in 5 mL of LB with kan (50 $\mu \mathrm{g} / \mathrm{mL}$). After 5 h of incubation at $37^{\circ} \mathrm{C}$ with shaking, this preculture was transferred to 100 mL of TB with kan $(50 \mu \mathrm{~g} / \mathrm{mL})$. Cultures were grown at $30^{\circ} \mathrm{C}$ until O.D. of $0.7-0.9$ at 600 nm was reached, then IPTG was added to a final concentration of 0.2 mM and the cultures were let to grow at $30^{\circ} \mathrm{C}$ with vigorous agitation. After 20 h , cells were collected by dividing the culture in 1 mL aliquots. Aliquots were centrifuged at 10.000 r.p.m for 6 min at room temperature, supernatant discarded and pellets stored at $-20^{\circ} \mathrm{C}$ until their further use.
One aliquot of E. coli BL-21 Gold (DE3) and BOU730 cells expressing TbSADH* were suspended in $300 \mu \mathrm{~L}$ of phosphate buffer ($\mathrm{pH} 7,100 \mathrm{mM}$), sonicated (5 second pulse, power 40%) and centrifuged at 10.000 r.p.m. for 10 min . Supernatants were recovered, heated at $75^{\circ} \mathrm{C}$ for 15 min to achieve the precipitation of non-thermostable proteins from E. coli and centrifuged again for elimination of the cellular debris.
Aliquots taken before and after heating treatment were analyzed by Tris glycine SDS-PAGE. The TbSADH* were $\geq 95 \%$ pure after heat treatment, as judged by SDS-PAGE electrophoresis and staining with Page Blue Protein Staining Solution (Fermentas) (Figure S1). TbSADH* concentrations were determined measuring the absorbance of heated samples at 280 nm and using $30.940 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ as extinction coefficient value of TbSADH*, previously used for determination of TbSADH protein concentration. ${ }^{[7]}$
Different experimental conditions were tested in order to improve conversion and eantioselectivity of the product. We have performed different experiments varying the pH of phosphate buffer, concentration of isopropanol, concentration of cofactor and temperature.
For TbSADH* expressed into E. coli BL-21 Gold cells, one aliquot of proper pellet was resuspended in lysis buffer [phosphate buffer (pH 6 to 10, 100 mM), lysozyme ($14 \mathrm{mg} / \mathrm{mL}$) and DNAse I ($6 \mathrm{U} / \mathrm{mL}$)] and incubated at $37^{\circ} \mathrm{C}$ during 20 min at 700 r.p.m. in a thermomixer. After this time, tubes were heated in the incubator at $75^{\circ} \mathrm{C}$ for 15 min more and then centrifuged at 10.000 r.p.m at $4^{\circ} \mathrm{C}$ for 15 min to pull down the cellular debris. Supernatant (c.a. $500 \mu \mathrm{~L}$) was transferred to a new 1.5 mL tube, containing $500 \mu \mathrm{~L}$ reaction buffer (phosphate buffer (pH 6 to $10,100 \mathrm{mM}$), isopropanol (2% to 30% final concentration v / v), NADP^{+}or $\mathrm{NAD}^{+}(10$ to $500 \mu \mathrm{M}$ final concentration) and compound 1a (5 mM final

[^1]concentration)]. The sample was incubated at 25 to $60^{\circ} \mathrm{C}$ for 16 h at 700 r.p.m. in a thermomixer. After incubation time, $700 \mu \mathrm{~L}$ of reaction media was extracted with ethyl acetate ($700 \mu \mathrm{~L}$) and organic layer submitted to GC analysis. For TbSADH* expressed in BOU730 cells, the procedure to determine the optimal reaction conditions was the same as described above except the samples were not heated at $75^{\circ} \mathrm{C}$ for 15 min and glucose was added to reaction buffer (100 mM final concentration) instead isopropanol.
Control experiments using either no transformed BOU730 or BL-21 Gold (DE3) cells were carried out upon the same conditions explained above. No conversion of $\mathbf{1 a}$ was observed in both cases.
Based on the data obtained during these preliminary assays, further experiments were performed using heat-treated TbSADH* expressed into E. coli BL-21 Gold cells with reaction buffer containing phosphate buffer pH 8.0, (100 mM), isopropanol ($5-10 \%$ final concentration v / v), and NADP $^{+}(25-50$ $\mu \mathrm{M}$ final concentration), and incubated at $37^{\circ} \mathrm{C}$.

TbSADH* library creation by QC PCR

TbSADH* libraries were created by QuikChange $\mathrm{PCR}^{[8]}$ using pRSF -TbSADH* vector as template. PCR reactions contained $5 \mu \mathrm{~L}$ of 10 X KOD hot star polymerase buffer, $5 \mu \mathrm{~L}$ dNTPs (2 mM each), 1.25 $\mu \mathrm{L}$ of the appropriate forward and reverse degenerate primers (100 ng each), $2 \mu \mathrm{~L} \mathrm{MgSO} 4$ (25 mM), 1 $\mu \mathrm{L}$ template DNA (c.a. 50 ng) and $0.5 \mu \mathrm{~L}$ of KOD polymerase. PCR method used was the same for all libraries created: the PCR reaction started at $95^{\circ} \mathrm{C}(3 \mathrm{~min})$, continued with 25 cycles of $95^{\circ} \mathrm{C}(1 \mathrm{~min})$, $53^{\circ} \mathrm{C}(1 \mathrm{~min})$ and $68^{\circ} \mathrm{C}(10 \mathrm{~min})$, and finished with 15 min at $68^{\circ} \mathrm{C}$. PCR products were digested with Dpnl at $37^{\circ} \mathrm{C}$ for 3 h to eliminate the template DNA and then they were dialyzed on Millipore MFmembrane filters $(0.05 \mu \mathrm{~m})$ against distilled water for $20 \mathrm{~min} .5 \mu \mathrm{~L}$ of the dialyzed plasmid were used to transform $50 \mu \mathrm{~L}$ of electro competent BL-21 Gold (DE3) cells. Transformation mixture was spread on LB agar plates containing kan ($50 \mu \mathrm{~L} / \mathrm{mL}$).
Codon degeneracy evaluation of each library was carried out by scraping colonies from the corresponding plates (≥ 100 colonies) with the help of 3 mL of LB medium as previously described. ${ }^{[1]}$ The plasmid pools were extracted by miniprep and submitted for sequencing.

Prescreening of TbSADH* libraries for active mutants for asymmetric ketones reduction

Individual E. coli BL-21 Gold (DE3) colonies harboring mutated plasmids were randomly picked and inoculated in 96 deep well plates sealed with gas permeable seals containing $800 \mu \mathrm{LB}$ with kan (50 $\mu \mathrm{g} / \mathrm{mL}$). The three first wells of a plate were used for culturing control colonies (i.e. colonies harboring pRSF-TbSADH* plasmid). Cultures were grown during 5 h at $37^{\circ} \mathrm{C}$ with gentle agitation. Glycerol stock solutions in sterile 96 well microtiter plates were prepared at this step and kept at $-80^{\circ} \mathrm{C}$. Aliquots of $100 \mu \mathrm{~L}$ were transferred from the growth culture to a new 96 deep-well plates sealed with gas permeable seals containing $900 \mu \mathrm{~L}$ of TB with kan ($50 \mu \mathrm{~g} / \mathrm{mL}$) and IPTG (0.2 mM), and then, cultures were allowed to grow overnight at $30^{\circ} \mathrm{C}$ with vigorous agitation for protein overexpression. After incubation, plates were centrifuged at 4000 r.p.m. at room temperature for 20 min for harvesting cells. After discarding supernatant, pellets were resuspended in $500 \mu \mathrm{~L}$ of lysis buffer [phosphate buffer (pH $8.0,100 \mathrm{mM}$), lysozyme ($14 \mathrm{mg} / \mathrm{ml}$) and DNAse I ($6 \mathrm{U} / \mathrm{mL}$)] and incubated during 45 min at $37^{\circ} \mathrm{C}$ with vigorous agitation. After this time, plates were heated in the incubator for additional 15 min at $60^{\circ} \mathrm{C}$ and then centrifuged at 4000 r.p.m at $4^{\circ} \mathrm{C}$ for 20 min to pull down the cellular debris. $250 \mu \mathrm{~L}$ of supernatant were transferred to a 96 deep-well plate containing $250 \mu \mathrm{~L}$ of reaction buffer [phosphate buffer ($\mathrm{pH} 8.0,100 \mathrm{mM}$), isopropanol (5% final concentration v / v), NADP $^{+}(25 \mu \mathrm{M}$ final concentration) and ketone (2.5 mM final concentration)]. The reaction was carried out at $37^{\circ} \mathrm{C}$ with vigorous agitation. After 16 h of incubation, reaction mixture was extracted with ethyl acetate ($400 \mu \mathrm{~L}$) and subjected to chiral GC analysis. Plasmid DNA from clones showing ee values higher than 80% were extracted and sequenced.

[^2]Initially, plates were heated at $75^{\circ} \mathrm{C}$ for 15 min . However, we realized there were no active mutants in library I86. Previously, it has been described that mutant TbSADH I86A is less thermostable than Wild type protein. ${ }^{[9]}$ Therefore we decided to repeat the screening, by heating the 186 library plate at $55^{\circ} \mathrm{C}$ after the pellets resuspension in lysis buffer. Using these milder conditions, hits in this particular library emerged. SDS-PAGE analysis of those hits found in this library, confirmed that after heating treatment at $60^{\circ} \mathrm{C}$, there was the same amount of TbSADH^{*} as before (Data not shown). Thus, we decided to perform the screening and further enzymatic reactions heating samples at $60^{\circ} \mathrm{C}$.

Saturation mutagenesis of position 186

QuikChange method was used for saturation mutagenesis at residue 186 to generate those mutants that did not emerge as hits after 186 library screening (i.e. 186 amino acid residue substituted either by R, N, D, C, Q, H, L, K, F, P, S, W, Y or V). PCR reactions contained $5 \mu \mathrm{~L}$ of 10 X KOD hot star polymerase buffer, $5 \mu \mathrm{~L}$ dNTPs (2 mM each), $1.25 \mu \mathrm{~L}$ of the appropriate forward and reverse degenerate primers (100 ng each), $2 \mu \mathrm{~L} \mathrm{MgSO}_{4}(25 \mathrm{mM}$), $1 \mu \mathrm{~L}$ template pRSF-TbSADH* (c.a. 50 ng) and $0.5 \mu \mathrm{~L}$ of KOD polymerase. PCR method used was the same for all libraries created: the PCR reaction started at $95^{\circ} \mathrm{C}(3 \mathrm{~min})$, continued with 25 cycles of $95^{\circ} \mathrm{C}(1 \mathrm{~min}), 53^{\circ} \mathrm{C}(1 \mathrm{~min})$ and $68^{\circ} \mathrm{C}(10$ min), and finished with 15 min at $68^{\circ} \mathrm{C}$. PCR products were digested with Dpnl at $37^{\circ} \mathrm{C}$ for 3 h to eliminate the template DNA and then they were dialyzed on Millipore MF-membrane filters ($0.05 \mu \mathrm{~m}$) against distilled water for 20 min . Dialyzed plasmid ($5 \mu \mathrm{~L}$) was used to transform $50 \mu \mathrm{~L}$ of electro competent BL-21 Gold (DE3) cells. The presence of all mutations was confirmed by sequencing.
One single colony of BL-21 Gold (DE3) harboring the proper mutant TbSADH* was inoculated in 5 mL of LB with kan ($50 \mu \mathrm{~g} / \mathrm{mL}$), and this cell culture was overgrown, induced, pelleted and collected in 1 mL aliquots for further use as described above. No differences in the TbSADH* expression level among all mutants was observed as judged by SDS-PAGE analysis (Data not shown).

