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A B S T R A C T   

People may be exposed to energy sources that they cannot perceive with their senses, but which may be harmful 
to their organism, and therefore, individuals cannot avoid them. One of these energy sources is the sound, 
particularly sound out of the hearing range (20–20000 Hz). Although the sounds are imperceptible for fre-
quencies below 200 Hz unless they have high intensities. Sound with frequencies below 200 Hz is called “low 
frequency sound”. 

This study focuses on low frequency sound generated by artificial sources, and specially in sound located in 
urban areas. Specifically in the measurement and detection of low frequency sources from the perspective of 
individuals who are manifesting the symptoms associated with their exposure. 

To this end, a household of Madrid with individuals who have symptoms is taken as sample. This home did not 
have large potential sources of low-frequency sounds near its location, such as streets with high intensity of 
traffic or the subway in order to better contrast other possible sources that are not so obvious. 

The results show high levels of sound emission at the lowest frequency range (20–200 Hz). These results also 
show that filters should not be applied to remove non-audible frequency spectrums, such as A type, because it 
omits sounds in urban areas that could affect people. 

Data treatment incorporates analysis methods based on machine learning which allow differentiate between 
sources without measuring on them. Finally, further developments must incorporate measurements bellow 20 Hz 
and will increase the numbers of households sampled.   

1. Introduction 

The study was carried out due to indications of symptoms similar to 
those described in previous articles by some individuals who contacted 
us via e-mail, because they had these symptoms (see Tables 1 and 2). 

Low frequency sounds are sound waves below 200 Hz. They can only 
be perceived by a part of the population, and only from a minimum 
threshold intensity (usually high) which depends on factors such as age 
and exposure to other sound [1]. 

Human hearing frequency thresholds are located between 20 and 
20000 Hz. Sound waves with frequencies bellow 20 Hz are called 
“infrasound” (sometimes certain individuals can perceived these fre-
quencies, but only at very high intensities [2]). 

These low frequency sound waves are naturally generated by phe-
nomena such as earthquakes, volcanoes, and storms [3–5], as well as 
human activities such as traffic, industry, and music [6]. There is an 
incipient knowledge from the scientific world about the effects of the 
absorption of infrasonic and ultrasonic acoustic waves on human health 
[7,8]. 

There are many articles about low frequency sounds, and they can be 
divided into the following categories: procedures and instrumentation 
for measuring low frequency sounds [9,10]; measurement and analysis 
of low frequency sounds from laboratory, natural or human activity 
sources [11–13]; exposure to these sounds and their effects on health 
[14,15]; and study of materials that allow this type of sounds to be 
absorbed [16]. 
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There are also many studies that analyze these sounds in urban areas 
[6,12,14,15,17–33] and some of them also show their association with 
certain symptoms [5,23,27,30,32,33]. 

The main motivation of this study is the detection of low-frequency 
noise sources through the analysis of noises in homes whose residents 

present possible symptoms associated with their exposure (dizziness, 
nausea, insomnia ….). 

This approach reverses the usual search order for sampling used in 
recent studies. The most common approach is based on performing 
measurements at locations close to known low-frequency sound sources 
[11–13,17,18,20–28,30,34–40]. In other studies, tests are also carried 
out under controlled laboratory conditions [14,15], measuring the 
possible impact of these emission sources on individuals. Sampling 
based on locations close to the best-known sources makes it possible to 
eliminate most of the rest of the factors, as it focuses its analysis on the 
“emitting source” factor, but it can rule out other possible sources not 
previously considered. 

However, the approach envisaged in this study would avoid a priori 
ruling out other sources, although it represents a great challenge, since 
possibly the symptoms associated with the individuals analyzed may 
also be due to other factors unrelated to this type of sounds, or even 
present physiological factors that favor the appearance of these 
symptoms. 

This study contributes mainly in two ways:  

• It makes a “downstream” study, focusing for sampling on the possible 
symptoms associated with exposure, and besides it allows prolonged 
exposure to this type of sounds to be assessed. Sources are not 
determined or identified a priori.  

• Provides the knowledge associated with “machine learning” for the 
assessment of possible sources, especially through dimensional 
reduction tools which allow to identify the number of sources quickly 
and accurately. 

• Likewise, it allows us to assess whether the application of recom-
mended filters, for instance type A filters, which are mainly focused 
on perception of audible and annoyance sounds, they may be omit-
ting the presence of other imperceptible sounds which affect people 
who are exposed to them. 

Therefore, the goals derived from this study:  

• Determination of the sources causing low frequency sounds based on 
sampling population through the symptoms associated with their 
exposure.  

• Data analysis through dimensional reduction, both from a linear and 
non-linear point of view in the context of stationary sources during 
the nighttime period. 

This work significantly contributes a set of tools widely used in other 
disciplines for the analysis of the sound measurements carried out. It 
also allows expanding the spectrum of possible sources of low-frequency 
sound emissions. 

Most of the articles focus on measurements of low-frequency sounds 
in locations close to very important emission sources such as wind tur-
bines [18,23,25,27,28]. Other studies analyze the doses received by 
workers in certain industries, as well as the associated effects of this 
exposure on health [41–44]. 

Studies have also been carried out in homes to measure low- 
frequency sounds, and based on the results obtained, determine 
possible sources such as traffic [14,29,30,32,45]. These household 
studies are based on random sampling, while, in the approach carried 
out in this study, the individuals in the sample are selected based on the 
presence of symptoms mentioned in many previous articles [9,20,22,24, 
31,34–39,46–48]. Furthermore, it is not only limited to a different 
sampling method, but also modifies the analysis of its results by applying 
machine learning tools to determine possible emission sources. 

The main advantages are the following:  

• It associates symptoms with low frequency sound sources. In many 
cases there are no symptoms, even if low frequency sources are 
present, possibly due to differential physiological issues between 

Table 1 
Sound level meter characteristics.  