Medium scale procedure to prepare alcohol (S)-2a

Medium scale synthesis reactions were performed both using promising hits from plate screening to exclude false positives and mutants in position 186 produced by QuikChange. A single colony from E. coli BL-21 Gold (DE3) containing pRSF-TbSADH* with desired mutation was inoculated in 4 mL of LB with kan $(50 \mu \mathrm{~g} / \mathrm{mL})$. After 5 h of incubation at $37^{\circ} \mathrm{C}$ with shaking, this preculture was transferred to 50 mL of TB with kan ($50 \mu \mathrm{~g} / \mathrm{mL}$). Culture was grown at $30^{\circ} \mathrm{C}$ until O.D. of 0.7-0.9 at 600 nm was reached, then IPTG was added to a final concentration of 0.2 mM and the culture was allowed to grow at $30^{\circ} \mathrm{C}$ overnight with vigorous agitation. Expression level of TbSADH* was checked by SDS-PAGE electrophoresis before further analysis. We confirmed by SDS-PAGE that the TbSADH* expression was similar in all mutants tested, and the incubation at $60^{\circ} \mathrm{C}$ did not decrease the amount of TbSADH* produced (Data not shown). Routinely, $1.2 \pm 0.2 \mathrm{mg} / \mathrm{mL}$ of TbSADH* were obtained from 50 mL cultures. Cells were pelleted by centrifugation ($20 \mathrm{~min}, 4000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. at room temperature) and resuspended in 4 mL of lysis buffer [phosphate buffer ($\mathrm{pH} 8.0,100 \mathrm{mM}$), 50 mg of lysozyme and $30 \mu \mathrm{~L}$ of DNAse I (stock solution at $3000 \mathrm{U} / \mathrm{mL}$)] and incubated during 45 min at $37^{\circ} \mathrm{C}$ with vigorous agitation. After this time, suspensions were incubated 15 min at $60^{\circ} \mathrm{C}$. Cellular debris was pelleted by centrifugation (4000 r.p.m. 20 min at $4^{\circ} \mathrm{C}$) and the supernatant (c.a. 4 mL) was recovered and diluted to 5 mL with reaction buffer [phosphate buffer ($100 \mathrm{mM}, \mathrm{pH} 8.0$), isopropanol (10% final concentration $\mathrm{v} / \mathrm{v})$, $\mathrm{NADP}^{+}(50 \mu \mathrm{M}$ final concentration)]. Reaction was started by addition of 30 mg of compound $\mathbf{1 a}$, at $37^{\circ} \mathrm{C}$ with vigorous agitation. After 2 h , additional 30 mg of compound 1a were added (63 mM final concentration) and after 20 h of incubation, $700 \mu \mathrm{~L}$ of reaction mixture was extracted with ethyl acetate ($700 \mu \mathrm{~L}$) and subjected to GC analysis.

[^3]
Up-scaling procedure of alcohol (S)-2a

For scaling up asymmetric reduction reaction, 20 mL of LB with kan ($50 \mu \mathrm{~g} / \mathrm{mL}$) were inoculated with a single colony from E. coli BL-21 Gold (DE3) expressing TbSADH* W110T mutant, and incubated for 6 h at $37^{\circ} \mathrm{C}$ with vigorous shaking. Full volume was added to 500 mL of TB containing kan ($50 \mu \mathrm{~g} / \mathrm{mL}$). Culture was grown at $30^{\circ} \mathrm{C}$ until O.D. of $0.7-0.9$ at 600 nm was reached, then IPTG was added to a final concentration of 0.2 mM for protein expression induction and the culture was allowed to grow at $30^{\circ} \mathrm{C}$ overnight with vigorous agitation. Cells were pelleted by centrifugation ($20 \mathrm{~min}, 4000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. at room temperature) and pellet was resuspended in 30 mL of lysis buffer [phosphate buffer (pH 8.0, 100 mM), 400 mg of lysozyme and $400 \mu \mathrm{~L}$ of DNAse I (stock solution at $3000 \mathrm{U} / \mathrm{mL}$)] and incubated during 45 min at $37^{\circ} \mathrm{C}$ with vigorous agitation. After this time, suspensions were incubated 15 min at $60^{\circ} \mathrm{C}$. Cellular debris was pelleted by centrifugation (4000 r.p.m. 20 min at $4^{\circ} \mathrm{C}$) and supernatant (c.a. 30 mL , 600 mg TbSADH*) was recovered and diluted to 50 mL with reaction buffer [phosphate buffer (100 $\mathrm{mM}, \mathrm{pH} 8.0$), isopropanol (10% final concentration v / v), $\mathrm{NADP}^{+}(50 \mu \mathrm{M}$ final concentration)]. Reaction was started by addition of 225 mg of compound 1a, and was carried out at $37^{\circ} \mathrm{C}$ with vigorous agitation. After 2 h , additional 225 mg of compound 1a were added, and after 2 additional hours, 180 mg more of compound 1a were added (67 mM final concentration, 630 mg in total, 3.33 mmol) and allowed to react for 20 h . The reaction mixture was extracted with ethyl acetate ($4 \times 100 \mathrm{~mL}$), organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated and the residue subjected to column chromatography to give (S)-2a as a colorless liquid ($534 \mathrm{mg}, 84 \%$). ($R_{\mathrm{f}}=0.43$ ethyl acetate/petroleum ether $=1: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.89(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.05(\mathrm{~m}$, 2 H), 1.95-1.83 (m, 2H), $1.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.54-1.40(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=143.12$, 98.80, 68.89, 35.46, 34.46, 31.70, 27.49 ppm ; HRMS (APCI+): calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{BrO}[M+H]^{+}: 191.0066$, 193.0046; found: 191.0066, 193.0046. GC analyses of the reaction crude extract indicated a final conversion >99\% and 99\% ee (S).

Up-scaling procedure of alcohol (R)-2a

Up-scaling of (R)-2a alcohol from ketone 1a [$67 \mathrm{mM}, 500 \mathrm{mg}$ (added at once), 2.64 mmol] was performed as described for the alcohol (S)-2a but using E. coli BL-21 Gold (DE3) expressing the mutant TbSADH* I86A. Purification on column chromatography afforded (R)-2a as a colorless liquid ($400 \mathrm{mg}, 81 \%$). GC analyses of the reaction crude extract indicated a final conversion $>99 \%$ and 97% ee (R).

Small scale reactions using 1b-f, 3, 5a-b and acetophenone as substrates

We performed the reduction of compounds $\mathbf{1 b} \mathbf{b} \mathbf{f}, \mathbf{3}$ and $\mathbf{5 a} \mathbf{- b}$ to the corresponding alcohols using hits specifically evolved for the reaction of 1a. Single colonies from glycerol stocks in E. coli BL-21 Gold (DE3) of the corresponding mutants were isolated and grown in LB with kan ($50 \mu \mathrm{~g} / \mathrm{mL}$) during 5 h at $37^{\circ} \mathrm{C}$. This pre-inoculum was transferred to 100 mL of TB with $\mathrm{kan}(50 \mu \mathrm{~g} / \mathrm{mL})$ and the cell culture was induced, grown, and divided in 1 mL aliquots as described above for "TbSADH* protein expression and activity tests" section. Expression levels of different mutants were checked by SDS-PAGE electrophoresis as described above ($1 \mathrm{mg} / \mathrm{mL}$ of TbSADH^{*}). Aliquots were treated as described above, heating them at $60^{\circ} \mathrm{C}$. Ketone reduction reactions were carried out in 1 mL reaction buffer [phosphate buffer ($\mathrm{pH} 8.0,100 \mathrm{mM}$), isopropanol (10% final concentration v / v), $\mathrm{NADP}^{+}(50 \mu \mathrm{M}$ final concentration) and the proper ketone substrate $\mathbf{1 b - f}$, 3, or $\mathbf{5 a - b}$ ($1 \mathrm{mg}, 5-8 \mathrm{mM}$ final concentration)]. Reactions were carried out at $37^{\circ} \mathrm{C}$ with vigorous agitation. After 16 h of incubation, products were extracted with ethyl acetate and subjected further to GC analysis.
Mutants in position 186 produced by QuikChange were also tested based on this protocol using 1a (5 mM final concentration) as starting material.
Reactions using acetophenone as starting material were carried out as described above. Determination of the absolute configuration was made after comparison with authentic commercial standards, results being summarized in Table S5.

Substrate 1a modeling in the active site of TbSADH

3D structure of 4-(bromomethylene)cyclohexanone (1a) was generated with MAESTRO modeling software (Schrödinger). Using as receptor protein the TbSADH complexed with (S)-2-butanol (PDB $1 B X Z),{ }^{[10 a]}$ we generated with Glide application (MAESTRO software) 20 poses of substrate 1a for replacing the (S)-2-butanol molecule in the active site of TbSADH.
For modeling substrate $\mathbf{1 a}$ in the catalytic site of TbSADH, we performed a similar procedure as previously described by Ziegelmann et al. ${ }^{[6 \mathrm{a}]}$ The TbSADH-(S)-2-butanol complex was superimposed with the TbSADH-NADP ${ }^{+}$complex (PDB 1YKF) ${ }^{[10 b]}$ using PyMOL. After alignment, the entire 1BXZ complex, except for the (S)-2-butanol, was removed. Then we merged the lowest energy conformation pose of 1a generated before with reactive oxygen closest to $\mathrm{C}-\mathrm{OH}$ from (S)-2-butanol. The result was a single TbSADH model containing $\mathrm{NADP}^{+}, \mathrm{Zn}$ and both substrates. NADP ${ }^{+}$s nicotinamide ring was rotated 90° to allocate both substrates in the catalytic site as previously described. ${ }^{[6 a]}$ We fitted manually 1a substrate in PyMOL to superimpose its $\mathrm{C}-\mathrm{O}$ group with $\mathrm{C}-\mathrm{OH}$ from (S)-2-butanol. Finally, (S)-2-butanol was removed from the final model TbSADH-NADP ${ }^{+}-\mathrm{Zn}-1$ a to generate the image that appears in Figure 1 from main text. This is not meant to be a systematic theoretical treatment; rather, it serves as a rough guide for choosing CAST sites.

[^4]Table S1. Reduction of model ketones 1a-f with commercial alcohol dehydrogenases. ${ }^{[a][b]}$

Entry	$\mathrm{ADH}^{[\mathrm{C}]}$	Cofactor ${ }^{[d]}$	Substrate											
			$1 \mathrm{a} \rightarrow 2 \mathrm{a}$		$1 \mathrm{~b} \rightarrow 2 \mathrm{~b}$		1c \rightarrow 2c		1d \rightarrow 2d		$1 \mathrm{e} \rightarrow 2 \mathrm{e}$		1f $\rightarrow \mathbf{2 f}$	
			Conv. (\%)	\%ee										
1	A1	NADP $^{+}$	39	46(S)	≥ 99	47(S)	≥ 99	97(S)	≥ 99	60(S)	≥ 99	27(S)	≥ 99	39(R)
2	A2	NADP $^{+}$	≤ 20	n.d. ${ }^{\text {e }}$	≥ 99	23(S)	≥ 99	96(S)	≥ 99	58(S)	≥ 99	27(S)	≥ 99	38(R)
3	A3	NAD ${ }^{+}$	≤ 20	n.d. ${ }^{[\text {] }}$	≤ 20	n.d. ${ }^{\text {e] }}$	≤ 20	n.d. ${ }^{\text {e] }}$	≤ 20	n.d. ${ }^{\text {[] }}$	≤ 20	n.d. ${ }^{\text {e] }}$	26	73(R)
4	A4	NAD^{+}	≤ 20	n.d. ${ }^{[\text {[] }}$	≤ 20	n.d. ${ }^{[\text {e] }}$	41	84(R)	≤ 20	n.d. ${ }^{[\text {[] }}$	35	85(R)	83	96(R)
5	A5	NAD^{+}	≤ 20	n.d. ${ }^{[\text {[] }}$	≤ 20	n.d. ${ }^{\text {[e] }}$	32	55(R)	≤ 20	n.d. ${ }^{[\text {[] }}$	≤ 20	n.d. ${ }^{\text {[e] }}$	31	85(R)
6	A6	NADP $^{+}$	≥ 99	83(S)	≥ 99	42(S)	90	78(S)	≥ 99	60(S)	≥ 99	28(S)	≥ 99	39(R)
7	A7	NAD ${ }^{+}$	≥ 99	64(R)	≥ 99	1(S)	≥ 99	97(R)	≥ 99	98(R)	≥ 99	99(R)	≥ 99	96(R)
8	A8	NAD^{+}	≥ 99	96(R)	≥ 99	62(R)	87	98(R)	≥ 99	95(R)	≥ 99	$\geq 99(R)$	≥ 99	99(R)
9	A9	NAD^{+}	≥ 99	81(S)	≥ 99	66(S)	95	42(S)	≥ 99	80(S)	≥ 99	84(S)	≥ 99	68(S)
10	A10	NAD ${ }^{+}$	≥ 99	96(R)	≥ 99	73(R)	≥ 99	98(R)	≥ 99	95(R)	≥ 99	$\geq 99(R)$	≥ 99	99(R)
11	A11	NAD^{+}	≤ 20	n.d. ${ }^{[\text {e] }}$	≤ 20	n.d. ${ }^{\text {e] }}$	95	56(R)	≤ 20	n.d. ${ }^{[\text {e] }}$	≤ 20	n.d. ${ }^{\text {e] }}$	59	90(R)
12	A12	NAD ${ }^{+}$	≥ 99	71(S)	≥ 99	38(S)	93	34(S)	≥ 99	79(S)	≥ 99	83(S)	≥ 99	35(S)
13	A13	NAD ${ }^{+}$	≥ 99	95(R)	≥ 99	$67(R)$	97	98(R)	≥ 99	95(R)	≥ 99	$\geq 99(R)$	≥ 99	99(R)
14	A14	NAD ${ }^{+}$	≥ 99	74(R)	≥ 99	27(R)	96	98(R)	≥ 99	97(R)	≥ 99	99(R)	≥ 99	96(R)
15	A15	NAD^{+}	54	91(R)	60	68(R)	81	96(R)	29	92(R)	82	98(R)	≥ 99	$\geq 99(R)$
16	A16	NADP^{+}	≥ 99	83(S)	≥ 95	42(S)	89	93(S)	≥ 95	66(S)	≥ 99	27(S)	≥ 99	39(R)
17	A17	NAD^{+}	50	52(S)	34	10(R)	52	40(R)	26	58(S)	38	42(S)	≤ 20	n.d. ${ }^{[\text {e] }}$
18	A18	NAD ${ }^{+}$	≤ 20	n.d. ${ }^{[\text {e] }}$	≥ 99	2(R)	97	97(R)	≥ 99	97(R)	≥ 99	99(R)	≥ 99	96(R)
19	A19	NAD ${ }^{+}$	29	48(R)	≤ 20	n.d. ${ }^{[0]}$	34	53(R)	≤ 20	n.d. ${ }^{[\text {e] }}$	50	75(R)	67	93(R)
20	A20	NAD^{+}	≥ 99	83(S)	≥ 99	65(S)	95	58(S)	≥ 95	80(S)	≥ 99	85(S)	≥ 99	73(S)
21	A21	NAD^{+}	≥ 99	93(R)	≥ 99	74(R)	95	96(R)	≥ 99	96(R)	99	96(R)	≥ 99	$\geq 99(R)$
22	A22	NAD^{+}	41	73(R)	≤ 20	n.d. ${ }^{\text {e] }}$	60	93(R)	≤ 20	n.d. ${ }^{[\text {e] }}$	27	90(R)	≥ 99	99(R)
23	A23	NADP^{+}	≥ 99	81(S)	53	35(S)	95	91(S)	≥ 99	60(S)	56	6(S)	≥ 99	40(R)
24	A24	NADP $^{+}$	≥ 99	87(S)	≥ 99	51(S)	90	94(S)	≥ 99	61(S)	57	25(S)	≥ 99	38(R)
25	A25	NAD ${ }^{+}$	≥ 99	61(R)	≥ 99	0	88	93(R)	≥ 99	97(R)	≥ 99	95(R)	≥ 99	96(R)
26	A26	NAD^{+}	≤ 20	n.d. ${ }^{[8]}$	≥ 99	60(S)	85	61(S)	≥ 99	80(S)	≥ 99	84(S)	≥ 99	72(S)
27	A27	NADP^{+}	≤ 20	n.d. ${ }^{[\text {e] }}$	≥ 99	48(S)	90	95(S)	≥ 99	61(S)	≥ 99	28(S)	≥ 99	39(R)
28	A28	NADP^{+}	≤ 20	n.d. ${ }^{[\text {[] }}$	≥ 99	44(S)	93	95(S)	≥ 99	61(S)	≥ 99	25(S)	≥ 99	39(R)
29	A29	NAD^{+}	41	80(R)	≤ 20	n.d. ${ }^{[\mathrm{e}]}$	67	87(R)	≤ 20	n.d. ${ }^{[\text {e] }}$	61	96(R)	≥ 99	99(R)
30	A30	NAD^{+}	≥ 99	87(R)	≥ 99	72(R)	88	84(R)	≥ 99	91(R)	≥ 99	96(R)	≥ 99	98(R)
31	A31	NAD^{+}	≥ 99	82(S)	≥ 99	66(S)	93	63(S)	≥ 99	81(S)	≥ 99	85(S)	≥ 99	73(S)
32	A32	NADP^{+}	≥ 99	81(S)	≥ 99	42(S)	99	96(S)	≥ 99	59(S)	≥ 99	27(S)	≥ 99	40(R)
33	A33	NAD ${ }^{+}$	≥ 99	65(R)	≥ 99	11(R)	94	96(R)	≥ 99	98(R)	≥ 99	98(R)	≥ 99	95(R)

34	A34	NADP $^{+}$	≥ 99	82(S)	≥ 99	46(S)	97	96(S)	≥ 99	59(S)	≥ 99	27(S)	≥ 99	40(R)
35	A35	NADP^{+}	≥ 99	84(S)	≥ 99	48(S)	93	95(S)	≥ 99	60(S)	≥ 99	28(S)	≥ 99	40(R)
36	1.1 .010	NAD ${ }^{+}$	≥ 99	29(R)	95	43(R)	91	91(R)	≥ 99	71(R)	≥ 99	58(R)	≥ 99	34(R)
37	1.1 .020	NAD ${ }^{+}$	≥ 99	91(R)	90	86(R)	96	89(R)	≥ 99	95(R)	≥ 99	97(R)	≥ 99	97(R)
38	1.1 .030	NAD^{+}	≥ 99	83(R)	≥ 99	5(R)	94	95(R)	≥ 99	96(R)	≥ 99	96(R)	≥ 99	93(R)
39	1.1 .040	NAD ${ }^{+}$	≤ 20	n.d. ${ }^{[9]}$	≤ 20	n.d. ${ }^{[\text {[] }}$	60	92(R)	81	68(R)	64	44(R)	83	60(R)
40	1.1.130	NAD ${ }^{+}$	≤ 20	n.d. ${ }^{[\text {e] }}$	≤ 20	n.d. ${ }^{[\text {[] }}$	≤ 20	n.d. ${ }^{[\text {[] }}$	59	72(R)	≤ 20	n.d. ${ }^{[\text {e] }}$	≤ 20	n.d. ${ }^{[\text {e] }}$
41	1.1.140	NAD^{+}	≤ 20	n.d. ${ }^{[\text {e] }}$	≤ 20	n.d. ${ }^{[\text {[] }}$	≤ 20	n.d. ${ }^{[\text {[] }}$	36	41(R)	53	30(R)	≤ 20	n.d. ${ }^{[\text {e] }}$
42	1.1.190	NADP^{+}	≥ 99	72(S)	93	24(R)	57	39(R)	61	38(R)	95	31(R)	≥ 99	47(R)
43	1.1.200	NAD ${ }^{+}$	≥ 99	2(S)	≥ 99	1(S)	94	18(S)	≥ 99	53(S)	≥ 99	54(S)	≥ 99	22(S)
44	1.1.210	NAD ${ }^{+}$	≥ 99	11(R)	≥ 99	O(R)	≥ 99	97(R)	≥ 99	94(R)	≥ 99	98(R)	≥ 99	92(R)
45	1.1.250	NADP $^{+}$	≥ 99	25(S)	≥ 99	15(S)	84	35(S)	≥ 99	32(S)	≥ 99	35(S)	≥ 99	4(R)
46	1.1.260	NADP $^{+}$	≥ 99	51(R)	≥ 99	50(R)	91	94(R)	≥ 99	97(R)	≥ 99	97(R)	≥ 99	92(R)
47	1.1.270	NADP^{+}	≥ 99	15(S)	≥ 99	3(S)	88	85(S)	≥ 99	29(S)	≥ 99	10(S)	≥ 99	54(S)

${ }^{[a]} 5-10 \mathrm{mg}$ of each lyophilized ADH were dissolved in $500 \mu \mathrm{~L}$ of reaction mixture containing glucose (100 mM), cofactor NAD^{+}or NADP ${ }^{+}$(1 mM), Glucose Dehydrogenase (GDH 105 , Codexis, 0.04 Units), 1a-f (5 mM) dissolved in acetonitrile and phosphate buffer ($\mathrm{pH} 7.0,100 \mathrm{mM}$). Reaction performed at $30^{\circ} \mathrm{C}$ with shacking during 16 h .
${ }^{[b]}$ Average of at least 2 independent measurements. Deviation in the values obtained did not excess the 15% of the average ee value shown.
${ }^{[c]}$ Alcohol dehydrogenases from entries 1 to 35 were purchased from X-Zyme. Alcohol dehydrogenases from entries 36 to 47 were gifted by evocatal.
${ }^{[d]}$ Cofactor used upon recommendation of the supplier.
${ }^{[e]}$ Value not determined due to low conversion.

Table S2. Reduction of model ketone 1a with TbSADH* mutants obtained by saturation mutagenesis at position I86. ${ }^{[a, b]}$

Entry	Mutation	Conversion $^{[\text {c] }}$	\%ee
1	TbSADH *	$\geq 99 \%$	$65(R)$
2	I86A	$\geq 99 \%$	$97(S)$
3	I86R	$\geq 99 \%$	$64(S)$
4	I86N	$\geq 99 \%$	$97(S)$
5	I86D	$\geq 99 \%$	$98(S)$
6	I86C	$\geq 99 \%$	$98(S)$
7	I86Q	$\geq 99 \%$	$88(S)$
8	I86E	$\geq 99 \%$	$95(S)$
9	I86G	$\geq 99 \%$	$98(S)$
10	I86H	$\geq 99 \%$	$97(S)$
11	I86L	$\geq 99 \%$	$61(S)$
12	I86K	75%	$86(S)$
13	I86M	$\geq 99 \%$	$92(S)$
14	I86F	23%	$94(S)$
15	I86P	$\geq 99 \%$	$99(S)$
16	I86S	$\geq 99 \%$	$95(S)$
17	I86T	$\geq 99 \%$	$92(S)$
18	I86W	$<5 \%$	n.d.
19	I86Y	71%	$98(S)$
20	I86V	93%	$20(S)$

${ }^{[a]}$ Conversion and \% ee values shown are obtained from average of two independent experiments. Deviation in the values obtained did not excess the 3% of the average ee value shown.
${ }^{[b]}$ Entries in bold are those mutants obtained by QuikChange. Rests of them are the same that appear in Table 2 from main text. They have been included here only for comparison.
${ }^{[c]}$ Compound 2a was the major product when using 1a as substrate. ($\leq 5 \%$ side products in all cases).
${ }^{[e]}$ Value not determined due to low conversion.