Noise Monitoring Station SVANTEK SV307  

https://acsoft.co.uk/product/sv-307-class-1-noise- 
monitoring-station/  

Standards Class 1: IEC 61672–1:2013, Class 1: IEC 61260–1:2014 

Weighting Filters A, B, C, Z, LF  
RMS Detector Digital True RMS detector with Peak detection, 

resolution 0.1 dB 
Time constants: Slow, 
Fast, Impulse  

Microphone Patented1 MEMS design microphone ST 30A in 1/2″ 
housing 

Preamplifier Integrated  
Linear Operating Range 30 dBA RMS ÷ 128 dBA Peak (in accordance to IEC 

61672) 
Dynamic Measurement 

Range 
23 dBA RMS ÷ 128 dBA Peak (typical from noise floor to 
the maximum level) 

Internal Noise Level less than 23 dBA RMS  
Frequency Range 20 Hz ÷ 20 kHz  
Meter Mode Results Elapsed time, Lxy, Lxeq (LEQ), Lxpeak (PEAK), Lxymax 

(MAX), Lxymin (MIN), LxyE (SEL), 
2 x LR (ROLLING LEQ),10 x LN (LEQ STATISTICS), 
Lden, LEPd, Ltm3, Ltm5, GPS coordinates 
Simultaneous measurement in three profiles with 
independent set of filters (x) and detectors (y) 

Statistics Ln (L1-L99), complete histogram in meter mode and 1/1 
& 1/3 octave analysis 
Simultaneous measurement in three profiles with 
independent set of filters and detectors 

1/1 Octave Analysis2 
(optional) 

Real-time analysis meeting class 1 requirements of IEC 
61260 (31,5 Hz ÷ 16 kHz) 

1/3 Octave Analysis2 
(optional) 

Real-time analysis meeting class 1 requirements of IEC 
61260 (20 Hz ÷ 20 kHz) 

Data Logger Logging of summary results (SR) and spectra data with 
interval step down to 1 s and time history 
(TH) of selected parameters with shorter interval step 
down to 100 ms. 

Audio Recording2 
(optional) 

Time domain records to wav file format on demand with 
selectable bandwidth and recording period 

Ingress Protection Rating IP 65  
Inputs Power supply LEMO 4-pin, extended I/O port LEMO 5-pin 
Remote System Check Real-time system check1 and Built-in sound source 

producing level of 100 dB at 1 kHz 
Memory Micro SD card 16 GB 

(removable)  
Display & Keyboard OLED colour display 128 × 160 px and 10 push-button 

keyboard 
Communication 

Interfaces 
USB, 4G modem  

GPS for time synchronization and localization 
Power Supply Li-Ion rechargeable battery (non-removable) 

Operation time on battery (7.2 V/10 Ah) 
Modem off up to 6 days 
Modem on up to 5 days3 
Solar Panel (not 
included) 

MPPT voltage 17.0 V ÷
20.0 V 

AC power supply 
(included) 

Input 100 ÷ 240 VAC,  

output +15 VDC 2.5 A, IP 
67 housing 

External DC source (not 
included) 

voltage range 10.5 V ÷ 24 
V  
e.g. 12 V or 24 V 
accumulator 

Environmental 
Conditions 

Temperature from − 20 ◦C to 50 ◦C 
Humidity up to 95 % RH 

Dimensions 680 mm length; 80 mm diameter excluding windscreen 
(windscreen diameter 130 mm) 

Weight Approx. 1.8 kg   
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individuals. Search for effects for subsequent determination of causes 
instead of search for causes for subsequent evaluation of effects. This 
approach requires studies of other possible non-acoustic factors to 
rule them out.  

• The study spectrum is expanded by introducing new possible sources 
other than traffic, wind turbines, etc.  

• Establishes a pattern for dimensionless reduction. Neural networks 
have weights which are the parameters that define the system of 
nonlinear simultaneous equations, and that, therefore, allow an 
explanation of the adjustment made to the model.  

• It associates long-term effects derived from the symptoms described 
with low-frequency sound sources with prolonged and continued 
exposure over time. Avoids nocebo effect associated with other types 
of measurements. 

The approach taken to reach these objectives are the following:  

• Set sample in the study population who suffer usual symptoms 
associated to low frequency sound exposure, and in areas where a 
clear source of low frequency emissions does not appear. 

• Once the sample is determined, other factors such as low environ-
mental noise will be considered, and its proximity or not to sources 
documented by scientific literature will be valued. 

• Installation and measurement of sound at the home. A broad expe-
rience specialized company in the noise measurement according to 
current standards and laws will make measurements. 

• Measurement of sound emissions at the site on the days of least ac-
tivity in neighboring homes to avoid interference and guarantee 
quasi-stationary sources over time.  

• If measurements show that exists significant sound intensities at the 
lowest frequencies, individuals which live at this home will carry out 
a medical check in the auditory system, because in some cases, these 
symptoms could explain from a physiological point of view. Besides, 
it will be measured other factor such as electromagnetic radiation.  

• Final analysis of data results obtained in measurements, applying 
machine learning tools that allow an estimate of possible sources. 

The following schema shows different steps to reach these objectives: 
The first two stages exclusively characterize the study. In the rest of 

the stages, we will advance in the methodology to carry them out, and 
we will end with an analysis of the results and their conclusions. 

Therefore, it is shown below:  

• Methodology and criteria for choosing the sample home.  
• Final location of the sample  
• Measurement methodology and selection criteria for measuring 

equipment.  

• Technical sheet of equipment used.  
• Test characteristics  
• Data Analysis Methodology  
• Data preparation and analysis  
• Discussion  
• Conclusions 

2. Methodology 

2.1. Methodology and criteria for choosing the sample home 

We will select among the houses whose residents present symptoms 
described in the articles mentioned above [5,23,27,30,32,33]: dizziness, 
nausea, and insomnia. At least two members of the household must have 
experienced these symptoms for a period of more than a year. 

The study population includes all the homes inhabited by people 
who contacted this institution expressing the symptoms described 
above. Most of these people have been contacted thanks to the different 
publications on infrasound and low-frequency sounds that this univer-
sity has previously made [5,7,8,49–51]. 

The final selection of the home will not be random due to population 
size and will depend on the following factors:  

• There is no presence of large emission sources less than 150 m away 
if the population density is greater than 350 inhabitants per hm2, or 
500 m if the population density is less than 350 inhabitants per hm2. 

• Preliminary assessment that shows apparent absence of physiolog-
ical factors in people that may cause these symptoms.  

• Preliminary assessment that shows the apparent absence of other 
external factors (for example: electromagnetic fields) that could 
generate symptoms like those described above.  

• City of more than a million inhabitants close to San Pablo CEU 
University (high population density)  

• It is recommendable that the main emission sources remain at a 
medium level of activity, and neighborhood activity will be small. 
The best day for measurements will be verified through preliminary 
inspection (avoid the presence of intermittent sources).  

• The location of the measuring equipment will be in the bedroom 
where the residents rest. 

2.2. Final location of the sample 

The measurements were carried out in a home that had the following 
characteristics:  

• Madrid, location close to the center about 1.7 km from Puerta del Sol 
in the northwest area of Madrid. 

Table 2 
Main exploratory analysis estimators of the pressure variable expressed in dB. Entropy indicator shows that data without a filter (total Z) provides more relevant 
information than data with a filter (total A and C).  

Estimatora 20 Hz 200 Hz 2000 Hz 20,000 Hz Total A Total C Total Z 

Mean 47.6 32.5 16.4 21.3 34.2 55.9 62.0 
Median 36.7 18.6 11.8 21.2 20.4 40.2 55.2 
Standard Deviation 67.6 52.4 30.6 21.6 51.8 74.9 77.5 
Robust Deviation 13.5 8.1 − 27.9 − 25.6 2.7 15.7 29.7 
Coefficient_Variab 10.0 9.9 5.1 1.0 7.6 8.9 5.9 
Robust_Coef_Variab 0.1 0.3 0.0 0.0 0.1 0.1 0.1 
Asymmetry 26.5 25.4 38.1 154.4 21.1 14.1 15.2 
Kurtosis 1221.1 865.5 2145.0 27,234.4 653.5 245.6 316.9 
Huber_Mean 36.7 18.9 11.8 21.1 20.7 40.3 55.2 
Huber_Dev 13.5 8.7 − 27.7 − 25.0 4.2 16.0 29.6 
Tukey_Mean 36.7 18.4 11.8 21.1 20.2 40.2 55.2 
Tukey_Dev 13.5 7.7 − 28.6 − 25.5 1.6 15.5 29.7 
Shannon Entropy 0.12 0.18 0.15 0.01 0.24 0.17 0.16 

Note: Negative values may exist in the precision estimators due to conversion to dB could be below 20 μPa. 
a Statistics calculated with the P variable expressed in Pa and transformed once calculated to dB. 
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• Distance to main possible emission sources (subway tunnel and high 
traffic density street that passes above): 205 m.  

• Housing without access to an outside street. Presents audible sounds 
of very low intensity at night.  

• Traffic density at night (11:00 p.m. to 6:00 a.m.) less than 1 vehicle 
per minute. Predominant vehicle type: Passenger cars  

• Height from sea level: 669.93 m. The measurements were carried out 
on the sixth floor of the building.  

• Population density: >350 inhabitants per hm2  
• Community heating located in the basement of the building. 

2.3. Measurement methodology and selection criteria for measuring 
equipment 

The measurement methodology will be governed by the following 
points:  

• Test duration: 3 days  
• Periods: 3 (day/afternoon/night)  
• Residents will remain outside their home during the tests (avoid 

sounds generated by the tenants themselves)  
• The tests will be carried out during the weekend (avoid intermittent 

sound sources from neighbors during the nighttime)  
• A company specialized in noise measurement with broad experience 

in the chosen city will be in charge of carrying out the measurements.  
• The measurement procedures will be those indicated in Annex I of 

the Ordinance for the Protection of the Atmosphere against Acoustic 
and Thermal Pollution of Madrid (this ordinance is limited to noise 
and applies filter A in its calculations, so it should not be applied to 
the measured results, since it eliminates low frequencies)  

• Measurements will be carried out with the doors and windows closed 
in the bedroom.  

• The instrumentation will be located at least:  
o 1.20 m from the floor, ceilings, and walls  
o 1.50 m from any door or window 

Regarding the measurement equipment, the following criteria will be 
applied:  

• Minimum operating range: 20–500 Hz  
• Minimum resolution for intensity calculation: 0.2 dB  
• Minimum intensity measurement range: 20–130 dB  
• Possibility of obtaining frequency and intensity profiles at 1/3 octave 

in the operation range  
• Before the tests, an acoustic check of the measurement chain must be 

carried out. Sound level meter does not differ from the pattern 
generated by the calibrator by ± 0.3 dB. Under no circumstances 
may the operator modify the legal settings indicated in Order ITC/ 
2845/2007.  

• The data resulting from the measurements must be stored in time 
intervals with a maximum duration of 5s, and in formats accessible 
from the main data analysis tools. 

2.4. Technical sheet of equipment 

The following tables shows technical data about instrumentation 
which was used during test: 

2.5. Test characteristics 

The tests were carried out on the weekend because the activity in the 
adjacent homes was considerably reduced, but activities of nearby 
businesses were not. Household members were not present during 
testing. 

A company accredited by ENAC, with extensive experience in noise 
measurements in the city of Madrid, was contracted to take the 

measurements. 
The duration of testing was 72 h (3 consecutive days). Different 

samples were taken during three time periods (day/evening/night) to 
prove that the levels shown in the tests were reproducible independently 
of the day and time period chosen in each test. 

The measurement procedure indicated in section 1 of Annex III of the 
Ordinance for the Protection of the Atmosphere against Noise and Heat 
Pollution of the Madrid City Council [52] in force as of November 2021 
was applied. 

Measurements were taken in a 1/3 octave frequency spectrum at 5-s 
intervals. 

Indoor measurements were always taken with the windows and 
doors closed. 

The following possible sources have been detected: 

• Two supermarkets with industrial heat and cold machines at dis-
tances between 20 and 50 m  

• Fruit shop with industrial heat and cold machines at distance of 20 m  
• Secondary road traffic during rush hour (both peak and valley) 25 m 

away  
• Domestic cooling and heating equipment in the building where the 

home is located or in the adjacent buildings, although during the 
tests they remained mostly disconnected.  