Table S3. Performance of best TbSADH* mutants specifically evolved for substrate 1a as catalysts in the asymmetric reduction of ketones 3 and 5a-b. ${ }^{[a]}$

Entry	Mutation	Substrate					
		$3 \rightarrow 4$		$5 \mathrm{a} \rightarrow 6 \mathrm{a}$		5b $\rightarrow 6 \mathrm{~b}$	
		Conv. (\%)	ee\%	Conv. (\%)	ee\%	Conv. (\%)	ee\%
1	TbSADH*	≤ 5	n.d. ${ }^{\text {[1] }}$	≤ 5	n.d. ${ }^{\text {[1] }}$	≤ 5	n.d. ${ }^{\text {[0] }}$
2	A85V	≤ 5	n.d. ${ }^{\text {[1] }}$	≤ 5	n.d. ${ }^{\text {[1] }}$	≤ 5	n.d. ${ }^{\text {[0] }}$
3	186A	≤ 5	n.d. ${ }^{\text {[1] }}$	≤ 5	n.d. ${ }^{\text {[1] }}$	≤ 5	n.d. ${ }^{\text {[0] }}$
4	I86G	≤ 5	n.d. ${ }^{\text {[1] }}$	≤ 5	n.d. ${ }^{\text {[1] }]}$	≤ 5	n.d. ${ }^{\text {[1] }}$
5	I86E	≤ 5	n.d. ${ }^{\text {[1] }}$	≤ 5	n.d. ${ }^{\text {[1] }}$	≤ 5	n.d. ${ }^{\text {[0] }}$
6	I86M	≤ 5	n.d. ${ }^{\text {[1] }]}$	≤ 5	n.d. ${ }^{[1]}$	≤ 5	n.d. ${ }^{[1]}$
7	I86T	≤ 5	n.d. ${ }^{\text {[]] }}$	≤ 5	n.d. ${ }^{[0]}$	≤ 5	n.d. ${ }^{\text {[0] }}$
8	W110A	≥ 99	≥ 99	65	55	58	50
9	W110E	≥ 99	≥ 99	≤ 5	n.d. ${ }^{[10]}$	≤ 5	n.d. ${ }^{[1]}$
10	W110M	≥ 99	≥ 99	≤ 5	n.d. ${ }^{[0]}$	≤ 5	n.d. ${ }^{\text {[0] }}$
11	W110T	≥ 99	≥ 99	13	79	18	62
12	C295E	≤ 5	n.d. ${ }^{\text {[0] }}$	≤ 5	n.d. ${ }^{\text {[0] }}$	≤ 5	n.d. ${ }^{\text {[0] }}$

${ }^{[a]}$ Conversion and \% ee values shown are obtained from average of two independent experiments. Deviation in the values obtained did not excess the 3% of the average ee value shown.
${ }^{[b]}$ Value not determined due to low conversion.

Table S4. Primers used for cloning and saturation mutagenesis in the present work.

Name	Sequence (5' $\rightarrow 3^{\prime}$)
pRSF-TbSADH**w	tttgtttaactttaataaggagatataccatgaaaggtttgcaatgctcagtatcgg
pRSF-Ncol	ggtatatctccttattaaagttaaacaaaattatttctacagg
pRSF-Avrl	taacctaggctgctgccaccgctgagcaataac
pRSF-TbSADH*-rv	gttattgctcagcggtggcagcagcctaggttagcataaaaatggactaagtcccc
S39-RNG-Fw	ggcccottgcactrnggacattcataccg
S39-RNG-rv	cggtatgaatgtccnyagtgcaaggggcc
A85-RNG-Fw	gcgttgttgtgccarngattacccotgattggtg
A85-RNG-rv	caccaatcaggggtaatcnytggcacaacaacgc
186-RNG-Fw	cgttgttgtgccagctrngacccetgattggcgg
I86-RNG-rv	ccgccaatcaggggtcnyagctggcacaacaacg
W110-RNG-Fw	ggaatgctggcaggcrngaaatttcgaatgtaaaag
W110-RNG-rv	ctttacattcgaaaatttcnygcctgccagcattcc
Y267-RNG-Fw	ccatcgctaatgtaaatrngtttggcgaaggagag
Y267-RNG-rv	ctctccttcgccaaacnyatttacattagcgatgg
C295-RNG-Fw	ctataaaaggcgggctarngccoggtggacgtctaag
C295-RNG-rv	cttagacgtccaccgggenytagccegcctttatag
186V-Fw	cgttgttgtgccagctgtgacccctgattggcgg
186V-rv	ccgccaatcaggggtcacagctggcacaacaacg
186N-Fw	cgttgttgtgccagctaacacccctgattggcgg
186N-rv	ccgccaatcaggggtgttagctggcacaacaacg
186D-Fw	cgttgttgtgccagctgacacccctgattggcgg
186D-rv	ccgccaatcaggggtcagagctggcacaacaacg
186C-Fw	cgttgttgtgccagcttgcacccctgattggcgg
186C-rv	ccgccaatcaggggtgcaagctggcacaacaacg
186Q-Fw	cgttgttgtgccagctcagacccctgattggcgg
186Q-rv	ccgccaatcaggggtctgagctggcacaacaacg
186H-Fw	cgttgttgtgccagctcacacccctgattggcgg
186H-rv	ccgccaatcaggggtgtgagctggcacaacaacg
186L-Fw	cgttgttgtgccagctctgacccetgattggcgg
186L-rv	ccgccaatcaggggtcagagctggcacaacaacg
186F-Fw	cgttgttgtgccagcttcacccetgattggcgg
186F-rv	ccgccaatcaggggtgaaagctggcacaacaacg
186P-Fw	cgttgttgtgccagctccaacccotgattggcgg
186-r-rv	ccgccaatcaggggttggagctggcacaacaacg
I86S-Fw	cgttgttgtgccagcttcgacccetgattggcgg
I86S-rv	ccgccaatcaggggtcgaagctggcacaacaacg
186W-Fw	cgttgttgtgccagcttggacccetgattggcgg
186W-rv	ccgccaatcaggggtccaagctggcacaacaacg
186Y-Fw	cgttgttgtgccagcttacacccetgattggcgg
186Y-rv	ccgccaatcaggggtgtaagctggcacaacaacg
I86K-Fw	cgttgttgtgccagctaagacccctgattggcgg
186K-rv	ccgccaatcaggggtttagctggcacaacaacg
186R-Fw	cgttgttgtgccagctaagacccctgattggcgg
186R-rv	ccgccaatcaggggtttagctggcacaacaacg

Table S5. Reduction of acetophenone with TbSADH* mutants produced in this study.

Entry	Mutation	$1 \mathrm{a} \rightarrow 2 \mathrm{a}^{[\mathrm{a}]}$		acetophenone \rightarrow 1-phenylethanol ${ }^{[b]}$	
		Conv. (\%)	\%ee	Conv. (\%)	\%ee
1	WT	≥ 99	65(R)	<5	n.d. ${ }^{\text {[0] }}$
2	I86A	≥ 99	97(S)	97	99(R)
3	I86R	≥ 99	64(S)	9	90(R)
4	I86N	≥ 99	97(S)	98	99(R)
5	186D	≥ 99	98(S)	97	99(R)
6	I86C	≥ 99	98(S)	98	99(R)
7	I86Q	≥ 99	88(S)	93	99(R)
8	I86E	≥ 99	95(S)	97	99(R)
9	I86G	≥ 99	98(S)	97	99(R)
10	186H	≥ 99	97(S)	<5	n.d. ${ }^{\text {[] }}$
11	I86L	≥ 99	61(S)	93	99(R)
12	I86K	75	86(S)	<5	n.d. ${ }^{\text {c] }}$
13	186M	≥ 99	92(S)	97	99(R)
14	I86F	23	94(S)	<5	n.d. ${ }^{\text {c] }}$
15	186P	≥ 99	99(S)	98	99(R)
16	I86S	≥ 99	95(S)	98	99(R)
17	I86T	≥ 99	92(S)	98	99(R)
18	I86W	<5	n.d. ${ }^{\text {d] }}$	<5	n.d. ${ }^{\text {c] }}$
19	I86Y	71	98(S)	<5	n.d. ${ }^{\text {[] }}$
20	I86V	93	20(S)	<5	n.d. ${ }^{\text {[] }}$
21	W110A	≥ 99	82(R)	5	93(S)
22	W110E	≥ 99	91(R)	65	97(S)
23	W110M	≥ 99	97(R)	73	98(S)
24	W110T	≥ 99	97(R)	10	98(S)
25	C295E	16	84(R)	<5	n.d. ${ }^{\text {c] }}$
26	A85V	≥ 95	95(R)	<5	n.d. ${ }^{\text {[] }}$

${ }^{[a]}$ Values for $\mathbf{1 a \rightarrow \mathbf { 2 a }}$ reaction are the same that appear in Table 2 from main text and Table S2. They have been included here only for comparison.
${ }^{[b]} 1$-phenlyethanol was the major product when using acetophenone as substrate, ($\leq 2 \%$ side products in all cases).
${ }^{[c]}$ Value not determined due to low conversion.