• Community gas boiler in the basement of the building 

2.6. Data Analysis Methodology 

The following figure shows a scheme of the methodology: 
When test finish, data will download and prepare, a preliminary 

analysis of the data will perform for each 1/3 octave frequency, treating 
it as a time series or as a data set with no time dependence (single sta-
tionary source hypothesis). 

Concerning the sources of noise generators, we began with a causal 
hypothesis. Therefore, the existing relationship between the different 
frequencies will have common origins and their dependence in time will 
depend on the operation of these possible sources. There shall be no 
other unanticipated time-varying factors affecting the frequency spec-
trum (for example, with temperatures that affect sound transmission as 
well as industrial heating and cooling machines, it will be a causal factor 
that is not included for one and will be included for the other, etc.). 

Two types of variables are considered for the determination of the 
different indicators:  

• Pressure variable (P) measured in Pa of the sound wave, as well as 
pressure variables for each frequency i (Pi)  

• Intensity variable measured in dB, which is obtained by the following 
pressure variable formula: 

I= 10⋅log10

(
P
P0

)2   

Being P0 = 20 × 10− 5 Pa                                                                        

• Calling “f” as function f : R⟶R: 

I = f (P)= 10⋅log10

(
P
P0

)2 

In case of time series analysis, the traditional approach will be used:  

• Data Analyst will only considerer stable time periods. In this case, it 
is almost sure nighttime.  

• Determine stationarity or not of the time series with respect to its 
moments. This process will be iterative with respect to outcomes of 
subsequent steps (for instance: periodogram analysis).  

• Determine simple, partial autocorrelations, and cross correlations 
between variables. Check if they have low or high values. If 
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correlations are close to zero in all types, the hypothesis of non-time 
dependent variables is accepted, and we will not continue with time 
series analysis.  

• Make the periodogram of the intensities (it represents the power 
spectral density and is equivalent to the Fourier transform of simple 
autocorrelation). Periodogram must be a consistent estimator of the 
sample spectrum. Therefore, time series will be previously refined 
and smoothed with the most common windows (rectangular, Bar-
tlett, Daniell, Welch, Blackmann-Tukey …).  

• After periodogram, two cases will be considered, one with a simple 
filter and the other without a filter. The theoretical basis of the filter 
is the same as that of the kernel and convolution in machine learning.  

• The model is identified with the results of the partial and simple 
autocorrelation graphs (Box-Jenkins, SARIMA, etc.), as well as with 
the cross correlations (in case of transfer models).  

• Finally, models will be estimated and adjusted, and their residues 
analyzed through hypotheses contrasts (diagnosis). It is likely with 
this information to know a bit about the performance of the control 
system of machinery generates low frequency sounds. For instance: a 
wavelength of 25 s could be the action period of the machine control 
system. 

If a non-time-dependent analysis can be performed, the KDD 
(Knowledge Discovery Databases) procedure would be used: 

Selection- > exploration- > cleaning - > transformation - > analysis 
or data mining - > evaluation (assessment likely sources) - > dissemi-
nation (this article). 

The purpose of this analysis is to determine the main sources that 
generate low frequency sounds. 

In data mining procedures, dimensional reduction methods would be 
fundamentally used, because we want to differentiate among sources, 
highlighting:  

• Main components (linear)  
• Factorial (linear)  
• Neural networks (non-linear) 

Linear analysis would undoubtedly allow us to adjust the nonlinear 
model (neural network or system of nonlinear simultaneous equations) 

in a more logical and simple way. 

3. Results 

As mentioned above, the main objectives are the following:  

• Determination of the sources causing low frequency sounds based on 
sampling population through the symptoms associated with their 
exposure.  

• Data analysis through dimensional reduction, both from a linear and 
non-linear point of view in the context of stationary sources during 
the nighttime period. 

Both objectives converge in this section, because Data analysis will 
allow at least differentiate among various likely sources, although 
without determining the exact location of themselves. 

Before exploratory analysis, it was made possible to plot some 
important graphs which provide key information for subsequent anal-
ysis (see Fig. 1). 

The following figure (Fig. 3fig2) shows the relationship between the 
intensity obtained at each instant of time for each 1/3 octave frequency 
measured, and its objective is to determine the presence or absence of 
low frequency sounds in a visual way. These color maps allow high-
lighting the existence of high intensities at low frequencies (see Fig. 2). 

Time is observed on the abscissa axis and frequency appears on the 
ordinate axis. The color marks the greater or lesser intensity according to 
the color bar on the right. Areas with higher intensity colors always 
appear at lower frequencies. 

The interpretation of color maps shows that there are low-frequency 
noises in this home with especially high levels at the lowest frequencies 
on the spectrum, exceeding 50 dB at frequencies below 50 Hz (colors 
with the highest intensity are at the bottom of the map). 20 Hz frequency 
is likely to accumulate frequency intensities below the range of the 
equipment. 

The following graph (Fig. 4) shows the development over time of the 
intensity whether or not applying a type A filter to the intensity, which 
reduces intensity of lowest frequencies. 

This time series diagram shows a difference of around 20 dB when we 
apply type A filter or not. If we focus this type of diagram on each night 

Fig. 1. Study implementation scheme.  
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at different frequencies without applying any type of filter, we obtain 
the following graphs (Fig. 5): 

Fig. 5 shows high intensities at lower frequencies. These results stand 
out even in the nighttime period. Therefore, visual inspection at low 
frequencies suggests that the optimal study interval in terms of stability 
is found during the night from 00:00 to 07:00. This could also be 
determined by clustering techniques without hierarchies (k-means and 
mini-batch k-means, Kohonen networks), although in this case, they did 
not yield the expected results. 

Exploratory analysis follows preliminary visual analysis. The 
exploratory analysis of the data allows us to analyze individually every 
variable, as well as their relationships: In this case, the variables are time 
series, and, therefore, it is also necessary to see the relationships of the 
variable at an instant of time with its previous moments, as well as the 
relationships between variables at different times. Our objective is to 
detect whether errors may have arisen due to an incorrect original 
design, measurement errors or sources with specific actions that have 
caused a distortion. It also allows an initial assessment of the variables, 

Fig. 2. Data analysis methodology scheme.  