Sequence 1. Plasmid pRSF-TbSADH* sequence. TbSADH* coding sequence is written in bold letters. The additional TAA stop codon at the 3^{\prime} end of TbSADH* coding sequence, introduced by PCR amplification using primer pRSF-TbSADH*-rv, is underlined.
ggggaattgt gagcggataa caattcccct
gagatatacc atgaaaggtt ttgcaatgct ca ggaaaagcct gctcctggcc c cacttcggac attcataccg t cggtcacgaa tggtgatcgc g tggtgttttt ggtgaatttt ttcatgtgaa t taaagaaatt ccattggaag c cggagctgaa ctggcagata t agtaggtctt atggcagtcg c aggcagtaga ccagtttgtg ctataaagat ggtcctatcg aaagtcagat ta tgctgccatc atcgctggag gaaatgctga acctggtggc accatcgcta atgtaaatta tcgtcttgaa tggggttgcg gcatggctca tggacgtcta agaatggaaa gactgattga taagctcgtc actcacgttt tccggggatt t gaaagacaaa ccaaaagacc taatcaaacc t gctgccaccg ctgagcaata actagcataa ggttttttgc tgaaacctca ggcatttgag aataaaccgg taaaccagca atagacataa acgacaagct gacgaccggg tctccgcaag ccctatttgt ttatttttct aaatacattc agaaaaactc atcgagcatc aaatgaaact catatttttg aaaaagccgt ttctgtaatg ggatggcaag atcctggtat cggtctgcga ttaatttccc ctcgtcaaaa ataaggttat aatccggtga gaatggcaaa agtttatgca cattacgctc gtcatcaaaa tcactcgcat cctgagcgag acgaaatacg cggtcgctgt gcaaccggcg caggaacact gccagcocat ca cttctaatac ctggaatgct gttttcccgg caggagtacg gataaaatgc ttgatggtcg gtctgaccat ctcatctgta acatcattgg actctggcgc atcgggcttc ccatacaatc tatcgcgagc ccatttatac ccatataaat tagagcaaga cgtttcccgt tgaatatggc gcatttatca gggttattgt ctcatgagcg aacaaatagg catgcagcgc tcttccgctt ttcgactgcg gcgagcggtg tcagctcact caggggataa agccggaaag aacatgtgag ccgcaggcgt ttttccatag gctccgcccc agccagaggt ggcgaaaccc gacaggacta tccctcgtgc gctctcctgt tccgaccctg ccttcgggaa gcgtggcgct ttctcatagc gtcgttcgct ccaagctggg ctgtgtgcac ttatccggta actatcgtct tgagtccaac gcagccattg gtaactgatt tagaggactt
gtagaaataa
cagtatcggt
a cctctagctg tattgtaaga cgccattggc agtaggtagt g ccctgattgg c aaag attttaaacc cggacctctg aagtacaaag ggcaggctgg aaattttcga atgtaaaaga tgatgctgat atgaatttag cacatctgcc gattcccgat atgatgacca ctggttttca tgcgacggta gcagttttgg gtattggccc attgcgtgga gccggaagaa ttattgccgt aaaatactat ggagctactg atattgtaaa tatgaatcta actgaaggca aaggtgtcga cattatggct acagcagtta agattgttaa ttttggcgaa ggagaggttt tgcctgttcc taaaactata aaaggcgggc tatgccccgg ccttgttttt tataagcgtg tcgatccttc tgacaatatt gaaaaagcct ttatgttgat tgttgtaata ttagcataat aacctaggct ccccttgggg cctctaaacg ggtcttgagg aagcacacgg tcacactgct tccggtagtc gcggctattt aacgaccctg ccctgaaccg tggcactttt cggggaaatg tgcgcggaac aaatatgtat ccgctcatga attaattctt gcaatttatt catatcagga ttatcaatac aaggagaaaa ctcaccgagg cagttccata ttccgactcg tccaacatca atacaaccta caagtgagaa atcaccatga gtgacgactg tttctttcca gacttgttca acaggccagc caaccaaacc gttattcatt cgtgattgcg taaaaggaca attacaaaca ggaatcgaat caacaatatt ttcacctgaa tcaggatatt ggatcgcagt ggtgagtaac catgcatcat gaagaggcat aaattccgtc agccagttta caacgctacc tttgccatgt ttcagaaaca gatagattgt cgcacctgat tgcccgacat cagcatccat gttggaattt aatcgcggcc tcatactctt cctttttcaa tattattgaa gatacatatt tgaatgtatt tagaaaaata cctcgctcac tgactcgcta cgctcggtcg caaaagcggt aatacggtta tccacagaat caaaaagcaa agcaccggaa gaagccaacg cctgacgagc atcacaaaaa tcgacgctca taaagatacc aggcgtttcc ccctggaagc ccgcttaccg gatacctgtc cgcctttctc tcacgctgtt ggtatctcag ttcggtgtag gaaccccccg ttcagcccga ccgctgcgcc ccggtaagac acgacttatc gccactggca tgtcttgaag ttatgcacct gttaaggcta

Figure S1. SDS-PAGE analysis of TbSADH* overexpressed either in E. coli Gold (DE3) cells or in E. coli BOU730 strain in the presence (lines +), or in the absence (lines -), of heating treatment (15 min . at $75^{\circ} \mathrm{C}$). Expected molecular mass of TbSADH* is 37.6 kDa . Protein expression levels are similar in both strains. Black arrow indicates overexpression of GDH in BOU730 cells. Note this band disappears after heating treatment, whereas intensity of TbSADH* band is similar either in the absence or in the presence of heating treatment. Molecular standards (line M) of 30, 40 and 50 kDa are indicated.

Chemistry

General remarks

Syntheses of compounds $\mathbf{1 a} \mathbf{- c},{ }^{[11]}$ and $\mathbf{1 e}{ }^{[11]}$ as well as the preparation of compounds $\mathbf{4}^{[12]}$ and $5 \mathbf{b}^{[13]}$ are described previously. All other starting compounds and reagents including dry solvents were purchased from Acros, Sigma-Aldrich and Alfa and used without further purification. NMR spectra were recorded on a Bruker Avance 300 or DRX $400\left({ }^{1} \mathrm{H}: 300 \mathrm{MHz}\right.$ or $400 \mathrm{MHz},{ }^{13} \mathrm{C}: 75 \mathrm{MHz}$ or 101 MHz) spectrometer using TMS as internal standard ($\mathrm{d}=0$) unless otherwise noted. High resolution El mass spectra were measured on a Finnigan MAT $95 S$ spectrometer. High-resolution mass spectra recorded in ESI and APCI mode were performed on a ThermoScientific LTQ-FT spectrometer. Conversion and enantiomeric composition were determined by achiral and chiral gas chromatography as described. Alternatively, product 2c enantiomeric excess could be measured by HPLC. Analytical thin layer chromatography was performed on Merck silica gel 60 F254q while for column chromatography Merck silica gel 60 (230-400 mesh ASTM) was used. Reactions that required inert atmosphere (nitrogen or argon) were carried out using standard Schlenk techniques. GC Analyses were performed on a HP 6890 series device.

General method for the synthesis of racemic standards

Preparation of 2a-f and $\mathbf{6 a - b}$: To a methanol solution (1 mL) of corresponding ketone (1.0 Eg), NaBH_{4} $(2.0 \mathrm{Eg})$ was added and the reactions were allowed to stir at r.t. until the TLC or GC showed completion (normally within a few minutes). Reactions crudes were subsequently analyzed by GC or HPLC.
Preparation of rac-(4): Racemic mixture was prepared according to the experimental procedure described in reference 12.

Absolute configuration determination

Initially, the absolute configuration of (S)-2d was assigned by comparison with an authentic sample as prepared by Walborsky et al. ${ }^{[14]}$ The absolute configuration of $\mathbf{2 a}$ was determined after its conversion into derivative 2d by Pd-catalyzed carbonylation and optical rotation comparison with an authentic sample as reported by Walborsky. ${ }^{[14]}$ Determination of the absolute configuration of $\mathbf{2 b}, \mathbf{2} \mathbf{c}$ was made after performing couplings reactions starting from bromoalcohol $\mathbf{2 a}$ as described below.
Determination of the absolute configuration of $\mathbf{2 e}$-f was made after performing carbonylation reactions starting from bromoalcohol 2a as described below.

Compounds preparation

General procedure for carbonylation reactions providing compounds 1d, 1f and 2d-f

In a two necked round bottomed flask 4-(bromomethylene)cyclohexanone 1a (1 Eg) respectively 4-(bromomethylene)cyclohexanol 2a (1 Eg) and DIPEA (1.2-1.5 Eg) were added to a mixture of dry alcohol (MeOH , EtOH or $\mathrm{Pr}-\mathrm{OH}$): dry tetrahydrofuran ($3: 1,30 \mathrm{~mL}$) and the solution flushed with argon for 15 min . After this time $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.03 \% \mathrm{~mol})$ and $\mathrm{PPh}_{3}(0.03 \% \mathrm{~mol})$ were added and solution flushed for 5 additional min with argon. A balloon filled with CO was then flushed to the solution and a second one was attached to the installation equipped with condenser. Mixtures were refluxed and normally after approximately 24 h GC indicated the total conversion of the starting material and product formation. The reaction crudes were rotaevaporated and their residues loaded on chromatographic columns to afford pure 1d, 1f and 2d-f in good yields.

[^5]
Preparation of compound 1d

Using the general carbonylation procedure, 4-(bromomethylene)cyclohexanone 1a (301 mg, 1.59 mmol) and methanol afforded after chromatographic column separation compound 1d as a white solid $(210 \mathrm{mg}, 78 \%)$. ($R_{\mathrm{f}}=0.50$ ethyl acetate/petroleum ether=1:2); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta=5.85$ (s, $1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.20\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.66\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.49 \mathrm{ppm}(\mathrm{m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=210.11,166.55,157.15,115.76,51.11,39.57,38.98,33.85,26.83 \mathrm{ppm} ; \mathrm{MS}(70 \mathrm{eV}$, $\mathrm{El}): m / z(\%): 168[M]^{+}(100)$; HRMS (APCI-): calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{3}[M-H]: 167.0714$; found: 167.0710.

Preparation of compound 1 f

Using the general carbonylation procedure, 4-(bromomethylene)cyclohexanone 1a ($246 \mathrm{mg}, 1.30$ mmol) and isopropanol afforded after chromatographic column purification compound 1 f as a pale yellow solid ($176 \mathrm{mg}, 69 \%$). ($R_{\mathrm{f}}=0.20$ ethyl acetate/petroleum ether=1:6); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=5.83(\mathrm{~s}, 1 \mathrm{H}), 5.13-5.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.22(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{~m}, 7 \mathrm{H}), 0.92(\mathrm{~m}$, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=210.27,165.68,156.28,116.68,67.16,39.60,39.01,33.85$, 26.76, 21.93 (2C) ppm; HRMS (El): calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}$ [M]: 196.1093; found: 196.1093.

Preparation of (R)-4-ethylidenecyclohexanol 2b

(R)-4-(Bromomethylene)cyclohexanol 2a ($75 \mathrm{mg}, 0.39 \mathrm{mmol}$) and $\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{4}(272 \mu \mathrm{~L}, 1.96 \mathrm{mmol})$ were added in a 20 mL Schlenk flask containing dry toluene (7 mL), under Ar atmosphere. Over the solution $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(13.7 \mathrm{mg}, 0.05 \% \mathrm{~mol})$ and $\mathrm{PPh}_{3}(4 \mathrm{mg}, 0.01 \% \mathrm{~mol})$ were further added and the Schlenk tube was sealed with a glass stopper and secured. The mixture was then heated at $100^{\circ} \mathrm{C}$ for 16 h . After this time the reaction mixture was carefully cooled down, evaporated and the residue subjected to column chromatography to afford compound (R)-2b as a viscous colorless liquid ($32 \mathrm{mg}, 65 \%$). ($R_{\mathrm{f}}=0.60$ ethyl acetate/petroleum ether $=1: 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=5.03\left(\mathrm{q},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.58\left(\mathrm{tt},{ }^{3} \mathrm{~J}=9.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.51-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.63(\mathrm{~m}$, 3 H), $1.43\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.29-1.08(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=139.17,116.99,70.60$, 37.31, 36.25, 34.58, 25.50, 12.96; HRMS (EI): calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}$ [M]: 126.1039; found: 126.1048.

Preparation of (S)-4-benzylidenecyclohexanol 2c

(S)-4-(Bromomethylene)cyclohexanol 2a ($83 \mathrm{mg}, 0.43 \mathrm{mmol}$) and phenylboronic acid (1.2 Eg) were added in a 50 mL two necked round bottomed flask. Dioxane $/ \mathrm{H}_{2} \mathrm{O}(4: 1,40 \mathrm{~mL})$ was further added and solution degassed with argon for 15 min , followed by the addition of $\mathrm{K}_{2} \mathrm{CO}_{3}(79 \mathrm{mg}, 0.57 \mathrm{mmol})$. After addition of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(13.2 \mathrm{mg}, 0.02 \% \mathrm{~mol})$ and $\mathrm{PPh}_{3}(3 \mathrm{mg}, 0.02 \% \mathrm{~mol})$, the solution was heated to $90^{\circ} \mathrm{C}$ and refluxed for 24 h when GC showed reaction completion. The mixture was rotaevaporated and the residue subjected to column chromatography to afford compound (S)-2c as a viscous colorless liquid ($54 \mathrm{mg}, 66 \%$). ($R_{\mathrm{f}}=0.55$ ethyl acetate/petroleum ether $=1: 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.27(\mathrm{~m}, 5 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 4.00-3.84(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.41(\mathrm{~m}, 1 \mathrm{H}) ; 2.35-1.92(\mathrm{~m}$, $5 \mathrm{H}), 1.68-1.40(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=140.93,138.23,128.99$ (2C), 128.21 (2C), 126.19, 123.31, 69.66, 36.41, 35.70, 34.02, 25.78 ppm ; HRMS (EI): calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}[M]: 188.1195$; found: 188.1207.

Preparation of (S)-methyl 2-(4-hydroxycyclohexylidene)acetate 2d

Using the general carbonylation procedure, (S)-4-(bromomethylene)cyclohexanol 2a (90 mg, 0.47 mmol) and methanol afforded after chromatographic column purification compound (S)-2d as a pale yellow viscous liquid ($66 \mathrm{mg}, 82 \%$). ($R_{\mathrm{f}}=0.34$ ethyl acetate/petroleum ether=1:1); ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=5.65(\mathrm{~s}, 1 \mathrm{H}), 3.97-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.37(\mathrm{~m}, 2 \mathrm{H})$, 2.21$2.12(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.49(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=167.17,161.33$, 113.71, $68.49,51.04,35.88,35.29,34.13,25.75 \mathrm{ppm}$; HRMS ($\mathrm{APCI}+$): calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{H}_{1}\left[M+\mathrm{H}^{+}\right.$: 171.1016; found: 171.1016.

Preparation of (S)-ethyl 2-(4-hydroxycyclohexylidene)acetate 2e

Using the general carbonylation procedure, (S)-4-(bromomethylene)cyclohexanol 2a (74 mg, 0.38 mmol) and ethanol afforded after chromatographic column purification compound (S)-2e as a pale yellow liquid ($63 \mathrm{mg}, 88 \%$). ($R_{\mathrm{f}}=0.44$ ethyl acetate/petroleum ether $=1: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=5.64(\mathrm{~s}, 1 \mathrm{H}), 4.14\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.93(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.12$ $(\mathrm{m}, 1 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.27\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=166.77,160.92,114.16,68.54,59.76,35.89,35.29,34.14,25.73,14.43 \mathrm{ppm} ; \mathrm{HRMS}(\mathrm{APCI}+):$ calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right.$: 185.1172; found: 185.1172 .

Preparation of (S)-isopropyl 2-(4-hydroxycyclohexylidene)acetate $\mathbf{2 f}$

Using the general carbonylation procedure, (S)-4-(bromomethylene)cyclohexanol 2a (80 mg, 0.41 mmol) and isopropanol, afforded after chromatographic column purification compound (S)-2f as a colorless viscous liquid ($74 \mathrm{mg}, 89 \%$). ($R_{\mathrm{f}}=0.35$ ethyl acetate/petroleum ether=1:2); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.61(\mathrm{~s}, 1 \mathrm{H}), 5.02$ (hept, $\left.{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.92(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.37$ $(\mathrm{m}, 2 \mathrm{H}), 2.20-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.63-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.24\left(\mathrm{dd},{ }^{3} \mathrm{~J}=6.2\right.$ $\left.\mathrm{Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 6 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=166.30,160.48,114.66,68.59,66.94,35.87,35.28$, 34.14, 25.70, 22.08 (2C); HRMS (EI): calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3}[M]$: 198.1250; found: 198.1254.

Preparation of 3-benzylidenecyclobutanone 3

3-Phenylmethylene-cyclobutanol ${ }^{[12]}(300 \mathrm{mg}, 2.51 \mathrm{mmol})$ was added in a Schlenk flask under argon together with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. Dess-Martin reagent ($12.55 \mathrm{~mL}, 3.76 \mathrm{mmol}, 0.3 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added and the solution stirred until TLC showed reaction completion (approximately 1 h). Reaction mixture was then washed with aqueous satd. NaHCO_{3} solution ($3 \times 15 \mathrm{~mL}$) followed by $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution ($3 \times 15 \mathrm{~mL}$). The organic phase was further dried over anhydrous MgSO_{4}, concentrated, and the residue loaded immediately on a chromatographic column. The collected fractions were washed with satd. NaHCO_{3} solution, and then evaporated to afford 3-benzylidenecyclobutanone 3 (229 mg , 58%) as a viscous liquid which precipitated immediately after being stored to $-80^{\circ} \mathrm{C}$. ($R_{\mathrm{f}}=0.58$ ethyl acetate/petroleum ether=1:6); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.35-7.09(\mathrm{~m}, 5 \mathrm{H}), 6.59-6.48(\mathrm{~m}, 1 \mathrm{H})$, $3.81\left(\mathrm{~d},{ }^{2} \mathrm{~J}=10.3 \mathrm{~Hz}, 4 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=205.48,137.03,129.04,128.78$ (2C), 127.42 (2C), 127.20, 124.45, 56.55, 54.52; HRMS (EI): calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}[M]: 158.0726$; found: 158.0743.

Preparation of 5-(bromomethylene)cyclooctanone 5a

Compound 5 a was prepared using a similar procedure like for compound $5 \mathbf{b}$: ${ }^{[13]} \mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHBr}(1.74 \mathrm{~g}$, 3.99 mmol) was dissolved in toluene (20 mL) and KOt - $\mathrm{Bu}(384 \mathrm{mg}, 3.4 \mathrm{mmol}$) was added. The solution was stirred under Ar at $45^{\circ} \mathrm{C}$ for 40 min . Cyclooctane-1,5-dione ${ }^{[13]}$ ($400 \mathrm{mg}, 2.84 \mathrm{mmol}$) was dissolved in dry toluene (15 mL) in a 100 mL Schlenk flask, under argon atmosphere, and the solution of $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHBr}$ in toluene (20 mL) was added. The reaction was warmed to $95^{\circ} \mathrm{C}$ for 50 min . Then the mixture was allowed to cool to room temperature. Saturated aqueous $\mathrm{NaCl}(30 \mathrm{~mL})$ was added and the phases were separated. The aqueous phase was extracted with toluene ($3 \times 30 \mathrm{~mL}$) and the combined organic phases were dried over anhydrous MgSO_{4} and then filtered. Solvent was then evaporated under reduced pressure and the residue purified on column chromatography to afford 5(bromomethylene)cyclooctanone 5 a as a viscous liquid ($310 \mathrm{mg}, 50 \%$). ($R_{\mathrm{f}}=0.30$ diethyl ether/petroleum ether $=1: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.93(\mathrm{~s}, 1 \mathrm{H}), 2.42-1.95(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=214.77,142.61,106.63,43.78,39.90,37.44,31.87,23.84,23.11$; HRMS (EI): calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{BrO}[M]^{-}: 216.0144$; found: 216.0133.

Preparation of rac-5-(bromomethylene)cyclooctanol 6a

Compound 5 a was added to a NMR tube containing deuterated methanol ($\mathrm{CD}_{3} \mathrm{OD}$). To the solution NaBH_{4} was added and then the mixture allowed stirring for $2-3 \mathrm{~h}$. GC showed reaction completion after this time. This sample was used later as control for the GC analyses. NMR showed complete formation of rac-6a. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=5.92\left(\mathrm{q},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.62(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.29$
$(\mathrm{m}, 1 \mathrm{H}), 2.19-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.82-1.37(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta=147.39,103.54,71.84$, 38.03, 36.52, 35.65, 32.65, 24.08, 22.95; HRMS (APCI+): calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{BrO}\left[\mathrm{M}_{+} \mathrm{H}^{+}\right.$: 219.0379 , 221.0358; found: 219.0376, 221.0355 .

Preparation of rac-5-ethylidenecyclooctanol 6b

Compound $\mathbf{5 b}$ was added to a NMR tube containing deuterated methanol ($\mathrm{CD}_{3} \mathrm{OD}$). To the solution NaBH_{4} was added and then the mixture allowed stirring for 2-3 h. GC showed reaction completion after this time. This sample was used later as control for the GC analyses. NMR showed complete formation of $6 \mathbf{b}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=5.16\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.69\left(\mathrm{tt},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}=3.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 2.28-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.29(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , Methanol-d4) $\delta=141.57,121.60,72.06,39.52,36.76,35.81,29.72,24.61,24.20,13.50 ; \mathrm{HRMS}(\mathrm{APCl}+)$: calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}[M+H]^{+}: 155.1430$; found: 155.1428.

GC analyses

Comp ound	Achiral Analysis		Chiral Analysis	
	Conditions	Retentio n time (min)	Conditions	Retention time (min)
1a $\rightarrow 2 \mathrm{a}$	column: 15 m DB-Wax, inner diameter of 0.25 mm ; pressure: 0.4 bar H_{2}; injector: $230^{\circ} \mathrm{C}$; oven: temperature gradient: $80-260^{\circ} \mathrm{C}$ with $6^{\circ} \mathrm{C} / \mathrm{min}$ and then holding $260^{\circ} \mathrm{C}$ for 10 min , FID detector: $350^{\circ} \mathrm{C}$;	12.2	column 25 m Hydrodex, B-TBDAc, inner diameter of 0.25 mm ; pressure: 0.8 bar H_{2}; injector: $230^{\circ} \mathrm{C}$; oven: isothermic at $110^{\circ} \mathrm{C}$ FID detector: $320^{\circ} \mathrm{C}$;	(R)-2a: 34.8-35.6 (S)-2a: 36.6-38.2
1b $\rightarrow 2 \mathrm{~b}$	column: 15 m DB-Wax, inner diameter of 0.25 mm ; pressure: 0.4 bar H_{2}; injector: $230^{\circ} \mathrm{C}$; oven: temperature gradient: $60-260^{\circ} \mathrm{C}$ with $6^{\circ} \mathrm{C} / \mathrm{min}$ and then holding $260^{\circ} \mathrm{C}$ for 10 min , FID detector: $350^{\circ} \mathrm{C}$.	8.0	column 30 m BGB-176, inner diameter of 0.25 mm ; pressure: 0.6 bar H_{2}; injector: $230^{\circ} \mathrm{C}$; oven: isothermic at $90^{\circ} \mathrm{C}$ FID detector: $350^{\circ} \mathrm{C}$.	(R)-2a: 18.6-18.9 (S)-2a: 19.6-20.1
1d \rightarrow 2d	column: 15 m DB-Wax, inner diameter of 0.25 mm ; pressure: 0.4 bar H_{2}; injector: $230^{\circ} \mathrm{C}$; oven: temperature gradient: $80-260^{\circ} \mathrm{C}$ with $6^{\circ} \mathrm{C} / \mathrm{min}$ and then holding $260^{\circ} \mathrm{C}$ for	15.8	column 25 m Hydrodex, B-TBDAc, inner diameter of 0.25 mm ; pressure: 0.4 bar H_{2}; injector: $230^{\circ} \mathrm{C}$; oven: isothermic at $150^{\circ} \mathrm{C}$ FID detector: $350^{\circ} \mathrm{C}$.	(S)-9: 22.6 (R)-9: 23.1
$1 \mathrm{e} \rightarrow 2 \mathrm{e}$	10 min , FID detector: $350^{\circ} \mathrm{C}$.	16.5	column 30 m BGB-174, inner diameter of 0.25 mm ; pressure: 0.8 bar H_{2}; injector: $220^{\circ} \mathrm{C}$; oven: isothermic at $140^{\circ} \mathrm{C}$ FID detector: $350^{\circ} \mathrm{C}$.	$\begin{aligned} & (S)-6: 41.9 \\ & (R)-6: 42.6 \end{aligned}$
$\mathbf{1 f} \rightarrow \mathbf{2 f}$		16.3	column 25 m Hydrodex, B-TBDAc, inner diameter of 0.25 mm ; pressure: 0.8 bar H_{2}; injector: $230^{\circ} \mathrm{C}$; oven: isothermic at $130^{\circ} \mathrm{C}$ FID detector: $350^{\circ} \mathrm{C}$.	(S)-6: 43.8 (R)-6: 44.3
$3 \rightarrow 4$	column: 30 m DB-1, inner diameter of 0.25 mm ; pressure: 0.5 bar H_{2}; injector: $220^{\circ} \mathrm{C}$; oven: temperature gradient: $60-340^{\circ} \mathrm{C}$ with $6^{\circ} \mathrm{C} / \mathrm{min}$ and then holding $340^{\circ} \mathrm{C}$ for 5 min , FID	18.0	column 25 m Hydrodex, B-TBDAc, inner diameter of 0.25 mm ; pressure: 0.6 bar H_{2}; injector: $220^{\circ} \mathrm{C}$; oven: isothermic at $140^{\circ} \mathrm{C}$ FID detector: $320^{\circ} \mathrm{C}$.	(enantiomer 1)-4: 33.2 (enantiomer 34.1
$5 \mathrm{a} \rightarrow 6 \mathrm{a}$	detector: $320^{\circ} \mathrm{C}$.	18.7	column 25 m Ivadex, inner diameter of 0.25 mm ; pressure: 0.5 bar H_{2}; injector: $220^{\circ} \mathrm{C}$; oven: temperature gradient: $\quad 100-125^{\circ} \mathrm{C}$ with $0.2^{\circ} \mathrm{C} / \mathrm{min}$, $\quad 125-220^{\circ} \mathrm{C}$ with $12^{\circ} \mathrm{C} / \mathrm{min}$ then holding $220^{\circ} \mathrm{C}$ for 5 min, FID detector: $320^{\circ} \mathrm{C}$.	$\begin{aligned} & \text { (enantiomer 1)-6a: } \\ & 94.0 \\ & \text { (enantiomer 2)-6a: } \\ & 96.0 \end{aligned}$
5b $\rightarrow 6 \mathrm{~b}$		14.1	column 25 m Lipodex G, inner diameter of 0.25 mm ; pressure: 0.7 bar H_{2}; injector: $220^{\circ} \mathrm{C}$; oven: temperature gradient: $40-100^{\circ} \mathrm{C}$ with $0.2^{\circ} \mathrm{C} / \mathrm{min}, \quad 100-220^{\circ} \mathrm{C}$ with $12^{\circ} \mathrm{C} / \mathrm{min}$ then holding $220^{\circ} \mathrm{C}$ for 5 min, FID detector: $320^{\circ} \mathrm{C}$.	(enantiomer 1)- 6b: 205.0 (enantiomer 2)- 6b: 210.0