Fig. 3. Time– frequency-intensity color map. This figure corresponds to preliminary data analysis. These maps show time evolution of sound frequencies and in-
tensity. Left map considers the complete sampling set. Right map only considers samples taken between 00:00 and 07:00 h. Color represents sound intensity. Colors 
closest to red will be the most intense. Lowest frequencies have the most intense colors. This sound has important intensities at low frequencies. (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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very useful to be able to assemble the learning model. 
A clear distinction must be made between a signal analysis and its 

possible transformations using tools such as the Fourier transform, and a 
statistical analysis, which determines a periodogram of the intensities 
over time for a given frequency, being in its formulation very similar to 
the Fourier transform but taking into consideration exclusively the in-
tensities at a given frequency. The latter is usually more related to 
control actions in the sources of sound emission. 

The exploratory analysis will include two studies:  

• Variables do not show time dependence.  
• Variables show dependence on time. 

The initial consideration is that variables do not depend on time 
during nighttime since control system of these machines (sources) 
induce a stable operation when there is no activity in the premises. In 
addition, other possible more intermittent sources will present in-
tensities at frequencies much higher than those under study. However, it 
is necessary to verify that this hypothesis is true, hence an exploratory 
analysis of the time series is also carried out. 

The analysis considering non-dependence in time must focus on 
moments, robust indicators, and Shannon entropy, because entropy al-
lows us to see the value of the information contained in that series. In 
our case, entropy measures the presence of outliers, since these outliers 
provide a large amount of information, and, therefore, lower entropy. 
Even so, on this last point, no important results were obtained, but yes 
when we compare entropy among different types of filters (A, B, Z = no 
filter), where the entropy decreases when less restrictive filters are 
applied. The other measures focus on the shape of the distribution, and 
the correlation graphs between variables for the same instant of time. 

Pressure and intensity are study variables, because are data collected 
by sound level meter. The estimation of P and I was performed as follows 
(In this way we guarantee that it is unbiased and consistent under the 
hypothesis of simple random sampling): 

P̂(Pa)= Ê(P) =

∑N

i=1
Pi (Pa)

N
eq.1  

Fig. 4. Total sound intensity time series (with or without A filter). This figure is 
included in the preliminary data analysis. This line plot compares time evolu-
tion of total intensity with or without applying “A filter”. “A filter” reduces 
intensity on lowest frequencies because they are not audible for humans. It is 
the filter which recommends most standards (for instance: ISO). Plot shows a 
difference of 20 dB between applying filter or not applying filter. Time evolu-
tion without filter has more stability than with filter. 

Fig. 5. Total and low frequency intensity time series (nighttime tests). These line plots were carried out in the preliminary analysis. There are three plots for each of 
the nights sampled. Plots compare time evolution of intensity at different low frequencies with total intensity. The lowest frequency (20 Hz) is the one that provides 
the greatest sound intensity. 
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Î(dB)= ̂f(E(P)) = 10log10

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑N

i=1
Pi (Pa)

N

2⋅10-5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

2

eq.2 

The pressure and intensity could also be estimated based on the 
variables shown below. This approach does not consider linear changes 
in units, and is therefore erroneous from an acoustic point of view, 
although it is useful in statistical terms. 

P̂(dB)= Î = ̂E(f (P)) =

∑N

i=1
Ii(dB)

N
eq.3  

P̂(Pa)= ̂f − 1(E(I)) = P0(Pa)⋅10

∑N

i=1
Ii (dB)

N eq.4 

The direct estimator of intensity (P̂(dB) = Î = ̂E(f(P)) =
∑N

i=1
Ii(dB)

N eq. 3) can be used for the estimation of the mean and its 
variance. 

The following table shows the estimators of the exploratory analysis 

of the I variable (̂I(dB) = ̂f(E(P)) = 10log10

⎛

⎜
⎜
⎝

∑N
i=1

Pi (Pa)

N
2⋅10-5

⎞

⎟
⎟
⎠

2

eq. 2): 

The table shows that the application of the type A filter causes 
important variations in the main indicators with respect to the rest of the 
filters. Furthermore, the entropy clearly indicates that there is a 
considerable loss of information (entropy increase) when applying the 

Fig. 6. Correlation matrix color map. These color maps are included in the exploratory data analysis. Every color map compares frequencies using the correlation 
coefficient. There are four color maps. Top maps correspond to sound intensity with or without outliers. Bottom maps include comparison of sound pressure with or 
without outliers. Color shows absolute value of correlation coefficient. Yellow represents correlation coefficient close to one. Yellow colors are grouped around 
matrix diagonal, and each map seems to show two differentiated areas more related to each other. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 
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type A filter with respect to no filters applied. 
In order to find relations among frequencies, we calculate Pearson 

correlation matrices for different variables (frequencies). Previously, 
data without outliers have been obtained (substitution outlier by me-
dian), and these data will be compared with the original data (contain 
outliers). The main results are shown in the following graphs (Fig. 6). 
First graphs two shows intensity correlation (without and with outliers). 
Last two graphs show intensity correlation (without and with outliers). 

The differences between the matrices with or without outliers are 
practically null, but two possible differentiated zones are already shown, 
which could correspond to two different possible sources. When per-
forming the hypothesis test (H0: ρ = 0), the p-value in the pressure 
variable and the intensity variable shows that there are significant 
correlations between the different frequencies. 

This reinforces the hypothesis of different sources over time, 
although it does not certify whether these sources vary their emissions 
and sound frequencies over time. “Source causality” means that there is 
a correlation between frequencies. One of these possible sources would 
happen at frequencies below 200 Hz. The following figure (Fig. 7) shows 
a diagram with this “source causality”, indicating sound is a result of 
mixing different active sources: 

This diagram shows that the generating sources may or may not be 
operational at a certain time interval. Therefore, you can hypothesize 
statistical differentiation of active sources, since each source probably 
has a different “timbre” (frequency spectrum), and although the spec-
trum generated by each source can vary over time, as well as the con-
ditions of wave propagation, these changes could even favor their 
separation using statistical algorithms. 

There are also different graphic methods used in exploratory analysis 
to identify the nature of the study variables and facilitate their classifi-
cation. Fig. 8 shows Q-Q plots at different frequencies during the 
nighttime, which allow us to observe for this case the difference between 
a normal distribution function and the empirical distribution of the 
sample. This method can also determine the existence of outliers in 
many cases through the difference that appears at the ends of the plot. 
Fig. 8 shows a difference close to zero at the lowest frequency, and 
important deviations at the highest frequencies likely due to the pres-
ence of outliers. 

Another visual exploratory method used in the analysis to differen-
tiate and classify variables was Box and Whisker plots. This method can 
summarize the main robust estimators in a few figures and assess the 
asymmetry and outliers of a variable. Fig. 9 is a box and whisker plot 
that shows similar outcomes to Fig. 8 for the variables during nighttime 

with strong symmetry and few outliers at the lowest frequencies, and 
important asymmetries and outliers at higher frequencies. 

Concerning time data analysis (dependence on time), it focuses on 
frequencies estimating simple and partial autocorrelation, and crossed 
correlation among frequencies (between variables at different moments 
of time), and it is observed at low frequencies that there is practically no 
correlation with previous moments of time at night (with itself or with 
another variables), so time series is basically a fixed value plus a pure 
random variable. 

Figs. 10 and 11 show color map with the cross-correlation matrix. 
Color indicates correlation of the sound intensity between frequency at 
20 Hz and another frequency with a time lag. Color bar on the right 
quantifies the correlation value, and the axes the compared frequencies 
(for instance: position in row “i” and column “j” means cross-correlation 
between 20 Hz and frequency in j with a temporal delay of j-i in absolute 
value time intervals). 

These figures compare between data considering only night samples 
and the complete data set of periods (day, afternoon, and night). Fig. 10 
indicates that intensity at 20 Hz behaves as white noise for all effects 
during nighttime. A similar behavior is observed at all 1/3 octave fre-
quencies when we analyze their cross-correlation matrices. However, 
Fig. 11 (complete data set) shows significant correlations appear at low 
frequencies compared to when exclusively considering the nighttime 
period. 

One of the most used tools in the analysis of time series are auto-
correlation plots. Autocorrelation plots allow us to determine the in-
fluence of time on a variable, although they do not allow us to determine 
the influence of other variables over time. Figs. 12 and 13 show the total 
and partial autocorrelation functions at 20 Hz. The difference between 
these two figures is due to the sampling data considered. Fig. 12 shows 
exclusively the night periods and Fig. 13 the entire sample at 20 Hz. It 
can be seen in Fig. 12 that for all purposes it behaves like white noise 
while Fig. 13 presents a more complex behavior. A similar behavior it is 
observed at other low frequencies. 

Fig. 12 shows sound pressure time series behave like a model with a 
fixed value plus random noise. Consequently, it is a good approach for 
nighttime periods to consider that these series do not depend on time. 

The most plausible hypothesis for this behavior is that the machines 
that generate very low frequencies are different from those that generate 
audible frequencies. However, this separation with machine learning 
methods is not easy, because similar behaviors present small differences 
in data. It is likely that machine learning methods work better consid-
ering all periods (day/afternoon/night) than considering only nighttime 

Fig. 7. Causality diagram of sources and the receiver. Example diagram which shows the hypothesis for splitting sound sources.  
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period. 
It is also surprising the null influence of the weather during the 

nighttime period, which favors a more conventional analysis rather than 
a time series analysis. 

As we can see when we compare robust pressure and intensity 

estimators with mean and variance estimators, the best performance is 
obtained with robust estimators, because they are not affected by the 
type of variable (pressure or intensity). Consequently, we could convert 
outliers by using robust estimators, in particular with median estimator. 
If we compare the joint distributions of two variables before and after 

Fig. 8. QQ-Plots (P value) during nighttime. This plot is in the exploratory analysis and compare a theorical distribution function (straight line) with sampling 
pressure value (blue points). There are six plots for each low frequency. The difference between straight lines and blue points indicates that sampling population is 
close to theoretical distribution (gaussian) and likely the presence of outliers. Plots at low frequency are much closer than plots at higher frequency. It is likely due to 
outliers or different combined sources. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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converting their outliers, we observe that the distribution becomes more 
regular and symmetric when we change these outliers. In any case, the 
percentage of outliers for each frequency is always less than 10%, so the 
substitution is likely right. The following figure (Fig. 14) shows the re-
sults before and after transforming the outliers. Graph includes level 
lines in the scatter plots, below diagonal and one variable distributions 

in the diagonal (variable with itself). 
So far, we have seen the main results in the night period, because it 

was the most stable period. However, there are many more interactions 
when all the data is considered. It is observed that the data in all time 
periods are not altered in intensity at lower frequencies. Therefore, it is 
easier to make transformations and separate them. Simply check the 

Fig. 9. Box and whisker plot (P value) during nighttime. Figure corresponds to exploratory analysis and represents visually the structure and robust estimators of the 
pressure variable. Box shows that at low frequencies, sampling distribution is symmetric and with a few outliers. Outliers are represented by points above or below 
the horizontal lines, which they are normally maximum or minimum (length of 1.5 times the Interquartile range from the Q1 or Q3 location). Outliers increase when 
frequency rise It seems it would be better to consider low frequencies. 
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Barlett sphericity test and the Kaiser-Meyer-Olkin test, we observe that it 
would be better to use all periods. If we check time series considering all 
periods, the simple autocorrelation plots show a very slow decline in the 
data set, which may also be due to the existence of unit roots, but this 
does not affect to our machines learning methods. 

If we reduce the frequency variables to a smaller number of vari-
ables, using traditional machine learning methods, it is likely that these 
variables can represent groupings of frequency spectrum of a sound 
source. These methods are called “reduction dimensionality methods”. 
The most common reduction dimensional methods are the following:  

• Main components (linear)  
• Factorial (linear)  
• Neural networks (non-linear) 

Therefore, the dimensional reduction is then carried out with well- 
known machine learning methods such as the main components of 
factor and rotation factor. In these cases, the best approach is usually a 
rotation factor analysis. 