HPLC analyses of 1c and 2c

In the case of alcohol 2c, HPLC was used to confirm the enantiomeric excess, using as control a racemic sample. Same method was used for chiral and achiral analyses.

Compound				
	Chiral and Achiral Analyses	Retention time (min)		
$\mathbf{1 c} \rightarrow \mathbf{2 c}$	Conditions Acetonitrile/water = 50:50. flow: $1.0 \mathrm{~mL} / \mathrm{min}, 16.2 \mathrm{MPa}$, 298 K ; Detection : UV, 220 nm.	1c: 7.1 (S)-2c: 4.6 (R)-2c: 6.0		

GC chromatograms

(R)-4-(bromomethylene)cyclohexanol (2a) resulting from biocatalytic asymmetric ketone reduction of 1a with TbSADH*

Achiral chromatogram

achirale Uebersichtsanalyse, Auswertung ohne Loesemittelbereich sup bis 3.5 min Zuordnung nach GC/MS a14031 zu ZHN-ZA-068-46; 12/90537

No.	min.	area- $\%$
22	8.23	1.57
23	8.93	1.87
24	9.53	0.57
25	9.72	0.51
26	9.96	0.50
27	10.58	0.88
28	10.80	0.17
30	11.23	6.49
32	12.19	84.3
37	16.16	1.15
40	17.39	0.16
43	19.17	0.70

\%- threshold: 0.15 \%
30 peaks out of 42 (total area percentage $=1.16 \%$) are below threshold
16 peaks had been suppressed
Instrument
Column
HP6890 / MPS2L , 513
Detector
Temperature
Gas
Sample size
Recorder
FID
230/80 6/min 26010 min iso/350
0.4 bar H2

1 UL
1 mV

Chiral chromatogram

Chirale Messung, ee-Verhaeltnis
Zuordnung nach Racemat ROI-RA-136~01; 11/90008

No. min.	area-8	
15	35.49	82.6
16	38.16	17.4

22 peaks had been suppressed.
Instrument : AT 6890 N ; 528
Column : 25 m Hydrodex-y TBDAc 0.25/?df G/580
Detector
Temperature : 230/110 iso spaeter ausgeneizt/320
Gas : 0.8 bar H2
Sample size : 1 uL
Recorder : Kipp \& Zonen 1 mV

(S)-4-(bromomethylene)cyclohexanol (2a) resulting from biocatalytic asymmetric ketone

 reduction of 1a with mutant I86A

Achiral chromatogram

achirale Uebersichtsanalyse, Auswertung ohne Loesemittelbereich sup bis 3.5 min

Instrument : HP6890 / MPS2L , 513
Column : 15m DB-Wax 0.25/0.15df G/492
Detector : FID
Temperature : $230 / 806 / \mathrm{min} 26010 \mathrm{~min}$ iso/350
Gas
Recorder
1 uL
1 mV

Chiral chromatogram

********** R528S721.DAT ****************** 25-APR-12 07:45:08

Sample: 12/90882
Cust.ID: AGU-AA-212-01
S.code : in EE
measured: 24-APR-12 13:42:05 processed: 25-APR-12 07:45:03 by: CHROM3 with
chirale Messung, ee-Verhaeltnis
Zuordnung nach Racemat ROI-RA-136-01, 11/90008

No.	min.	area-q
33	35.58	0.44
34	36.56	99.6

49 peaks had been suppressed.

Instrument	$:$ AT $6890 \mathrm{~N} ; 528$
Column	$: 25 \mathrm{~m}$ Hydrodex-y TBDAC $0.25 /$?df $\mathrm{G} / 580$
Detector	\vdots FID
Temperature	$: 230 / 110$ iso spaeter ausgeheizt/320
Gas	$: 0.8$ bar H2
Sample size	$: 1$ uL
Recorder	$:$ Kipp \& Zonen 1 mV

(R)-4-(bromomethylene)cyclohexanol (2a) resulting from biocatalytic asymmetric ketone

 reduction of 1a with mutant W110T

Achiral chromatogram

********** R5I3S613.DAT ****************** 25-APR-12 11:00:14

Sample :	$12 / 90883$	measured:
Cust.ID:	AGU-AA-215-APR-12 $07: 51: 41$	
S.code :	in EE	processed: $25-\mathrm{APR}-12$ 10:59:48
		by:
	with:	

achirale Uebersichtsanalyse, Auswertung ohne Loesemittelbereich sup bis 3.5 min

No.	min.	area-q
25	8.26	1.55
27	8.96	1.89
28	9.56	0.13
29	9.76	0.57
30	10.01	0.57
31	10.62	0.83
32	10.83	0.13
33	11.27	6.59
35	11.81	0.11
37	12.23	85.2
38	13.31	0.14
39	13.62	0.12
43	16.20	0.91
46	19.21	0.70

\%- threshold: 0.10 \%
25 peaks out of 39 (total area percentage $=0.56 \%$) axe below threshold.
28 peaks had been suppressed.

```
Instrument : HP6890 / MPS2L , 513
Column : 15m DB-Wax 0.25/0.15df G/492
Detector : FID
Temperature: : 230/80 6/min 260 10min iso/350
Gas : 0.4 bar H2
Sample size : 1 ul
Recorder: 1mv
```

Chiral chromatogram

Sample:	$12 / 90883$	measured:	$25-$ APR-12
Cust.ID:	AGU-AA-215-17	processed:	$26-$ APR-12 $08: 55: 10$
S.code :	in EE	by:	CHROM3

chirale Messung, ee-Verhaeltnis Zuordnung nach Racemat ROI-RA-136-01; 11/90008

No.	min.	area-8
30	34.50	98.3
31	38.14	1.68

42 peaks had been suppressed.
Instrument : AT $6890 \mathrm{~N} ; 528$
Column : 25m Hydrodex-y TBDAc $0.25 /$?df G/580
Detector
Temperature : 230/110 iso spaeter ausgeheizt/320
Gas : 0.8 bar H2
Sample size : 1 uL Recorder : Kipp \& zonen 1 mV
(R)-4-ethylidenecyclohexanol (2b) resulting from biocatalytic asymmetric ketone reduction of 1b with mutant A85V

Achiral chromatogram

Chiral chromatogram

********** R512S449.DAT ****************** 11-MAX-12 07:49:56

13 peaks had been suppressed.

Instrument	$:$ AT 6890N; 512
Column	$: 30 \mathrm{~m}$ BGB-176/SE-52 0.25/0.15df G/508
Detector	$:$ FID
Temperature	$: 230 / 90$ iso spaeter ausgeheizt/350
Gas	$: 0.6$ bar H2
Sample size	$: 1$ uL
Recorder	$:$ Kipp \& zonen 1 mV

(S)-4-ethylidenecyclohexanol (2b) resulting from biocatalytic asymmetric ketone reduction of 1b with mutant 186E

Achiral chromatogram

achirale Uebersichtsanalyse, Auswertung ohne Loesemittelbereich sup bis 3.5 min Zuordnung nach GC/MS a14067 zu ZHN-ZA-068-36; 12/90536

Instrument	$:$ HP6890 / MPS2L 513	
Column	$: 15 \mathrm{~m}$ DB-Wax $0.25 / 0.15 \mathrm{df} \mathrm{G/492}$	
Detector	$:$ FID	
Temperature	$: 230 / 606 / \mathrm{min} 260 \quad 10 \mathrm{~min}$ iso/350	
Gas	$: 0.4$ bar H2	
Sample size	$: 1 \mathrm{uL}$	
Recorder	$: 1 \mathrm{mV}$	

Chiral chromatogram

Sample	12/90981	measured:	10-MAY-12 21:32:27
Cust.ID:	AGU-AB-235-21	processed:	11-MAY-12 08:00:06
S.code	in EE	by:	CHROM3

chirale Messung, ee-Verhaeltnis
zuordnung nach Racemat ROI-RA-136-03; 11/90011

No.	min.	area-8
7	18.85	7.82
8	19.61	92.2

15 peaks had been suppressed.

Instrument	$:$ AT $6890 \mathrm{~N} ; 512$
Column	$: 30 \mathrm{~m}$ BGB-176/SE-52 $0.25 / 0.15$ df G/508
Detector	$:$ FID
Temperature	$: 230 / 90$ iso spaeter ausgeheizt/350
Gas	$: 0.6$ bar H2
Sample size	$: 1$ uL
Recorder	$:$ Kipp \& Zonen 1 mV

(R)-methyl 2-(4-hydroxycyclohexylidene)acetate (2d) resulting from biocatalytic asymmetric ketone reduction of 1d with mutant W110T

Achiral chromatogram

Chiral chromatogram

Sample :	$12 / 90985$	measured:	8-MAY-12 $23: 09: 24$
Cust.ID:	AGU-AB-235-52	processed:	9-MAY-12 $11: 01: 03$
S.code :	in EE	by;	CHROM3

Chirale Messung, ee-Verhaeltnis
Zuoranung nach Racemat ROI-RA-067-01; 11/90045

No. min.	area-8	
12	22.55	0.93
13	23.11	99.1

18 peaks had been suppressed.