The Fig. 15 clearly shows a possible source in the second factor as it 
presents very high absolute values for low frequencies. In addition, 
commonality explains more than 80% with only three factors. If a 
dimensional reduction is performed with values in the KMO test that 
discourage it, there are no high commonalities, and it is impossible to 
pinpoint factors. 

Finally, an autoencoder was used to evaluate a system of nonlinear 
simultaneous equations, represented through a neural network with 
hyperbolic tangent activation functions (derived from the minmax 
standardization of the pressure variable). Just as convolution (kernel or 
filter) allows for identifying visual objects, it also helps to decisively 

Fig. 10. Cross-correlations matrix at 20 Hz during nighttime. This figure is included in the time analysis and is a color map. Cross correlation is calculated from data 
at 20 Hz and data at higher frequencies with a time lag. Color shows intensity. The maximum correlation is yellow, and the minimum correlation is purple. Above 
diagonal, an element in a row with number “i” and column with “j” shows correlation between 20 Hz data without lag time and frequency located in “j” with a time 
delay of “j-i” time periods (5s/period) in absolute value. Figure indicates that 20 Hz does not correlate with another higher frequencies at night. (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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identify new timbres or sources. After testing several topologies, the 
closest was obtained with a convolutional layer composed of ten neu-
rons and an output that addresses to a dense layer with five neurons and 
ends in another layer that reverses the convolution. A set of 10,000 
samples is used for the adjusted test model and the results are shown in 
the following figure (Fig. 16): 

4. Discussion 

The results obtained show that the hypothesis of non-time depen-
dence is correct during nighttime, but not in the daytime periods, since a 
multitude of new sources appear. Besides, Figures shows that low- 
frequency urban sources are usually scarce compared to the rest of the 
sound sources, and can be separated from the rest, because outliers and 
the lowest entropies seem to be found in the truly audible frequencies 

(above 200 Hz). 
An important discussion is related to the use or not of filters to 

remove practically inaudible frequency spectrums. The results show that 
the use of filters greatly distorts the data, reducing the value of the in-
formation they provide (entropy). Besides, this remotion of frequencies 
reduces the total intensity calculated to very low values. 

This inability to measure all acoustic frequencies makes it impossible 
to analyze the main frequencies below 50 Hz that a human body may be 
receiving, and therefore, it would not be possible to associate the 
negative effect of these doses on human body. 

In this way, we have also investigated other likely types of sources 
(for instance: electromagnetic fields) whose absorption by the body 
could cause with symptoms similar to low frequency sounds. In any case, 
it is necessary to repeat measurements of these types of sources in other 
homes with people who show similar symptoms. 

Fig. 11. Cross-correlation matrix at 20 Hz over all sampling periods (day, afternoon, and night). This figure represents the same than Fig. 10. The only difference 
between both figures is in sampling data which is taken. While Fig. 10 only considered data at night, this figure considers the whole sampling data. due to the 
presence of other sources at day. Figure shows correlations with higher frequencies with or without applying time lags with respect 20 Hz frequency. More sound 
sources seem to be involved during daytime periods. 
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Likewise, the dimensional reduction methodologies allow limiting 
the number of low-frequency sources to a small number, explaining a 
large part of the behavior of the machines. In some cases, sources can 
have multiple machines within the same group called “source”. The 
reason for considering measurements during nighttime is mainly due to 
the fact that control actions on the machines are much smaller and 
stationary as there are no significant variations with respect to the 
marked setpoint (low commercial activity). 

Linear methodologies facilitate any subsequent adjustment of a non- 
linear model, and even allow us to show an accurate estimation of more 
likely sources. However, it is not yet possible to determine where is 
located the source. 

The only sources which are running continuously in all homes and 
commercial establishments 24 h a day every day are refrigerators and 
freezers. The authors of this study plan to carry out a particular study on 
the frequency and NPS emitted by these devices. 

There are standards for the measurement and analysis of sounds, 
such as ISO 9612 [46] and IEC 61400-11 [47], but these standards do 
not specifically cover the measurement of low-frequency sounds: “ISO 
9612:2009 is not intended for assessment of masking of oral commu-
nication or assessment of infrasound, ultrasound and non-auditory 

effects of noise”. Even the application of filter A is recommended on the 
origin data. The WHO Community Noise Guidelines indicate that we 
cannot yet establish a clear relationship between low-frequency sounds 
and damage to health yet, because new studies and longitudinal analysis 
over a longer time interval must be carried out. 

However, recent studies [5,23,27,30,32,33] show that low frequency 
acoustic waves can cause damage to people’s health. It could be inter-
esting that public administrations take into account this health question 
and develop legislation and regulations which propose measurements 
without applying filters (avoid remove non-audible frequencies) and 
exposure limits as work as home. A principle of prudence should govern 
in order to avoid the potential risks that these low-frequency sound 
waves may represent for health. 

5. Conclusions 

The measurements show a sustained average acoustic intensity 
during the night period of around 50 dB between 20 and 25 Hz. The 
average acoustic intensity of all frequencies is greater than 60 dB. 

As the sound level meter has a range between 20 and 20,000 Hz, it is 
not possible to check the sound pressure level below this frequency, 

Fig. 12. Autocorrelation and partial autocorrelation plot of sound pressure at 20 Hz (nighttime). This plot is in time analysis and is separated in two graphs. Top 
graph considers autocorrelation and bottom graph partial autocorrelation. The role of this plot is to identify time series model, although they do not allow us to 
determine the influence of other variables over time. Partial autocorrelation differs from simple autocorrelation by removing the effects of lag times prior to time to 
be calculated. A model without values after 0 in both graphs represents white noise with respect to a mean value. It seems that the variations produced by the sound 
sources with respect to the average value are purely random, and, therefore, the sources that generate sound at 20 Hz work stationary during nighttime. 
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since part of the measured pressure may be infrasound. 
Sound intensity time series for the lowest frequencies show statio-

narity over time, and with autocorrelations and cross-correlations close 
to zero, so the chosen study interval (nighttime) is correct. This statio-
narity is not kept in other periods of the day (morning and afternoon), 
due to the presence of a greater number of sources with intermittent 
performance. 

Based on linear dimensional reduction data using factor analysis 
with rotations, the number of low-frequency sources is likely equal to 
one, although it is noted that one source may represent a set of nearby 
equipment. In any case, using rotation in factor analysis is essential to be 
able to specify the number. 

Regarding nonlinear dimensional reduction, the previous linear 
dimensional reduction is useful for the design of the neural network, 
which will be of the “Autoencoder” type, because with the number of 
possible sources estimated previously, data analysts can start from the 
beginning with a scheme close to the final shape of the fitted neural 
network. However, this model does not easily allow us to obtain the 
sources that have low-frequency sound emissions. 

Therefore, the proposed methodology is suitable for determining 
sources, including the choice of sampling points based on the associated 
symptoms. 

Low frequencies could promote adverse effects even at frequencies 
lower than those contemplated in the study range (20–20000 Hz), so It 
should be taken into account that although the dB levels are below the 
possible limits indicated as harmful to health in the scientific literature, 
these harmful effects normally apply to specific exposures, but this lower 
limits may decrease in the case that they are exposures to low fre-
quencies sustained over time. 

Low frequency measurements should be made without filter A, since 
applying filters reduce the quality of the information, increasing its 
entropy, and besides completely omits the low frequency spectrum. 

The authors of this work are aware that it is not possible with a single 
study to scientifically associate some people’s symptoms with a possible 
energy absorption measured in only three days and with metrological 
limitations due to the limit of the equipment. It is necessary to carry out 
new measurements in homes to corroborate what is suspected from this 
study that the absorption of small and continuous doses of low fre-
quencies may occur. 

The subsequent tests that were carried out in the home to detect 
other factors that could cause the symptoms were negative, although 
since it was a single sample, it cannot be stated that there is a rela-
tionship between the symptoms that induced the sample and the exis-
tence of low noises. frequencies. 

Fig. 13. Autocorrelation and partial autocorrelation plot of sound pressure at 20 Hz (entire sample). The only difference between Figs. 12 and 13 is the size of the 
sample. Fig. 13 considers the entire data set, including daytime periods and Fig. 12 only considers nighttime. In this case, pressure at 20 Hz is not white noise. It is 
very likely which new sound sources appear during daytime period, or another causes such as interaction with other frequencies, or sound sources, which worked 
stationary during nighttime, but they do not work stationary during daytime. 
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This study provides evidence of the existence of low-frequency 
sounds with high intensity even when most of the sources identified 
by scientific studies are not present nearby. Furthermore, these low- 
frequency sounds are almost inaudible to most of the population, so 
they do not allow individuals to perceive that they are receiving them, 
even though they may be harming them. 

It also shows the need to avoid applying filters for the analysis or 
calculation of sound intensities, because the quality of the information 
would decrease, and most types of filters would exclude these non- 
audible frequencies. This invites to reform legislation, standards, and 
regulations to avoid excluding sound emissions that could harm people. 

In addition, it changes the approach when selecting households of 

Fig. 14. Histograms and scatter plots between five low frequencies at night. This figure corresponds to exploratory data analysis. Each plot compares five different 
low frequencies and draws scatter plots when frequencies are different, or histograms when frequencies are equal. Scatter plot indicates for each sample the point 
obtained from the sound pressure of one of the frequencies on the X axis versus the sound pressure of the other frequency on the Y axis. Left plot shows case without 
removing outliers, and right plot shows case with substitution of outliers by median. In the case of replacing outliers, the shape of the distribution is more regular. 

Fig. 15. Dimensional reduction factors color maps (PCA, Unrotated FA, VARIMAX FA) and sedimentation plot (entire sample). This figure shows the factor loadings 
which express the relationship between the original frequencies and the new factors. Figure contains three color maps corresponding to each of the linear 
dimensional reduction methods used (principal components, unrotated factorial, factorial with VARIMAX rotation), as well as a variance scree plot showing the 
contribution to the variance of each of the new factors for the VARIMAX factorial method. More intense colors indicate closer relationships of this factor with the 
frequencies where intense color appear. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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the sample, since it focuses on possible adverse health effects instead of 
possible generating sources nearby. 

Finally, the use of machine learning methodologies allows us to 
distinguish between sound sources, and even differentiate the fre-
quencies generated by each source, although these methods would lose 
efficiency if the measurements are carried out in environments that do 
not guarantee stability, since the methodology It would be greatly 
complicated by the appearance of a number of atypical cases that are 
impossible to treat. 

Future goals:  

• Carry out more studies in other homes with inhabitants who present 
the symptoms mentioned in this article.  

• Improve the methodology in non-linear models for the separation of 
sources by frequencies.  

• Refine the models through verification tests with the turning off and 
on of the machines that make up the possible sources.  

• Identify the exact location of sources with measurements at multiple 
points in the building.  

• Perform laboratory tests with refrigeration equipment. 
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L.J. Azcárate de Castro et al.                                                                                                                                                                                                                

https://doi.org/10.1260/0263-0923.28.2.79
https://doi.org/10.1016/j.pbiomolbio.2006.07.006
https://doi.org/10.1016/j.jastp.2013.08.00
https://doi.org/10.1016/j.jvolgeores.2011.06.006
https://doi.org/10.1080/10803548.2020.1831787
http://refhub.elsevier.com/S0360-1323(24)00282-8/sref6
http://refhub.elsevier.com/S0360-1323(24)00282-8/sref6


Building and Environment 255 (2024) 111440

18

review. Healthcare (Switzerland), MDPI, 2022, March 1, https://doi.org/10.3390/ 
healthcare10030423. 

[8] M.B. Martínez, D.B. Moyano, R.A. González-Lezcano, Phacoemulsification: 
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de.madrid.es/sites/v/index.jsp?vgnextoid=0130511f3649e210VgnVCM2000000 
c205a0aRCRD&vgnextchannel=6b3d814231ede410VgnVCM1000000b205a0aR 
CRD, de 25 de febrero de 2011. 
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