Instrument	: AT 6890N; 512
Column	: 25m Hydrodex-b TBDAc 0.25/?af G/589
Detector	: FID
Temperature	: 230/150 iso spaeter ausgeheizt/350
Gas	: 0.4 bar H2
Sample size	: 1 UL
Recorder	: Kipp \& Zonen 1 mV

(R)-ethyl-2-(4-hydroxycyclohexylidene)acetate (2e) resulting from biocatalytic asymmetric ketone reduction of 1 e with mutant W110T

Achiral chromatogram

Chiral chromatogram

$\star * * * * * * * * * \quad$ R525S504.DAT $* * * * * * * * * * * * * * * * * * \quad 9-M A Y-12 \quad 08: 30: 47$

Sample:	$12 / 90988$	measured:	$9-\mathrm{MAY}-12$
Cust.ID:	AGU-AB-23:56-53	processed:	$9-\mathrm{MAY}-12$
S.code $:$	in EE	by:	chROM3:
		with:	

chirale Messung, ee-Verhaeltnis
Zuordnung nach Racemat ROI-RA-179-01; 11/90196

No.	min.	area-8
16	41.86	0.47
17	42.62	99.5

24 peaks had been suppressed.

Instrument	$:$ AT6890N + MPS2L ; 525
Column	$: 30 \mathrm{~m}$ BGB-174/BGB-1701 0.25/0.25af;G/650
Detector	$:$ FID
Temperature	$: 220 / 140$ iso spaeter ausgeheizt/350
Gas	$: 0.8$ bar H2
Sample size	$: 1$ uL
Recorder	$:$ Kipp \& Zonen 1 mV

(R)-isopropyl 2-(4-hydroxycyclohexylidene)acetate (2f) resulting from biocatalytic asymmetric ketone reduction of 1 f with mutant W110T

Achiral chromatogram

achirale Uebersichtsanalyse, Auswertung ohne Loesemittelbereich sup bis 3.5 min Zuordnung nach GC/MS a14034 zu ROI-RA-222-01; 12/90527

Chiral chromatogram

********** R512S436.DAT ****************** 10-MAY-12 08:57:52

Sample; 12/90991 measured: 10-MAY-12 01:37:39
Cust.ID: AGU-AB-235-54 processed: 10-MAY-12 08:51:30
S.code ; in EE
by: CHROM3
with:
chirale Messung, ee-Verhaeltnis
Zuordmung nach Racemat ROI-RA-222-01; 12/90527
No. min. area-\%
$14 \quad 43.76 \quad 0.61$
$15 \quad 44.33 \quad 99.4$
25 peaks had been suppressed.
Instrument
Columa
: AT 6890N; 512
Detector
: 25m Hydrodex-b TBDAc 0.25/?df G/589
Temperature
FID

Gas
Sample size
Recorder
: $230 / 130$ iso spaeter ausgeheizt/350
: 0.8 bar H2
Kipp \& zonen 1 mV

Racemic 3-benzylidenecyclobutanol rac-(4) prepared chemically

Chiral chromatogram

********** R509S996.DAT ****************** 11-JUN-12 14:36:43

Sample:	$12 / 91062$	measured:	$11-J U N-1212: 00: 28$
Cust.ID:	ROI-RA-282-04	processed:	$11-J U N-1214: 36: 35$
S.code : in EE	by:	CHROM3	

chirale Messung

Racemat

No. min.	area-q	
29	32.83	49.7
30	34.05	50.3

42 peaks had been suppressed.
Instrument
Column
HP 6890509
Detector
Detector
Temperature 25 m Hydrodex-b TBDAc 0.25/?df G/625 FID 220/140 iso spaeter ausgeheizt/320

Gas 0.6 BAR H 2

Sample size : 0.5 uL
Recorder $: 0.5 \mathrm{CM} / \mathrm{MIN} \quad 1 \mathrm{mV}$

Enantiomeric pure 3-benzylidenecyclobutanol 4 resulting from biocatalytic asymmetric ketone reduction of 3 with mutant W110T

Chiral chromatogram

Racemic 5-ethylidenecyclooctanol rac-(6b) prepared chemically

Chiral chromatogram
$-120 \mathrm{mV}$
-80
-40

********** R500S873.DAT ****************** 13-SEP-12 15:20:10

Sample:	$12 / 91344$	measured:	$13-S E P-1211: 02: 00$
CustID:	ROI-RB-322-01	processed:	$13-S E P-1215: 17: 46$
S.code :	in EE	by:	CHROM
		with:	

chirale Messung

Racemat-Probe

Gr.	No. -no.		-min.	area-\%
1	54-55	204.	204.63	49.1
2	56-58	209.	212.60	50.9
	Group	1:	49.068	of all
	Group	2:	50.94\%	of all

75 peaks had been suppressed.
Instrument : HP 6890, 500
Column : 25 m Lipodex $\mathrm{G} 0.25 /$?df $\mathrm{G} / 602$
Detector
Temperature
FID
$220 / 400.2 / \mathrm{min} 220 \mathrm{~min}$ iso/320
Gas : 0.7 BAR H 2
Sample size : 0.5 uL
Recorder : $0.5 \mathrm{CM} / \mathrm{MLN} \quad 1 \mathrm{mV}$

High enantiomeric excess 5-ethylidenecyclooctanol rac-(6b) resulting from biocatalytic asymmetric ketone reduction of 5b with mutant W110T

Chiral chromatogram

No.	min.	area-
30	204.75	19.1
31	209.15	80.9

29 peaks had been suppressed.
Instrument : HP 6890, 500
Column
: 25m Lipodex G 0.25/?df G/602
Detector Temperature
Gas
Sample size Recorder

FID
$220 / 40 \quad 0.2 / \mathrm{min} 10012 / \mathrm{min} 2205 \mathrm{~min}$ iso/320
0.7 BAR H 2
: 3 uL
$: 0.5 \mathrm{CM} / \mathrm{MIN} 1 \mathrm{mV}$

HPLC Chromatograms

(S)-4-benzylidenecyclohexanol 2c resulting from biocatalytic asymmetric ketone reduction of 1c with enzyme A1 from X-Zyme kit (entry 1 from Table S1)

Chiral chromatogram

Area Percent Report

```
Sorted By : Signal
Calib. Data Modified : 8/29/2012 2:25:41 PM
Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs
Signal 1: DAD1 A, Sig=220,4 Ref=380,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak
\# & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \[
\begin{aligned}
& \text { Width } \\
& \text { [min] }
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}{ }^{\star} \mathrm{S}\right]}
\end{gathered}
\] & Area \(\%\) & Name \\
\hline 1 & 2.697 & BB & 0.0458 & \(9.65336 \mathrm{e}-1\) & 0.1441 & ? \\
\hline 2 & 3.480 & BB & 0.0692 & \(8.25498 \mathrm{e}-1\) & 0.1232 & ? \\
\hline 3 & 4.605 & BV & 0.0950 & 640.68414 & 95.6156 & 1. Enantiomer \\
\hline 4 & 4.943 & & 0.1005 & 6.24667 & 0.9323 & ? \\
\hline 5 & 5.988 & BB & 0.1387 & 10.98311 & 1.6391 & 2. Enantiomer \\
\hline
\end{tabular}
```

(R)-4-benzylidenecyclohexanol 2 c resulting from biocatalytic asymmetric ketone reduction of 1c with mutant W110M

Chiral chromatogram

(S)-4-benzylidenecyclohexanol
 2c chemically prepared from
 (S)-4-(bromomethylidene)cyclohexanol 2a

Area Percent Report

Sorted By	$:$	Signal		
Calib. Data Modified	$:$	$8 / 29 / 2012$	$2: 25: 41$	PM
Multiplier:	$:$	1.0000		
Dilution:	$:$	1.0000		

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=220, 4 Ref $=380,100$

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Area $\%$	Name
1	2.362	BB	0.0383	9.90413	0.2566	?
2	2.551		0.0673	7.22225	0.1871	?
3	2.743	BB	0.0682	1.84652	0.0478	?
4	2.969	BV	0.1121	3.50893	0.0909	?
5	3.110		0.0765	2.35867	0.0611	?
6	3.562	BB	0.0681	1.34739	0.0349	?
7	4.582		0.0971	3678.45728	95.2847	1. Enantiomer
8	5.676		0.1284	27.31462	0.7075	
9	5.976	VB	0.1414	104.82336	2.7153	2. Enantiomer

[^0]: ${ }^{1}$ R. Agudo, G.-D. Roiban, M. T. Reetz, ChemBioChem 2012, 13, 1465-1473.
 ${ }_{2}^{2}$ D. S. Burdette, F. Secundo, R. S. Phillips, J. Dong, R. A. Scott, J. G. Zeikus, Biochem. J. 1997, 326, 717-724.
 ${ }^{3}$ F. Schulz, F, Leca, F. Hollmann, M. T. Reetz, Beilstein J. Org. Chem. 2005, 1-10.
 ${ }^{4}$ D. G. Gibson, L. Young, R.-Y. Chuang, J. C. Venter, C. A. Hutchison, H. O. Smith, Nat. Methods 2009, 6, 343-345.

[^1]: ${ }^{5}$ D. S. Burdette, C. Vieille, J. G. Zeikus, Biochem. J. 1996, 316, 115-122.
 ${ }^{6}$ a) K. I. Ziegelmann-Fjeld, M. M. Musa, R. S. Phillips, J. G. Zeikus, C. Vieille, Protein Eng. Des. Sel. 2007, 2, 47-55. b) M. M. Mussa, R. S. Phillips, Catal. Sci. Technol. 2011, 1, 1311-1323.
 ${ }^{7}$ R. Mishra, L. Olofsson, M. Karlsson, U. Carlsonn, I. A. Nicholls, P. Hammarström, Cell. Mol. Life Sci. 2008, 65, 827-839.

[^2]: ${ }^{8}$ H. H. Hogrefe, J. Cline, G. L. Youngblood, R. M. Allen, BioTechniques 2002, 33, 1158-1165.

[^3]: ${ }^{9}$ M. M. Musa, N. Lott, M. Laivenieks, L. Watanabe, C. Vieille, R. S. Phillips, ChemCatChem 2009, 1, 89-93.

[^4]: ${ }^{10}$ a) C. Li, J. Heatwole, S., soelaiman, M. Shoham, Proeins Struct. Funct. Gent. 1999, 37, 619-627; b) Y. Korkhin, A. J. Kalb(Gilboa), M. Peretz, O. Bogin, Y. Burstein, F. Frolow, J. Mol. Biol. 1998, 278, 967-981.

[^5]: ${ }^{11}$ Z.-G. Zhang, G.-D. Roiban, J. P. Acevedo, I. Polyak, M. T. Reetz, A New Type of Stereoselectivity in Baeyer-Villiger Reactions: Access to E - and Z-Olefins, Adv. Synth. Catal., in press.
 ${ }_{13}^{12}$ K. Okuma, Y. Kamahori, K. Tsubakihara, K. Yoshihara, Y. Tanaka, K. Shioji, J. Org. Chem. 2002, 67, 7355-7360.
 ${ }^{13}$ G. A. Molander, Y. Le Huerou, G. A. Brown, J. Org. Chem. 2001, 66, 4511-4516.
 ${ }^{14}$ H. M. Walborsky, K. Gawronska, J. K. Gawronski, J. Am. Chem. Soc. 1987, 109, 6719-6726.

